1
|
Borges J, Zeng J, Liu XQ, Chang H, Monge C, Garot C, Ren K, Machillot P, Vrana NE, Lavalle P, Akagi T, Matsusaki M, Ji J, Akashi M, Mano JF, Gribova V, Picart C. Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications. Adv Healthc Mater 2024; 13:e2302713. [PMID: 38116714 PMCID: PMC11469081 DOI: 10.1002/adhm.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.
Collapse
Grants
- GA259370 ERC "BIOMIM"
- GA692924 ERC "BioactiveCoatings"
- GA790435 ERC "Regenerbone"
- ANR-17-CE13-022 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-18-CE17-0016 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- 192974 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-20-CE19-022 BIOFISS Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR22-CE19-0024 SAFEST Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- DOS0062033/0 FUI-BPI France
- 883370 European Research Council "REBORN"
- 2020.00758.CEECIND Portuguese Foundation for Science and Technology
- UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020 FCT/MCTES (PIDDAC)
- 751061 European Union's Horizon 2020 "PolyVac"
- 11623 Sidaction
- 20H00665 JSPS Grant-in-Aid for Scientific Research
- 3981662 BPI France Aide Deep Tech programme
- ECTZ60600 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- 101079482 HORIZON EUROPE Framework Programme "SUPRALIFE"
- 101058554 Horizon Europe EIC Accelerator "SPARTHACUS"
- Sidaction
- Agence Nationale de Recherches sur le Sida et les Hépatites Virales
Collapse
Affiliation(s)
- João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Jinfeng Zeng
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Xi Qiu Liu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Chang
- Hangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiang310022China
| | - Claire Monge
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI)UMR5305 CNRS/Universite Claude Bernard Lyon 17 Passage du VercorsLyon69367France
| | - Charlotte Garot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Ke‐feng Ren
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Paul Machillot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Nihal E. Vrana
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
| | - Philippe Lavalle
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Takami Akagi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - Michiya Matsusaki
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Jian Ji
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Mitsuru Akashi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Catherine Picart
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| |
Collapse
|
2
|
Zhu Y, Zhang X, Sun E, Wu J, Guo J, Lv A, Li X, Wang K, Wang L. Antimicrobial films fabricated with myricetin nanoparticles and chitosan derivation microgels for killing pathogenic bacteria in drinking water. Colloids Surf B Biointerfaces 2023; 232:113591. [PMID: 37839226 DOI: 10.1016/j.colsurfb.2023.113591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Pathogenic bacteria in drinking water threaten human health and life. In the work, antimicrobial films composed of myricetin@tannic acid (My@TA) nanoparticles (NPs) and chitosan derivation microgels were developed to kill pathogenic bacteria in drinking water. Hydrophobic My was first made into water soluble My@TA NPs using a solvent exchange method with TA as stabilizer. Polymeric microgels of carboxymethyl chitosan (CMCS)/hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were then fabricated with a blending method. CMCS&HACC/My@TA multilayer films were further deposited on the internal surface of PET bottles by using a layer-by-layer (LbL) assembly technique. The PET bottles coated with the films could effectively kill pathogenic bacteria in water such as S. aureus, E. coli, Staphylococcus epidermidis, Pseudomonas fluorescens, Listeria monocytogenes and methicillin resistant Staphylococcus aureus (MRSA). In addition, CMCS&HACC/My@TA films displayed good antioxidant activity, water resistance, and in vivo biocompatibility with heart, liver, spleen, lung and kidney organs. We believe that the container coated with CMCS&HACC/My@TA films can be applied to prevent microbial contamination of drinking water.
Collapse
Affiliation(s)
- Yu Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enze Sun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxiang Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anboyuan Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaozhou Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Takagi K, Sagawa T, Hashizume M. The pH responsiveness of fluorescein loaded in polysaccharide composite films. SOFT MATTER 2023; 19:8945-8953. [PMID: 37909071 DOI: 10.1039/d3sm01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Stimuli-responsive materials have been used in biomedical applications. Composite films fabricated using polyion complexes comprising anionic and cationic polysaccharides exhibited loading and release abilities for water-soluble molecules, the release ability of which depended on the solution pH. However, the interactions between polysaccharides and loaded molecules in the film have not been evaluated. In this study, polysaccharide composite films loaded with fluorescein (FL) as a probe molecule were fabricated and the film properties, FL ionization, and release behaviour of FL were investigated. FL loading did not significantly affect the mechanical and morphological properties of the films. The release behaviour of FL was determined by the pH of the solution as well as the electrostatic interaction between polysaccharides and FL ionic structures in FL-loaded films. Furthermore, the ionic structure change of FL that remained in the film was suppressed due to interactions with polysaccharides, such as through hydrogen bonding. Additionally, the pH responsiveness of FL in the film in the dried state was evaluated. The result shows that polysaccharide composite films were swollen because of air moisture and that the diffusion of molecules inside the film accelerated. These findings are useful to understand the properties of the loaded molecules such as ionic state and diffusiveness in the films made of polyion complexes.
Collapse
Affiliation(s)
- Konatsu Takagi
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Takuya Sagawa
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mineo Hashizume
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
4
|
Zhang Q, Inagaki NF, Ito T. Recent advances in micro-sized oxygen carriers inspired by red blood cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2223050. [PMID: 37363800 PMCID: PMC10288928 DOI: 10.1080/14686996.2023.2223050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Supplementing sufficient oxygen to cells is always challenging in biomedical engineering fields such as tissue engineering. Originating from the concept of a 'blood substitute', nano-sized artificial oxygen carriers (AOCs) have been studied for a long time for the optimization of the oxygen supplementation and improvement of hypoxia environments in vitro and in vivo. When circulating in our bodies, micro-sized human red blood cells (hRBCs) feature a high oxygen capacity, a unique biconcave shape, biomechanical and rheological properties, and low frictional surfaces, making them efficient natural oxygen carriers. Inspired by hRBCs, recent studies have focused on evolving different AOCs into microparticles more feasibly able to achieve desired architectures and morphologies and to obtain the corresponding advantages. Recent micro-sized AOCs have been developed into additional categories based on their principal oxygen-carrying or oxygen-releasing materials. Various biomaterials such as lipids, proteins, and polymers have also been used to prepare oxygen carriers owing to their rapid oxygen transfer, high oxygen capacity, excellent colloidal stability, biocompatibility, suitable biodegradability, and long storage. In this review, we concentrated on the fabrication techniques, applied biomaterials, and design considerations of micro-sized AOCs to illustrate the advances in their performances. We also compared certain recent micro-sized AOCs with hRBCs where applicable and appropriate. Furthermore, we discussed existing and potential applications of different types of micro-sized AOCs.
Collapse
Affiliation(s)
- Qiming Zhang
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Natsuko F. Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Wu J, Tu J, Yu S, Wu H, Xie Y, Yang Y, Xv Z, Zhang Q. Hollow core-shell nanocoatings with gradient refractive index structure for enhanced photovoltaic performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Bilal M, Rashid EU, Munawar J, Iqbal HMN, Cui J, Zdarta J, Ashraf SS, Jesionowski T. Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology. Int J Biol Macromol 2023; 237:123968. [PMID: 36906204 DOI: 10.1016/j.ijbiomac.2023.123968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Junaid Munawar
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
7
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
8
|
Sagawa T, Nikaido Y, Iijima K, Sakaguchi M, Yataka Y, Hashizume M. Preparation of Mechanically Anisotropic Polysaccharide Composite Films Using Roll-Press Techniques. ACS OMEGA 2023; 8:5607-5616. [PMID: 36816663 PMCID: PMC9933227 DOI: 10.1021/acsomega.2c07077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Natural polysaccharides are biocompatible and biodegradable; therefore, they can be used as feedstock for biodegradable structural materials and biomaterials. In this study, anisotropic polysaccharide composite films consisting of chondroitin sulfate C (CS) and chitosan (CHI) were fabricated from their polyion complex (PIC) gels by roll-press techniques. The obtained films (CS/CHI films) were thin and transparent, similar to the composite films prepared by hot-press techniques. The roll-press conditions were optimized, and it was observed that the molecular weight of CHI did not significantly affect the formability of the films, whereas the roll temperature and rolling speed were important. The tensile tests of the roll-pressed films revealed that the mechanical strength of the films in the mechanical direction (MD) was approximately 5 times higher than that in the transverse direction (TD), indicating that the roll-press techniques imparted mechanical anisotropy to the films. Additionally, the films shrank in the MD and expanded in the TD after immersion in aqueous solutions, followed by drying. Such anisotropic shrinking and expanding properties indicate that these films can be used as shape-memory materials.
Collapse
Affiliation(s)
- Takuya Sagawa
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Graduate
School of Engineering, Tokyo University
of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuichi Nikaido
- Graduate
School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Kazutoshi Iijima
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masahiro Sakaguchi
- Graduate
School of Engineering, Tokyo University
of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yusuke Yataka
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Mineo Hashizume
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Graduate
School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
- Graduate
School of Engineering, Tokyo University
of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
9
|
Advances in unusual interfacial polymerization techniques. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
10
|
Sakthinathan I, Köhling J, Wagner V, McCormac T. Layer-by-Layer Construction of a Nanoarchitecture by Polyoxometalates and Polymers: Enhanced Electrochemical Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2861-2872. [PMID: 36598164 DOI: 10.1021/acsami.2c17397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this contribution, a nanoarchitectural approach was employed to produce a nanolayer of polyoxometalate (POM) on the surface of a glassy carbon electrode (GCE) to achieve a higher surface area with higher electrocatalytic activity toward the electrochemical hydrogen evolution reaction (HER). To accomplish this, the well-known layer-by-layer (LbL) technique was employed, which involved the alternate adsorption of the POM, Na0.3[N(C4H9)4]7.7 [(Mo3O8)4(O3PC(O)(C3H6NH2CH2C4H3S)PO3)4], abbreviated as [(TBA)Mo12(AleThio)4], and polyethyleneimine (PEI) polymer. This nanolayered electrode exhibited catalytic properties toward the HER in 0.5 M H2SO4 with the resulting polarization curves indicating an increase in the HER activity with the increasing number of POM layers, and the overpotential required for this reaction was lowered by 0.83 V when compared with a bare GCE. The eighth PEI/[(TBA)Mo12(AleThio)4] bilayer exhibited a significantly lower HER overpotential of -0.077 V at a current density of 10 mA cm-2. Surface characterization of the LbL-assembled nanolayers was carried out using X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. We believe that the synergetic effect of the positively charged PEI polymer and the catalytically active molybdate POM is the cause for the successful response to the electrochemical HER.
Collapse
Affiliation(s)
- Indherjith Sakthinathan
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| | - Jonas Köhling
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Veit Wagner
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Timothy McCormac
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| |
Collapse
|
11
|
Cai J, Liu Y, Shu X. Long-Period Fiber Grating Sensors for Chemical and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:542. [PMID: 36617140 PMCID: PMC9823881 DOI: 10.3390/s23010542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Optical fiber biosensors (OFBS) are being increasingly proposed due to their intrinsic advantages over conventional sensors, including their compactness, potential remote control and immunity to electromagnetic interference. This review systematically introduces the advances of OFBS based on long-period fiber gratings (LPFGs) for chemical and biomedical applications from the perspective of design and functionalization. The sensitivity of such a sensor can be enhanced by designing the device working at or near the dispersion turning point, or working around the mode transition, or their combination. In addition, several common functionalization methods are summarized in detail, such as the covalent immobilization of 3-aminopropyltriethoxysilane (APTES) silanization and graphene oxide (GO) functionalization, and the noncovalent immobilization of the layer-by-layer assembly method. Moreover, reflective LPFG-based sensors with different configurations have also been introduced. This work aims to provide a comprehensive understanding of LPFG-based biosensors and to suggest some future directions for exploration.
Collapse
Affiliation(s)
| | | | - Xuewen Shu
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Sol–gel-derived bayberry-like SiO2@TiO2 multifunctional antireflective coatings for enhancing photovoltaic power generation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Zhang Q, Yan Y, Liu J, Wu Y, He Q. Supramolecular colloidal motors via chemical self-assembly. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
M. Hizam SM, Al-Dhahebi AM, Mohamed Saheed MS. Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection. Polymers (Basel) 2022; 14:5125. [PMID: 36501520 PMCID: PMC9739373 DOI: 10.3390/polym14235125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing demand to mitigate the alarming effects of the emission of ammonia (NH3) on human health and the environment has highlighted the growing attention to the design of reliable and effective sensing technologies using novel materials and unique nanocomposites with tunable functionalities. Among the state-of-the-art ammonia detection materials, graphene-based polymeric nanocomposites have gained significant attention. Despite the ever-increasing number of publications on graphene-based polymeric nanocomposites for ammonia detection, various understandings and information regarding the process, mechanisms, and new material components have not been fully explored. Therefore, this review summarises the recent progress of graphene-based polymeric nanocomposites for ammonia detection. A comprehensive discussion is provided on the various gas sensor designs, including chemiresistive, Quartz Crystal Microbalance (QCM), and Field-Effect Transistor (FET), as well as gas sensors utilising the graphene-based polymer nanocomposites, in addition to highlighting the pros and cons of graphene to enhance the performance of gas sensors. Moreover, the various techniques used to fabricate graphene-based nanocomposites and the numerous polymer electrolytes (e.g., conductive polymeric electrolytes), the ion transport models, and the fabrication and detection mechanisms of ammonia are critically addressed. Finally, a brief outlook on the significant progress, future opportunities, and challenges of graphene-based polymer nanocomposites for the application of ammonia detection are presented.
Collapse
Affiliation(s)
- Sara Maira M. Hizam
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Adel Mohammed Al-Dhahebi
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
15
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Zhang YY, Li QL, Wong HM. Fabrication of Multilayered Biofunctional Material with an Enamel-like Structure. Int J Mol Sci 2022; 23:13810. [PMID: 36430289 PMCID: PMC9692533 DOI: 10.3390/ijms232213810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The oral cavity is an environment with diverse bacteria; thus, antibacterial materials are crucial for treating and preventing dental diseases. There is a high demand for materials with an enamel-like architecture because of the high failure rate of dental restorations, due to the physical differences between dental materials and enamel. However, recreating the distinctive apatite composition and hierarchical architecture of enamel is challenging. The aim of this study was to synthesize a novel material with an enamel-like structure and antibacterial ability. We established a non-cell biomimetic method of evaporation-based bottom-up self-assembly combined with a layer-by-layer technique and introduced an antibacterial agent (graphene oxide) to fabricate a biofunctional material with an enamel-like architecture and antibacterial ability. Specifically, enamel-like graphene oxide-hydroxyapatite crystals, formed on a customized mineralization template, were assembled into an enamel-like prismatic structure with a highly organized orientation preferentially along the c-axis through evaporation-based bottom-up self-assembly. With the aid of layer-by-layer absorption, we then fabricated a bulk macroscopic multilayered biofunctional material with a hierarchical enamel-like architecture. This enamel-inspired biomaterial could effectively resolve the problem in dental restoration and brings new prospects for the synthesis of other enamel-inspired biomaterials.
Collapse
Affiliation(s)
- Yu Yuan Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong 000000, China
| | - Quan Li Li
- Collage and Hospital of Stomatology, Anhui Medical University, No. 69, Meishan Road, Heifei 230000, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong 000000, China
| |
Collapse
|
17
|
Makiura R. Creation of metal–organic framework nanosheets by the Langmuir-Blodgett technique. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li X, Río Saez JSD, Ao X, Vázquez-López A, Xu X, Xu B, Wang DY. Smart Low-temperature responsive fire alarm based on MXene/Graphene oxide film with wireless transmission: Remote real-time luminosity detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zhou S, Situ W. Effect of Chitosan Molecular Structure on the Storage and
Controlled‐Releasing
Property of
Double‐Layer
Particles for Bioactive Proteins Oral Administration. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subin Zhou
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Wenbei Situ
- College of Food Science South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
20
|
Multilayered Nanocomposites Prepared through Quadruple-Layering Approach towards Enhanced Mechanical Performance. Molecules 2022; 27:molecules27154852. [PMID: 35956803 PMCID: PMC9369527 DOI: 10.3390/molecules27154852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Multilayered materials are widely studied due to their special structures and great properties, such as their mechanical ones. In this paper a novel and effective technique, a quadruple-layering approach, was used to fabricate multilayered materials. This approach increases the number of layers rapidly via simple operations. Materials with 4, 16, and 64 layers with alternating layers of polypropylene and nanocomposites were fabricated using this approach, and their film morphology and mechanical properties were studied. The influence of the number of layers on the mechanical properties of the materials and the relationship between the mechanical properties of each material were investigated. The results illustrated that the tensile modulus and strength were enhanced and elongation at the break increased when the layer numbers of the multilayered materials increased. However, this approach has a defect in that as the layer number increases, the layer thickness was not uniform, thus restricting the improvement of properties. This may need to be further studied in future work.
Collapse
|
21
|
Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103263. [PMID: 35630741 PMCID: PMC9145934 DOI: 10.3390/molecules27103263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.
Collapse
|
22
|
Wu S, Liang Z, Li Y, Chay S, He Z, Tan S, Wang J, Zhu X, He X. Transparent, Photothermal, and Icephobic Surfaces via Layer-by-Layer Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105986. [PMID: 35486005 PMCID: PMC9108600 DOI: 10.1002/advs.202105986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Icing and frosting on transparent surfaces compromise visibility on various optical equipment and transparent infrastructures. It remains challenging to fabricate energy-saving coatings for harvesting solar energy while maintaining high transparency. Here, transparent, photothermic, and icephobic composite surfaces composed of photothermal nanomaterials and polyelectrolytes via layer-by-layer assembly are designed and constructed. The positively-charged polypyrrole nanoparticles and negatively-charged poly(acrylic acid) are assembled as exemplary materials via electrostatic attractions. The optically transparent photothermal coatings are successfully fabricated and exhibited photothermal capabilities and light-transmittance performance. Among the various coatings applied, the seven-bilayer coating can increase the temperature by 35 °C under 1.9-sun illumination, maintaining high transmittance (>60%) of visible light. With sunlight illumination at subzero temperatures (> -35 °C), the coatings show pronounced capabilities to inhibit freezing, melt accumulated frost, and decrease ice adhesion. Precisely, the icephobic surfaces remain free of frost at -35 °C as long as sunlight illumination is present; the accumulated frost melts rapidly within 300 s. The ice adhesion strength decreases to ≈0 kPa as the melted water acts as a lubricant. Furthermore, the negatively-charged graphene oxide and positively-charged poly(diallyldimethylammonium chloride) show their material diversity applicable in the coating fabrication.
Collapse
Affiliation(s)
- Shuwang Wu
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhenyu Liang
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Yupeng Li
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Sarah Chay
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Zhiyuan He
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Sicong Tan
- Heat and Mass Transfer CenterInstitute of Engineering ThermophysicsChinese Academy of SciencesBeijing100190China
| | - Jianjun Wang
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Xinyuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ximin He
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
| |
Collapse
|
23
|
Huang Y, Cao L, Parakhonskiy BV, Skirtach AG. Hard, Soft, and Hard- and-Soft Drug Delivery Carriers Based on CaCO 3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022; 14:909. [PMID: 35631494 PMCID: PMC9146629 DOI: 10.3390/pharmaceutics14050909] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Because free therapeutic drug molecules often have adverse effects on normal tissues, deliver scanty drug concentrations and exhibit a potentially low efficacy at pathological sites, various drug carriers have been developed for preclinical and clinical trials. Their physicochemical and toxicological properties are the subject of extensive research. Inorganic calcium carbonate particles are promising candidates as drug delivery carriers owning to their hardness, porous internal structure, high surface area, distinctive pH-sensitivity, low degradability, etc, while soft organic alginate hydrogels are also widely used because of their special advantages such as a high hydration, bio-adhesiveness, and non-antigenicity. Here, we review these two distinct substances as well as hybrid structures encompassing both types of carriers. Methods of their synthesis, fundamental properties and mechanisms of formation, and their respective applications are described. Furthermore, we summarize and compare similarities versus differences taking into account unique advantages and disadvantages of these drug delivery carriers. Moreover, rational combination of both carrier types due to their performance complementarity (yin-&yang properties: in general, yin is referred to for definiteness as hard, and yang is broadly taken as soft) is proposed to be used in the so-called hybrid carriers endowing them with even more advanced properties envisioned to be attractive for designing new drug delivery systems.
Collapse
Affiliation(s)
| | - Lin Cao
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Andre G. Skirtach
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
24
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
25
|
Kotov NA. Layered Biomimetic Composites from MXenes with Sequential Bridging. Angew Chem Int Ed Engl 2022; 61:e202114140. [DOI: 10.1002/anie.202114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Nicholas A. Kotov
- Department of Chemical Engineering Biointerfaces Institute Department of Materials Science and Engineering University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
26
|
Synthetic methods of lipid-coated mesoporous silica nanoparticles as drug carriers. Biointerphases 2022; 17:020801. [PMID: 35232023 DOI: 10.1116/6.0001688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The lipid-coated mesoporous silica nanoparticles (LMSNs) that can synergistically harness the advantages and mitigate the disadvantages of the liposomes and MSNs are considered potential drug carriers. So far, several methods have been developed to prepare LMSNs, including vesicle fusion, thin-film hydration, and solvent exchange. Despite their wide application in LMSN preparation, these methods are short of detailed elaboration and comparison, which hinders their further development. In this review, for the first time, the three methods are systematically summarized, including their mechanisms, influence factors, advantages, and limitations. Although these methods are all based on lipid self-assembly, there is still a difference between them. In order to efficiently prepare LMSNs, we proposed that a suitable method should be selected based on the actual situation. It is conceivable that the elaboration and comparison in this review will make these methods easy to be understood and provide guidance for the design of LMSNs as drug carriers.
Collapse
|
27
|
A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluorouracil delivery: Synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr Polym 2022; 277:118858. [PMID: 34893265 DOI: 10.1016/j.carbpol.2021.118858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
We report herein the development of the novel nanohybrids of gold nanoparticles reduced/stabilized/coated with collagen (AuNPs@collagen) in the first layer and subsequently modified with biotin-quat188-chitosan (Bi-QCS) in the outer layer for 5-fluorouracil (5-FU) delivery to improve cellular uptake and promote specific cell targeting of the nanocarrier. The fabrication of the layer-by-layer technique on the surface of gold nanoparticles (AuNPs) can overcome the limitation of poor drug loading capacity of the classic AuNPs from 64.67% to 87.46%. The AuNPs@collagen coated by the Bi-QCS exhibits strong electrostatic interactions between drug anion (5-FU) and amine groups of the modified chitosan as well as hydrogen bonding. Furthermore, the Bi-QCS-AuNPs@collagen demonstrated a significantly higher anti-inflammatory activity in RAW264.7 macrophage cell line. The Bi-QCS-AuNPs@collagen enhanced the activity of 5-FU approximately 3.3-fold (HeLa) and 6.2-fold (A549), compared to the free 5-Fluorouracil. According to these results, it is very promising that Bi-QCS-AuNPs@collagen can be used as an effective drug delivery carrier in the future.
Collapse
|
28
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
29
|
Kotov NA. Layered Biomimetic Composites from MXenes with Sequential Bridging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas A. Kotov
- Department of Chemical Engineering Biointerfaces Institute Department of Materials Science and Engineering University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
30
|
Magovac E, Vončina B, Jordanov I, Grunlan JC, Bischof S. Layer-by-Layer Deposition: A Promising Environmentally Benign Flame-Retardant Treatment for Cotton, Polyester, Polyamide and Blended Textiles. MATERIALS 2022; 15:ma15020432. [PMID: 35057150 PMCID: PMC8779411 DOI: 10.3390/ma15020432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current commercially available finishing processes due to the use of water as a solvent for a variety of active substances. For flame-retardant (FR) purposes, different ingredients are able to build oppositely charged layers at very low concentrations in water (e.g., small organic molecules and macromolecules from renewable sources, inorganic compounds, metallic or oxide colloids, etc.). Since the layers on a textile substrate are bonded with pH and ion-sensitive electrostatic forces, the greatest technological drawback of LbL deposition for FR finishing is its non-resistance to washing cycles. Several possibilities of laundering durability improvements by different pre-treatments, as well as post-treatments to form covalent bonds between the layers, are presented in this review.
Collapse
Affiliation(s)
- Eva Magovac
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia;
| | - Bojana Vončina
- Laboratory for Chemistry and Environmental Protection, Faculty of Mechanical Engineering, University of Maribor, 2609 Maribor, Slovenia;
| | - Igor Jordanov
- Department of Textiles, Faculty of Technology and Metallurgy, University Ss. Cyril and Methodius, 1000 Skopje, North Macedonia;
| | - Jaime C. Grunlan
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Sandra Bischof
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-14877357
| |
Collapse
|
31
|
Bondancia TJ, Soares AC, Popolin-Neto M, Gomes NO, Raymundo-Pereira PA, Barud HS, Machado SA, Ribeiro SJ, Melendez ME, Carvalho AL, Reis RM, Paulovich FV, Oliveira ON. Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112676. [DOI: 10.1016/j.msec.2022.112676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/29/2023]
|
32
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
33
|
Ariga K, Lvov Y, Decher G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys Chem Chem Phys 2021; 24:4097-4115. [PMID: 34942636 DOI: 10.1039/d1cp04669a] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoarchitectonics approaches can produce functional materials from tiny units through combination of various processes including atom/molecular manipulation, chemical conversion, self-assembly/self-organization, microfabrication, and bio-inspired procedures. Existing fabrication approaches can be regarded as fitting into the same concept. In particular, the so-called layer-by-layer (LbL) assembly method has huge potential for preparing applicable materials with a great variety of assembling mechanisms. LbL assembly is a multistep process where different components can be organized in planned sequences while simple alignment options provide access to superstructures, for example helical structures, and anisotropies which are important aspects of nanoarchitectonics. In this article, newly-featured examples are extracted from the literature on LbL assembly discussing trends for composite functional materials according to (i) principles and techniques, (ii) composite materials, and (iii) applications. We present our opinion on the present trends, and the prospects of LbL assembly. While this method has already reached a certain maturity, there is still plenty of room for expanding its usefulness for the fabrication of nanoarchitectonics-based materials and devices.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Gero Decher
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Université de Strasbourg, Faculté de Chimie and CNRS Institut Charles Sadron, F-67000 Strasbourg, France.,International Center for Frontier Research in Chemistry, F-67083 Strasbourg, France
| |
Collapse
|
34
|
Liang S, Wang M, Wang J, Chen G. Red-Blood-Cell-Membrane-Coated Metal-Drug Nanoparticles for Enhanced Chemotherapy. Chembiochem 2021; 22:3184-3189. [PMID: 34468067 DOI: 10.1002/cbic.202100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Indexed: 12/11/2022]
Abstract
To overcome high toxicity, low bioavailability and poor water solubility of chemotherapeutics, a variety of drug carriers have been designed. However, most carriers are severely limited by low drug loading capacity and adverse side effects. Here, a new type of metal-drug nanoparticles (MDNs) was designed and synthesized. The MDNs self-assembled with Fe(III) ions and drug molecules through coordination, resulting in nanoparticles with high drug loading. To assist systemic delivery and prolong circulation time, the obtained MDNs were camouflaged with red blood cell (RBCs) membranes (RBCs@Fe-DOX MDNs) to improve their stability and dispersity. The RBCs@Fe-DOX MDNs presented pH-responsive release functionalities, resulting in drug release accelerated in acidic tumor microenvironments. The outstanding in vitro and in vivo antitumor therapeutic outcome was realized by RBCs@Fe-DOX MDNs. This study provides an innovative design guideline for chemotherapy and demonstrates the great capacity of nanomaterials in anticancer treatments.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| | - Miaomiao Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| | - Jun Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| |
Collapse
|
35
|
Sill A, Nestler P, Thran P, Helm CA. Dependence of PSS Diffusion in Multilayers of Entangled PDADMA on Temperature and Salt Concentration: More than One Diffusion Constant. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annekatrin Sill
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany
| | - Peter Nestler
- ZIK HIKE—Biomechanics, University of Greifswald, Fleischmannstr. 42, D-17489 Greifswald, Germany
| | - Peter Thran
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany
| | - Christiane A. Helm
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany
| |
Collapse
|
36
|
Kalde A, Kamp J, Evdochenko E, Linkhorst J, Wessling M. Wetting-Induced Polyelectrolyte Pore Bridging. MEMBRANES 2021; 11:671. [PMID: 34564487 PMCID: PMC8466633 DOI: 10.3390/membranes11090671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
Active layers of ion separation membranes often consist of charged layers that retain ions based on electrostatic repulsion. Conventional fabrication of these layers, such as polyelectrolyte deposition, can in some cases lead to excess coating to prevent defects in the active layer. This excess deposition increases the overall membrane transport resistance. The study at hand presents a manufacturing procedure for controlled polyelectrolyte complexation in and on porous supports by support wetting control. Pre-wetting of the microfiltration membrane support, or even supports with larger pore sizes, leads to ternary phase boundaries of the support, the coating solution, and the pre-wetting agent. At these phase boundaries, polyelectrolytes can be complexated to form partially freestanding selective structures bridging the pores. This polyelectrolyte complex formation control allows the production of membranes with evenly distributed polyelectrolyte layers, providing (1) fewer coating steps needed for defect-free active layers, (2) larger support diameters that can be bridged, and (3) a precise position control of the formed polyelectrolyte multilayers. We further analyze the formed structures regarding their position, composition, and diffusion dialysis performance.
Collapse
Affiliation(s)
- Anna Kalde
- DWI-Leibniz—Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany;
| | - Johannes Kamp
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany; (J.K.); (E.E.); (J.L.)
| | - Elizaveta Evdochenko
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany; (J.K.); (E.E.); (J.L.)
| | - John Linkhorst
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany; (J.K.); (E.E.); (J.L.)
| | - Matthias Wessling
- DWI-Leibniz—Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany;
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany; (J.K.); (E.E.); (J.L.)
| |
Collapse
|
37
|
Kamegawa T, Kawakami S, Okamoto M, Katsumi R. Synthesis of Flower-Like Structured Calcium Silicide and Its Application in the Preparation of Palladium-Loaded Catalyst. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Kamegawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- NanoSquare Research Institute, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Shoki Kawakami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Misumi Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- NanoSquare Research Institute, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ryoichi Katsumi
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
- NanoSquare Research Institute, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
38
|
Hnatiuk M, Kimball D, Kolanthai E, Neal CJ, Kumar U, Sakthivel TS, Seal S. High-throughput and versatile design for multi-layer coating deposition using lab automation through Arduino-controlled devices. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:084105. [PMID: 34470440 DOI: 10.1063/5.0059950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Laboratory and experimental scale manufacturing processes are limited by human error (e.g., poor control over motion and personal subjectivity), especially under fatiguing conditions involving precise, repetitive operations, incurring compounding errors. Commercial layer-by-layer (LbL) automation devices are prohibitively high-priced (especially for academic institutions) with limited flexibility in form factor and potentially software-associated constraints/limitations. In this work, a novel automated multi-beaker dip coater was fabricated to facilitate nano cerium oxide/polymer coatings via an LbL dip coating process and the synthesis of nano ceria films via a novel successive ionic layer adsorption and reaction method on a glass substrate. Automation of tasks, such as those mediating the detailed procedures, is essential in producing highly reproducible, consistent products/materials as well as in reducing the time commitments for laboratory researchers. Herein, we detail the construction of a relatively large, yet inexpensive, LbL coating instrument that can operate over 90 cm in the horizontal axis, allowing, for example, up to eight 200 ml beakers with accompanying stir plates. The instrument is operated by simple "off-the-shelf" electronics to control the path and timing of the samples with open-source software while providing precision at ±0.01 mm. Furthermore, 3D-printed components were used to maximize the number of substrates that could be coated simultaneously, further improving the sample production rate and reducing waste. Further possibilities for automation beyond the detailed device are provided and discussed, including software interfaces, physical control methods, and sensors for data collection/analysis or for triggers of automated tasks.
Collapse
Affiliation(s)
- Michael Hnatiuk
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Dave Kimball
- Nicholson School of Communication, University of Central Florida, Orlando, Florida 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Tamil Selvan Sakthivel
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
39
|
Sung C, Heo Y. Porous Layer-by-Layer Films Assembled Using Polyelectrolyte Blend to Control Wetting Properties. Polymers (Basel) 2021; 13:2116. [PMID: 34203206 PMCID: PMC8271915 DOI: 10.3390/polym13132116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Porous layer-by-layer (LbL) films have been employed for the implementation of superwetting surfaces, but they are limited to the LbL films consisting of only two oppositely charged polyelectrolytes. In this study, LbL films were assembled using a cationic polymer blend of branched poly(ethylene imine) (BPEI) and poly(allylamine hydrochloride) (PAH), and anionic poly(acrylic acid); they were then acid-treated at pH 1.8-2.0 to create a porous structure. The films of 100% BPEI exhibited a relatively smooth surface, whereas those of the 100% PAH exhibited porous surfaces. However, various surface morphologies were obtained when BPEI and PAH were blended. When coated with fluorinated silane, films with 50% and 100% PAH exhibited relatively higher water contact angles (WCAs). In particular, films with 50% PAH exhibited the highest WCA of 140-150° when treated at pH 1.8. These fluorinated films were further infused with lubricant oil to determine their feasibility as slippery surfaces. The water and oil sliding angles were in the range of 10-20° and 5-10°, respectively. Films prepared with the BPEI/PAH blend showed lower water slide angles than those prepared with 100% BPEI or PAH. Acid treatment of LbL films assembled using a polyelectrolyte blend can effectively control surface morphologies and can potentially be applied in superwetting.
Collapse
Affiliation(s)
- Choonghyun Sung
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea;
| | | |
Collapse
|
40
|
Bacterial Adhesion Capacity of Uropathogenic Escherichia coli to Polyelectrolyte Multilayer Coated Urinary Catheter Surface. COATINGS 2021. [DOI: 10.3390/coatings11060630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The application of catheters to the urinary tract is associated with nosocomial infections. Such infections are one of the most common types of infections in hospitals and health care facilities and can lead to numerous medical complications. Therefore, the understanding of the properties of urinary catheter surfaces and their potential modifications are crucial in order to reduce bacterial adhesion and subsequent biofilm formation. In our study, we consider standard polyvinyl chloride (PVC) catheter surfaces and compare their properties with the properties of the same surfaces coated with poly(diallyldimethylammonium chloride)/poly(sodium 4-styrenesulfonate) (PDADMA/PSS) polyelectrolyte multilayers. Uncoated and coated surfaces were characterized by means of roughness, hydrophobicity, and zeta potential measurements. Finally, bacterial adhesion extent of uropathogenic Escherichia coli on bare and polyelectrolyte multilayer coated surfaces was measured. The obtained results show that on non-treated surfaces, biofilm is formed which was not the case for multilayer coated surfaces. The PSS-terminated multilayer shows the lowest bacterial adhesion and could be helpful in prevention of biofilm formation. The analysis of the properties of the uncoated and coated surfaces reveals that the most significant difference is related to the charge (i.e., zeta potential) of the examined surfaces, while roughness and hydrophobicity of the examined surfaces are similar. Therefore, it could be concluded that the surface charge plays the crucial role in the bacterial adhesion on uncoated and coated PVC catheter surfaces.
Collapse
|
41
|
Tarakanchikova YV, Linnik DS, Mashel T, Muslimov AR, Pavlov S, Lepik KV, Zyuzin MV, Sukhorukov GB, Timin AS. Boosting transfection efficiency: A systematic study using layer-by-layer based gene delivery platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112161. [PMID: 34082966 DOI: 10.1016/j.msec.2021.112161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Nowadays, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapy due to its low toxicity and immunogenicity, sufficient packaging capacity, targeting, and straightforward, low-cost, large-scale good manufacturing practice (GMP) production. A number of research works focusing on multilayer structures have explored different factors and parameters that can affect the delivery efficiency of pDNA. However, there are no systematic studies on the performance of these structures for enhanced gene delivery regarding the gene loading methods, the use of additional organic components and cell/particle incubation conditions. Here, we conducted a detailed analysis of different parameters such as (i) strategy for loading pDNA into carriers, (ii) incorporating both pDNA and organic additives within one carrier and (iii) variation of cell/particle incubation conditions, to evaluate their influence on the efficiency of pDNA delivery with multilayer structures consisting of inorganic cores and polymer layers. Our results reveal that an appropriate combination of all these parameters leads to the development of optimized protocols for high transfection efficiency, compared to the non-optimized process (> 70% vs. < 7%), and shows a good safety profile. In conclusion, we provide the proof-of-principle that these multilayer structures with the developed parameters are a promising non-viral platform for an efficient delivery of nucleic acids.
Collapse
Affiliation(s)
- Yana V Tarakanchikova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii S Linnik
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Tatiana Mashel
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Department of Applied Optics, ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Sergey Pavlov
- Ioffe Institute, Politekhnicheskaya Ulitsa, 26, 194021 St. Petersburg, Russian Federation
| | - Kirill V Lepik
- R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russian Federation; School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom.
| | - Alexander S Timin
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.
| |
Collapse
|
42
|
Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel) 2021; 13:polym13081221. [PMID: 33918844 PMCID: PMC8069484 DOI: 10.3390/polym13081221] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes bearing opposite charge. The current development of this methodology has allowed the fabrication of a broad range of systems by assembling different types of molecules onto substrates with different chemical nature, size, or shape, resulting in numerous applications for LbL systems. In particular, the use of soft colloidal nanosurfaces, including nanogels, vesicles, liposomes, micelles, and emulsion droplets as a template for the assembly of LbL materials has undergone a significant growth in recent years due to their potential impact on the design of platforms for the encapsulation and controlled release of active molecules. This review proposes an analysis of some of the current trends on the fabrication of LbL materials using soft colloidal nanosurfaces, including liposomes, emulsion droplets, or even cells, as templates. Furthermore, some fundamental aspects related to deposition methodologies commonly used for fabricating LbL materials on colloidal templates together with the most fundamental physicochemical aspects involved in the assembly of LbL materials will also be discussed.
Collapse
|
43
|
Sato K, Sato F, Kumano M, Kamijo T, Sato T, Zhou Y, Korchev Y, Fukuma T, Fujimura T, Takahashi Y. Electrochemical Quantitative Evaluation of the Surface Charge of a Poly(1‐Vinylimidazole) Multilayer Film and Application to Nanopore pH Sensor. ELECTROANAL 2021. [DOI: 10.1002/elan.202100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katsuhiko Sato
- Faculty of Pharmaceutical Science Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima, Aoba Sendai Miyagi 981-8558 Japan
- Department of Creative Engineering National Institute of Technology Tsuruoka College 104 Sawada, Inooka Tsuruoka Yamagata 997-8511 Japan
| | - Fumiya Sato
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masayuki Kumano
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Toshio Kamijo
- Department of Creative Engineering National Institute of Technology Tsuruoka College 104 Sawada, Inooka Tsuruoka Yamagata 997-8511 Japan
| | - Takaya Sato
- Department of Creative Engineering National Institute of Technology Tsuruoka College 104 Sawada, Inooka Tsuruoka Yamagata 997-8511 Japan
| | - Yuanshu Zhou
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Yuri Korchev
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- Imperial College London Department of Medicine W12 0NN London United Kingdom
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Science Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima, Aoba Sendai Miyagi 981-8558 Japan
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) Saitama 332-0012 Japan
| |
Collapse
|
44
|
Abstract
Nano-drug delivery systems (NDDS) are functional drug-loaded nanocarriers widely applied in cancer therapy. Recently, layer-by-layer (LbL) assembled NDDS have been demonstrated as one of the most promising platforms in delivery of anticancer therapeutics. Here, a brief review of the LbL assembled NDDS for cancer treatment is presented. The fundamentals of the LbL assembled NDDS are first interpreted with an emphasis on the formation mechanisms. Afterwards, the tailored encapsulation of anticancer therapeutics in LbL assembled NDDS are summarized. The state-of-art targeted delivery of LbL assembled NDDS, with special attention to the elaborately control over the passive and active targeting delivery, are represented. Then the controlled release of LbL assembled NDDS with various stimulus responsiveness are systematically reviewed. Finally, conclusions and perspectives on further advancing the LbL assembled NDDS toward more powerful and versatile platforms for cancer therapy are discussed.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Pharmacy, Qingdao University, Qingdao, China
| | | | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Li D, Xu L, Wang J, Gautrot JE. Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics. Adv Healthc Mater 2021; 10:e2000953. [PMID: 32893474 PMCID: PMC11468394 DOI: 10.1002/adhm.202000953] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/11/2020] [Indexed: 12/29/2022]
Abstract
Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.
Collapse
Affiliation(s)
- Danyang Li
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
- Institute of BioengineeringQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| | - Lizhou Xu
- Department of MaterialsImperial College LondonLondonSW7 2AZUK
| | - Jing Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Julien E. Gautrot
- Institute of BioengineeringQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
47
|
Lamm ME, Li K, Qian J, Wang L, Lavoine N, Newman R, Gardner DJ, Li T, Hu L, Ragauskas AJ, Tekinalp H, Kunc V, Ozcan S. Recent Advances in Functional Materials through Cellulose Nanofiber Templating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005538. [PMID: 33565173 DOI: 10.1002/adma.202005538] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Advanced templating techniques have enabled delicate control of both nano- and microscale structures and have helped thrust functional materials into the forefront of society. Cellulose nanomaterials are derived from natural polymers and show promise as a templating source for advanced materials. Use of cellulose nanomaterials in templating combines nanoscale property control with sustainability, an attribute often lacking in other templating techniques. Use of cellulose nanofibers for templating has shown great promise in recent years, but previous reviews on cellulose nanomaterial templating techniques have not provided extensive analysis of cellulose nanofiber templating. Cellulose nanofibers display several unique properties, including mechanical strength, porosity, high water retention, high surface functionality, and an entangled fibrous network, all of which can dictate distinctive aspects in the final templated materials. Many applications exploit the unique aspects of templating with cellulose nanofibers that help control the final properties of the material, including, but not limited to, applications in catalysis, batteries, supercapacitors, electrodes, building materials, biomaterials, and membranes. A detailed analysis on the use of cellulose nanofibers templating is provided, addressing specifically how careful selection of templating mechanisms and methodologies, combined toward goal applications, can be used to directly benefit chosen applications in advanced functional materials.
Collapse
Affiliation(s)
- Meghan E Lamm
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Kai Li
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Ji Qian
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Lu Wang
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Nathalie Lavoine
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Reagan Newman
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Douglas J Gardner
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Arthur J Ragauskas
- Center for BioEnergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Estabrook Road, Knoxville, TN, 37916, USA
| | - Halil Tekinalp
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Vlastimil Kunc
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Soydan Ozcan
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| |
Collapse
|
48
|
A carboxymethyl lentinan layer by layer self-assembly system as a promising drug chemotherapeutic platform. Carbohydr Polym 2021; 261:117847. [PMID: 33766343 DOI: 10.1016/j.carbpol.2021.117847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Surface functionalization of mesoporous silica nanoparticles (MSNs) has been proposed as an efficient strategy for enhancing the biocompatibility and efficiency of an MSN-based carrier platform. Herein, natural polyelectrolyte multilayers composed of poly-l-ornithine (PLO) and carboxymethyl lentinan (LC) were coated on the surface of MSNs through a layer-by-layer (LbL) self-assembly technique, and were characterized by ζ-potential, FTIR, 13C NMR, SEM, TEM, XRD, and TG. The prepared carrier presented alternating positive and negative potentials when coated with the polyelectrolytes, and the surface of MSN-PLO/LC was rougher compared to the naked MSNs. The biocompatibility tests, including cytocompatibility, hemocompatibility, and histocompatibility, showed that MSNs biocompatibility could be improved by modifying LC. A high loading and sustained release drug delivery system was constructed after loading doxorubicin (DOX) into the prepared MSN-PLO/LC, which exhibited significant anti-proliferative efficiency in human cervical cancer cell lines (Hela). Therefore, the PLO/LC LbL NPs (layer-by-layer self-assembled nanoparticles coated with PLO/LC layers) based on MSNs, which is easily prepared by electrostatic interactions, can be considered a promising drug chemotherapeutic platform and delivery technique for future human cervical cancer therapy.
Collapse
|
49
|
Yamagishi A, Umemura Y, Tamura K, Yajima T, Sato H. Langmuir-Blodgett Films of Chiral Perfluorinated Gelators: Effects of Chirality and Chain Length on Two-Dimensional Behavior. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Akihiko Yamagishi
- Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
- National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, National Defense Academy, Kanagawa 239-8686, Japan
| | - Kenji Tamura
- National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Tomoko Yajima
- Faculty of Science, Department of Chemistry, Ochanomizu University, Tokyo 112-8610, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
50
|
Kumari N, Kumar A, Krishnan V. Ultrathin Au–Ag Heterojunctions on Nanoarchitectonics Based Biomimetic Substrates for Dip Catalysis. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01902-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|