1
|
Ghahtan N, Dehghan N, Ullah M, Khoradmehr A, Habibi H, Nabipour I, Baghban N. From seaweed to healing: the potential of fucoidan in wound therapy. Nat Prod Res 2024:1-14. [PMID: 38804629 DOI: 10.1080/14786419.2024.2358387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
This bibliometric review examines the current state of research on fucoidan, a sulphated polysaccharide found in brown seaweed species, and its potential for wound healing. The review included 58 studies that investigated fucoidan's effects on wound healing, revealing that it possesses anti-inflammatory and antioxidant properties that could aid in the healing process. Fucoidan was also found to promote cell proliferation, migration, and angiogenesis, essential for wound healing. However, the optimal dosage, treatment duration, safety, and efficacy of fucoidan in various wound types and patient populations still require further investigation. Additionally, advanced wound dressings like hydrogels have garnered significant attention for their potential in wound healing. While this review indicates promise for fucoidan as a natural wound healing compound, it underscores the need for additional clinical trials to determine its optimal use as a commercial therapeutic agent in wound healing.
Collapse
Affiliation(s)
- Najmeh Ghahtan
- Department of Medicinal Chemistry, Faculty of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Niloofar Dehghan
- Bushehr University of Medical Sciences, Bushehr, Iran
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Department of Cancer Immunology, Genentech Inc, South SanFrancisco, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hassan Habibi
- Department of Animal Sciences, Faculty of Agricultural and Natural Resources, Persian Gulf University, Bushehr, Iran
| | - Iraj Nabipour
- Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Sharma A, Verma C, Singh P, Mukhopadhyay S, Gupta A, Gupta B. Alginate based biomaterials for hemostatic applications: Innovations and developments. Int J Biol Macromol 2024; 264:130771. [PMID: 38467220 DOI: 10.1016/j.ijbiomac.2024.130771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Development of the efficient hemostatic materials is an essential requirement for the management of hemorrhage caused by the emergency situations to avert most of the casualties. Such injuries require the use of external hemostats to facilitate the immediate blood clotting. A variety of commercially available hemostats are present in the market but most of them are associated with limitations such as exothermic reactions, low biocompatibility, and painful removal. Thus, fabrication of an ideal hemostatic composition for rapid blood clot formation, biocompatibility, and antimicrobial nature presents a real challenge to the bioengineers. Benefiting from their tunable fabrication properties, alginate-based hemostats are gaining importance due to their excellent biocompatibility, with >85 % cell viability, high absorption capacity exceeding 500 %, and cost-effectiveness. Furthermore, studies have estimated that wounds treated with sodium alginate exhibited a blood loss of 0.40 ± 0.05 mL, compared to the control group with 1.15 ± 0.13 mL, indicating its inherent hemostatic activity. This serves as a solid foundation for designing future hemostatic materials. Nevertheless, various combinations have been explored to further enhance the hemostatic potential of sodium alginate. In this review, we have discussed the possible role of alginate based composite hemostats incorporated with different hemostatic agents, such as inorganic materials, polymers, biological agents, herbal agents, and synthetic drugs. This article outlines the challenges which need to be addressed before the clinical trials and give an overview of the future research directions.
Collapse
Affiliation(s)
- Ankita Sharma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Pratibha Singh
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Amlan Gupta
- Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
3
|
Egle K, Dohle E, Hoffmann V, Salma I, Al-Maawi S, Ghanaati S, Dubnika A. Fucoidan/chitosan hydrogels as carrier for sustained delivery of platelet-rich fibrin containing bioactive molecules. Int J Biol Macromol 2024; 262:129651. [PMID: 38280707 DOI: 10.1016/j.ijbiomac.2024.129651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Platelet-rich fibrin (PRF), derived from human blood, rich in wound healing components, has drawbacks in direct injections, such as rapid matrix degradation and growth factor release. Marine polysaccharides, mimicking the human extracellular matrix, show promising potential in tissue engineering. In this study, we impregnated the self-assembled fucoidan/chitosan (FU_CS) hydrogels with PRF obtaining PRF/FU_CS hydrogels. Our objective was to analyze the properties of a hydrogel and the sustained release of growth factors from the hydrogel that incorporates PRF. The results of SEM and BET-BJH demonstrated the relatively porous nature of the FU_CS hydrogels. ELISA data showed that combining FU_CS hydrogel with PRF led to a gradual 7-day sustained release of growth factors (VEGF, EGF, IL-8, PDGF-BB, TGF-β1), compared to pure PRF. Histology confirmed ELISA data, demonstrating uniform PRF fibrin network distribution within the FU_CS hydrogel matrix. Furthermore, the FU_CS hydrogels revealed excellent cell viability. The results revealed that the PRF/FU_CS hydrogel has the potential to promote wound healing and tissue regeneration. This would be the first step in the search for improved growth factor release.
Collapse
Affiliation(s)
- Karina Egle
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, LV-1048 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia.
| | - Eva Dohle
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Verena Hoffmann
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Ilze Salma
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia; Institute of Stomatology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sarah Al-Maawi
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany.
| | - Arita Dubnika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, LV-1048 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia.
| |
Collapse
|
4
|
Phulmogare G, Rani S, Lodhi S, Patil UK, Sinha S, Ajazuddin, Gupta U. Fucoidan loaded PVA/Dextran blend electrospun nanofibers for the effective wound healing. Int J Pharm 2024; 650:123722. [PMID: 38110012 DOI: 10.1016/j.ijpharm.2023.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Chronic wounds have become a serious global health issue. In this study, we investigated the effect of increasing fucoidan (FD) concentration on the characteristics of nanofibers and their wound healing potential at in vitro as well as in vivo level. The results showed that increasing FD content (0.25 to 1 %) led to an significant increase in nanofiber diameter (487.7 ± 125.39 to 627.9 ± 149.78 nm), entrapment efficiency (64.26 ± 2.6 to 94.9 ± 3.1 %), and water uptake abilities (436.5 ± 1.2 to 679.7 ± 11.3 %). However, the in vitro biodegradation profile decreased with an increase in FD concentration. Water vapor transmission rate analysis showed that it was within the standard range for all FD concentrations. Nanofibers with 1 % PVA/DX/FD exhibited slow-release behavior, suggesting prolonged FD availability at the wound site. In vivo studies in rats with full-thickness wounds demonstrated that applying 1 % FD-enriched PVA/DEX nanofibers significantly (p < 0.0001) improved mean wound area closure. These findings suggest that FD-enriched nanofibers have immense potential as a wound dressing material in future if explored further.
Collapse
Affiliation(s)
- Ganesh Phulmogare
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Sarita Rani
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Santram Lodhi
- Sri Sathya Sai Institute of Pharmaceutical Sciences, RKDF University, Bhopal, Madhya Pradesh 462033, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Sonal Sinha
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
5
|
Wen W, Yang L, Wang X, Zhang H, Wu F, Xu K, Chen S, Liao Z. Fucoidan promotes angiogenesis and accelerates wound healing through AKT/Nrf2/HIF-1α signalling pathway. Int Wound J 2023; 20:3606-3618. [PMID: 37203309 PMCID: PMC10588368 DOI: 10.1111/iwj.14239] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
After skin injury, wound repair involves a complex process in which angiogenesis plays a crucial role. Previous research has indicated that fucoidan may aid in wound healing; we therefore hypothesised that fucoidan may speed up the process by promoting angiogenesis. In this study, we investigated the potential molecular mechanism underlying fucoidan's ability to accelerate wound healing by promoting angiogenesis. Using a full-cut wound model, we observed that fucoidan significantly intensified wound closure and promoted granulation formation and collagen deposition. Immunofluorescence staining revealed that fucoidan also promoted wound angiogenesis, specifically by accelerating the migration of new blood vessels to the middle area of the wound. Furthermore, fucoidan demonstrated the ability to enhance the proliferation of human umbilical vein endothelial cells (HUVECs) damaged by hydrogen peroxide (H2 O2 ) and to improve the formation of endothelial tubes. Mechanistic studies revealed that fucoidan upregulated the protein levels of the AKT/Nrf2/HIF-1α signalling pathway, which plays a crucial role in angiogenesis. This was further confirmed using the inhibitor LY294002, which reversed the promotion of endothelial tube formation by fucoidan. Overall, our findings suggest that fucoidan can promote angiogenesis via the AKT/Nrf2/HIF-1α signalling pathway and accelerate wound healing.
Collapse
Affiliation(s)
- Wenting Wen
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research InstituteWenzhou Medical UniversityZhejiangChina
| | - Xin Wang
- Dpartment of Plastic and Reconstructive Surgery, Hand and MicrosurgeryNingbo NO.6 HospitalZhejiangChina
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research InstituteWenzhou Medical UniversityZhejiangChina
| | - Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Ke Xu
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| | - Shaodong Chen
- Department of OrthopaedicsLishui People's HospitalZhejiangChina
| | - Zhiyong Liao
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| |
Collapse
|
6
|
Augustyniak A, McMahon H. Effect of Marine-Derived Saccharides on Human Skin Fibroblasts and Dermal Papilla Cells. Mar Drugs 2023; 21:330. [PMID: 37367655 DOI: 10.3390/md21060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The skin is the largest organ of the human body, composed of a diverse range of cell types, non-cellular components, and an extracellular matrix. With aging, molecules that are part of the extracellular matrix undergo qualitative and quantitative changes and the effects, such as a loss of skin firmness or wrinkles, can be visible. The changes caused by the aging process do not only affect the surface of the skin, but also extend to skin appendages such as hair follicles. In the present study, the ability of marine-derived saccharides, L-fucose and chondroitin sulphate disaccharide, to support skin and hair health and minimize the effects of intrinsic and extrinsic aging was investigated. The potential of the tested samples to prevent adverse changes in the skin and hair through stimulation of natural processes, cellular proliferation, and production of extracellular matrix components collagen, elastin, or glycosaminoglycans was investigated. The tested compounds, L-fucose and chondroitin sulphate disaccharide, supported skin and hair health, especially in terms of anti-aging effects. The obtained results indicate that both ingredients support and promote the proliferation of dermal fibroblasts and dermal papilla cells, provide cells with a supply of sulphated disaccharide GAG building blocks, increase ECM molecule production (collagen and elastin) by HDFa, and support the growth phase of the hair cycle (anagen).
Collapse
Affiliation(s)
- Aleksandra Augustyniak
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| |
Collapse
|
7
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Optimization of the rope seeding method and biochemical characterization of the brown seaweed Asperococcus ensiformis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
|
10
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
11
|
UNER BAHAR D. Yara İyileştirme Özellikli Polimerlerin Yara Örtülerinde Kullanımı. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.38079/igusabder.857250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Andryukov BG, Besednova NN, Kuznetsova TA, Zaporozhets TS, Ermakova SP, Zvyagintseva TN, Chingizova EA, Gazha AK, Smolina TP. Sulfated Polysaccharides from Marine Algae as a Basis of Modern Biotechnologies for Creating Wound Dressings: Current Achievements and Future Prospects. Biomedicines 2020; 8:E301. [PMID: 32842682 PMCID: PMC7554790 DOI: 10.3390/biomedicines8090301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The goal of this review is to summarize available information about the modern wound dressing technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with a focus on promising and innovative designs. Future perspectives for the use of marine-derived biopolymers necessitate summarizing and analyzing results of numerous experiments and clinical trial data, developing a scientifically substantiated approach to wound treatment, and suggesting relevant practical recommendations.
Collapse
Affiliation(s)
- Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russian
| | - Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Ekaterina A. Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Anna K. Gazha
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana P. Smolina
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| |
Collapse
|
14
|
Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070481] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.
Collapse
|
15
|
Natural polymeric biomaterials in growth factor delivery for treating diabetic foot ulcers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Bilal M, Iqbal HMN. Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector. Mar Drugs 2019; 18:md18010007. [PMID: 31861644 PMCID: PMC7024278 DOI: 10.3390/md18010007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Seaweed-derived polysaccharides with unique structural and functional entities have gained special research attention in the current medical sector. Seaweed polysaccharides have been or being used to engineer novel cues with biomedical values to tackle in practice the limitations of counterparts which have become ineffective for 21st-century settings. The inherited features of seaweed polysaccharides, such as those of a biologically tunable, biocompatible, biodegradable, renewable, and non-toxic nature, urge researchers to use them to design therapeutically effective, efficient, controlled delivery, patient-compliant, and age-compliant drug delivery platforms. Based on their significant retention capabilities, tunable active units, swelling, and colloidal features, seaweed polysaccharides have appeared as highly useful materials for modulating drug-delivery and tissue-engineering systems. This paper presents a standard methodological approach to review the literature using inclusion-exclusion criteria, which is mostly ignored in the reported literature. Following that, numerous marine-based seaweed polysaccharides are discussed with suitable examples. For the applied perspectives, part of the review is focused on the biomedical values, i.e., targeted drug delivery, wound-curative potential, anticancer potentialities, tissue-engineering aspects, and ultraviolet (UV) protectant potential of seaweed polysaccharides based engineered cues. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Correspondence: or (M.B.); (H.M.N.I.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: or (M.B.); (H.M.N.I.)
| |
Collapse
|
17
|
The Pharmacokinetics of Fucoidan after Topical Application to Rats. Mar Drugs 2019; 17:md17120687. [PMID: 31817687 PMCID: PMC6950211 DOI: 10.3390/md17120687] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022] Open
Abstract
Fucoidan, a fucose-rich polysaccharide from brown algae, has been used for transdermal formulations targeting inflammatory skin conditions, for the treatment of thrombosis, vascular permeability diseases, subcutaneous wounds, and burns. However, the pharmacokinetics of fucoidan after topical application has not been described. In this study, an ointment (OF) containing 15% fucoidan was topically applied to rats at the doses of 50–150 mg/g. The anti-Xa activity was selected as the biomarker, and the amidolytic assay method was validated and applied for pharmacokinetic studies of fucoidan. Fucoidan in OF penetrated the skin and distributed into the skin, striated muscle, and plasma with AUC0–48 = 0.94 μg·h/g, 2.22 μg·h/g, and 1.92 µg·h/mL, respectively. The longest half-life for fucoidan was observed in plasma, then in striated muscle and skin. It was found that the pharmacokinetics of fucoidan after topical OF application was linear, in the range of 50–150 mg/kg. No accumulation of fucoidan in plasma was observed after repeated topical applications of 100 mg/kg during five days. Our results support the rationality of topical application of formulations with fucoidan.
Collapse
|
18
|
Hachim D, Whittaker TE, Kim H, Stevens MM. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. J Control Release 2019; 313:131-147. [PMID: 31629041 PMCID: PMC6900262 DOI: 10.1016/j.jconrel.2019.10.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Controlled, localized drug delivery is a long-standing goal of medical research, realization of which could reduce the harmful side-effects of drugs and allow more effective treatment of wounds, cancers, organ damage and other diseases. This is particularly the case for protein "drugs" and other therapeutic biological cargoes, which can be challenging to deliver effectively by conventional systemic administration. However, developing biocompatible materials that can sequester large quantities of protein and release them in a sustained and controlled manner has proven challenging. Glycosaminoglycans (GAGs) represent a promising class of bio-derived materials that possess these key properties and can additionally potentially enhance the biological effects of the delivered protein. They are a diverse group of linear polysaccharides with varied functionalities and suitabilities for different cargoes. However, most investigations so far have focused on a relatively small subset of GAGs - particularly heparin, a readily available, promiscuously-binding GAG. There is emerging evidence that for many applications other GAGs are in fact more suitable for regulated and sustained delivery. In this review, we aim to illuminate the beneficial properties of various GAGs with reference to specific protein cargoes, and to provide guidelines for informed choice of GAGs for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hyemin Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
19
|
Rohman G, Langueh C, Ramtani S, Lataillade JJ, Lutomski D, Senni K, Changotade S. The Use of Platelet-Rich Plasma to Promote Cell Recruitment into Low-Molecular-Weight Fucoidan-Functionalized Poly(Ester-Urea-Urethane) Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2019; 11:E1016. [PMID: 31181822 PMCID: PMC6631166 DOI: 10.3390/polym11061016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023] Open
Abstract
Due to their elastomeric behavior, polyurethane-based scaffolds can find various applications in soft-tissue engineering. However, their relatively inert surface has to be modified in order to improve cell colonization and control cell fate. The present study focuses on porous biodegradable scaffolds based on poly(ester-urea-urethane), functionalized concomitantly to the scaffold elaboration with low-molecular-weight (LMW) fucoidan; and their bio-activation with platelet rich plasma (PRP) formulations with the aim to promote cell response. The LMW fucoidan-functionalization was obtained in a very homogeneous way, and was stable after the scaffold sterilization and incubation in phosphate-buffered saline. Biomolecules from PRP readily penetrated into the functionalized scaffold, leading to a biological frame on the pore walls. Preliminary in vitro assays were assessed to demonstrate the improvement of scaffold behavior towards cell response. The scaffold bio-activation drastically improved cell migration. Moreover, cells interacted with all pore sides into the bio-activated scaffold forming cell bridges across pores. Our work brought out an easy and versatile way of developing functionalized and bio-activated elastomeric poly(ester-urea-urethane) scaffolds with a better cell response.
Collapse
Affiliation(s)
- Géraldine Rohman
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Credson Langueh
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Salah Ramtani
- LBPS team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Unité de Thérapie Cellulaire et Réparation Tissulaire, Site du Centre de Transfusion Sanguine des Armées "Jean Julliard" de Clamart, BP 73, 91223 Brétigny-sur-Orge Cedex, France.
| | - Didier Lutomski
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Karim Senni
- Ecole de biologie Industrielle, 49 avenue des Genottes, 95885 Cergy Cedex, France.
| | - Sylvie Changotade
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| |
Collapse
|
20
|
Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019; 214:119214. [PMID: 31163358 DOI: 10.1016/j.biomaterials.2019.05.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Given their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity. Even so, scientists in the field have just recently begun to utilise them as building blocks for tissue engineering scaffolds. Most of these efforts have so far been directed towards in vitro studies, and for these reasons the clinical gap is still substantial. With this review paper, we have tried to highlight some of the important chemical, physical and biological features of sulfated-polysaccharides in relation to their chondrogenic and osteogenic inducing capacity. Additionally, their usage in various in vivo model systems is discussed. The clinical studies reviewed herein paint a promising picture heralding a brave new world for orthopaedic tissue engineering.
Collapse
Affiliation(s)
- Jeremy Dinoro
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Malachy Maher
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mahboubeh Jafarkhani
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Javad Foroughi
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands.
| |
Collapse
|
21
|
Kumar S, Marrero-Berrios I, Kabat M, Berthiaume F. Recent Advances in the Use of Algal Polysaccharides for Skin Wound Healing. Curr Pharm Des 2019; 25:1236-1248. [PMID: 31109271 PMCID: PMC7746437 DOI: 10.2174/1381612825666190521120051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic skin wounds and pressure ulcers represent major health care problems in diabetic individuals, as well as patients who suffered a spinal cord injury. Current treatment methods are only partially effective and such wounds exhibit a high recurrence rate. Open wounds are at high risk of invasive wound infections, which can lead to amputation and further disability. An interdisciplinary approach is needed to develop new and more effective therapies. METHODS The purpose of this work is to review recent studies focusing on the use of algal polysaccharides in commercially available as well as experimental wound dressings. Studies that discuss wound dressings based on algal polysaccharides, some of which also contain growth factors and even living cells, were identified and included in this review. RESULTS AND CONCLUSION Algal polysaccharides possess mechanical and physical properties, along with excellent biocompatibility and biodegradability that make them suitable for a variety of applications as wound dressings. Furthermore, algal polysaccharides have been used for a dual purpose, namely as wound covering, but also as a vehicle for drug delivery to the wound site.
Collapse
Affiliation(s)
| | | | - Maciej Kabat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
22
|
Priyan Shanura Fernando I, Kim KN, Kim D, Jeon YJ. Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Crit Rev Biotechnol 2018; 39:1-15. [PMID: 30198346 DOI: 10.1080/07388551.2018.1503995] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 01/21/2023]
Abstract
The cosmetics industry is one of the most profitable in the world today. This multi-billion-dollar industry has a profound sociological impact worldwide. Its influence is global, with most individuals being concerned with conserving their physical appearance, beauty, and youth. The consumers' desire for novel, better, and safer products has stimulated the utilization of natural-product-based cosmeceutical formulations over synthetic chemicals. With remarkable advancements in marine bioresource technology, algal polysaccharides have gained much attention as bioactive ingredients in cosmeceuticals. Algae biosynthesize a variety of polysaccharides including fucoidans, alginates, carrageenans, galactans, agar, porphyran, glucans, and ulvans, all of which exhibit distinctive structural and functional properties. Many of these materials have been proven to possess skin-protective effects, including anti-wrinkle, lightening, moisturizing, UV protective, antioxidative, and anti-inflammatory activity. Moreover, they have a wide spectrum of physicochemical properties, such as the ability to form hydrogels, which extend their utilization as emulsifiers, stabilizers, and viscosity controlling ingredients in cosmeceuticals. Accordingly, algal hydrocolloids and their synthetic derivatives can also be applied in tissue engineering and cosmetic surgery. The challenge is to increase awareness about these polysaccharides and consequently generate value-added products. This review discusses the beneficial biological and physicochemical properties of algal polysaccharides, highlighting their potential in cosmeceutical applications.
Collapse
Affiliation(s)
| | - Kil-Nam Kim
- b Chuncheon Center, Korea Basic Science Institute (KBSI) , Chuncheon , Republic of Korea
| | - Daekyung Kim
- c Daegu Center, Korea Basic Science Institute (KBSI), Kyungpook National University , Bukgu , Daegu , South Korea
| | - You-Jin Jeon
- a Department of Marine Life Science , Jeju National University , Jeju , Republic of Korea
| |
Collapse
|
23
|
Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep 2018; 45:2857-2867. [PMID: 30094529 DOI: 10.1007/s11033-018-4296-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Wound is a growing healthcare challenge affecting several million worldwide. Lifestyle disorders such as diabetes increases the risk of wound complications. Effective management of wound is often difficult due to the complexity in the healing process. Addition to the conventional wound care practices, the bioactive polymers are gaining increased importance in wound care. Biopolymers are naturally occurring biomolecules synthesized by microbes, plants and animals with highest degree of biocompatibility. The bioactive properties such as antimicrobial, immune-modulatory, cell proliferative and angiogenic of the polymers create a microenvironment favorable for the healing process. The versatile properties of the biopolymers such as cellulose, alginate, hyaluronic acid, collagen, chitosan etc have been exploited in the current wound care market. With the technological advances in material science, regenerative medicine, nanotechnology, and bioengineering; the functional and structural characteristics of biopolymers can be improved to suit the current wound care demands such as tissue repair, restoration of lost tissue integrity and scarless healing. In this review we highlight on the sources, mechanism of action and bioengineering approaches adapted for commercial exploitation.
Collapse
|
24
|
Park JH, Choi SH, Park SJ, Lee YJ, Park JH, Song PH, Cho CM, Ku SK, Song CH. Promoting Wound Healing Using Low Molecular Weight Fucoidan in a Full-Thickness Dermal Excision Rat Model. Mar Drugs 2017; 15:E112. [PMID: 28387729 PMCID: PMC5408258 DOI: 10.3390/md15040112] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight fucoidan (LMF) has been reported to possess anti-inflammatory and antioxidant activities. Thus, we examined the effects of LMF extracted from Undaria pinnatifida on dermal wounds. Five round dermal wounds were created on the dorsal back of rats, and they were then treated topically with distilled water (DW), Madecasol Care™ (MC) or LMF at 200, 100 and 50 mg/mL, twice a day for a week. There were dose-dependent increases in wound contraction in the groups receiving LMF but not in the MC group, compared with the DW. Histopathological examination revealed that LMF treatment accelerated wound healing, which was supported by increases in granular tissue formation on day four post-treatment but a decrease on day seven, accompanied by an evident reduction in inflammatory cells. In the LMF-treated wounds, collagen distribution and angiogenesis were increased in the granular tissue on days four and seven post-treatment. Immunoreactive cells for transforming growth factor-β1, vascular endothelial growth factor receptor-2 or matrix metalloproteinases 9 were also increased, probably due to tissue remodeling. Furthermore, LMF treatment reduced lipid peroxidation and increased antioxidant activities. These suggested that LMF promotes dermal wound healing via complex and coordinated antioxidant, anti-inflammatory and growth factor-dependent activities.
Collapse
Affiliation(s)
- Jun-Hyeong Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Soo-Jin Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Young Joon Lee
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Jong Hyun Park
- Department of Pathology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea.
| | - Chang-Mo Cho
- Faculty of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea.
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| |
Collapse
|
25
|
KORDJAZI M, SHABANPOUR B, ZABIHI E, FARAMARZI MA, AHMADI GAVLIGHI H, FEGHHI SMA, HOSSEINI SA. Investigation of effects of fucoidan polysaccharides extracted from twospecies of Padina on the wound-healing process in the rat. TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES 2017. [DOI: 10.3906/vet-1603-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Sulaiman AA, Zolnierczyk K, Japa O, Owen JP, Maddison BC, Emes RD, Hodgkinson JE, Gough KC, Flynn RJ. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes. PLoS Pathog 2016; 12:e1005991. [PMID: 27806135 PMCID: PMC5091765 DOI: 10.1371/journal.ppat.1005991] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/11/2016] [Indexed: 12/03/2022] Open
Abstract
The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF) superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL)-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs) in their evasion of antibody-dependent cell cytotoxicity (ADCC) by reducing the NO response of macrophages—again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow for a reduced effector response targeting juvenile parasites which we demonstrate extends to an abrogation of the ADCC response. Thus suggesting that FhTLM is a stage specific evasion molecule that utilises host cytokine receptors. These findings are the first to clearly demonstrate the interaction of a helminth cytokine with a host receptor complex resulting in immune modifications that facilitate the non-protective chronic immune response which is characteristic of F. hepatica infection. Parasitic worms, helminths, can cause long-lived chronic infection in many hosts that they infection. The liver fluke, Fasciola hepatica, is one such parasite causing global infection of both humans and animals. F. hepatica exerts an influence over the immune system such that it avoids effector mechanisms and prevents the development of effective immunity. Here we characterise a molecule—FhTLM—derived from juvenile parasites that is similar to the regulatory cytokine TGF-β. We show that FhTLM will bind to host TGF-β receptors with a reduced affinity when compared with mammalian TGF-β. Despite this FhTLM can induce Smad2/3 signalling in host leukocytes, which is key to initiating gene transcription. Phenotypically FhTLM causes fibroblasts to slow their growth and replication response resulting in slower wound healing. Importantly FhTLM induces a macrophage phenotype that resembles a regulatory macrophage phenotype identified in other species undergoing helminth infection. Finally we Our work highlights the potential of FhTLM to play important roles in controlling host immunity when initially infected with juvenile parasites, thereby preventing the development of effective immunity.
Collapse
Affiliation(s)
- Azad A. Sulaiman
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Katarzyna Zolnierczyk
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Ornampai Japa
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
- School of Medicine, University of Phayao, Phayao, Thailand
| | - Jonathan P. Owen
- ADAS UK, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Ben C. Maddison
- ADAS UK, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Richard D. Emes
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Jane E. Hodgkinson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Kevin C. Gough
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Robin J. Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
28
|
Shu Z, Shi X, Nie D, Guan B. Low-Molecular-Weight Fucoidan Inhibits the Viability and Invasiveness and Triggers Apoptosis in IL-1β-Treated Human Rheumatoid Arthritis Fibroblast Synoviocytes. Inflammation 2015; 38:1777-86. [DOI: 10.1007/s10753-015-0155-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Song YS, Li H, Balcos MC, Yun HY, Baek KJ, Kwon NS, Choi HR, Park KC, Kim DS. Fucoidan promotes the reconstruction of skin equivalents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:327-31. [PMID: 25177165 PMCID: PMC4146635 DOI: 10.4196/kjpp.2014.18.4.327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 11/15/2022]
Abstract
In this study we investigated the effects of fucoidan on the proliferation of fibroblasts and the reconstruction of a skin equivalent (SE). Fucoidan significantly stimulated the proliferation of CCD-25Sk human fibroblasts and Western blot analysis demonstrated that fucoidan markedly increased the expression of cyclin D1 and decreased the expression of p27. Fucoidan was used to reconstruct SE. Immunohistochemical staining showed that the addition of fucoidan to dermal equivalents increased expression of proliferating cell nuclear antigen (PCNA) and p63. In addition, expression of α6-integrin was significantly increased by fucoidan, whereas expression of β1-integrin, type 1 collagen, elastin, fibronectin did not markedly change. These results suggest that fucoidan has positive effects on epidermal reconstruction and will therefore be beneficial in the reconstruction of SE.
Collapse
Affiliation(s)
- Yu Seok Song
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hailan Li
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Marie Carmel Balcos
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Kwang Jin Baek
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| |
Collapse
|
30
|
Abstract
Glycomics is an international initiative aimed to understand the structure and function of the glycans from a given type of cell, tissue, organism, kingdom or even environment, as found under certain conditions. Glycomics is one of the latest areas of intense biological research. Glycans of marine sources are unique in terms of structure and function. They differ considerably from those of terrestrial origin. This review discusses the most known marine glycans of potential therapeutic properties. They are chitin, chitosan, and sulfated polysaccharides named glycosaminoglycans, sulfated fucans, and sulfated galactans. Their medical actions are very broad. When certain structural requirements are found, these glycans can exhibit beneficial effects in inflammation, coagulation, thrombosis, cancer growth/metastasis, and vascular biology. Both structure and therapeutic mechanisms of action of these marine glycans are discussed here in straight context with the current glycomic age through a project suggestively named marine medicinal glycomics.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Kim TH, Lee EK, Lee MJ, Kim JH, Yang WS. Fucoidan inhibits activation and receptor binding of transforming growth factor-β1. Biochem Biophys Res Commun 2013; 432:163-8. [PMID: 23348228 DOI: 10.1016/j.bbrc.2013.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 01/11/2013] [Indexed: 01/16/2023]
Abstract
Fucoidan, a sulfated, fucose-rich polysaccharide isolated from marine brown algae, has antifibrotic effects. We investigated the biologic effects of interactions of fucoidan with transforming growth factor-β1 (TGF-β1) and latent TGF-β1 (LTGF-β1). TGF-β1 bound to fucoidan was unable to interact with its receptor. In agreement with this, fucoidan attenuated the cellular effect of TGF-β1 as measured by phosphorylation of Smad2. Binding of fucoidan rendered LTGF-β1 resistant to activation as follows. Fucoidan inhibited furin-like proprotein convertase-mediated activation of platelet LTGF-β1 without suppression of the enzyme. In addition, acid- or heat-activation of small recombinant LTGF-β1 and acid-activation of large LTGF-β1 in cultured cell supernatant were also inhibited by fucoidan. Fucoidan is a mixture of polysaccharides of different sizes. As molecular weight of fucoidan increases, it had more inhibitory effects on TGF-β1 and LTGF-β1. In conclusion, inhibitions of LTGF-β1 activation and TGF-β1 receptor binding by fucoidan may in part account for its antifibrotic effects.
Collapse
Affiliation(s)
- Tae Hee Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Cha SH, Ahn MW, Lee JS, Kim YS, Kim DU, Byun TG, Park KP. The Effect of Fcoidan Molecula Weight on Cosmetic Function. KOREAN CHEMICAL ENGINEERING RESEARCH 2012. [DOI: 10.9713/kcer.2012.50.4.604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
NamKoong S, Kim YJ, Kim TS, Sohn EH. Immunomodulatory Effects of Fucoidan on NK Cells in Ovariectomized Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.7732/kjpr.2012.25.3.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Fucoidan: A Versatile Biopolymer for Biomedical Applications. ACTIVE IMPLANTS AND SCAFFOLDS FOR TISSUE REGENERATION 2011. [DOI: 10.1007/8415_2011_67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
35
|
Do H, Kang NS, Pyo S, Billiar TR, Sohn EH. Differential regulation by fucoidan of IFN-γ-induced NO production in glial cells and macrophages. J Cell Biochem 2010; 111:1337-45. [DOI: 10.1002/jcb.22860] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Sezer AD, Akbuğa J. The design of biodegradable ofloxacin-based core-shell microspheres: Influence of the formulation parameters on in vitro characterization. Pharm Dev Technol 2010; 17:118-24. [DOI: 10.3109/10837450.2010.529145] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Nakazato K, Takada H, Iha M, Nagamine T. Attenuation of N-nitrosodiethylamine-induced liver fibrosis by high-molecular-weight fucoidan derived from Cladosiphon okamuranus. J Gastroenterol Hepatol 2010; 25:1692-701. [PMID: 20880181 DOI: 10.1111/j.1440-1746.2009.06187.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Liver fibrosis is closely associated with the progression of various chronic liver diseases. Fucoidan exhibits different biological properties such as anti-inflammatory, anti-oxidant and anti-fibrotic activities. The aim of this study was to determine whether oral fucoidan administration inhibits N-nitrosodiethylamine (DEN)-induced liver fibrosis. METHODS Liver fibrosis was induced in rats by injecting DEN (50 mg/kg). Rats were given 2% of crude fucoidan solution or 2% of high-molecular-weight (HMW) fucoidan solution. They were divided into a crude fucoidan group, an HMW fucoidan group, a DEN alone group, a DEN + crude fucoidan group, a DEN + HMW fucoidan group and a control group. RESULTS Liver fibrosis and hepatic hydroxyproline levels were significantly more decreased in the DEN + HMW fucoidan group than in the DEN-alone group. Anti-fibrogenesis was unremarkable in the DEN + crude fucoidan group. Hepatic messenger RNA levels and immunohistochemistry of transforming growth factor beta 1 were markedly increased by DEN. This increase was attenuated by HMW fucoidan. Hepatic chemokine ligand 12 expression was increased by DEN. This increase was suppressed by HMW fucoidan. HMW fucoidan significantly decreased the DEN-induced malondialdehyde levels. Also, fucoidan markedly increased metallothionein expression in the liver. Fucoidan was clearly observed in the liver by immunohistochemical staining in HMW fucoidan-treated rats, while it was faintly stained in the livers of crude fucoidan-treated rats. CONCLUSION These findings suggest that the HMW fucoidan treatment causes anti-fibrogenesis in DEN-induced liver cirrhosis through the downregulation of transforming growth factor beta 1 and chemokine ligand 12 expressions, and that scavenging lipid peroxidation is well-incorporated in the liver.
Collapse
Affiliation(s)
- Kyoumi Nakazato
- School of Health Sciences, Faculty of Medicine, Gunma University, Showa-machi, Maebashi, Japan.
| | | | | | | |
Collapse
|
38
|
Hadian M, Corcoran BM, Bradshaw JP. Molecular changes in fibrillar collagen in myxomatous mitral valve disease. Cardiovasc Pathol 2010; 19:e141-8. [DOI: 10.1016/j.carpath.2009.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/24/2009] [Accepted: 05/19/2009] [Indexed: 01/22/2023] Open
|
39
|
Park SB, Chun KR, Kim JK, Suk K, Jung YM, Lee WH. The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytother Res 2010; 24:1384-91. [PMID: 20812282 DOI: 10.1002/ptr.3140] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fucoidans have been extensively studied for their various biological activities but the exact role of fucoidans on the inflammatory processes associated with arthritic disease has not been studied. The effect of the treatment of high, medium and low molecular weight fucoidans (HMWF, MMWF and LMWF, respectively) on the progression of collagen-induced arthritis (CIA) was tested. A daily oral administration of HMWF enhanced the severity of arthritis, inflammatory responses in the joint cartilage and the levels of collagen-specific antibodies, while LMWF reduced the severity of arthritis and the levels of Th1-dependent collagen-specific IgG(2a). Further in vitro analyses, using macrophage cell lines, revealed that the HMWF induced the expression of various inflammatory mediators, and enhanced the cellular migration of macrophages. These stimulatory effects of fucoidan decreased in fucoidans with lower molecular weights and LMWF did not exhibit any pro-inflammatory effects. Interestingly, the oral administration of HMWF enhanced the production of IFN-gamma, one of the Th1 cytokines, in collagen-stimulated spleen cells that had been isolated from CIA mice, while LMWF had the opposite effect. These results indicate that HMWF enhances arthritis through enhancing the inflammatory activation of macrophages while LMWF reduces arthritis through the suppression of Th1-mediated Immune reactions.
Collapse
Affiliation(s)
- Seung-Beom Park
- Department of Genetic Engineering, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Murakami K, Ishihara M, Aoki H, Nakamura S, Nakamura SI, Yanagibayashi S, Takikawa M, Kishimoto S, Yokoe H, Kiyosawa T, Sato Y. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings. Wound Repair Regen 2010; 18:478-85. [DOI: 10.1111/j.1524-475x.2010.00606.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Regulatory action of charred Gossamer urocteae on the functions of mouse oral fibroblasts. J TRADIT CHIN MED 2010; 30:126-31. [PMID: 20653170 DOI: 10.1016/s0254-6272(10)60028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To explore the influence of charred Gossamer urocteae (CGU) on the functions of primary cultured mouse oral fibroblasts and reveal its mechanism in wound healing. METHODS CGU was extracted with different solvents and ethanol extract (EE), ethyl acetate fraction (EF), n-butanol fraction (BF) and aqueous fraction (AF) were obtained. The effects of different fractions on the proliferation, matrix metalloproteinase-2,9 (MMP-2,9) activities, synthesis of collagen and tissue inhibitor of metalloproteinase 1 (TIMP-1) in the mouse oral fibroblasts were determined by MTT, gelatin zymography, chloramine-T method, and enzyme-linked immunosorbent assay (ELISA) respectively. RESULTS EE, EF and BF at high concentrations could significantly inhibit proliferation of fibroblasts (P<0.05 or P<0.01), and at low concentrations EF and BF could promote proliferation of fibroblasts, and BF and AF could significantly inhibit collagen synthesis (P<0.05 or P<0.01). EE, EF and AF at high concentrations could significantly increase the MMP-9 activity, and BF and AF could significantly inhibit synthesis of TIMP-1. CONCLUSION CGU at high concentrations can inhibit the proliferations of fibroblasts and synthesis of collagen, and in healing of wound, CGU at high concentrations possibly has the functions of anti-fibrosis and anti-scar, and the mechanism to promote degradation of collagen is possibly related to the increase in MMP-9 activity and the inhibition of TIMP-1 synthesis.
Collapse
|
42
|
Fucoidan film safely inhibits surgical adhesions in a rat model. J Surg Res 2010; 171:495-503. [PMID: 20638689 DOI: 10.1016/j.jss.2010.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/20/2010] [Accepted: 04/21/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate the in vivo efficacy of 13 compounds and to further characterize the load limiting and potential toxicity of the most efficacious compound. The cascade of biochemical and molecular events that results in the formation of postsurgical adhesions provides numerous theoretical opportunities for prophylactic intervention. METHODS Candidate agents were loaded into sodium hyaluronate (HA) films and administered to male Sprague-Dawley rats using a cecal-sidewall model of surgical adhesions. An adhesion score was obtained for each rat based on the strength and extent of the adhesions. The most efficacious agent, fucoidan, was further evaluated in a load-limiting study with a concentration range of 0.0033 to 33% w/w per film. The potential toxicity of fucoidan was evaluated in a separate study by comparison of hematology findings, blood chemistry, urinalysis, and incision thickness from rats administered control films or 33% w/w fucoidan films 1 to 4 d prior to sacrifice. RESULTS Fucoidan loaded films reduced adhesion scores by approximately 90% compared with control films (P<0.05). A total of 50% to 100% of animals were adhesion free at fucoidan film loadings of 0.33% to 33% w/w compared with all control film animals having adhesions. No adverse effects were observed from 33% w/w fucoidan films equivalent to approximately 30 mg fucoidan/kg body weight. CONCLUSIONS Local administration of fucoidan film during rat cecal-sidewall surgery safely reduced adhesion scores by approximately 90% and resulted in 50% to 100% of animals being adhesion free.
Collapse
|
43
|
Jian-Ping D, Jun C, Yu-Fei B, Bang-Xing H, Shang-Bin G, Li-Li J. Effects of pearl powder extract and its fractions on fibroblast function relevant to wound repair. PHARMACEUTICAL BIOLOGY 2010; 48:122-127. [PMID: 20645827 DOI: 10.3109/13880200903046211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The water soluble matrix (WSM) of pearl powder [Hyriopsis cumingii Lea (Unionidae)] was extracted, and the insoluble residue was demineralized, size-fractionated, and named as MR14 (> 14 kDa), MR3-14 (3-14 kDa), and MR3 (< 3 kDa). The effects of WSM, MR14, MR3-14, and MR3 on primary mouse oral fibroblast proliferation, collagen accumulation, matrix metalloproteinase-2, -9 (MMP-2, -9) activities, and tissue inhibitor of metalloproteinase-1 (TIMP-1) production were tested by MTT assay, chloramine T method, gelatin zymography, and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that the WSM and MR14 could significantly (p < 0.05) promote fibroblast proliferation; all of the fractions could significantly promote collagen accumulation; MR14 significantly (p < 0.05) inhibited MMP-2 activity; and all of the fractions could significantly promote TIMP-1 production. This study has proved that the mechanism by which pearl powder promotes wound healing is partly due to its ability to stimulate fibroblast mitosis, collagen deposition, and TIMP-1 production, and the major active fraction may be MR14.
Collapse
Affiliation(s)
- Dai Jian-Ping
- School of Food & Bioengineering, Jiangsu University, Zhenjiang, China
| | | | | | | | | | | |
Collapse
|
44
|
Sezer AD, Akbuğa J. Comparison on in vitro characterization of fucospheres and chitosan microspheres encapsulated plasmid DNA (pGM-CSF): formulation design and release characteristics. AAPS PharmSciTech 2009; 10:1193-9. [PMID: 19859814 DOI: 10.1208/s12249-009-9324-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 09/30/2009] [Indexed: 01/23/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine used in the treatment of serious conditions resulting from chemotherapy and bone marrow transplantation such as neutropenia and aplastic anemia. Despite these effects, GM-CSF has a very short biological half-life, and it requires frequent injection during the treatment. Therefore, the cytokine production is possible in the body with plasmid-encoded GM-CSF (pGM-CSF) coding for cytokine administered to the body. However, the selection of the proper delivery system for the plasmid is important. In this study, two different delivery systems, encapsulated plasmid such as fucoidan-chitosan (fucosphere) and chitosan microspheres, were prepared and the particle physicochemical properties evaluated. Fucospheres and chitosan microspheres size ranges are 151-401 and 376-681 nm. The zeta potential values of the microspheres were changed between 8.3-17.1 mV (fucosphere) and +21.9-28.9 mV (chitosan microspheres). The encapsulation capacity of fucospheres changed between 84.2% and 94.7% depending on the chitosan molecular weight used in the formulation. In vitro plasmid DNA release from both delivery systems exhibited slower profiles of approximately 90-140 days. Integrity of released samples was checked by agarose gel electrophoresis, and any additional band was not seen. All formulations were analyzed kinetically. The calculated regression coefficients showed a higher r2 value with zero-order kinetics. In conclusion, the characterizations of the microspheres can be modulated by changing the formulation variables, and it can be concluded that fucospheres might be a potential carrier system for the controlled delivery of GM-CSF encoding plasmid DNA.
Collapse
|
45
|
Murakami K, Aoki H, Nakamura S, Nakamura SI, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T, Sato Y, Ishihara M. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 2009; 31:83-90. [PMID: 19775748 DOI: 10.1016/j.biomaterials.2009.09.031] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023]
Abstract
In order to create a moist environment for rapid wound healing, a hydrogel sheet composed of a blended powder of alginate, chitin/chitosan and fucoidan (ACF-HS; 60:20:2:4 w/w) has been developed as a functional wound dressing. ACF-HS gradually absorbed DMEM without any maceration, and fluid absorption became constant within 18 h. On application, ACF-HS was expected to effectively interact with and protect the wound in rats, providing a good moist healing environment with exudates. In addition, the wound dressing has properties such as ease of application and removal and good adherence. Full-thickness skin defects were made on the backs of rats and mitomycin C solution (1 mg/ml in saline) was applied onto the wound for 10 min in order to prepare healing-impaired wounds. After thoroughly washing out the mitomycin C, ACF-HS was applied to the healing-impaired wounds. Although normal rat wound repair was not stimulated by the application of ACF-HS, healing-impaired wound repair was significantly stimulated. Histological examination demonstrated significantly advanced granulation tissue and capillary formation in the healing-impaired wounds treated with ACF-HS on day 7, as compared to those treated with calcium alginate fiber (Kaltostat; Convatec Ltd., Tokyo, Japan) and those left untreated.
Collapse
Affiliation(s)
- Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dai JP, Chen J, Bei YF, Han BX, Wang S. Influence of borneol on primary mice oral fibroblasts: a penetration enhancer may be used in oral submucous fibrosis. J Oral Pathol Med 2009; 38:276-81. [DOI: 10.1111/j.1600-0714.2008.00738.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
|
48
|
Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules 2008; 13:1671-95. [PMID: 18794778 PMCID: PMC6245444 DOI: 10.3390/molecules13081671] [Citation(s) in RCA: 762] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/22/2008] [Accepted: 07/28/2008] [Indexed: 02/06/2023] Open
Abstract
Fucoidan refers to a type of polysaccharide which contains substantial percentages of L-fucose and sulfate ester groups, mainly derived from brown seaweed. For the past decade fucoidan has been extensively studied due to its numerous interesting biological activities. Recently the search for new drugs has raised interest in fucoidans. In the past few years, several fucoidans' structures have been solved, and many aspects of their biological activity have been elucidated. This review summarizes the research progress on the structure and bioactivity of fucoidan and the relationships between structure and bioactivity.
Collapse
Affiliation(s)
- Bo Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, P.R. China.
| | | | | | | |
Collapse
|
49
|
Sezer AD, Cevher E, Hatıpoğlu F, Oğurtan Z, Baş AL, Akbuğa J. Preparation of Fucoidan-Chitosan Hydrogel and Its Application as Burn Healing Accelerator on Rabbits. Biol Pharm Bull 2008; 31:2326-33. [DOI: 10.1248/bpb.31.2326] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ali Demir Sezer
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University
| | - Fatih Hatıpoğlu
- Department of Pathology, Faculty of Veterinary, Selçuk University
| | - Zeki Oğurtan
- Department of Surgery, Faculty of Veterinary, Selçuk University
| | - Ahmet Levent Baş
- Department of Pharmacology, Faculty of Veterinary, Selçuk University
| | - Jülide Akbuğa
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University
| |
Collapse
|
50
|
The use of fucosphere in the treatment of dermal burns in rabbits. Eur J Pharm Biopharm 2007; 69:189-98. [PMID: 17951036 DOI: 10.1016/j.ejpb.2007.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 09/06/2007] [Accepted: 09/12/2007] [Indexed: 11/29/2022]
Abstract
The aim of this study was to prepare a new microsphere (fucosphere) system based on polyion complexation of fucoidan with chitosan, and to evaluate its treatment efficiency on dermal burns. The physicochemical properties such as mean particle size and distribution, zeta potential and bioadhesive properties of the microspheres were investigated. The formulation which had the high surface charge, narrow size distribution and the highest bioadhesive property was selected and applied on seven male New Zealand white rabbits with dermal burns. Biopsy samples were taken on day 7, 14 and 21. Each burn site was evaluated macroscopically and histopathologically and the findings were compared with controls of fucoidan solution and chitosan microspheres. The microspheres between the size ranges of 367 and 1017 nm were obtained. The work of bioadhesion of microspheres, with the surface charges +6.1 to +26.3 mV, changed between 0.081 and 0.191 mJ cm(-2). Macroscopically and histopathological observations indicated that the fastest healing of the burns was obtained in group treated with fucosphere after 21 days of treatment (P<0.05). Rete peg formation values and nuclear organize regions (NORs) were higher with treated fucospheres than the other groups on day 14. In conclusion, in vitro and in vivo evaluation of fucospheres indicated that the new microsphere system shortened the treatment period of burns and provided fast and effective healing by improving regeneration and re-epithelization. Hence fucosphere may find application in the treatment of dermal burns.
Collapse
|