1
|
Vidyawan V, Puspita L, Juwono VB, Deline M, Pieknell K, Chang MY, Lee SH, Shim JW. Autophagy controls neuronal differentiation by regulating the WNT-DVL signaling pathway. Autophagy 2025; 21:719-736. [PMID: 39385328 DOI: 10.1080/15548627.2024.2407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Macroautophagy/autophagy dysregulation is associated with various neurological diseases, including Vici syndrome. We aimed to determine the role of autophagy in early brain development. We generated neurons from human embryonic stem cells and developed a Vici syndrome model by introducing a loss-of-function mutation in the EPG5 gene. Autophagy-related genes were upregulated at the neuronal progenitor cell stage. Inhibition of autolysosome formation with bafilomycin A1 treatment at the neuronal progenitor cell stage delayed neuronal differentiation. Notably, WNT (Wnt family member) signaling may be part of the underlying mechanism, which is negatively regulated by autophagy-mediated DVL2 (disheveled segment polarity protein 2) degradation. Disruption of autolysosome formation may lead to failure in the downregulation of WNT signaling, delaying neuronal differentiation. EPG5 mutations disturbed autolysosome formation, subsequently inducing defects in progenitor cell differentiation and cortical layer generation in organoids. Disrupted autophagy leads to smaller organoids, recapitulating Vici syndrome-associated microcephaly, and validating the disease relevance of our study.Abbreviations: BafA1: bafilomycin A1; co-IP: co-immunoprecipitation; DVL2: dishevelled segment polarity protein 2; EPG5: ectopic P-granules 5 autophagy tethering factor; gRNA, guide RNA; hESC: human embryonic stem cells; KO: knockout; mDA, midbrain dopamine; NIM: neural induction media; NPC: neuronal progenitor cell; qPCR: quantitative polymerase chain reaction; UPS: ubiquitin-proteasome system; WNT: Wnt family member; WT: wild type.
Collapse
Affiliation(s)
- Vincencius Vidyawan
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Magdalena Deline
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Kelvin Pieknell
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Premedicine, College of Medicine, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| |
Collapse
|
2
|
Sakabe R, Onishi K, Mochizuki J, Toshimitsu T, Shimazu T, Kishino S, Ogawa J, Yamasaki S, Sashihara T. Regulation of IL-10 production in dendritic cells is controlled by the co-activation of TLR2 and Mincle by Lactiplantibacillus plantarum OLL2712. Microbiol Spectr 2025; 13:e0119624. [PMID: 39902909 DOI: 10.1128/spectrum.01196-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025] Open
Abstract
We showed that Lactiplantibacillus plantarum OLL2712 (OLL2712) strongly induces interleukin (IL)-10 production in immune cells. Although beneficial effects of this strain have been observed in both mice and humans, the mechanisms underlying IL-10 induction remain unclear. In this study, we found that OLL2712 co-activates two pattern recognition receptors, leading to IL-10 production in the mouse-derived thermosensitive dendritic cell line, tsDC. We first revealed the involvement of the Toll-like receptor (TLR)2-Myeloid differentiation primary response gene (MYD) 88 pathway in OLL2712-induced IL-10 production in tsDCs. However, stimulation with the TLR2 agonist alone was insufficient to induce IL-10 production. Consequently, we explored additional signaling pathways and found that the phosphorylation of spleen tyrosine kinase (Syk) was important in response to OLL2712, which was not triggered by a TLR2 agonist alone. Notably, the activation of Syk was found to depend on macrophage-inducible C-type lectin receptor (Mincle), one of the C-type lectin receptors. However, the surface-expressed Mincle is not responsible for the IL-10 production by OLL2712. Instead, it depends on the incorporation of OLL2712 into tsDCs, suggesting that Mincle recognizes incorporated OLL2712 intracellularly. In summary, OLL2712 is initially recognized by TLR2, which subsequently induces the expression of Mincle to recognize incorporated OLL2712, ultimately inducing IL-10 production.IMPORTANCEThe objective of this study is to elucidate the mechanism by which Lactiplantibacillus plantarum OLL2712 (OLL2712), previously identified by our research group as a potent stimulator of interleukin-10 production in immune cells, exerts its immunomodulatory effects. Our findings indicate that OLL2712 acts in synergy with two pattern-recognition receptors: Toll-like receptor 2 and Macrophage inducible C-type lectin receptor (Mincle). Additionally, we observed that OLL2712 needs to be internalized intracellularly to be recognized by Mincle. These findings represent the first insights into the detailed mechanism underlying the anti-inflammatory effects of OLL2712.
Collapse
Affiliation(s)
- Ryuhei Sakabe
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Kazumasa Onishi
- Fermentation Development Research Department Food Development Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Takayuki Toshimitsu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Tomoyuki Shimazu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| |
Collapse
|
3
|
Sinclair LV, Youdale T, Spinelli L, Gakovic M, Langlands AJ, Pathak S, Howden AJM, Ganley IG, Cantrell DA. Autophagy repression by antigen and cytokines shapes mitochondrial, migration and effector machinery in CD8 T cells. Nat Immunol 2025; 26:429-443. [PMID: 40016525 PMCID: PMC11876071 DOI: 10.1038/s41590-025-02090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
Autophagy shapes CD8 T cell fate; yet the timing, triggers and targets of this process are poorly defined. Herein, we show that naive CD8 T cells have high autophagic flux, and we identify an autophagy checkpoint whereby antigen receptor engagement and inflammatory cytokines acutely repress autophagy by regulating amino acid transporter expression and intracellular amino acid delivery. Activated T cells with high levels of amino acid transporters have low autophagic flux in amino-acid-replete conditions but rapidly reinduce autophagy when amino acids are restricted. A census of proteins degraded and fueled by autophagy shows how autophagy shapes CD8 T cell proteomes. In cytotoxic T cells, dominant autophagy substrates include cytolytic effector molecules, and amino acid and glucose transporters. In naive T cells, mitophagy dominates and selective mitochondrial pruning supports the expression of molecules that coordinate T cell migration and survival. Autophagy thus differentially prunes naive and effector T cell proteomes and is dynamically repressed by antigen receptors and inflammatory cytokines to shape T cell differentiation.
Collapse
Affiliation(s)
- Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Tom Youdale
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Milica Gakovic
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alistair J Langlands
- National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Shalini Pathak
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew J M Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G Ganley
- MRC PPU, School of Life Sciences, University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Drozdov GV, Kashevarova AA, Lebedev IN. Copy number variations in spontaneous abortions: a meta-analysis. J Assist Reprod Genet 2025:10.1007/s10815-025-03420-w. [PMID: 40019700 DOI: 10.1007/s10815-025-03420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/02/2025] [Indexed: 03/01/2025] Open
Abstract
The goal of this study was to analyze copy number variations (CNVs) in spontaneous abortions with a euploid karyotype, irrespective of the method used for CNV detection. This systematic review was performed in accordance with the PRISMA guidelines. Articles published between 2006 and 2023 were selected through the PubMed database. Studies were included if they involved CNV analysis in spontaneous abortions using any CNV detection method. The pathogenic significance of CNVs was interpreted based on the American College of Medical Genetics and Genomics (ACMG) guidelines. Nineteen publications met the inclusion criteria. A total of 1425 CNVs were identified in 550 samples from 3953 euploid spontaneous abortions, representing 14% of the cases. Among the detected CNVs, 9% were classified as pathogenic, and 7.5% were likely pathogenic. The most frequently observed pathogenic CNVs included 22q11.2 deletion/duplication, 16p13.11 deletion, 15q11.2 deletion/duplication, 1p36.33 duplication, and 17p13.3 duplication. The genomic regions with the highest frequency of CNVs, regardless of their pathogenic effect, were 8q24.3, 16p13.3, 21q22.3, Xp22.33, Xp22.31, and Xq28. No clear associations were found between specific CNVs and pregnancy loss. However, deletions in the 22q11.2 region emerged as the most likely candidates contributing to lethality during the early stages of embryonic development.
Collapse
Affiliation(s)
- Gleb V Drozdov
- Tomsk National Research Medical Center, Research Institute of Medical Genetics, Russian Academy of Sciences, Tomsk, Russia.
| | - Anna A Kashevarova
- Tomsk National Research Medical Center, Research Institute of Medical Genetics, Russian Academy of Sciences, Tomsk, Russia
| | - Igor N Lebedev
- Tomsk National Research Medical Center, Research Institute of Medical Genetics, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
5
|
Min DH, Kim D, Hong ST, Kim J, Kim MJ, Kwon SH, Kim A, Lee JY. Bafilomycin A1 induces colon cancer cell death through impairment of the endolysosome system dependent on iron. Sci Rep 2025; 15:5148. [PMID: 39934167 DOI: 10.1038/s41598-025-89127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The late endolysosomal compartment plays a crucial role in cancer cell metabolism by regulating lysosomal activity, essential for cell proliferation, and the degradation of cellular components during the final stages of autophagy. Modulating late endolysosomal function represents a new target for cancer therapy. In this study, we investigated the effects of bafilomycin A1 (BA1), a vacuolar H+-ATPase inhibitor, on colon cancer and normal colon fibroblasts (CCD-18Co) cells. We found that very low concentrations (~ 2 nM) of BA1 selectively induced cell death in colon cancer cells. This cytotoxicity was associated with lysosomal stress response and dysregulation of iron homeostasis. BA1 treatment resulted in significant alterations to the endolysosomal system, including an increased number and size of lysosomes, lysosomal membrane permeabilization, and autophagy flux blockade. These changes were accompanied by endoplasmic reticulum stress and lipid droplet accumulation. Furthermore, BA1 decreased intracellular Fe2+ levels, as measured using FerroOrange. Notably, iron (III)-citrate supplementation rescued cells from BA1-induced death. These findings suggest that BA1-induced endolysosomal dysfunction impairs iron homeostasis, ultimately leading to colon cancer cell death. Our results highlight the potential of targeting endolysosomal function and iron homeostasis as novel therapeutic strategies for colon cancer, paving the way for more selective and effective treatments.
Collapse
Affiliation(s)
- Dong Hwa Min
- Department of Pathology, Korea University College of Medicine, 73, Anan-Dong 5-GA, Seongbuk-gu, Seoul, 02841, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Dasom Kim
- Department of Pathology, Korea University College of Medicine, 73, Anan-Dong 5-GA, Seongbuk-gu, Seoul, 02841, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Seung Taek Hong
- Division of Biohealthcare, Department of Echo-Applied Chemistry, Daejin University, Pocheon-si, 11159, Gyeonggi-do, South Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, South Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, South Korea
| | - Ji-Yun Lee
- Department of Pathology, Korea University College of Medicine, 73, Anan-Dong 5-GA, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
6
|
Ogbodo UC, Salimat S, Bodun DS, Balogun TA, Omoboyowa DA. Design of small molecules for CDK-2 inhibition in colorectal cancer based on substructure search. J Biomol Struct Dyn 2025; 43:1305-1315. [PMID: 38088360 DOI: 10.1080/07391102.2023.2291546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
The global frequency of colorectal cancer motivates extensive drug discovery efforts. CDK2, a key member of the CDK family, has been linked to tumor progression, unregulated cell proliferation, and growth promotion. Water-soluble flavonoids with a fast metabolism called anthocyanins have been shown to have a variety of pharmacological properties, including anti-cancer properties. This study aims to find possible CDK2 inhibitors from Anthocyanin-like molecules. Anthocyanins sourced from PubChem were screened using a virtual screening approach that included a KNIME workflow, QSAR-model, Pharmacophore hypothesis, and a structure-based screening to identify compounds with a better binding affinity and predicted bioactivity compared to the standard, Sorafenib. The top compounds were subjected to a 100 ns MD simulation to confirm their stability at the active site. Compounds 1-5 were shown to have higher binding affinity and bioactivity in this study. These substances interacted with the critical amino acids (LEU 83, ASP 145 and LYS 89) at CDK2's active site. Compared to the reference with a pIC50 value of 6.003 nM, the top compounds listed have superior predicted bioactivity ranging from 6.539 to 6.36 nM. Also, ADMET predictions predicted that Compounds 1-5 were not carcinogenic and not a p-glycoprotein substrate. MD simulation also validated Compound 1's stability at the active site compared to the standard. This study uncovers potential CDK2 inhibitors with good binding affinities, shedding light on their interactions with the target protein. While promising, further in vivo and in vitro investigations are essential to validate the anticancer potential of these compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Uchechukwu C Ogbodo
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sofela Salimat
- Department of Chemistry, University of Lagos, Lagos, Nigeria
| | - Damilola S Bodun
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Toheeb A Balogun
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Damilola A Omoboyowa
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
7
|
Li S, Wang Y, Liang X, Li Y. Autophagy intersection: Unraveling the role of the SNARE complex in lysosomal fusion in Alzheimer's disease. J Alzheimers Dis 2025; 103:979-993. [PMID: 39784954 DOI: 10.1177/13872877241307403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Autophagy is a fundamental cellular process critical for maintaining neuronal health, particularly in the context of neurodegenerative diseases such as Alzheimer's disease (AD). This review explores the intricate role of the SNARE complex in the fusion of autophagosomes with lysosomes, a crucial step in autophagic flux. Disruptions in this fusion process, often resulting from aberrant SNARE complex function or impaired lysosomal acidification, contribute to the pathological accumulation of autophagosomes and lysosomes observed in AD. We examine the composition, regulation, and interacting molecules of the SNARE complex, emphasizing its central role in autophagosome-lysosome fusion. Furthermore, we discuss the potential impact of specific SNARE protein mutations and the broader implications for neuronal health and disease progression. By elucidating the molecular mechanisms underlying SNARE-mediated autophagic fusion, we aim to highlight therapeutic targets that could restore autophagic function and mitigate the neurodegenerative processes characteristic of AD.
Collapse
Affiliation(s)
- Siyu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yangyang Wang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, P.R. China
| |
Collapse
|
8
|
Gade PV, Rivera AVR, Hasanzadah L, Strompf S, Philipson TR, Gadziala M, Tyagi A, Bandam A, Gabbireddy R, Kashanchi F, Haymond A, Liotta LA, Howard MA. Secretory mitophagy: an extracellular vesicle-mediated adaptive mechanism for cancer cell survival under oxidative stress. Front Cell Dev Biol 2025; 12:1490902. [PMID: 39949610 PMCID: PMC11821619 DOI: 10.3389/fcell.2024.1490902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Mitophagy is a critically important survival mechanism in which toxic, aged, or defective mitochondria are segregated into mitophagosomes, which shuttle the damaged mitochondrial segments to the lysosome and proteasome for destruction. Cancer cells rely on mitophagy under conditions of high oxidative stress or increased energy demand. Oxidative stress can generate a large volume of damaged mitochondria, overwhelming lysosomal removal. Accumulated damaged mitochondria are toxic and their proper removal is crucial for maintaining mitochondrial health. We propose a new cancer cell mechanism for survival that is activated when the demand for segregating and eliminating damaged mitochondria exceeds the capacity of the lysosome or proteasome. Specifically, we show that tumor cells subjected to oxidative stress by carbonyl cyanide-3-chlorophenylhdrazone (CCCP) eliminate damaged mitochondria segments by bypassing the lysosome to export them outside the cell via extracellular vesicles (EVs), a process termed "secretory mitophagy". PINK1, the initiator of mitophagy, remains associated with the damaged mitochondria that exported in EVs. Using several types of cancer cells, we show that tumor cells treated with CCCP can be induced to switch over to secretory mitophagy by treatment with Bafilomycin A1, which blocks the fusion of mitophagosomes with lysosomes. Under these conditions, an increased number of PINK1 + EVs are exported. This is associated with greater cell survival by a given CCCP dose, enhanced mitochondrial ATP production, and reduced mitochondrial oxidative damage (membrane depolarization). Our data supports the hypothesis that secretory mitophagy is a previously unexplored process by which cancer cells adapt to survive therapeutic or hypoxic stress. Ultimately, our findings may inform new prevention strategies targeting pre-malignant lesions and therapeutic approaches designed to sensitize tumor cells to oxidative stress-inducing therapies.
Collapse
Affiliation(s)
- Purva V. Gade
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | | | - Layla Hasanzadah
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Sofie Strompf
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Thomas Raymond Philipson
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Matthew Gadziala
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Atharva Tyagi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Arnav Bandam
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Rithvik Gabbireddy
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Marissa A. Howard
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| |
Collapse
|
9
|
El Eid L, Deane-Alder K, Rujan RM, Mariam Z, Oqua AI, Manchanda Y, Belousoff MJ, Bernardino de la Serna J, Sloop KW, Rutter GA, Montoya A, Withers DJ, Millership S, Bouzakri K, Jones B, Reynolds CA, Sexton PM, Wootten D, Deganutti G, Tomas A. In vivo functional profiling and structural characterisation of the human Glp1r A316T variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.19.619191. [PMID: 39484598 PMCID: PMC11527029 DOI: 10.1101/2024.10.19.619191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective therapies for type 2 diabetes (T2D) and obesity, yet patient responses are variable. Variation in the human Glp1r gene might be directly linked to therapeutic responses. A naturally occurring missense variant, A316T, protects against T2D and cardiovascular disease. Here, we have generated and characterised a human Glp1r A316T mouse model. Human Glp1r A316T/A316T mice displayed lower fasting blood glucose versus wildtype littermates, even under metabolic stress, and exhibited alterations in islet cytoarchitecture and α/β identity under a high-fat, high-sucrose diet. This was however associated with blunted responses to GLP-1RAs in vivo. Further investigations in rodent and human β-cell models demonstrated that human Glp1r A316T exhibits characteristics of constitutive activation but dampened GLP-1RA responses. Results are further supported by cryo-EM analyses and molecular dynamics simulations of GLP-1R A316T structure, collectively demonstrating that the A316T variant governs basal GLP-1R activity and pharmacological responses to GLP-1R-targeting therapies.
Collapse
|
10
|
Eibach Y, Kreher S, Poetsch MS, Kho AL, Gaertner U, Clemen CS, Schröder R, Guo K, Milting H, Meder B, Potente M, Richter M, Schneider A, Meiners S, Gautel M, Braun T. The deubiquitinase USP5 prevents accumulation of protein aggregates in cardiomyocytes. SCIENCE ADVANCES 2025; 11:eado3852. [PMID: 39841822 PMCID: PMC11753375 DOI: 10.1126/sciadv.ado3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM. CM-specific loss of mUsp5 leads to the accumulation of polyubiquitin chains and protein aggregates, cardiac remodeling, and eventually DCM. USP5 interacts with key components of the proteostasis machinery, including PSMD14, and the absence of USP5 increases activity of the ubiquitin-proteasome system and autophagic flux in CMs. Cardiac-specific hUSP5 overexpression reduces pathological remodeling in pressure-overloaded mouse hearts and attenuates protein aggregate formation in titinopathy and desminopathy models. Since CMs from humans with end-stage DCM show lower USP5 levels and display accumulation of ubiquitinated protein aggregates, we hypothesize that therapeutically increased USP5 activity may reduce protein aggregates during DCM. Our findings demonstrate that USP5 is essential for ubiquitin turnover and proteostasis in mature CMs.
Collapse
Affiliation(s)
- Yvonne Eibach
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Silke Kreher
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Mareike S. Poetsch
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Ulrich Gaertner
- University of Giessen, Institute of Anatomy and Cell Biology, Giessen, Germany
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Schröder
- Institute for Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Michael Potente
- Berlin Institute of Health (BIH) and Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Silke Meiners
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| |
Collapse
|
11
|
Plafker KS, Georgescu C, Pezant N, Pranay A, Plafker SM. Sulforaphane acutely activates multiple starvation response pathways. Front Nutr 2025; 11:1485466. [PMID: 39867556 PMCID: PMC11758633 DOI: 10.3389/fnut.2024.1485466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g., cancer, diabetes, seizures) that are likewise mitigated by dietary restrictions leading us to test the hypothesis that this compound elicits cellular responses consistent with being a fasting/caloric restriction mimetic. Using immortalized human retinal pigment epithelial cells, we report that SFN impacted multiple nutrient-sensing pathways consistent with a fasted state. SFN treatment (i) increased mitochondrial mass and resistance to oxidative stress, (ii) acutely suppressed markers of mTORC1/2 activity via inhibition of insulin signaling, (iii) upregulated autophagy and further amplified autophagic flux induced by rapamycin or nutrient deprivation while concomitantly promoting lysosomal biogenesis, and (iv) acutely decreased glucose uptake and lactate secretion followed by an adaptive rebound that coincided with suppressed protein levels of thioredoxin-interacting protein (TXNIP) due to early transcriptional down-regulation. This early suppression of TXNIP mRNA expression could be overcome with exogenous glucosamine consistent with SFN inhibiting glutamine F6P amidotransferase, the rate limiting enzyme of the hexosamine biosynthetic pathway. SFN also altered levels of multiple glycolytic and tricarboxylic acid (TCA) cycle intermediates while reducing the inhibitory phosphorylation on pyruvate dehydrogenase, indicative of an adaptive cellular starvation response directing pyruvate into acetyl coenzyme A for uptake by the TCA cycle. RNA-seq of cells treated for 4 h with SFN confirmed the activation of signature starvation-responsive transcriptional programs. Collectively, these data support that the fasting-mimetic properties of SFN could underlie both the therapeutic efficacy and potential toxicity of this phytochemical.
Collapse
Affiliation(s)
- Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma City, OK, United States
| | | | - Nathan Pezant
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma City, OK, United States
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma City, OK, United States
| |
Collapse
|
12
|
Uwada J, Nakazawa H, Kiyoi T, Yazawa T, Muramatsu I, Masuoka T. PIKFYVE inhibition induces endosome- and lysosome-derived vacuole enlargement via ammonium accumulation. J Cell Sci 2025; 138:jcs262236. [PMID: 39588583 DOI: 10.1242/jcs.262236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
FYVE-type zinc finger-containing phosphoinositide kinase (PIKFYVE), which is essential for phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] production, is an important regulator of lysosomal homeostasis. PIKFYVE dysfunction leads to cytoplasmic vacuolization; however, the underlying mechanism remains unknown. In this study, we explored the cause of vacuole enlargement upon PIKFYVE inhibition in DU145 prostate cancer cells. Enlargement of vacuoles upon PIKFYVE inhibition required glutamine and its metabolism by glutaminases. Addition of ammonia, a metabolite of glutamine, was sufficient to enlarge vacuoles via PIKFYVE inhibition. Moreover, PIKFYVE inhibition led to intracellular ammonium accumulation. Endosome-lysosome permeabilization resulted in ammonium leakage from the cells, indicating ammonium accumulation in the endosomes and lysosomes. Ammonium accumulation and vacuole expansion were suppressed by the lysosomal lumen neutralization. It is therefore assumed that PIKFYVE inhibition interferes with the efflux of NH4+, which formed through protonation of NH3 in the lysosomal lumen, leading to osmotic swelling of vacuoles. Notably, glutamine or ammonium is required for PIKFYVE inhibition-induced suppression of lysosomal function and autophagic flux. In conclusion, this study shows that PIKFYVE inhibition disrupts lysosomal homeostasis via ammonium accumulation.
Collapse
Affiliation(s)
- Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hitomi Nakazawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takeshi Kiyoi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
13
|
Tee HK, Crouzet S, Muliyil A, Mathez G, Cagno V, Dal Peraro M, Antanasijevic A, Clément S, Tapparel C. Virus adaptation to heparan sulfate comes with capsid stability tradeoff. eLife 2024; 13:e98441. [PMID: 39714930 PMCID: PMC11717363 DOI: 10.7554/elife.98441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Simon Crouzet
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Arunima Muliyil
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Matteo Dal Peraro
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| |
Collapse
|
14
|
Thakur N, Chakraborty P, Tufariello JM, Basler CF. SARS-CoV-2 Nsp14 binds Tollip and activates pro-inflammatory pathways while downregulating interferon-α and interferon-γ receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628214. [PMID: 39713296 PMCID: PMC11661139 DOI: 10.1101/2024.12.12.628214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1). Here we demonstrate that Nsp14 exerts broader effects, activating not only NF-κB responses but also ERK, p38 and JNK MAP kinase (MAPK) signaling, promoting cytokine production. Further, Nsp14 downregulates not only IFNAR1 but also IFN-γ receptor 1 (IFNGR1), impairing cellular responses to both IFNα and IFNγ. IFNAR1 and IFNGR1 downregulation is via a lysosomal pathway and also occurs in SARS-CoV-2 infected cells. Analysis of a panel of Nsp14 mutants reveals a consistent pattern. Mutants that disable ExoN function remain active, whereas N7-MTase mutations impair both pro-inflammatory pathway activation and IFN receptor downregulation. Innate immune modulating functions also require the presence of both the ExoN and N7-MTase domains likely reflecting the need for the ExoN domain for N7-MTase activity. We further identify multi-functional host protein Tollip as an Nsp14 interactor. Interaction requires the phosphoinositide-binding C2 domain of Tollip and sequences C-terminal to the C2 domain. Full length Tollip or regions encompassing the Nsp14 interaction domain are sufficient to counteract both Nsp14-mediated and Nsp14-independent activation of NF-κB. Knockdown of Tollip partially reverses IFNAR1 and IFNGR1 downregulation in SARS-CoV-2 infected cells, suggesting relevance of Nsp14-Tollip interaction for Nsp14 innate immune evasion functions.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Poushali Chakraborty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - JoAnn M. Tufariello
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
15
|
Yuan Y, Fang A, Zhang M, Zhou M, Fu ZF, Zhao L. Lassa virus Z protein hijacks the autophagy machinery for efficient transportation by interrupting CCT2-mediated cytoskeleton network formation. Autophagy 2024; 20:2511-2528. [PMID: 39007910 PMCID: PMC11572193 DOI: 10.1080/15548627.2024.2379099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
The Lassa virus (LASV) is a widely recognized virulent pathogen that frequently results in lethal viral hemorrhagic fever (VHF). Earlier research has indicated that macroautophagy/autophagy plays a role in LASV replication, but, the precise mechanism is unknown. In this present study, we show that LASV matrix protein (LASV-Z) is essential for blocking intracellular autophagic flux. LASV-Z hinders actin and tubulin folding by interacting with CCT2, a component of the chaperonin-containing T-complexes (TRiC). When the cytoskeleton is disrupted, lysosomal enzyme transit is hampered. In addition, cytoskeleton disruption inhibits the merge of autophagosomes with lysosomes, resulting in autophagosome accumulation that promotes the budding of LASV virus-like particles (VLPs). Inhibition of LASV-Z-induced autophagosome accumulation blocks the LASV VLP budding process. Furthermore, it is found that glutamine at position 29 and tyrosine at position 48 on LASV-Z are important in interacting with CCT2. When these two sites are mutated, LASV-mut interacts with CCT2 less efficiently and can no longer inhibit the autophagic flux. These findings demonstrate a novel strategy for LASV-Z to hijack the host autophagy machinery to accomplish effective transportation.Abbreviation: 3-MA: 3-methyladenine; ATG5: autophagy related 5; ATG7: autophagy related 7; Baf-A1: bafilomycin A1; CCT2: chaperonin containing TCP1 subunit 2; co-IP: co-immunoprecipitation; CTSD: cathepsin D; DAPI: 4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EGFR: epidermal growth factor receptor; GFP: green fluorescent protein; hpi: hours post-infection; hpt: hours post-transfection; LAMP1: lysosomal-associated membrane protein 1; LASV: lassa virus; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry: red fluorescent protein; PM: plasma membrane; SQSTM1/p62: sequestosome 1; STX6: syntaxin 6; VLP: virus-like particle; TEM: transmission electron microscopy; TRiC: chaperonin-containing T-complex; WB: western blotting; μm: micrometer; μM: micromole.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mai Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Rintz E, Ziemian M, Kobus B, Gaffke L, Pierzynowska K, Wegrzyn G. Synergistic effects of resveratrol and enzyme replacement therapy in the Mucopolysaccharidosis type I. Biochem Pharmacol 2024; 229:116467. [PMID: 39111602 DOI: 10.1016/j.bcp.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare genetic disorder caused by mutations in the IDUA gene, leading to alpha-L-iduronidase enzyme deficiency and resulting in the accumulation of glycosaminoglycans (GAG; heparan and dermatan sulfate) in lysosomes. The consequent GAG accumulation within cells leads to organ dysfunction and a range of debilitating symptoms. Enzyme replacement therapy (ERT) is the prevailing treatment, but its limitations (including high cost, time requirements, inefficiency in treatment of central nervous system (CNS), and immunogenicity) necessitate exploration of alternative therapeutic strategies. This research propose a novel approach leveraging the synergistic effects of ERT and resveratrol-induced autophagy. Resveratrol, with its immunomodulatory and GAG degradation-stimulating properties, holds a promise in mitigating immune responses triggered by ERT. Moreover, its ability to penetrate the blood-brain barrier presents a potential solution for addressing CNS manifestations. This study employed cells from MPS I patients to investigate the combined effects of resveratrol and the enzyme. Evaluation of the therapeutic impact involved assessing GAG accumulation, enzyme testing, and examining lysosome functionality and the autophagy process through fluorescence microscopy and Western blotting. The combined therapy stimulated the lysosomal mannose-6-phosphate receptor (M6PR) and lysosome biogenesis through the transcription factor EB (TFEB). Additionally, initial block of autophagy in autophagosome formation was relieved after the combined therapy and resveratrol alone. Together with increased enzyme activity through stimulation of the receptor, this synergistic therapy can be considered a new potential treatment for MPS I patients, improving their overall quality of life.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Maja Ziemian
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Barbara Kobus
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
17
|
Rho H, Kim S, Kim SU, Kim JW, Lee SH, Park SH, Escorcia FE, Chung JY, Song J. CHIP ameliorates nonalcoholic fatty liver disease via promoting K63- and K27-linked STX17 ubiquitination to facilitate autophagosome-lysosome fusion. Nat Commun 2024; 15:8519. [PMID: 39353976 PMCID: PMC11445385 DOI: 10.1038/s41467-024-53002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/26/2024] [Indexed: 10/03/2024] Open
Abstract
The fusion of autophagosomes and lysosomes is essential for the prevention of nonalcoholic fatty liver disease (NAFLD). Here, we generate a hepatocyte-specific CHIP knockout (H-KO) mouse model that develops NAFLD more rapidly in response to a high-fat diet (HFD) or high-fat, high-fructose diet (HFHFD). The accumulation of P62 and LC3 in the livers of H-KO mice and CHIP-depleted cells indicates the inhibition of autophagosome-lysosome fusion. AAV8-mediated overexpression of CHIP in the murine liver slows the progression of NAFLD induced by HFD or HFHFD feeding. Mechanistically, CHIP induced K63- and K27-linked polyubiquitination at the lysine 198 residue of STX17, resulting in increased STX17-SNAP29-VAMP8 complex formation. The STX17 K198R mutant was not ubiquitinated by CHIP; it interfered with its interaction with VAMP8, rendering STX17 incapable of inhibiting steatosis development in mice. These results indicate that a signaling regulatory mechanism involving CHIP-mediated non-degradative ubiquitination of STX17 is necessary for autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Hyunjin Rho
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Seungyeon Kim
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- GENINUS Inc, Seoul, Republic of Korea
| | - Sang Hoon Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National institutes of Health, Bethesda, MD, USA
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National institutes of Health, Bethesda, MD, USA
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Huber RJ, Kim WD. Trafficking of adhesion and aggregation-modulating proteins during the early stages of Dictyostelium development. Cell Signal 2024; 121:111292. [PMID: 38986731 DOI: 10.1016/j.cellsig.2024.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The social amoeba Dictyostelium discoideum has been studied for close to a century to better understand conserved cellular and developmental processes. The life cycle of this model eukaryote is composed of a unicellular growth phase and a multicellular developmental phase that is induced by starvation. When starved, individual cells undergo chemotactic aggregation to form multicellular mounds that develop into slugs. Terminal differentiation of cells within slugs forms fruiting bodies, each composed of a stalk that supports a mass of viable spores that germinate and restart the life cycle when nutrients become available. Calcium-dependent cell adhesion protein A (CadA) and countin (CtnA) are two proteins that regulate adhesion and aggregation, respectively, during the early stages of D. discoideum development. While the functions of these proteins have been well-studied, the mechanisms regulating their trafficking are not fully understood. In this study, we reveal pathways and cellular components that regulate the intracellular and extracellular amounts of CadA and CtnA during aggregation. During growth and starvation, CtnA localizes to cytoplasmic vesicles and punctae. We show that CtnA is glycosylated and this post-translational modification is required for its secretion. Upon autophagy induction, a signal peptide for secretion facilitates the release of CtnA from cells via a pathway involving the μ subunit of the AP3 complex (Apm3) and the WASP and SCAR homolog, WshA. Additionally, CtnA secretion is negatively regulated by the D. discoideum orthologs of the human non-selective cation channel mucolipin-1 (Mcln) and sorting receptor sortilin (Sort1). As for CadA, it localizes to the cell periphery in growth-phase and starved cells. The intracellular and extracellular amounts of CadA are modulated by autophagy genes (atg1, atg9), Apm3, WshA, and Mcln. We integrate these data with previously published findings to generate a comprehensive model summarizing the trafficking of CadA and CtnA in D. discoideum. Overall, this study enhances our understanding of protein trafficking during D. discoideum aggregation, and more broadly, provides insight into the multiple pathways that regulate protein trafficking and secretion in all eukaryotes.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
19
|
Liu X, Zhou C, Cheng B, Xiong Y, Zhou Q, Wan E, He Y. Genipin promotes the apoptosis and autophagy of neuroblastoma cells by suppressing the PI3K/AKT/mTOR pathway. Sci Rep 2024; 14:20231. [PMID: 39215133 PMCID: PMC11364629 DOI: 10.1038/s41598-024-71123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the underlying function and mechanism of genipin in neuroblastoma (NB). Using flow cytometry analysis and cytotoxicity tests, in vitro studies were conducted to assess the effects of genipin on the SK-N-SH cell line. The mechanism of action of genipin was explored through immunofluorescence staining, Western blotting, and caspase-3 activity assays. In addition, we also created a xenograft tumour model to investigate the effects of genipin in vivo. This research confirmed that genipin suppressed cell viability, induced apoptosis, and promoted autophagy, processes that are likely linked to the inhibition of the PI3K/AKT/mTOR signalling pathway. Autophagy inhibition increases the sensitivity of SK-N-SH cells to genipin. Furthermore, combination treatment with a PI3K inhibitor enhanced the therapeutic efficacy of genipin. These results highlight the potential of genipin as a candidate drug for the treatment of NB.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
- Science and Technology Innovation Centre, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary Research, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Can Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Boli Cheng
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yan Xiong
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Qin Zhou
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Enyu Wan
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yun He
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
20
|
Mijatovic E, Ascenção K, Szabo C, Majtan T. Cellular turnover and degradation of the most common missense cystathionine beta-synthase variants causing homocystinuria. Protein Sci 2024; 33:e5123. [PMID: 39041895 PMCID: PMC11264351 DOI: 10.1002/pro.5123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Homocystinuria (HCU) due to cystathionine beta-synthase (CBS) deficiency is the most common inborn error of sulfur amino acid metabolism. Recent work suggests that missense pathogenic mutations-regardless of their topology-cause instability of the C-terminal regulatory domain, which likely translates into CBS misfolding, impaired assembly, and loss of function. However, it is unknown how instability of the regulatory domain translates into cellular CBS turnover and which degradation pathways are involved in CBS proteostasis. Here, we developed a human HEK293-based cellular model lacking intrinsic CBS and stably overexpressing wild-type (WT) CBS or its 10 most common missense HCU mutants. We found that HCU mutants, except the I278T variant, expressed similarly or better than CBS WT, with some of them showing impaired oligomerization, activity and response to allosteric activator S-adenosylmethionine. Cellular stability of all HCU mutants, except P49L and A114V, was significantly lower than the stability of CBS WT, suggesting their increased degradation. Ubiquitination analysis of CBS WT and two representative CBS mutants (T191M and I278T) showed that proteasomal degradation is the major pathway for CBS disposal, with a minor involvement of lysosomal-autophagic and endoplasmic reticulum-associated degradation (ERAD) pathways for HCU mutants. Proteasomal inhibition significantly increased the half-life and activity of T191M and I278T CBS mutants. Lysosomal and ERAD inhibition had only a minor impact on CBS turnover, but ERAD inhibition rescued the activity of T191M and I278T CBS mutants similarly as proteasomal inhibition. In conclusion, the present study provides new insights into proteostasis of CBS in HCU.
Collapse
Affiliation(s)
- Ela Mijatovic
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Kelly Ascenção
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Csaba Szabo
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Tomas Majtan
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
21
|
Li Y, Zhang Y, Wang M, Su J, Dong X, Yang Y, Wang H, Li Q. The mammalian actin elongation factor ENAH/MENA contributes to autophagosome formation via its actin regulatory function. Autophagy 2024; 20:1798-1814. [PMID: 38705725 PMCID: PMC11262208 DOI: 10.1080/15548627.2024.2347105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Macroautophagy/autophagy is a catabolic process crucial for degrading cytosolic components and damaged organelles to maintain cellular homeostasis, enabling cells to survive in extreme extracellular environments. ENAH/MENA, a member of the Ena/VASP protein family, functions as a highly efficient actin elongation factor. In this study, our objective was to explore the role of ENAH in the autophagy process. Initially, we demonstrated that depleting ENAH in cancer cells inhibits autophagosome formation. Subsequently, we observed ENAH's colocalization with MAP1LC3/LC3 during tumor cell starvation, dependent on actin cytoskeleton polymerization and the interaction between ENAH and BECN1 (beclin 1). Additionally, mammalian ATG9A formed a ring-like structure around ENAH-LC3 puncta during starvation, relying on actin cytoskeleton polymerization. Furthermore, ENAH's EVH1 and EVH2 domains were found to be indispensable for its colocalization with LC3 and BECN1, while the PRD domain played a crucial role in the formation of the ATG9A ring. Finally, our study revealed ENAH-led actin comet tails in autophagosome trafficking. In conclusion, our findings provide initial insights into the regulatory role of the mammalian actin elongation factor ENAH in autophagy.Abbreviations: 3-MA 3-methyladenine; ABPs actin-binding proteins; ATG autophagy related; ATG9A autophagy related 9A; Baf A1 bafilomycin A1; CM complete medium; CytERM endoplasmic reticulum signal-anchor membrane protein; Cyto D cytochalasin D; EBSS Earl's balanced salt solution; ENAH/MENA ENAH actin regulator; EVH1 Ena/VASP homology 1 domain; EVH2 Ena/VASP homology 2 domain; GAPDH glyceraldehyde-3-phosphate dehydrogenase; Lat B latrunculin B; LC3-I unlipidated form of LC3; LC3-II phosphatidylethanolamine-conjugated form of LC3; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; mEGFP monomeric enhanced green fluorescent protein; mTagBFP2 monomeric Tag blue fluorescent protein 2; OSER organized smooth endoplasmic reticulum; PRD proline-rich domain; PtdIns3K class III phosphatidylinositol 3-kinase; WM wortmannin.
Collapse
Affiliation(s)
- Yueheng Li
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yafei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui province, China
| | - Menghui Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Junhui Su
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinjue Dong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuqi Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongshan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - QingQuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui province, China
| |
Collapse
|
22
|
Gao Y, Kim K, Vitrac H, Salazar RL, Gould BD, Soedkamp D, Spivia W, Raedschelders K, Dinh AQ, Guzman AG, Tan L, Azinas S, Taylor DJR, Schiffer W, McNavish D, Burks HB, Gottlieb RA, Lorenzi PL, Hanson BM, Van Eyk JE, Taegtmeyer H, Karlstaedt A. Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG. Mol Metab 2024; 86:101969. [PMID: 38908793 PMCID: PMC11278897 DOI: 10.1016/j.molmet.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.
Collapse
Affiliation(s)
- Yaqi Gao
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kyoungmin Kim
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heidi Vitrac
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Bruker Daltonics, Billerica, MA, USA
| | - Rebecca L Salazar
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin D Gould
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel Soedkamp
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Weston Spivia
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Koen Raedschelders
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - An Q Dinh
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna G Guzman
- Center for Stem Cell and Regeneration, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Stavros Azinas
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - David J R Taylor
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Walter Schiffer
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Daniel McNavish
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Helen B Burks
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Blake M Hanson
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heinrich Taegtmeyer
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
23
|
Wang Y, Wu L, Van Kaer L. Role of canonical and noncanonical autophagy pathways in shaping the life journey of B cells. Front Immunol 2024; 15:1426204. [PMID: 39139569 PMCID: PMC11319164 DOI: 10.3389/fimmu.2024.1426204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Autophagy is a regulated intracellular catabolic process by which invading pathogens, damaged organelles, aggregated proteins, and other macromolecules are degraded in lysosomes. It has been widely appreciated that autophagic activity plays an important role in regulating the development, fate determination, and function of cells in the immune system, including B lymphocytes. Autophagy encompasses several distinct pathways that have been linked to B cell homeostasis and function. While B cell presentation of major histocompatibility complex (MHC) class II-restricted cytosolic antigens to T cells involves both macroautophagy and chaperone-mediated autophagy (CMA), plasma cells and memory B cells mainly rely on macroautophagy for their survival. Emerging evidence indicates that core autophagy factors also participate in processes related to yet clearly distinct from classical autophagy. These autophagy-related pathways, referred to as noncanonical autophagy or conjugation of ATG8 to single membranes (CASM), contribute to B cell homeostasis and functions, including MHC class II-restricted antigen presentation to T cells, germinal center formation, plasma cell differentiation, and recall responses. Dysregulation of B cell autophagy has been identified in several autoimmune and autoinflammatory diseases such as systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In this review, we discuss recent advances in understanding the role of canonical and noncanonical autophagy in B cells, including B cell development and maturation, antigen processing and presentation, pathogen-specific antibody responses, cytokine secretion, and autoimmunity. Unraveling the molecular mechanisms of canonical and noncanonical autophagy in B cells will improve our understanding of B cell biology, with implications for the development of autophagy-based immunotherapies.
Collapse
Affiliation(s)
| | | | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
24
|
Pesti I, Barczánfalvi G, Dulka K, Kata D, Farkas E, Gulya K. Bafilomycin 1A Affects p62/SQSTM1 Autophagy Marker Protein Level and Autophagosome Puncta Formation Oppositely under Various Inflammatory Conditions in Cultured Rat Microglial Cells. Int J Mol Sci 2024; 25:8265. [PMID: 39125836 PMCID: PMC11311604 DOI: 10.3390/ijms25158265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures, indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for understanding the role of autophagy in microglial function in various inflammatory settings.
Collapse
Affiliation(s)
- István Pesti
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
- HCEMM-USZ Group of Cerebral Blood Flow and Metabolism, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Barczánfalvi
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
| | - Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
| | - Diana Kata
- Department of Laboratory Medicine, University of Szeged, 6725 Szeged, Hungary;
| | - Eszter Farkas
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
- HCEMM-USZ Group of Cerebral Blood Flow and Metabolism, University of Szeged, 6720 Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
| |
Collapse
|
25
|
Kaur A, Venkatesan A, Kandarpa M, Talpaz M, Raghavan M. Lysosomal degradation targets mutant calreticulin and the thrombopoietin receptor in myeloproliferative neoplasms. Blood Adv 2024; 8:3372-3387. [PMID: 38640435 PMCID: PMC11255115 DOI: 10.1182/bloodadvances.2023011432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT Somatic mutants of calreticulin (CRT) drive myeloproliferative neoplasms (MPNs) via binding to the thrombopoietin receptor (MPL) and aberrant activation of the JAK/STAT pathway. Compared with healthy donors, platelets from mutant CRT-expressing patients with MPN display low cell surface MPL. Additionally, coexpression of MPL with an MPN-linked CRT mutant (CRTDel52) reduces cell surface MPL, suggesting that CRTDel52 may induce MPL degradation. We show that lysosomal degradation is relevant to the turnover of CRTDel52 and MPL. Furthermore, CRTDel52 increases the lysosomal localization and degradation of MPL. Mammalian target of rapamycin (mTOR) inhibitors reduce cellular CRTDel52 and MPL, secreted CRTDel52 levels, and impair CRTDel52-mediated cell proliferation. mTOR inhibition also reduces colony formation and differentiation of CD34+ cells from patients with MPN but not from healthy donors. Together, these findings indicate that low-surface MPL is a biomarker of mutant CRT-mediated MPN and that induced degradation of CRTDel52 and MPL is an avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Arunkumar Venkatesan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Malathi Kandarpa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
26
|
Lee CE, Kim JY, Yoon JS, Ko J. Role of Inositol-Requiring Enzyme 1 and Autophagy in the Pro-Fibrotic Mechanism Underlying Graves' Orbitopathy. Yonsei Med J 2024; 65:397-405. [PMID: 38910302 PMCID: PMC11199180 DOI: 10.3349/ymj.2023.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE Orbital fibroblasts play key roles in the pathogenesis of Graves' orbitopathy (GO), and previous findings have shown that endoplasmic reticulum (ER) stress and autophagy also contribute to GO. In this study, we investigated the presently unclear roles of inositol-requiring enzyme 1 (IRE1) and related autophagy processes in the pro-fibrotic mechanism of GO. MATERIALS AND METHODS Orbital adipose/connective tissues were obtained from eight GO patients and six normal individuals during surgery. GO fibroblasts were transfected with IRE1 small-interfering RNA and treated with bafilomycin A1 (Baf-A1) to evaluate the inhibitory effects of ER stress and autophagy, and protein-expression levels were analyzed through western blotting after stimulation with transforming growth factor (TGF)-β. RESULTS TGF-β stimulation upregulated IRE1 in GO orbital fibroblasts, whereas silencing IRE1 suppressed fibrosis and autophagy responses. Similarly, Baf-A1, an inhibitor of late-phase autophagy, decreased the expression of pro-fibrotic proteins. CONCLUSION IRE1 mediates autophagy and the pro-fibrotic mechanism of GO, which provides a more comprehensive interpretation of GO pathogenesis and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
- Siloam Eye Hospital, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
27
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
28
|
Ling Z, Pan J, Zhang Z, Chen G, Geng J, Lin Q, Zhang T, Cao S, Chen C, Lin J, Yuan H, Ding W, Xiao F, Xu X, Li F, Wang G, Zhang Y, Li J. Small-molecule Molephantin induces apoptosis and mitophagy flux blockage through ROS production in glioblastoma. Cancer Lett 2024; 592:216927. [PMID: 38697460 DOI: 10.1016/j.canlet.2024.216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Glioblastoma (GBM), one of the most malignant brain tumors in the world, has limited treatment options and a dismal survival rate. Effective and safe disease-modifying drugs for glioblastoma are urgently needed. Here, we identified a small molecule, Molephantin (EM-5), effectively penetrated the blood-brain barrier (BBB) and demonstrated notable antitumor effects against GBM with good safety profiles both in vitro and in vivo. Mechanistically, EM-5 not only inhibits the proliferation and invasion of GBM cells but also induces cell apoptosis through the reactive oxygen species (ROS)-mediated PI3K/Akt/mTOR pathway. Furthermore, EM-5 causes mitochondrial dysfunction and blocks mitophagy flux by impeding the fusion of mitophagosomes with lysosomes. It is noteworthy that EM-5 does not interfere with the initiation of autophagosome formation or lysosomal function. Additionally, the mitophagy flux blockage caused by EM-5 was driven by the accumulation of intracellular ROS. In vivo, EM-5 exhibited significant efficacy in suppressing tumor growth in a xenograft model. Collectively, our findings not only identified EM-5 as a promising, effective, and safe lead compound for treating GBM but also uncovered its underlying mechanisms from the perspective of apoptosis and mitophagy.
Collapse
Affiliation(s)
- Zhipeng Ling
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Junping Pan
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guisi Chen
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Jiayuan Geng
- Department of Microbial and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiang Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuqin Cao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jinrong Lin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hongyao Yuan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Weilong Ding
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Yubo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
29
|
Engelhardt PM, Veronese M, Eryiğit AA, Das A, Kaczmarek AT, Rugarli EI, Schmalz HG. A pH-Sensitive Double Chromophore Fluorescent Dye for Live-Tracking of Lipophagy. Chemistry 2024; 30:e202400808. [PMID: 38506349 DOI: 10.1002/chem.202400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Lipid droplet (LD) degradation provides metabolic energy and important building blocks for various cellular processes. The two major LD degradation pathways include autophagy (lipophagy), which involves delivery of LDs to autolysosomes, and lipolysis, which is mediated by lipases. While abnormalities in LD degradation are associated with various pathological disorders, our understanding of lipophagy is still rudimentary. In this study, we describe the development of a lipophilic dye containing two fluorophores, one of which is pH-sensitive and the other pH-stable. We further demonstrate that this "Lipo-Fluddy" can be used to visualize and quantify lipophagy in living cells, in an easily applicable and protein label-free approach. After estimating the ability of compound candidates to penetrate LDs, we synthesized several BODIPY and (pH-switchable) rhodol dyes, whose fluorescence properties (incl. their photophysical compatibility) were analyzed. Of three Lipo-Fluddy dyes synthesized, one exhibited the desired properties and allowed observation of lipophagy by fluorescence microscopy. Also, this dye proved to be non-toxic and suitable for the examination of various cell lines. Moreover, a method was developed to quantify the lipophagy process using flow cytometry, which could be applied in the future in the identification of lipophagy-related genes or in the screening of potential drugs against lipophagy-related diseases.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Matteo Veronese
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alpay A Eryiğit
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Anushka Das
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander T Kaczmarek
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Elena I Rugarli
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| |
Collapse
|
30
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
31
|
Herwig M, Begovic M, Budde H, Delalat S, Zhazykbayeva S, Sieme M, Schneider L, Jaquet K, Mügge A, Akin I, El-Battrawy I, Fielitz J, Hamdani N. Protein Kinase D Plays a Crucial Role in Maintaining Cardiac Homeostasis by Regulating Post-Translational Modifications of Myofilament Proteins. Int J Mol Sci 2024; 25:2790. [PMID: 38474037 DOI: 10.3390/ijms25052790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.
Collapse
Affiliation(s)
- Melissa Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Merima Begovic
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Simin Delalat
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Marcel Sieme
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Kornelia Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Physiology, University Maastricht, 6211 LK Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
32
|
Lee HM, Park JH, Kim TH, Kim HS, Kim DE, Lee MK, You J, Lee GM, Kim YG. Effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoprotein in recombinant CHO cells. Appl Microbiol Biotechnol 2024; 108:224. [PMID: 38376550 PMCID: PMC10879319 DOI: 10.1007/s00253-024-13059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: • The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. • The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. • Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.
Collapse
Affiliation(s)
- Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Ho Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Tae-Ho Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Hyun-Seung Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Dae Eung Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Jungmok You
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
33
|
Yang Y, Arnold ML, Lange CM, Sun LH, Broussalian M, Doroodian S, Ebata H, Choy EH, Poon K, Moreno TM, Singh A, Driscoll M, Kumsta C, Hansen M. Autophagy protein ATG-16.2 and its WD40 domain mediate the beneficial effects of inhibiting early-acting autophagy genes in C. elegans neurons. NATURE AGING 2024; 4:198-212. [PMID: 38177330 PMCID: PMC11022750 DOI: 10.1038/s43587-023-00548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
While autophagy genes are required for lifespan of long-lived animals, their tissue-specific roles in aging remain unclear. Here, we inhibited autophagy genes in Caenorhabditis elegans neurons, and found that knockdown of early-acting autophagy genes, except atg-16.2, increased lifespan, and decreased neuronal PolyQ aggregates, independently of autophagosomal degradation. Neurons can secrete protein aggregates via vesicles called exophers. Inhibiting neuronal early-acting autophagy genes, except atg-16.2, increased exopher formation and exopher events extended lifespan, suggesting exophers promote organismal fitness. Lifespan extension, reduction in PolyQ aggregates and increase in exophers were absent in atg-16.2 null mutants, and restored by full-length ATG-16.2 expression in neurons, but not by ATG-16.2 lacking its WD40 domain, which mediates noncanonical functions in mammalian systems. We discovered a neuronal role for C. elegans ATG-16.2 and its WD40 domain in lifespan, proteostasis and exopher biogenesis. Our findings suggest noncanonical functions for select autophagy genes in both exopher formation and in aging.
Collapse
Affiliation(s)
- Yongzhi Yang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Scripps Research Institute, La Jolla, CA, USA
| | - Meghan Lee Arnold
- Rutgers, The State University of New Jersey, Nelson Biological Labs, Piscataway, NJ, USA
| | - Caitlin M Lange
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ling-Hsuan Sun
- Buck Institute for Aging Research, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Elizabeth H Choy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karie Poon
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tatiana M Moreno
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anupama Singh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Monica Driscoll
- Rutgers, The State University of New Jersey, Nelson Biological Labs, Piscataway, NJ, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- Buck Institute for Aging Research, Novato, CA, USA.
| |
Collapse
|
34
|
Wang J, Su Q, Chen K, Wu Q, Ren J, Tang W, Hu Y, Zhu Z, Cheng C, Tu K, He H, Zhang Y. Pyrimethamine upregulates BNIP3 to interfere SNARE-mediated autophagosome-lysosomal fusion in hepatocellular carcinoma. J Pharm Anal 2024; 14:211-224. [PMID: 38464783 PMCID: PMC10921246 DOI: 10.1016/j.jpha.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 03/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. However, few mitophagy inhibitors have been approved for clinical use in humans. Pyrimethamine (Pyr) is used to treat infections caused by protozoan parasites. Recent studies have reported that Pyr may be beneficial in the treatment of various tumors. However, its mechanism of action is still not clearly defined. Here, we found that blocking mitophagy sensitized cells to Pyr-induced apoptosis. Mechanistically, Pyr potently induced the accumulation of autophagosomes by inhibiting autophagosome-lysosome fusion in human HCC cells. In vitro and in vivo studies revealed that Pyr blocked autophagosome-lysosome fusion by upregulating BNIP3 to inhibit synaptosomal-associated protein 29 (SNAP29)-vesicle-associated membrane protein 8 (VAMP8) interaction. Moreover, Pyr acted synergistically with sorafenib (Sora) to induce apoptosis and inhibit HCC proliferation in vitro and in vivo. Pyr enhances the sensitivity of HCC cells to Sora, a common chemotherapeutic, by inhibiting mitophagy. Thus, these results provide new insights into the mechanism of action of Pyr and imply that Pyr could potentially be further developed as a novel mitophagy inhibitor. Notably, Pyr and Sora combination therapy could be a promising treatment for malignant HCC.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiayan Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Cheng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kaihui Tu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
35
|
Lee SY, Choi SH, Kim Y, Ahn HS, Ko YG, Kim K, Chi SW, Kim H. Migrasomal autophagosomes relieve endoplasmic reticulum stress in glioblastoma cells. BMC Biol 2024; 22:23. [PMID: 38287397 PMCID: PMC10826056 DOI: 10.1186/s12915-024-01829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.
Collapse
Affiliation(s)
- Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Wible DJ, Parikh Z, Cho EJ, Chen MD, Jeter CR, Mukhopadhyay S, Dalby KN, Varadarajan S, Bratton SB. Unexpected inhibition of the lipid kinase PIKfyve reveals an epistatic role for p38 MAPKs in endolysosomal fission and volume control. Cell Death Dis 2024; 15:80. [PMID: 38253602 PMCID: PMC10803372 DOI: 10.1038/s41419-024-06423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
p38 mitogen-activated protein kinases (MAPKs) participate in autophagic signaling; and previous reports suggest that pyridinyl imidazole p38 MAPK inhibitors, including SB203580 and SB202190, induce cell death in some cancer cell-types through unrestrained autophagy. Subsequent studies, however, have suggested that the associated cytoplasmic vacuolation resulted from off-target inhibition of an unidentified enzyme. Herein, we report that SB203580-induced vacuolation is rapid, reversible, and relies on the class III phosphatidylinositol 3-kinase (PIK3C3) complex and the production of phosphatidylinositol 3-phosphate [PI(3)P] but not on autophagy per se. Rather, vacuolation resulted from the accumulation of Rab7 on late endosome and lysosome (LEL) membranes, combined with an osmotic imbalance that triggered severe swelling in these organelles. Inhibition of PIKfyve, the lipid kinase that converts PI(3)P to PI(3,5)P2 on LEL membranes, produced a similar phenotype in cells; therefore, we performed in vitro kinase assays and discovered that both SB203580 and SB202190 directly inhibited recombinant PIKfyve. Cancer cells treated with either drug likewise displayed significant reductions in the endogenous levels of PI(3,5)P2. Despite these results, SB203580-induced vacuolation was not entirely due to off-target inhibition of PIKfyve, as a drug-resistant p38α mutant suppressed vacuolation; and combined genetic deletion of both p38α and p38β dramatically sensitized cells to established PIKfyve inhibitors, including YM201636 and apilimod. The rate of vacuole dissolution (i.e., LEL fission), following the removal of apilimod, was also significantly reduced in cells treated with BIRB-796, a structurally unrelated p38 MAPK inhibitor. Thus, our studies indicate that pyridinyl imidazole p38 MAPK inhibitors induce cytoplasmic vacuolation through the combined inhibition of both PIKfyve and p38 MAPKs, and more generally, that p38 MAPKs act epistatically to PIKfyve, most likely to promote LEL fission.
Collapse
Affiliation(s)
- Daric J Wible
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Zalak Parikh
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Eun Jeong Cho
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Miao-Der Chen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Collene R Jeter
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kevin N Dalby
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shankar Varadarajan
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Shawn B Bratton
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
37
|
Xu W, Billon C, Li H, Wilderman A, Qi L, Graves A, Rideb JRDC, Zhao Y, Hayes M, Yu K, Losby M, Hampton CS, Adeyemi CM, Hong SJ, Nasiotis E, Fu C, Oh TG, Fan W, Downes M, Welch RD, Evans RM, Milosavljevic A, Walker JK, Jensen BC, Pei L, Burris T, Zhang L. Novel Pan-ERR Agonists Ameliorate Heart Failure Through Enhancing Cardiac Fatty Acid Metabolism and Mitochondrial Function. Circulation 2024; 149:227-250. [PMID: 37961903 PMCID: PMC10842599 DOI: 10.1161/circulationaha.123.066542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Cyrielle Billon
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St Louis, MO (C.B., M.H., T.B.)
- Center for Clinical Pharmacology, St Louis College of Pharmacy, Washington University School of Medicine, St Louis, MO (C.B., M.H., T.B.)
| | - Hui Li
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Andrea Wilderman
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Lei Qi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Andrea Graves
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Jernie Rae Dela Cruz Rideb
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Yuanbiao Zhao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Matthew Hayes
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St Louis, MO (C.B., M.H., T.B.)
- Center for Clinical Pharmacology, St Louis College of Pharmacy, Washington University School of Medicine, St Louis, MO (C.B., M.H., T.B.)
| | - Keyang Yu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - McKenna Losby
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Carissa S Hampton
- Department of Pharmacology and Physiology, St Louis University School of Medicine, MO (C.S.H., C.M.A., J.K.W.)
| | - Christiana M Adeyemi
- Department of Pharmacology and Physiology, St Louis University School of Medicine, MO (C.S.H., C.M.A., J.K.W.)
| | - Seok Jae Hong
- McAllister Heart Institute (S.J.H., B.C.J.), University of North Carolina, Chapel Hill
| | - Eleni Nasiotis
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA (C.F.)
- University Hospitals Cleveland Medical Center, OH (C.F.)
| | - Tae Gyu Oh
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Weiwei Fan
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Michael Downes
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Ryan D Welch
- Biology and Chemistry Department, Blackburn College, Carlinville, IL (R.D.W.)
| | - Ronald M Evans
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Aleksandar Milosavljevic
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - John K Walker
- Department of Pharmacology and Physiology, St Louis University School of Medicine, MO (C.S.H., C.M.A., J.K.W.)
| | - Brian C Jensen
- McAllister Heart Institute (S.J.H., B.C.J.), University of North Carolina, Chapel Hill
- Department of Medicine, Division of Cardiology (B.C.J.), University of North Carolina, Chapel Hill
| | - Liming Pei
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, and University of Pennsylvania, Philadelphia (L.P.)
| | - Thomas Burris
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St Louis, MO (C.B., M.H., T.B.)
- Center for Clinical Pharmacology, St Louis College of Pharmacy, Washington University School of Medicine, St Louis, MO (C.B., M.H., T.B.)
| | - Lilei Zhang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| |
Collapse
|
38
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
39
|
Huber RJ, Kim WD, Wilson-Smillie MLDM. Mechanisms regulating the intracellular trafficking and release of CLN5 and CTSD. Traffic 2024; 25:e12925. [PMID: 38272448 DOI: 10.1111/tra.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | | |
Collapse
|
40
|
More M, Chatterjee S, Saha P, Bose D, Trivedi A, Roy S, Chatterjee S. Host microbiome associated low intestinal acetate correlates with progressive NLRP3-dependent hepatic-immunotoxicity in early life microcystin-LR exposure. BMC Pharmacol Toxicol 2023; 24:78. [PMID: 38093299 PMCID: PMC10720243 DOI: 10.1186/s40360-023-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Microcystins (MCs), potent hepatotoxins pose a significant health risk to humans, particularly children, who are more vulnerable due to higher water intake and increased exposure during recreational activities. METHODS Here, we investigated the role of host microbiome-linked acetate in modulating inflammation caused by early-life exposure to the cyanotoxin Microcystin-LR (MC-LR) in a juvenile mice model. RESULTS Our study revealed that early-life MC-LR exposure disrupted the gut microbiome, leading to a depletion of key acetate-producing bacteria and decreased luminal acetate concentration. Consequently, the dysbiosis hindered the establishment of a gut homeostatic microenvironment and disrupted gut barrier function. The NOD-like receptor family pyrin domain - containing 3 (NLRP3) inflammasome, a key player in MC-induced hepatoxicity emerged as a central player in this process, with acetate supplementation effectively preventing NLRP3 inflammasome activation, attenuating hepatic inflammation, and decreasing pro-inflammatory cytokine production. To elucidate the mechanism underlying the association between early-life MC-LR exposure and the progression of metabolic dysfunction associated steatotic liver disease (MASLD), we investigated the role of acetate binding to its receptor -G-protein coupled receptor 43 (GPR43) on NLRP3 inflammasome activation. Our results demonstrated that acetate-GPR43 signaling was crucial for decreasing NLRP3 protein levels and inhibiting NLRP3 inflammasome assembly. Further, acetate-induced decrease in NLRP3 protein levels was likely mediated through proteasomal degradation rather than autophagy. Overall, our findings underscore the significance of a healthy gut microbiome and its metabolites, particularly acetate, in the progression of hepatotoxicity induced by early life toxin exposure, crucial for MASLD progression. CONCLUSIONS This study highlights potential therapeutic targets in gut dysbiosis and NLRP3 inflammasome activation for mitigating toxin-associated inflammatory liver diseases.
Collapse
Affiliation(s)
- Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | | | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA.
- Toxicology Core, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA.
- Division of Infectious Disease, Department of Medicine, UCI School of Medicine, University of California - Irvine, 92697, Irvine, CA, USA.
| |
Collapse
|
41
|
Gustafson DL, Viola LO, Towers CG, Das S, Duval DL, Van Eaton KM. Sensitivity of osteosarcoma cell lines to autophagy inhibition as determined by pharmacologic and genetic manipulation. Vet Comp Oncol 2023; 21:726-738. [PMID: 37724007 PMCID: PMC11470750 DOI: 10.1111/vco.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Pharmacologic inhibition of autophagy can be achieved using lysosomotropic agents such as hydroxychloroquine (HCQ) that interfere with fusion of the autophagosome to the lysosome thus preventing completion of the recycling process. The goal of the present study is to determine the sensitivity of eight canine (cOSA) and four human (hOSA) osteosarcoma tumour cell lines to antiproliferative and cytotoxic effects of lysosomal autophagy inhibitors, and to compare these results to the autophagy-dependence measured using a CRISPR/Cas9 live-cell imaging assay in OSA and other tumour cell lines. Antiproliferative and cytotoxic response to HCQ and Lys05 was determined using live cell imaging and YOYO-1 staining. CRISPR/Cas9 live cell imaging screen was done using species specific guide RNA's and transfection of reagents into cells. Response to autophagy core genes was compared to response to an essential (PCNA) and non-essential (FOXO3A) gene. cOSA and hOSA cell lines showed similar antiproliferative and cytotoxic responses to HCQ and Lys05 with median lethal dose (Dm ) values ranging from 4.6-15.8 μM and 2.1-5.1 μM for measures of anti-proliferative response, respectively. A relationship was observed between antiproliferative responses to HCQ and Lys05 and VPS34 CRISPR score with Dm values correlating with VPS34 response (r = 0.968 and 0.887) in a species independent manner. The results show that a subset of cOSA and hOSA cell lines are autophagy-dependent and sensitive to HCQ at pharmacologically-relevant exposures.
Collapse
Affiliation(s)
- Daniel L. Gustafson
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Lindsey O. Viola
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Christina G. Towers
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Sunetra Das
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dawn L. Duval
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Kristen M. Van Eaton
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
42
|
Kim M, Chen C, Yaari Z, Frederiksen R, Randall E, Wollowitz J, Cupo C, Wu X, Shah J, Worroll D, Lagenbacher RE, Goerzen D, Li YM, An H, Wang Y, Heller DA. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat Chem Biol 2023; 19:1448-1457. [PMID: 37322156 PMCID: PMC10721723 DOI: 10.1038/s41589-023-01364-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Mijin Kim
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Jaina Wollowitz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Cupo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Janki Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Worroll
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel E Lagenbacher
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dana Goerzen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Heeseon An
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, USA
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
43
|
Hayashi Y, Takatori S, Warsame WY, Tomita T, Fujisawa T, Ichijo H. TOLLIP acts as a cargo adaptor to promote lysosomal degradation of aberrant ER membrane proteins. EMBO J 2023; 42:e114272. [PMID: 37929762 PMCID: PMC10690474 DOI: 10.15252/embj.2023114272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.
Collapse
Affiliation(s)
- Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | | | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
44
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
45
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
46
|
Bressan C, Snapyan M, Snapyan M, Klaus J, di Matteo F, Robertson SP, Treutlein B, Parent M, Cappello S, Saghatelyan A. Metformin rescues migratory deficits of cells derived from patients with periventricular heterotopia. EMBO Mol Med 2023; 15:e16908. [PMID: 37609821 PMCID: PMC10565636 DOI: 10.15252/emmm.202216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Periventricular neuronal heterotopia (PH) is one of the most common forms of cortical malformation in the human cortex. We show that human neuronal progenitor cells (hNPCs) derived from PH patients with a DCHS1 or FAT4 mutation as well as isogenic lines had altered migratory dynamics when grafted in the mouse brain. The affected migration was linked to altered autophagy as observed in vivo with an electron microscopic analysis of grafted hNPCs, a Western blot analysis of cortical organoids, and time-lapse imaging of hNPCs in the presence of bafilomycin A1. We further show that deficits in autophagy resulted in the accumulation of paxillin, a focal adhesion protein involved in cell migration. Strikingly, a single-cell RNA-seq analysis of hNPCs revealed similar expression levels of autophagy-related genes. Bolstering AMPK-dependent autophagy by metformin, an FDA-approved drug, promoted migration of PH patients-derived hNPCs. Our data indicate that transcription-independent homeostatic modifications in autophagy contributed to the defective migratory behavior of hNPCs in vivo and suggest that modulating autophagy in hNPCs might rescue neuronal migration deficits in some forms of PH.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marta Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marina Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| | | | - Francesco di Matteo
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | | | - Barbara Treutlein
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Martin Parent
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Silvia Cappello
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | - Armen Saghatelyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| |
Collapse
|
47
|
Chueh KS, Lu JH, Juan TJ, Chuang SM, Juan YS. The Molecular Mechanism and Therapeutic Application of Autophagy for Urological Disease. Int J Mol Sci 2023; 24:14887. [PMID: 37834333 PMCID: PMC10573233 DOI: 10.3390/ijms241914887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a lysosomal degradation process known as autophagic flux, involving the engulfment of damaged proteins and organelles by double-membrane autophagosomes. It comprises microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. Macroautophagy consists of three stages: induction, autophagosome formation, and autolysosome formation. Atg8-family proteins are valuable for tracking autophagic structures and have been widely utilized for monitoring autophagy. The conversion of LC3 to its lipidated form, LC3-II, served as an indicator of autophagy. Autophagy is implicated in human pathophysiology, such as neurodegeneration, cancer, and immune disorders. Moreover, autophagy impacts urological diseases, such as interstitial cystitis /bladder pain syndrome (IC/BPS), ketamine-induced ulcerative cystitis (KIC), chemotherapy-induced cystitis (CIC), radiation cystitis (RC), erectile dysfunction (ED), bladder outlet obstruction (BOO), prostate cancer, bladder cancer, renal cancer, testicular cancer, and penile cancer. Autophagy plays a dual role in the management of urologic diseases, and the identification of potential biomarkers associated with autophagy is a crucial step towards a deeper understanding of its role in these diseases. Methods for monitoring autophagy include TEM, Western blot, immunofluorescence, flow cytometry, and genetic tools. Autophagosome and autolysosome structures are discerned via TEM. Western blot, immunofluorescence, northern blot, and RT-PCR assess protein/mRNA levels. Luciferase assay tracks flux; GFP-LC3 transgenic mice aid study. Knockdown methods (miRNA and RNAi) offer insights. This article extensively examines autophagy's molecular mechanism, pharmacological regulation, and therapeutic application involvement in urological diseases.
Collapse
Affiliation(s)
- Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds (CAFEC), General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Tai-Jui Juan
- Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
48
|
Bhattacharya S, Yin J, Huo W, Chaum E. Loss of Prom1 impairs autophagy and promotes epithelial-mesenchymal transition in mouse retinal pigment epithelial cells. J Cell Physiol 2023; 238:2373-2389. [PMID: 37610047 DOI: 10.1002/jcp.31094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Mutations in the Prominin-1 (Prom1) gene disrupt photoreceptor disk morphogenesis, leading to macular dystrophies. We have shown that human retinal pigment epithelial (RPE) homeostasis is under the control of Prom1-dependent autophagy, demonstrating that Prom1 plays different roles in the photoreceptors and RPE. It is unclear if retinal and macular degeneration caused by the loss of Prom1 function is a cell-autonomous feature of the RPE or a generalized disease of photoreceptor degeneration. In this study, we investigated whether Prom1 is required for mouse RPE (mRPE) autophagy and phagocytosis, which are cellular processes essential for photoreceptor survival. We found that Prom1-KO decreases autophagy flux, activates mTORC1, and concomitantly decreases transcription factor EB (TFEB) and Cathepsin-D activities in mRPE cells. In addition, Prom1-KO reduces the clearance of bovine photoreceptor outer segments in mRPE cells due to increased mTORC1 and reduced TFEB activities. Dysfunction of Prom1-dependent autophagy correlates with both a decrease in ZO-1 and E-cadherin and a concomitant increase in Vimentin, SNAI1, and ZEB1 levels, consistent with induction of epithelial-mesenchymal transition (EMT) in Prom1-KO mRPE cells. Our results demonstrate that Prom1-mTORC1-TFEB signaling is a central driver of cell-autonomous mRPE homeostasis. We show that Prom1-KO in mRPE leads to RPE defects similar to that seen in atrophic age-related macular degeneration and opens new avenues of investigation targeting Prom1 in retinal degenerative diseases.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
49
|
Ding B, Zhou S, Wang Z, Liu W, Gao L, Ding Y, Huang H, Zhu Q, Zhang J. Macrophage autophagy contributes to immune liver injury in trichloroethylene sensitized mice: Critical role of TNF-α mediating mTOR pathway. J Cell Physiol 2023; 238:2267-2281. [PMID: 37490340 DOI: 10.1002/jcp.31083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Trichloroethylene (TCE) induces occupational medicamentosa-like dermatitis due to TCE (OMDT) with immune liver injury, and TNF-α plays an important role in macrophage polarization and liver injury. However, TNF-α regulating macrophage polarization in liver injury induced by TCE is still unknown. Thus, on the basis of our previous research, we established the TCE-sensitized BALB/c mouse model with R7050, a specific inhibitor of TNFR1. Then, we observed significant decreases in autophagy related protein and gene levels in M1 macrophage in TCE positive group, and R7050 can relieve M1 macrophage autophagy. We also found the phosphorylated form of mammalian target of Rapamycin (mTOR) was activated and the expression of p-mTOR protein increased induce by TCE. In vitro, we found TNFR1 and CD11c were increased in RAW264.7 cell line with TNF-α. And then we use Zafirlukast (Zaf), an TNFR1 antagonist, CD11c and TNFR1 reduced significantly, we also found p-mTOR expression increased after TNF-α treatment, but decreased in TNF-α + Zaf group. Further, we used Rapamycin (RAP), a mTOR-specific inhibitor, to establish a TCE-sensitized mice model and found the expression levels of p62 and p-mTOR proteins increased and LC3B decreased in the TCE positive group, while RAP treatment reversed the trends of all of these proteins. Rapamycin prevented the TNF-α-induced p-mTOR increase and dramatically downregulated IL-1β expression in the RAW264.7 cell line with TNF-α treatment. The results uncover a novel role for TNF-α/TNFR1, which promotes M1 polarization of macrophage and suppresses macrophage autophagy via the mTOR pathway.
Collapse
Affiliation(s)
- Baiwang Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sifan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhoujian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wei Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yani Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hua Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qixing Zhu
- Key Laboratory of Dermatology, Institute of Dermatology, Ministry of Education, Hefei, Anhui, China
- Department of Dermatological, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
50
|
Tian L, Guo S, Zhao Z, Chen Y, Wang C, Li Q, Li Y. miR-30a-3p Regulates Autophagy in the Involution of Mice Mammary Glands. Int J Mol Sci 2023; 24:14352. [PMID: 37762652 PMCID: PMC10531886 DOI: 10.3390/ijms241814352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The mammary gland undergoes intensive remodeling during the lactation cycle, and the involution process of mammary gland contains extensive epithelial cells involved in the process of autophagy. Our studies of mice mammary glands suggest that miR-30a-3p expression was low during involution compared with its high expression in the mammary glands of lactating mice. Then, we revealed that miR-30a-3p negatively regulated autophagy by autophagy related 12 (Atg12) in mouse mammary gland epithelial cells (MMECs). Restoring ATG12, knocking down autophagy related 5 (Atg5), starvation, and Rapamycin were used to further confirm this conclusion. Overexpression of miR-30a-3p inhibited autophagy and altered mammary structure in the involution of the mammary glands of mice, which was indicative of alteration in mammary remodeling. Taken together, these results elucidated the molecular mechanisms of miR-30a-3p as a key induction mediator of autophagy by targeting Atg12 within the transition period between lactation and involution in mammary glands.
Collapse
Affiliation(s)
- Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Shancheng Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Zhiye Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Yuxu Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Chunmei Wang
- Key Laboratory of Dairy Science of Education Ministry, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Education Ministry, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Ye Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|