1
|
Hayduk SA, Hughes AC, Winter RL, Milton MD, Ward SJ. Single and Combined Effects of Cannabigerol (CBG) and Cannabidiol (CBD) in Mouse Models of Oxaliplatin-Associated Mechanical Sensitivity, Opioid Antinociception, and Naloxone-Precipitated Opioid Withdrawal. Biomedicines 2024; 12:1145. [PMID: 38927352 PMCID: PMC11200766 DOI: 10.3390/biomedicines12061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients, with estimates of at least 30% of patients experiencing persistent neuropathy for months or years after treatment cessation. An emerging potential intervention for the treatment of CIPN is cannabinoid-based pharmacotherapies. We have previously demonstrated that treatment with the psychoactive CB1/CB2 cannabinoid receptor agonist Δ9-tetrahydrocannabinol (Δ9-THC) or the non-psychoactive, minor phytocannabinoid cannabidiol (CBD) can attenuate paclitaxel-induced mechanical sensitivity in a mouse model of CIPN. We then showed that the two compounds acted synergically when co-administered in the model, giving credence to the so-called entourage effect. We and others have also demonstrated that CBD can attenuate several opioid-associated behaviors. Most recently, it was reported that another minor cannabinoid, cannabigerol (CBG), attenuated cisplatin-associated mechanical sensitivity in mice. Therefore, the goals of the present set of experiments were to determine the single and combined effects of cannabigerol (CBG) and cannabidiol (CBD) in oxaliplatin-associated mechanical sensitivity, naloxone-precipitated morphine withdrawal, and acute morphine antinociception in male C57BL/6 mice. Results demonstrated that CBG reversed oxaliplatin-associated mechanical sensitivity only under select dosing conditions, and interactive effects with CBD were sub-additive or synergistic depending upon dosing conditions too. Pretreatment with a selective α2-adrenergic, CB1, or CB2 receptor selective antagonist significantly attenuated the effect of CBG. CBG and CBD decreased naloxone-precipitated jumping behavior alone and acted synergistically in combination, while CBG attenuated the acute antinociceptive effects of morphine and CBD. Taken together, CBG may have therapeutic effects like CBD as demonstrated in rodent models, and its interactive effects with opioids or other phytocannabinoids should continue to be characterized.
Collapse
Affiliation(s)
| | | | | | | | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (S.A.H.); (A.C.H.); (R.L.W.); (M.D.M.)
| |
Collapse
|
2
|
Bernard A, Mroué M, Bourthoumieu S, Boyce M, Richard L, Sturtz F, Demiot C, Danigo A. Netazepide, an Antagonist of Cholecystokinin Type 2 Receptor, Prevents Vincristine-Induced Sensory Neuropathy in Mice. Pharmaceuticals (Basel) 2024; 17:144. [PMID: 38399359 PMCID: PMC10892341 DOI: 10.3390/ph17020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Among the vinca-alkaloid class, vincristine is a potent chemotherapeutic agent with significant neurotoxic effects and is employed to address a wide spectrum of cancer types. Recently, the therapeutic potential of the cholecystokinin type 2 receptor (CCK2R) as a target for vincristine-induced peripheral neuropathy (VIPN) was demonstrated. In this study, the impact of preventive CCK2R blockade using netazepide (Trio Medicines Ltd., London, UK) was investigated in a mouse model of vincristine-induced peripheral neuropathy. Netazepide is a highly selective CCK2R antagonist under development for the treatment of patients with gastric neuroendocrine tumors caused by hypergastrinemia secondary to chronic autoimmune atrophic gastritis. Vincristine-induced peripheral neuropathy was induced by intraperitoneal injections of vincristine at 100 µg/kg/d for 7 days (D0 to D7). Netazepide (2 mg/kg/d or 5 mg/kg/d, per os) was administered one day before vincristine treatment until D7. Vincristine induced a high tactile allodynia from D1 to D7. VIPN was characterized by dorsal root ganglion neuron (DRG) and intraepidermal nerve fiber (IENF) loss, and enlargement and loss of myelinated axons in the sciatic nerve. Netazepide completely prevented the painful symptoms and nerve injuries induced by vincristine. In conclusion, the fact that netazepide protected against vincristine-induced peripheral neuropathy in a mouse model strongly supports the assessment of its therapeutic potential in patients receiving such chemotherapy.
Collapse
Affiliation(s)
- Amandine Bernard
- NeurIT Neuropathies et Innovations Thérapeutiques UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (A.B.); (M.M.); (S.B.); (L.R.); (F.S.); (C.D.)
| | - Mohamad Mroué
- NeurIT Neuropathies et Innovations Thérapeutiques UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (A.B.); (M.M.); (S.B.); (L.R.); (F.S.); (C.D.)
| | - Sylvie Bourthoumieu
- NeurIT Neuropathies et Innovations Thérapeutiques UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (A.B.); (M.M.); (S.B.); (L.R.); (F.S.); (C.D.)
- Department of Cytogenetic, Medical Genetic and Reproduction Biology, University Hospital of Limoges, 87042 Limoges, France
| | - Malcolm Boyce
- Hammersmith Medicines Research Limited and Trio Medicines Limited, 44 Cumberland Avenue, London NW10 7EW, UK;
| | - Laurence Richard
- NeurIT Neuropathies et Innovations Thérapeutiques UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (A.B.); (M.M.); (S.B.); (L.R.); (F.S.); (C.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87042 Limoges, France
| | - Franck Sturtz
- NeurIT Neuropathies et Innovations Thérapeutiques UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (A.B.); (M.M.); (S.B.); (L.R.); (F.S.); (C.D.)
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, 87042 Limoges, France
| | - Claire Demiot
- NeurIT Neuropathies et Innovations Thérapeutiques UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (A.B.); (M.M.); (S.B.); (L.R.); (F.S.); (C.D.)
- Transversal and Territorial Therapeutic Education Unit (UTTEP87), University Hospital of Limoges, 87042 Limoges, France
| | - Aurore Danigo
- NeurIT Neuropathies et Innovations Thérapeutiques UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (A.B.); (M.M.); (S.B.); (L.R.); (F.S.); (C.D.)
| |
Collapse
|
3
|
Aloi VD, Pinto SJPC, Van Bree R, Luyten K, Voets T, Vriens J. TRPM3 as a novel target to alleviate acute oxaliplatin-induced peripheral neuropathic pain. Pain 2023; 164:2060-2069. [PMID: 37079852 PMCID: PMC10436359 DOI: 10.1097/j.pain.0000000000002906] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 04/22/2023]
Abstract
ABSTRACT Chemotherapy-induced peripheral neuropathic pain (CIPNP) is an adverse effect observed in up to 80% of patients of cancer on treatment with cytostatic drugs including paclitaxel and oxaliplatin. Chemotherapy-induced peripheral neuropathic pain can be so severe that it limits dose and choice of chemotherapy and has significant negative consequences on the quality of life of survivors. Current treatment options for CIPNP are limited and unsatisfactory. TRPM3 is a calcium-permeable ion channel functionally expressed in peripheral sensory neurons involved in the detection of thermal stimuli. Here, we focus on the possible involvement of TRPM3 in acute oxaliplatin-induced mechanical allodynia and cold hypersensitivity. In vitro calcium microfluorimetry and whole-cell patch-clamp experiments showed that TRPM3 is functionally upregulated in both heterologous and homologous expression systems after acute (24 hours) oxaliplatin treatment, whereas the direct application of oxaliplatin was without effect. In vivo behavioral studies using an acute oxaliplatin model for CIPNP showed the development of cold and mechano hypersensitivity in control mice, which was lacking in TRPM3 deficient mice. In addition, the levels of protein ERK, a marker for neuronal activity, were significantly reduced in dorsal root ganglion neurons derived from TRPM3 deficient mice compared with control after oxaliplatin administration. Moreover, intraperitoneal injection of a TRPM3 antagonist, isosakuranetin, effectively reduced the oxaliplatin-induced pain behavior in response to cold and mechanical stimulation in mice with an acute form of oxaliplatin-induced peripheral neuropathy. In summary, TRPM3 represents a potential new target for the treatment of neuropathic pain in patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Vincenzo Davide Aloi
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sílvia João Poseiro Coutinho Pinto
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rita Van Bree
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Katrien Luyten
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
4
|
Klazas M, Naamneh MS, Zheng W, Lazarovici P. Gabapentin Increases Intra-Epidermal and Peptidergic Nerve Fibers Density and Alleviates Allodynia and Thermal Hyperalgesia in a Mouse Model of Acute Taxol-Induced Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10123190. [PMID: 36551946 PMCID: PMC9775678 DOI: 10.3390/biomedicines10123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment. Gabapentin therapy was performed during the 2nd and 3rd weeks. The neuropathic pain was evaluated during the whole experiment by the Von Frey, tail flick, and hot plate tests. Intra-epidermal nerve fibers (IENF) density in skin biopsies was measured at the end of the experiment by immunohistochemistry of ubiquitin carboxyl-terminal hydrolase PGP9.5 pan-neuronal and calcitonin gene-related (CGRP) peptides-I/II- peptidergic markers. Taxol-induced neuropathy was expressed by 80% and 73% reduction in the paw density of IENFs and CGPR, and gabapentin treatment corrected by 83% and 46% this reduction, respectively. Gabapentin-induced increase in the IENF and CGRP nerve fibers density, thus proposing these evaluations as an additional objective end-point tool in TIPN model studies using gabapentin as a reference compound.
Collapse
Affiliation(s)
- Michal Klazas
- Pharmacy Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Majdi Saleem Naamneh
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Philip Lazarovici
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
- Correspondence: ; Tel.: +972-2-6758729; Fax: +972-2-6757490
| |
Collapse
|
5
|
Nepal MR, Taheri H, Li Y, Talebi Z, Uddin ME, Jin Y, DiGiacomo DF, Gibson AA, Lustberg MB, Hu S, Sparreboom A. Targeting OCT2 with Duloxetine to Prevent Oxaliplatin-Induced Peripheral Neurotoxicity. CANCER RESEARCH COMMUNICATIONS 2022; 2:1334-1343. [PMID: 36506732 PMCID: PMC9730833 DOI: 10.1158/2767-9764.crc-22-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxaliplatin-induced peripheral neurotoxicity (OIPN) is a debilitating side effect that afflicts ~90% of patients that is initiated by OCT2-dependent uptake of oxaliplatin in DRG neurons. The antidepressant drug duloxetine has been used to treat OIPN, although its usefulness in preventing this side effect remains unclear. We hypothesized that duloxetine has OCT2-inhibitory properties and can be used as an adjunct to oxaliplatin-based regimens to prevent OIPN. Transport studies were performed in cells stably transfected with mouse or human OCT2 and in isolated mouse DRG neurons ex vivo. Wild-type and OCT2-deficient mice were used to assess effects of duloxetine on hallmarks of OIPN, endogenous OCT2 biomarkers, and the pharmacokinetics of oxaliplatin, and the translational feasibility of a duloxetine-oxaliplatin combination was evaluated in various models of colorectal cancer. We found that duloxetine potently inhibited the OCT2-mediated transport of several xenobiotic substrates, including oxaliplatin, in a reversible, concentration-dependent manner, and independent of species and cell context. Furthermore, duloxetine restricted access of these substrates to DRG neurons ex vivo and prevented OIPN in wild-type mice to a degree similar to the complete protection observed in OCT2-deficient mice, without affecting the plasma levels of oxaliplatin. Importantly, the uptake and cytotoxicity of oxaliplatin in tumor cell lines in vitro and in vivo were not negatively influenced by duloxetine. The observed OCT2-targeting properties of duloxetine, combined with the potential for clinical translation, provide support for its further exploration as a therapeutic candidate for studies aimed at preventing OIPN in cancer patients requiring treatment with oxaliplatin. Significance We found that duloxetine has potent OCT2-inhibitory properties and can diminish excessive accumulation of oxaliplatin into DRG neurons. In addition, pre-treatment of mice with duloxetine prevented OIPN without significantly altering the plasma pharmacokinetics and antitumor properties of oxaliplatin. These results suggest that intentional inhibition of OCT2-mediated transport by duloxetine can be employed as a prevention strategy to ameliorate OIPN without compromising the effectiveness of oxaliplatin-based treatment.
Collapse
Affiliation(s)
- Mahesh R. Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hanieh Taheri
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Duncan F. DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Maryam B. Lustberg
- The Breast Center at Smilow Cancer Hospital at Yale, Yale School of Medicine, New Haven, Connecticut
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Shuiying Hu, Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 496 West 12th Avenue, Columbus, Ohio, 43210. Phone: 614-247-6203; Fax: 614-688-4028; E-mail: ; and Alex Sparreboom, Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, 496 West 12th Avenue, The Ohio State University, Columbus, Ohio, 43210. E-mail:
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Shuiying Hu, Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 496 West 12th Avenue, Columbus, Ohio, 43210. Phone: 614-247-6203; Fax: 614-688-4028; E-mail: ; and Alex Sparreboom, Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, 496 West 12th Avenue, The Ohio State University, Columbus, Ohio, 43210. E-mail:
| |
Collapse
|
6
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
7
|
Yang L, Wang H, Lu W, Yang G, Lin Z, Chen R, Li H. Quantitative proteomic analysis of oxaliplatin induced peripheral neurotoxicity. J Proteomics 2022; 266:104682. [PMID: 35830924 DOI: 10.1016/j.jprot.2022.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Oxaliplatin (OXA)-induced peripheral neurotoxicity (OIPN) is a high-incidence and dose-dependent adverse reaction during OXA treatment. Its underlying mechanisms remain unclear, and no effective treatment or prevention therapies are currently available. Here, we employed a data independent acquisition (DIA)-based quantitative proteomic strategy to investigate the global proteome alterations in the dorsal root ganglion (DRG) tissues from mice injected with OXA for different periods. We identified 1128 differentially regulated proteins that were divided into six subclusters according to their alteration trends. Interestingly, these proteins were involved in cellular processes such as cell cycle, ribosomal stress, metabolism, and ion transport. In addition, OXA administration induced abundance changes of ion channels and proteins associated with mitochondrial function and reactive oxygen species production. Furthermore, we investigated the effects of diroximel fumarate (DRF), an FDA-approved oral fumarate drug for the treatment of relapsing forms of multiple sclerosis. Our findings showed that DRF could effectively ameliorate symptoms of OIPN and reduce the level of oxidative stress in mice. Taken together, our study systematically mapped the proteome alteration associated with the neural toxicity of OXA, and the findings could be leveraged to better understand the mechanisms of OIPN and to develop more effect treatment therapies. SIGNIFICANCE: Oxaliplatin (OXA)-induced peripheral neurotoxicity (OIPN) is a high-incidence and dose-dependent adverse reaction with unclear mechanism. Here we employed a data independent acquisition (DIA)-based quantitative proteomic strategy to explore the proteome changes in dorsal root ganglion (DRG) tissues from mice treated by OXA. The findings provided novel insights regarding the mechanisms of OIPN. For example, our data showed that OXA induced a broad disturbance in metabolism, particularly in glycolysis and amino acid metabolism. Additionally, we observed abundance changes of many ion channels and proteins associated with mitochondrial function and reactive oxygen species production. Furthermore, this study provided the first evidence for the possibility of repositioning diroximel fumarate (DRF) for treating OIPN.
Collapse
Affiliation(s)
- Linlin Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wanting Lu
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Gangqi Yang
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Hongyan Li
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China.
| |
Collapse
|
8
|
Caudle RM, Neubert JK. Effects of Oxaliplatin on Facial Sensitivity to Cool Temperatures and TRPM8 Expressing Trigeminal Ganglion Neurons in Mice. FRONTIERS IN PAIN RESEARCH 2022; 3:868547. [PMID: 35634452 PMCID: PMC9130462 DOI: 10.3389/fpain.2022.868547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The chemotherapeutic agent oxaliplatin is commonly used to treat colorectal cancer. Although effective as a chemotherapeutic, it frequently produces painful peripheral neuropathies. These neuropathies can be divided into an acute sensitivity to cool temperatures in the mouth and face, and chronic neuropathic pain in the limbs and possible numbness. The chronic neuropathy also includes sensitivity to cool temperatures. Neurons that detect cool temperatures are reported to utilize Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Therefore, we investigated the effects of oxaliplatin on facial nociception to cool temperatures (18°C) in mice and on TRPM8 expressing trigeminal ganglion (TRG) neurons. Paclitaxel, a chemotherapeutic that is used to treat breast cancer, was included for comparison because it produces neuropathies, but acute cool temperature sensitivity in the oral cavity or face is not typically reported. Behavioral testing of facial sensitivity to 18°C indicated no hypersensitivity either acutely or chronically following either chemotherapeutic agent. However, whole cell voltage clamp experiments in TRPM8 expressing TRG neurons indicated that both oxaliplatin and paclitaxel increased Hyperpolarization-Activated Cyclic Nucleotide-Gated channel (HCN), voltage gated sodium channel (Nav), and menthol evoked TRPM8 currents. Voltage gated potassium channel (Kv) currents were not altered. Histological examination of TRPM8 fibers in the skin of the whisker pads demonstrated that the TRPM8 expressing axons and possible Merkel cell-neurite complexes were damaged by oxaliplatin. These findings indicate that oxaliplatin induces a rapid degeneration of TRG neuron axons that express TRPM8, which prevents evoked activation of the sensitized neurons and likely leads to reduced sensitivity to touch and cool temperatures. The changes in HCN, Nav, and TRPM8 currents suggest that spontaneous firing of action potentials may be increased in the deafferented neurons within the ganglion, possibly producing spontaneously induced cooling or nociceptive sensations.
Collapse
Affiliation(s)
- Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, United States
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Bouchenaki H, Bernard A, Bessaguet F, Frachet S, Richard L, Sturtz F, Magy L, Bourthoumieu S, Demiot C, Danigo A. Neuroprotective Effect of Ramipril Is Mediated by AT2 in a Mouse MODEL of Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2022; 14:pharmaceutics14040848. [PMID: 35456682 PMCID: PMC9030366 DOI: 10.3390/pharmaceutics14040848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent models of peripheral neuropathy. The protective role of the angiotensin II type 2 receptor (AT2) in the central and peripheral nervous systems is well-established. Here, we evaluate the effects of ramipril in the prevention of PIPN and the involvement of AT2 in this effect. Paclitaxel was administered in wild type or AT2-deficient mice on alternate days for 8 days, at a cumulative dose of 8 mg/kg (2 mg/kg per injection). Ramipril, PD123319 (an AT2 antagonist), or a combination of both were administered one day before PTX administration, and daily for the next twenty days. PTX-administered mice developed mechanical allodynia and showed a loss of sensory nerve fibers. Ramipril prevented the functional and morphological alterations in PTX mice. The preventive effect of ramipril against tactile allodynia was completely absent in AT2-deficient mice and was counteracted by PD123319 administration in wild type mice. Our work highlights the potential of ramipril as a novel preventive treatment for PIPN, and points to the involvement of AT2 in the neuroprotective role of ramipril in PIPN.
Collapse
Affiliation(s)
- Hichem Bouchenaki
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Amandine Bernard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Flavien Bessaguet
- INSERM 1083 CNRS UMR 6015 Mitovasc Laboratory, CarMe Team, University of Angers, 49045 Angers, France;
| | - Simon Frachet
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Laurence Richard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Franck Sturtz
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, 87000 Limoges, France
| | - Laurent Magy
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Sylvie Bourthoumieu
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Cytogenetic, Medical Genetic and Reproduction Biology, University Hospital of Limoges, 87000 Limoges, France
| | - Claire Demiot
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Correspondence: ; Tel.: +33-5554-35915
| | - Aurore Danigo
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| |
Collapse
|
10
|
Sugimoto M, Takagi T, Suzuki R, Konno N, Asama H, Sato Y, Irie H, Okubo Y, Nakamura J, Takasumi M, Hashimoto M, Kato T, Kobashi R, Hikichi T, Ohira H. Drug treatment for chemotherapy-induced peripheral neuropathy in patients with pancreatic cancer. Fukushima J Med Sci 2022; 68:1-10. [PMID: 35197393 PMCID: PMC9071352 DOI: 10.5387/fms.2021-32] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal disease where most tumors are too advanced at diagnosis for resection, leaving chemotherapy as the mainstay of treatment. Although the prognosis of unresectable PC is poor, it has been dramatically improved by new chemotherapy treatments, such as the combination of 5-fluorouracil, oxaliplatin, irinotecan, and leucovorin (FOLFIRINOX) or gemcitabine plus nab-paclitaxel. However, as oxaliplatin and paclitaxel are common neurotoxic drugs, chemotherapy-induced peripheral neuropathy (CIPN) is a common and severe adverse effect of both treatments. As there are no agents recommended in the ASCO guidelines, we review the methods used to treat CIPN caused by PC treatment. The efficacy of duloxetine was observed in a large randomized controlled trial (RCT). In addition, pregabalin was more effective than duloxetine for CIPN in two RCTs. Although duloxetine and pregabalin can be effective for CIPN, they have several side effects. Therefore, the choice between the two drugs should be determined according to effect and tolerability. Mirogabalin is also used in patients with PC and there is hope it will yield positive outcomes when treating CIPN in the future.
Collapse
Affiliation(s)
- Mitsuru Sugimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Tadayuki Takagi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Rei Suzuki
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Naoki Konno
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Hiroyuki Asama
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Yuki Sato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Hiroki Irie
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Yoshinori Okubo
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Jun Nakamura
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Mika Takasumi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Minami Hashimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Tsunetaka Kato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Ryoichiro Kobashi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Hiromasa Ohira
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| |
Collapse
|
11
|
Basit A, Ahmad S, Khan KUR, Naeem A, Usman M, Ahmed I, Shahzad MN. Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114942. [PMID: 34968664 DOI: 10.1016/j.jep.2021.114942] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia vahlii Roth. (Acanthaceae), also called as kodasoori and bhekkar is an annual therophyte erect or decumbent herb used traditionally in toothache, skin diseases (itching, topical inflammation) and for the treatment of various respiratory disorders. AIM OF THE STUDY The current study aimed at exploring pain cessation potential of J. vahlii Roth. via murine model of neuropathic pain and its phytochemical, toxicological and antioxidant profiles. MATERIALS AND METHODS The hydro-alcoholic extract of J. vahlii (HAEJv) prepared by maceration technique was subjected to preliminary phytochemical screening, total bioactive content determination, UPLC-QTOF-MS and GC-MS analysis. Toxicity assessment was carried out by using brine shrimp lethality assay and acute oral toxicity test. Murine model of neuropathic pain was applied to assess the antineuropathic potential of the species. Furthermore effect of the extract on catalase, superoxide oxide dismutase (SOD), Glutathione (GSH), interleukin-1beta (IL-1β) and total necrosis factor-alpha (TNF-α) was also studied. In vitro antioxidant profile was explored by using four methods; 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethylbenothiazoline)-6-sulfonic acid (ABTS), CUPric reducing antioxidant capacity (CUPRAC) and Ferric reducing antioxidant power (FRAP) assay. RESULTS The phytochemical screening revealed the presence of phenols, flavonoids, coumarins, alkaloids and lignans as the major classes of secondary metabolites. The extract was found rich in total phenolics content (TPC) and total flavonoids content (TFC) with identification of total 59 bioactives in UPLC-QTOF-MS and 40 compounds in GC-MS analysis. The extract was found nontoxic up to 4000 mg/kg (p.o.) in mice and no mortality observed in brine shrimp lethality assay. The HAEJv significantly reduced number of acetic acid induced abdominal constrictions at 100 mg/kg (p < 0.01) and 200 mg/kg (p < 0.001) and increased paw withdrawal threshold p < 0.05 at 100 mg/kg and p < 0.001 at 200 mg/kg, and an increase in tail withdrawal latency time p < 0.001 at 200 mg/kg was observed. The extract significantly increased levels of catalase, SOD and GSH while decreased IL-1β and TNF-α levels in sciatic nerve tissue of mice. HAEJv showed highest antioxidant activity through CUPRAC method 121.32 ± 1.22 mg trolox equivalent per gram of dry extract (mg TE/g DE) followed by DPPH 81.334 ± 4.35 mg TE/g DE, FRAP 69.89 ± 3.05 mg TE/g DE and ABTS 38.17 ± 2.12 mg TE/g DE. CONCLUSION The current study back the traditional use of J. vahlii in pain cessation through antioxidant based antineuropathic pain activity and revealed the extract non-toxic with number of functional phytoconstituents and warrants further research on isolation of the compounds and sub-acute toxicity studies.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
12
|
Antinociceptive and Antiallodynic Activity of Some 3-(3-Methylthiophen-2-yl)pyrrolidine-2,5-dione Derivatives in Mouse Models of Tonic and Neuropathic Pain. Int J Mol Sci 2022; 23:ijms23074057. [PMID: 35409413 PMCID: PMC8999233 DOI: 10.3390/ijms23074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Antiseizure drugs (ASDs) are commonly used to treat a wide range of nonepileptic conditions, including pain. In this context, the analgesic effect of four pyrrolidine-2,5-dione derivatives (compounds 3, 4, 6, and 9), with previously confirmed anticonvulsant and preliminary antinociceptive activity, was assessed in established pain models. Consequently, antinociceptive activity was examined in a mouse model of tonic pain (the formalin test). In turn, antiallodynic and antihyperalgesic activity were examined in the oxaliplatin-induced model of peripheral neuropathy as well as in the streptozotocin-induced model of painful diabetic neuropathy in mice. In order to assess potential sedative properties (drug safety evaluation), the influence on locomotor activity was also investigated. As a result, three compounds, namely 3, 6, and 9, demonstrated a significant antinociceptive effect in the formalin-induced model of tonic pain. Furthermore, these substances also revealed antiallodynic properties in the model of oxaliplatin-induced peripheral neuropathy, while compound 3 attenuated tactile allodynia in the model of diabetic streptozotocin-induced peripheral neuropathy. Apart from favorable analgesic properties, the most active compound 3 did not induce any sedative effects at the active dose of 30 mg/kg after intraperitoneal (i.p.) injection.
Collapse
|
13
|
Takasaki I, Nagashima R, Ueda T, Ogata T, Inoue A, Shiraki K, Kitada Y, Arai S. Fosphenytoin alleviates herpes simplex virus infection-induced provoked and spontaneous pain-like behaviors in mice. Biol Pharm Bull 2021; 45:360-363. [PMID: 34937813 DOI: 10.1248/bpb.b21-00933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the effects of fosphenytoin (fPHT) a water-soluble prodrug of phenytoin, on the pain responses of a mouse herpes zoster (HZ) pain model. Transdermal herpes simplex virus type 1 (HSV-1) inoculation induced mechanical allodynia and hyperalgesia of the hind paw and spontaneous pain-like behaviors, such as licking the affected skin. Intravenous injection of fPHT (15 and 30 mg/kg) alleviated HSV-1-induced provoked pain (allodynia and hyperalgesia). The suppressive effects of fPHT on provoked pain were weaker than those of diclofenac and pregabalin which were used as positive controls. fPHT, diclofenac, and pregabalin significantly suppressed HSV-1-induced spontaneous pain-like behaviors. Among them, high-dose fPHT (30 mg/kg) showed the strongest suppression. Intravenous fPHT may become a viable option for an acute HZ pain, especially for spontaneous pain.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama.,Graduate School of Innovative Life Sciences, University of Toyama
| | - Ryota Nagashima
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama
| | - Takahiro Ueda
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama
| | - Tomoki Ogata
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama
| | - Arata Inoue
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama
| | | | | | | |
Collapse
|
14
|
Sugimoto M, Takagi T, Suzuki R, Konno N, Asama H, Sato Y, Irie H, Okubo Y, Nakamura J, Takasumi M, Hashimoto M, Kato T, Kobashi R, Hikichi T, Ohira H. Mirogabalin vs pregabalin for chemotherapy-induced peripheral neuropathy in pancreatic cancer patients. BMC Cancer 2021; 21:1319. [PMID: 34886831 PMCID: PMC8656082 DOI: 10.1186/s12885-021-09069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The prognosis of pancreatic cancer (PC) has been improved by new chemotherapy regimens (combination of 5-fluorouracil, oxaliplatin, irinotecan, and leucovorin (FOLFIRINOX) or gemcitabine plus nab-paclitaxel (GnP)). Unfortunately, chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse event of these two regimens. The efficacy of pregabalin for CIPN has been reported in previous studies. However, the efficacy of mirogabalin for CIPN remains unknown. Thus, in this study, we aimed to clarify which drug (mirogabalin or pregabalin) was more valuable for improving CIPN. Methods A total of 163 PC patients who underwent FOLFIRINOX or GnP between May 2014 and January 2021 were enrolled. Among them, 34 patients were diagnosed with CIPN. Thirteen patients were treated with mirogabalin (mirogabalin group), and twenty-one patients were treated with pregabalin (pregabalin group). Treatment efficacy was compared between the two groups. Results In both the mirogabalin group and the pregabalin group, the grade of patients with CIPN at 2, 4, and 6 weeks after the initiation of treatment showed significant improvement compared to the pretreatment grade. Notably, the rate of CIPN improvement was higher in the mirogabalin group than in the pregabalin group (2 weeks: 84.6% (11/13) vs 33.3% (7/21), P value = 0.005; 4 weeks, 6 weeks: 92.3% (12/13) vs 33.3% (7/21), P value = 0.001). Conclusions Although both mirogabalin and pregabalin were effective at improving CIPN, mirogabalin might be a suitable first choice for CIPN in PC patients. Trial registration Not applicable
Collapse
Affiliation(s)
- Mitsuru Sugimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Tadayuki Takagi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Rei Suzuki
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Naoki Konno
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Asama
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yuki Sato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroki Irie
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshinori Okubo
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Jun Nakamura
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Mika Takasumi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Minami Hashimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Tsunetaka Kato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Ryoichiro Kobashi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
15
|
Jang A, Choi GE, Kim YJ, Lee GH, Hyun KY. Neuroprotective properties of ethanolic extract of Citrus unshiu Markovich peel through NADPH oxidase 2 inhibition in chemotherapy-induced neuropathic pain animal model. Phytother Res 2021; 35:6918-6931. [PMID: 34818693 DOI: 10.1002/ptr.7304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
The present study aimed to determine the antioxidant effect of Citrus unshiu Markovich (CUM) extract in neuronal cell lines under oxidative stress and to investigate the effect of chemotherapy-induced peripheral neuropathy (CIPN) on the nociceptive response in a preclinical mice model. We tested the inhibition of H2 O2 in Neuro2A cells treated with CUM. Experimental animals were treated with oxaliplatin to induce CINP, and then administered oral CUM for 4 weeks in order to observe the effect of CUM. Animals were evaluated weekly for thermal hyperalgesia and digital motor nerve conduction velocity (NCV). Lumbar dorsal root ganglia (DRG) isolated from each animal were evaluated through immunochemical and western blot analysis for nerve damage, inflammatory response, and expression of redox signaling factors. The main mechanisms were determined to be decreased inducible nitric oxide synthase (iNOS) production due to the inhibition of NADPH oxidase 2 (NOX2). To determine the functional role of NOX2 in CINP, we administrated CUM into NOX2-deficient mice with neuropathic pain. Therefore, we suggest that CUM controls the expression levels of inflammatory factors in CINP via NOX2 inactivation. This study demonstrated that a complementary medicine such as CUM might be a potential novel therapeutic agent for the treatment of CINP.
Collapse
Affiliation(s)
- Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Republic of Korea
| | - Yoo-Jeong Kim
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Republic of Korea
| | - Gil-Hyun Lee
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Republic of Korea
| |
Collapse
|
16
|
Yang Y, Zhao B, Gao X, Sun J, Ye J, Li J, Cao P. Targeting strategies for oxaliplatin-induced peripheral neuropathy: clinical syndrome, molecular basis, and drug development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:331. [PMID: 34686205 PMCID: PMC8532307 DOI: 10.1186/s13046-021-02141-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a severe clinical problem and potentially permanent side effect of cancer treatment. For the management of OIPN, accurate diagnosis and understanding of significant risk factors including genetic vulnerability are essential to improve knowledge regarding the prevalence and incidence of OIPN as well as enhance strategies for the prevention and treatment of OIPN. The molecular mechanisms underlying OIPN are complex, with multi-targets and various cells causing neuropathy. Furthermore, mechanisms of OIPN can reinforce each other, and combination therapies may be required for effective management. However, despite intense investigation in preclinical and clinical studies, no preventive therapies have shown significant clinical efficacy, and the established treatment for painful OIPN is limited. Duloxetine is the only agent currently recommended by the American Society of Clinical Oncology. The present article summarizes the most recent advances in the field of studies on OIPN, the overview of the clinical syndrome, molecular basis, therapy development, and outlook of future drug candidates. Importantly, closer links between clinical pain management teams and oncology will advance the effectiveness of OIPN treatment, and the continued close collaboration between preclinical and clinical research will facilitate the development of novel prevention and treatments for OIPN.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Yangtze River Pharmaceutical Group, Taizhou, 225321, China.
| | - Bing Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuejiao Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinbing Sun
- Changshu No.1 People's Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
17
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Hore ZL, Villa-Hernandez S, Denk F. Probing the peripheral immune response in mouse models of oxaliplatin-induced peripheral neuropathy highlights their limited translatability. Wellcome Open Res 2021; 6:68. [PMID: 34250264 PMCID: PMC8243229 DOI: 10.12688/wellcomeopenres.16635.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of various chemotherapeutic agents, including oxaliplatin. It is highly prevalent amongst cancer patients, causing sensory abnormalities and pain. Unfortunately, as the underlying mechanisms remain poorly understood, effective therapeutics are lacking. Neuro-immune interactions have been highlighted as potential contributors to the development and maintenance of CIPN, however, whether this is the case in oxaliplatin-induced peripheral neuropathy (OIPN) is yet to be fully established. Methods: In this study we used flow cytometry to examine the peripheral immune response of male C57BL/6 mice following both single and repeated oxaliplatin administration. In animals exposed to repeated dosing, we also undertook mechanical and thermal behavioural assays to investigate how oxaliplatin alters phenotype, and conducted RT-qPCR experiments on bone marrow derived macrophages in order to further inspect the effects of oxaliplatin on immune cells. Results: In contrast to other reports, we failed to observe substantial changes in overall leukocyte, lymphocyte or myeloid cell numbers in dorsal root ganglia, sciatic nerves or inguinal lymph nodes. We did however note subtle, tissue-dependant alterations in several myeloid subpopulations following repeated dosing. These included a significant reduction in MHCII antigen presenting cells in the sciatic nerve and an increase in infiltrating cell types into the inguinal lymph nodes. Though repeated oxaliplatin administration had a systemic effect, we were unable to detect a pain-like behavioural phenotype in response to either cold or mechanical stimuli. Consequently, we cannot comment on whether the observed myeloid changes are associated with OIPN. Conclusions: Our discussion puts these results into the wider context of the field, advocating for greater transparency in reporting, alignment in experimental design and the introduction of more clinically relevant models. Only through joint concerted effort can we hope to increase our understanding of the underlying mechanisms of CIPN, including any immune contributions.
Collapse
Affiliation(s)
- Zoe Lee Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| |
Collapse
|
19
|
Omran M, Belcher EK, Mohile NA, Kesler SR, Janelsins MC, Hohmann AG, Kleckner IR. Review of the Role of the Brain in Chemotherapy-Induced Peripheral Neuropathy. Front Mol Biosci 2021; 8:693133. [PMID: 34179101 PMCID: PMC8226121 DOI: 10.3389/fmolb.2021.693133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating, and dose-limiting side effect of many chemotherapy regimens yet has limited treatments due to incomplete knowledge of its pathophysiology. Research on the pathophysiology of CIPN has focused on peripheral nerves because CIPN symptoms are felt in the hands and feet. However, better understanding the role of the brain in CIPN may accelerate understanding, diagnosing, and treating CIPN. The goals of this review are to (1) investigate the role of the brain in CIPN, and (2) use this knowledge to inform future research and treatment of CIPN. We identified 16 papers using brain interventions in animal models of CIPN and five papers using brain imaging in humans or monkeys with CIPN. These studies suggest that CIPN is partly caused by (1) brain hyperactivity, (2) reduced GABAergic inhibition, (3) neuroinflammation, and (4) overactivation of GPCR/MAPK pathways. These four features were observed in several brain regions including the thalamus, periaqueductal gray, anterior cingulate cortex, somatosensory cortex, and insula. We discuss how to leverage this knowledge for future preclinical research, clinical research, and brain-based treatments for CIPN.
Collapse
Affiliation(s)
- Maryam Omran
- University of Rochester Medical Center, Rochester, NY, United States
| | | | - Nimish A Mohile
- University of Rochester Medical Center, Rochester, NY, United States
| | - Shelli R Kesler
- The University of Texas at Austin, Austin, TX, United States
| | | | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Ian R Kleckner
- University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
20
|
Hore ZL, Villa-Hernandez S, Denk F. Probing the peripheral immune response in mouse models of oxaliplatin-induced peripheral neuropathy highlights their limited translatability. Wellcome Open Res 2021; 6:68. [PMID: 34250264 PMCID: PMC8243229 DOI: 10.12688/wellcomeopenres.16635.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 04/03/2024] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of various chemotherapeutic agents, including oxaliplatin. It is highly prevalent amongst cancer patients, causing sensory abnormalities and pain. Unfortunately, as the underlying mechanisms remain poorly understood, effective therapeutics are lacking. Neuro-immune interactions have been highlighted as potential contributors to the development and maintenance of CIPN, however, whether this is the case in oxaliplatin-induced peripheral neuropathy (OIPN) is yet to be fully established. Methods: In this study we used flow cytometry to examine the peripheral immune response of male C57BL/6 mice following both single and repeated oxaliplatin administration. In animals exposed to repeated dosing, we also undertook mechanical and thermal behavioural assays to investigate how oxaliplatin alters phenotype, and conducted RT-qPCR experiments on bone marrow derived macrophages in order to further inspect the effects of oxaliplatin on immune cells. Results: In contrast to other reports, we failed to observe substantial changes in overall leukocyte, lymphocyte or myeloid cell numbers in dorsal root ganglia, sciatic nerves or inguinal lymph nodes. We did however note subtle, tissue-dependant alterations in several myeloid subpopulations following repeated dosing. These included a significant reduction in MHCII antigen presenting cells in the sciatic nerve and an increase in infiltrating cell types into the inguinal lymph nodes. Though repeated oxaliplatin administration had a systemic effect, we were unable to detect a pain-like behavioural phenotype in response to either cold or mechanical stimuli. Consequently, we cannot comment on whether the observed myeloid changes are associated with OIPN. Conclusions: Our discussion puts these results into the wider context of the field, advocating for greater transparency in reporting, alignment in experimental design and the introduction of more clinically relevant models. Only through joint concerted effort can we hope to increase our understanding of the underlying mechanisms of CIPN, including any immune contributions.
Collapse
Affiliation(s)
- Zoe Lee Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| |
Collapse
|
21
|
Mesenchymal stem cells reduce the oxaliplatin-induced sensory neuropathy through the reestablishment of redox homeostasis in the spinal cord. Life Sci 2020; 265:118755. [PMID: 33189826 DOI: 10.1016/j.lfs.2020.118755] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 01/02/2023]
Abstract
AIMS The present study was designed to investigate whether the antinociceptive effect of bone marrow-derived mesenchymal stem/stromal cells (MSC) during oxaliplatin (OXL)-induced sensory neuropathy is related to antioxidant properties. MAIN METHODS Male mice C57BL/6 were submitted to repeated intravenous administration of OXL (1 mg/kg, 9 administrations). After the establishment of sensory neuropathy, mice were treated with a single intravenous administration of MSC (1 × 106), vehicle or gabapentin. Paw mechanical and thermal nociceptive thresholds were evaluated through von Frey filaments and cold plate test, respectively. Motor performance was evaluated in the rota-rod test. Gene expression profile, cytokine levels, and oxidative stress markers in the spinal cord were evaluated by real-time PCR, ELISA and biochemical assays, respectively. KEY FINDINGS OXL-treated mice presented behavioral signs of sensory neuropathy, such as mechanical allodynia and thermal hyperalgesia, which were completely reverted by a single administration of MSC. Repeated oral treatment with gabapentin (70 mg/kg) induced only transient antinociception. The IL-1β and TNF-α spinal levels did not differ between mice with or without sensory neuropathy. MSC increased the levels of anti-inflammatory cytokines, IL-10 and TGF-β, in the spinal cord of neuropathic mice, in addition to increasing the gene expression of antioxidant factors SOD and Nrf-2. Additionally, nitrite and MDA spinal levels were reduced by the MSC treatment. SIGNIFICANCE MSC induce reversion of sensory neuropathy induced by OXL possibly by activation of anti-inflammatory and antioxidant pathways, leading to reestablishment of redox homeostasis in the spinal cord.
Collapse
|
22
|
Amirkhanloo F, Karimi G, Yousefi-Manesh H, Abdollahi A, Roohbakhsh A, Dehpour AR. The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: A possible role for TRPA1 receptors. Basic Clin Pharmacol Toxicol 2020; 127:405-418. [PMID: 32542990 DOI: 10.1111/bcpt.13454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Vincristine (VCR) induces peripheral neuropathy. We aimed to assess the efficacy of modafinil on VCR-induced neuropathy in rats. Neuropathy was induced by intraperitoneal (i.p.) injections of VCR (0.1 mg/kg). Neuropathic groups received modafinil (5, 25 and 50 mg/kg); gabapentin (20 mg/kg); and a combination of modafinil (5 and 50 mg/kg) and gabapentin (20 mg/kg,). Then, electrophysiological, behavioural, biochemical and pathological evaluations were performed. Latencies of tail-flick and von Frey filament tests, motor nerve conduction velocity (MNCV) and excitation of nerve conduction were decreased. Moreover, the transient receptor potential cation channel ankyrin 1 (TRPA1) level was increased, while TRPV1 and N-Methyl-D-aspartate (NMDA) levels remained unchanged. Tumour necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) levels were markedly elevated. Pre-treatment with modafinil prevented sensorimotor neuropathy by raising latencies, MNCV and excitation, reducing TRPA1, TNF-α and IL-1β levels. Modafinil improved behavioural, electrophysiological and pathological disturbances. The results showed that TRPA1 has a more important role than NMDA and TRPV1, in VCR-induced neuropathic pain. In addition, inflammatory mediators, TNF-α and IL-1β, were involved. Further, the combination of modafinil and gabapentin improved the neuroprotective effect of gabapentin. So, modafinil might be a neuroprotective agent in the prevention of VCR-induced neuropathy.
Collapse
Affiliation(s)
- Fatemeh Amirkhanloo
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Yousefi-Manesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Dutton M. Selected Veterinary Concerns of Geriatric Rats, Mice, Hamsters, and Gerbils. Vet Clin North Am Exot Anim Pract 2020; 23:525-548. [PMID: 32409159 PMCID: PMC7174184 DOI: 10.1016/j.cvex.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Dutton
- Exotic and Bird Clinic of New England, c/o Weare Animal Hospital, 91 North Stark Highway, Weare, NH 03281, USA.
| |
Collapse
|
24
|
Su X, Wu B, Zhang W, Ji YH, Wang Q, Tan ZY. Inhibitory Effects of Columbianadin on Nociceptive Behaviors in a Neuropathic Pain Model, and on Voltage-Gated Calcium Currents in Dorsal Root Ganglion Neurons in Mice. Front Pharmacol 2020; 10:1522. [PMID: 31998126 PMCID: PMC6970200 DOI: 10.3389/fphar.2019.01522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Radix angelicae pubescentis (RAP) has been used in Chinese traditional medicine to treat painful diseases such as rheumatism and headache. A previous study has reported that columbianadin (CBN), a major coumarin in RAP inhibits acute and inflammatory pain behaviors. However, the effects of CBN on neuropathic pain behaviors, and the potential underlying mechanism have not been reported. In the present study, the effects of CBN, compared to another major coumarin of RAP osthole (OST), on oxaliplatin-induced neuropathic pain behaviors and on the voltage-gated calcium currents in small dorsal root ganglion (DRG) neurons were studied in mice. It was found that CBN and OST inhibited both mechanical and cold hypersensitivity induced by oxaliplatin. Moreover, CBN and OST might preferentially inhibit T- and L-type calcium currents (Ica). The inhibitory effects of CBN and OST on the oxaliplatin-induced mechanical allodynia were prevented by gabapentin. These results suggest that CBN, as well as OST might inhibit neuropathic pain behaviors through an inhibition of T- and L-type calcium currents in nociceptive DRG neurons.
Collapse
Affiliation(s)
- Xiaolin Su
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Wu
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Wentong Zhang
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yong-Hua Ji
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
25
|
Hincker A, Frey K, Rao L, Wagner-Johnston N, Ben Abdallah A, Tan B, Amin M, Wildes T, Shah R, Karlsson P, Bakos K, Kosicka K, Kagan L, Haroutounian S. Somatosensory predictors of response to pregabalin in painful chemotherapy-induced peripheral neuropathy: a randomized, placebo-controlled, crossover study. Pain 2019; 160:1835-1846. [PMID: 31335651 PMCID: PMC6687437 DOI: 10.1097/j.pain.0000000000001577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/25/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023]
Abstract
Painful chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and treatment-resistant sequela of many chemotherapeutic medications. Ligands of α2δ subunits of voltage-gated Ca channels, such as pregabalin, have shown efficacy in reducing mechanical sensitivity in animal models of neuropathic pain. In addition, some data suggest that pregabalin may be more efficacious in relieving neuropathic pain in subjects with increased sensitivity to pinprick. We hypothesized that greater mechanical sensitivity, as quantified by decreased mechanical pain threshold at the feet, would be predictive of a greater reduction in average daily pain in response to pregabalin vs placebo. In a prospective, randomized, double-blinded study, 26 patients with painful CIPN from oxaliplatin, docetaxel, or paclitaxel received 28-day treatment with pregabalin (titrated to maximum dose 600 mg per day) and placebo in crossover design. Twenty-three participants were eligible for efficacy analysis. Mechanical pain threshold was not significantly correlated with reduction in average pain (P = 0.97) or worst pain (P = 0.60) in response to pregabalin. There was no significant difference between pregabalin and placebo in reducing average daily pain (22.5% vs 10.7%, P = 0.23) or worst pain (29.2% vs 16.0%, P = 0.13) from baseline. Post hoc analysis of patients with CIPN caused by oxaliplatin (n = 18) demonstrated a larger reduction in worst pain with pregabalin than with placebo (35.4% vs 14.6%, P = 0.04). In summary, baseline mechanical pain threshold tested on dorsal feet did not meaningfully predict the analgesic response to pregabalin in painful CIPN.
Collapse
Affiliation(s)
- Alexander Hincker
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| | - Karen Frey
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Lesley Rao
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| | - Nina Wagner-Johnston
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arbi Ben Abdallah
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Benjamin Tan
- Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Manik Amin
- Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Tanya Wildes
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Rajiv Shah
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Section for Stereology and Microscopy, Core Centre for Molecular Morphology, Aarhus University, Aarhus, Denmark
| | - Kristopher Bakos
- Investigation Drug Service, Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO, United States
| | - Katarzyna Kosicka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| |
Collapse
|
26
|
Hu LY, Mi WL, Wu GC, Wang YQ, Mao-Ying QL. Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms. Curr Neuropharmacol 2019; 17:184-196. [PMID: 28925884 PMCID: PMC6343206 DOI: 10.2174/1570159x15666170915143217] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/20/2017] [Accepted: 01/01/1970] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine. OBJECTIVES The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN. METHODS This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies. RESULTS An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects. CONCLUSIONS Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Shidahara Y, Natsume T, Awaga Y, Ogawa S, Yamoto K, Okamoto S, Hama A, Hayashi I, Takamatsu H, Magata Y. Distinguishing analgesic drugs from non-analgesic drugs based on brain activation in macaques with oxaliplatin-induced neuropathic pain. Neuropharmacology 2019; 149:204-211. [PMID: 30817933 DOI: 10.1016/j.neuropharm.2019.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Abstract
The antineoplastic agent oxaliplatin is a first-line treatment for colorectal cancer. However, neuropathic pain, characterized by hypersensitivity to cold, emerges soon after treatment. In severe instances, dose reduction or curtailing treatment may be necessary. While a number of potential treatments for oxaliplatin-induced neuropathic pain have been proposed based on preclinical findings, few have demonstrated efficacy in randomized, placebo-controlled clinical studies. This failure could be related, in part, to the use of rodents as the primary preclinical species, as there are a number of distinctions in pain-related mechanisms between rodents and humans. Also, an indicator of preclinical pharmacological efficacy less subjective than behavioral endpoints that is translatable to clinical usage is lacking. Three days after oxaliplatin treatment in Macaca fascicularis, a significantly reduced response latency to cold (10 °C) water was observed, indicating cold hypersensitivity. Cold-evoked bilateral activation of the secondary somatosensory (SII) and insular (Ins) cortex was observed with functional magnetic resonance imaging. Duloxetine alleviated cold hypersensitivity and significantly attenuated activation in both SII and Ins. By contrast, neither clinically used analgesics pregabalin nor tramadol affected cold hypersensitivity and cold-evoked activation of SII and Ins. The current findings suggest that suppressing SII and Ins activation leads to antinociception, and, therefore, could be used as a non-behavioral indicator of analgesic efficacy in patients with oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Yuka Shidahara
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Takahiro Natsume
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Yūji Awaga
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Shin'ya Ogawa
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Kurumi Yamoto
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Shinichi Okamoto
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan
| | - Aldric Hama
- Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka Prefecture, Japan.
| | - Ikuo Hayashi
- Hamamatsu Pharma Research, USA, Inc., San Diego, CA, USA
| | | | - Yasuhiro Magata
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka Prefecture, Japan
| |
Collapse
|
28
|
Neuroprotective effect of angiotensin II type 2 receptor stimulation in vincristine-induced mechanical allodynia. Pain 2019; 159:2538-2546. [PMID: 30086116 DOI: 10.1097/j.pain.0000000000001361] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peripheral neuropathy is the major dose-limiting side effect of many currently used chemotherapies, such as vincristine (VCR). We recently demonstrated that candesartan, an angiotensin II type 1 receptor antagonist, was neuroprotective against resiniferatoxin-induced sensory neuropathy, and that this effect is mediated by stimulation of the angiotensin II type 2 receptor (AT2R). Thus, we evaluated the effect of preventive treatment with candesartan and a specific AT2R agonist, C21, on a mouse model of VCR-induced neuropathy. Vincristine was administered daily for 7 days to male Swiss mice. Treatment with candesartan and C21 was started on day 1, before VCR treatment, and continued until day 7. We evaluated the development of VCR-induced neuropathy and the effect of treatment by functional tests, immunohistochemical analyses of intraepidermal nerve fibers and dorsal root ganglia neurons, and ultrastructural analysis of the sciatic nerve. Mice treated with VCR showed high mechanical allodynia but no modifications of motor performance or mechanical/thermal nociception. Treatment with candesartan and C21 completely restored normal tactile sensitivity of VCR-treated mice. Both drugs prevented VCR-induced nonpeptidergic intraepidermal nerve fiber loss. Only C21 displayed neuroprotective effects against VCR-induced loss and enlargement of myelinated nerve fibers in the sciatic nerve. Our finding that candesartan and C21 are protective against VCR-induced neuropathic pain through AT2R stimulation favors evaluation of its therapeutic potential in patients receiving chemotherapy.
Collapse
|
29
|
Aghili M, Zare M, Mousavi N, Ghalehtaki R, Sotoudeh S, Kalaghchi B, Akrami S, Esmati E. Efficacy of gabapentin for the prevention of paclitaxel induced peripheral neuropathy: A randomized placebo controlled clinical trial. Breast J 2019; 25:226-231. [DOI: 10.1111/tbj.13196] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Mahdi Aghili
- Radiation Oncology Research Center (RORC); Cancer Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Mahkameh Zare
- Department of Radiation Oncology; Hafte-e-Tir Hospital; Iran University of Medical Sciences; Tehran Iran
| | - Nima Mousavi
- Radiation Oncology Research Center (RORC); Cancer Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center (RORC); Cancer Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Sarvazad Sotoudeh
- Radiation Oncology Research Center (RORC); Cancer Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Bita Kalaghchi
- Radiation Oncology Research Center (RORC); Department of Radiation Oncology; Cancer Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Shahram Akrami
- Department of Physical Medicine and Rehabilitation; Tehran University of Medical Sciences; Tehran Iran
| | - Ebrahim Esmati
- Radiation Oncology Research Center (RORC); Department of Radiation Oncology; Cancer Institute; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
30
|
Chen Y, Chen SR, Chen H, Zhang J, Pan HL. Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 2018; 148:252-274. [PMID: 30431158 DOI: 10.1111/jnc.14627] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Painful peripheral neuropathy is a severe and difficult-to-treat neurological complication associated with cancer chemotherapy. Although chemotherapeutic drugs such as paclitaxel are known to cause tonic activation of presynaptic NMDA receptors (NMDARs) to potentiate nociceptive input, the molecular mechanism involved in this effect is unclear. α2δ-1, commonly known as a voltage-activated calcium channel subunit, is a newly discovered NMDAR-interacting protein and plays a critical role in NMDAR-mediated synaptic plasticity. Here we show that paclitaxel treatment in rats increases the α2δ-1 expression level in the dorsal root ganglion and spinal cord and the mRNA levels of GluN1, GluN2A, and GluN2B in the spinal cord. Paclitaxel treatment also potentiates the α2δ-1-NMDAR interaction and synaptic trafficking in the spinal cord. Strikingly, inhibiting α2δ-1 trafficking with pregabalin, disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus-interfering peptide, or α2δ-1 genetic ablation fully reverses paclitaxel treatment-induced presynaptic NMDAR-mediated glutamate release from primary afferent terminals to spinal dorsal horn neurons. In addition, intrathecal injection of pregabalin or α2δ-1 C-terminus-interfering peptide and α2δ-1 knockout in mice markedly attenuate paclitaxel-induced pain hypersensitivity. Our findings indicate that α2δ-1 is required for paclitaxel-induced tonic activation of presynaptic NMDARs at the spinal cord level. Targeting α2δ-1-bound NMDARs, not the physiological α2δ-1-free NMDARs, may be a new strategy for treating chemotherapy-induced neuropathic pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Youfang Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Boyette-Davis JA, Hou S, Abdi S, Dougherty PM. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag 2018; 8:363-375. [PMID: 30212277 PMCID: PMC6462837 DOI: 10.2217/pmt-2018-0020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 01/16/2023] Open
Abstract
The burdensome condition of chemotherapy-induced peripheral neuropathy occurs with various chemotherapeutics, including bortezomib, oxaliplatin, paclitaxel and vincristine. The symptoms, which include pain, numbness, tingling and loss of motor function, can result in therapy titrations that compromise therapy efficacy. Understanding the mechanisms of chemotherapy-induced peripheral neuropathy is therefore essential, yet incompletely understood. The literature presented here will address a multitude of molecular and cellular mechanisms, beginning with the most well-understood cellular and molecular-level changes. These modifications include alterations in voltage-gated ion channels, neurochemical transmission, organelle function and intracellular pathways. System-level alterations, including changes to glial cells and cytokine activation are also explored. Finally, we present research on the current understanding of genetic contributions to this condition. Suggestions for future research are provided.
Collapse
Affiliation(s)
- Jessica A Boyette-Davis
- Department of Psychology & Behavioral Neuroscience, St Edward's University, 3001 S Congress, Austin, TX 78704, USA
| | - Saiyun Hou
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Patrick M Dougherty
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| |
Collapse
|
32
|
Pain relief by supraspinal gabapentin requires descending noradrenergic inhibitory controls. Pain Rep 2018; 3:e659. [PMID: 30123855 PMCID: PMC6085145 DOI: 10.1097/pr9.0000000000000659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction Gabapentin regulates pain processing by direct action on primary afferent nociceptors and dorsal horn nociresponsive neurons. Through an action at supraspinal levels, gabapentin also engages descending noradrenergic inhibitory controls that indirectly regulate spinal cord pain processing. Although direct injection of gabapentin into the anterior cingulate cortex provides pain relief independent of descending inhibitory controls, it remains unclear whether that effect is representative of what occurs when gabapentin interacts at multiple brain loci, eg, after intracerebroventricular (i.c.v.) injection. Methods We administered gabapentin i.c.v. in a mouse model of chemotherapy (paclitaxel)-induced neuropathic pain. To distinguish spinal from supraspinally processed features of the pain experience, we examined mechanical hypersensitivity and assessed relief of pain aversiveness using an analgesia-induced conditioned place preference paradigm. Results Paclitaxel-treated mice showed a preference for a 100-μg i.c.v. gabapentin-paired chamber that was accompanied by reduced mechanical allodynia, indicative of concurrent engagement of descending controls. As expected, the same dose in uninjured mice did not induce place preference, demonstrating that gabapentin, unlike morphine, is not inherently rewarding. Furthermore, a lower dose of supraspinal gabapentin (30 μg), which did not reverse mechanical allodynia, did not induce conditioned place preference. Finally, concurrent injections of i.c.v. gabapentin (100 μg) and intrathecal yohimbine, an α2-receptor antagonist, blocked preference for the gabapentin-paired chamber. Conclusion We conclude that pain relief, namely a reduction of pain aversiveness, induced by supraspinal gabapentin administered by an i.c.v. route is secondary to its activation of descending noradrenergic inhibitory controls that block transmission of the "pain" message from the spinal cord to the brain.
Collapse
|
33
|
Nawaz NUA, Saeed M, Rauf K, Usman M, Arif M, Ullah Z, Raziq N. Antinociceptive effectiveness of Tithonia tubaeformis in a vincristine model of chemotherapy-induced painful neuropathy in mice. Biomed Pharmacother 2018; 103:1043-1051. [PMID: 29710662 DOI: 10.1016/j.biopha.2018.04.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chemotherapy induced peripheral neuropathy (CIPN) is a painful side-effect of commonly used chemotherapeutic agents that profoundly impair the quality of life of patients as the current pharmacotherapeutic strategies are inefficient in providing adequate pain relief. Complementary and alternative medicine (CAM) therapies are preferred by patients with neuropathic pain as they experience insufficient control of pain with conventional medications. This study describes the antinociceptive effect of Tithonia tubaeformis (Jacq.) Cass. in a vincristine mouse model of established CIPN. METHODS Tithonia tubaeformis hydromethanolic extract was tested for preliminary qualitative phytochemical analysis and acute oral toxicity test in mice. The antinociceptive effect was investigated using the abdominal constriction (writhing) and tail immersion tests (25-200 mg/kg). The anti-neuropathic effect was determined in the vincristine mouse model, established by daily administration of vincristine (0.1 mg/kg/day, i.p) for consecutive 14 days. Acute treatment with Tithonia tubaeformis (100 and 200 mg/kg) and the positive control, gabapentin (75 mg/kg) was carried out on the 15th day of the last vincrsitine dose and the animals were tested for allodynia and thermal hyperalgesia at 30-120 min post extract/drug administration. RESULTS Vincristine produced significant temporal tactile allodynia and thermal hyperalgesia (P < 0.01 and P < 0.001 on day 7 and 14) and was maintained for the subsequent day (P < 0.001 during 30-120 min). Tithonia tubaeformis was effective in attenuating the vincristine-induced allodynia and thermal hyperalgesia at 100 mg/kg (P < 0.05, P < 0.01) and 200 mg/kg (P < 0.01, P < 0.001). Similarly, gabapentin also showed a robust antinociceptive effect in counteracting the vincristine associated behavioral alterations. CONCLUSIONS Tithonia tubaeformis can be an effective CAM therapeutic remedy for established CIPN due to its potential antinociceptive effect in attenuating vincristine-induced neuropathy.
Collapse
Affiliation(s)
| | - Muhammad Saeed
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Khalid Rauf
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Zaki Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Naila Raziq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| |
Collapse
|
34
|
Rapacz A, Obniska J, Koczurkiewicz P, Wójcik-Pszczoła K, Siwek A, Gryboś A, Rybka S, Karcz A, Pękala E, Filipek B. Antiallodynic and antihyperalgesic activity of new 3,3-diphenyl-propionamides with anticonvulsant activity in models of pain in mice. Eur J Pharmacol 2017; 821:39-48. [PMID: 29262297 DOI: 10.1016/j.ejphar.2017.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/06/2023]
Abstract
Anticonvulsant drugs are used to treat a wide range of non-epileptic conditions, including chronic pain. The aim of the present experiments was to examine analgesic activity of three new 3,3-diphenyl-propionamides, which had previously demonstrated anticonvulsant activity in the MES (maximal electroshock seizure), scPTZ (subcutaneous pentylenetetrazole) and/or 6Hz (psychomotor seizure) tests in mice. Antinociceptive activity was examined in mouse models of acute pain (the hot plate test) and tonic pain (the formalin test) in mice. Antiallodynic and antihyperalgesic activity was estimated in the oxaliplatin-induced neuropathic pain model of chemotherapy-induced peripheral neuropathy and in the streptozotocin-induced model of painful diabetic neuropathy in mice. Considering the drug safety evaluation, the influence on locomotor activity was checked. Moreover, using in vitro methods, selected compound was tested for potential hepatotoxicity on human hepatocellular carcinoma cell line and for metabolic stability. To determine the plausible mechanism of anticonvulsant and antinociceptive action, in vitro binding and functional assays were carried out. Among tested molecules two of them JOA 122 (3p) and JOA 123 (3q) revealed significant antinociceptive activity in the model of tonic pain - the formalin test and neuropathic pain models - the oxaliplatin and streptozotocin-induced peripheral neuropathy. In the binding studies JOA 122 (3p) revealed the high affinity to voltage-gated sodium channels (Nav1.2), as well as for 5-HT1A receptors. Metabolism studies in mouse liver microsomes showed a low metabolic stability of this compound.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Sabina Rybka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Aleksandra Karcz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
35
|
Kim MJ, Lee JH, Jang JU, Quan FS, Kim SK, Kim W. The efficacy of combination treatment of gabapentin and electro-acupuncture on paclitaxel-induced neuropathic pain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:657-666. [PMID: 29200909 PMCID: PMC5709483 DOI: 10.4196/kjpp.2017.21.6.657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022]
Abstract
Paclitaxel, a chemotherapeutic drug, induces severe peripheral neuropathy. Gabapentin (GBT) is a first line agent used to treat neuropathic pain, and its effect is mediated by spinal noradrenergic and muscarinic cholinergic receptors. Electro-acupuncture (EA) is used for treating various types of pain via its action through spinal opioidergic and noradrenergic receptors. Here, we investigated whether combined treatment of these two agents could exert a synergistic effect on paclitaxel-induced cold and mechanical allodynia, which were assessed by the acetone drop test and von Frey filament assay, respectively. Significant signs of allodynia were observed after four paclitaxel injections (a cumulative dose of 8 mg/kg, i.p.). GBT (3, 30, and 100 mg/kg, i.p.) or EA (ST36, Zusanli) alone produced dose-dependent anti-allodynic effects. The medium and highest doses of GBT (30 and 100 mg/kg) provided a strong analgesic effect, but they induced motor dysfunction in Rota-rod tests. On the contrary, the lowest dose of GBT (3 mg/kg) did not induce motor weakness, but it provided a brief analgesic effect. The combination of the lowest dose of GBT and EA resulted in a greater and longer effect, without inducing motor dysfunction. This effect on mechanical allodynia was blocked by spinal opioidergic (naloxone, 20 μg), or noradrenergic (idazoxan, 10 μg) receptor antagonist, whereas on cold allodynia, only opioidergic receptor antagonist blocked the effect. In conclusion, the combination of the lowest dose of GBT and EA has a robust and enduring analgesic action against paclitaxel-induced neuropathic pain, and it should be considered as an alternative treatment method.
Collapse
Affiliation(s)
- Min Joon Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hwan Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jo Ung Jang
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Fu Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Woojin Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
36
|
Moreira DRM, Santos DS, Espírito Santo RFD, Santos FED, de Oliveira Filho GB, Leite ACL, Soares MBP, Villarreal CF. Structural improvement of new thiazolidinones compounds with antinociceptive activity in experimental chemotherapy-induced painful neuropathy. Chem Biol Drug Des 2017; 90:297-307. [DOI: 10.1111/cbdd.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Renan Fernandes do Espírito Santo
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas; Centro de Ciências da Saúde; Universidade Federal de Pernambuco; Recife PE Brazil
| | - Milena Botelho Pereira Soares
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Centro de Biotecnologia e Terapia Celular; Hospital São Rafael; Salvador Bahia Brazil
| | - Cristiane Flora Villarreal
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| |
Collapse
|
37
|
Rapacz A, Kamiński K, Obniska J, Koczurkiewicz P, Pękala E, Filipek B. Analgesic, antiallodynic, and anticonvulsant activity of novel hybrid molecules derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide in animal models of pain and epilepsy. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:567-579. [PMID: 28188357 PMCID: PMC5411412 DOI: 10.1007/s00210-017-1358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
Abstract
The purpose of the present study was to examine the analgesic activity of six novel hybrid molecules, which demonstrated in the previous research anticonvulsant activity in the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole seizure (scPTZ) tests in mice. The antinociceptive properties were estimated in three models of pain in mice—the hot plate test, the formalin test, and in the oxaliplatin-induced neuropathy. Moreover, extended anticonvulsant studies were carried out and the antiseizure activity was investigated in the 6-Hz test. Considering drug safety evaluation, the influence of compounds on locomotor activity and contextual memory were checked. Furthermore, chosen molecules were tested in vitro for potential hepatotoxicity. To explain the probable mechanism of action, the radioligand binding assays were performed. In both phases of formalin test, analgesic activity demonstrated compounds 4, 8, and 9. These agents relieved also mechanical allodynia in oxaliplatin-induced model of neuropathic pain. At active doses, they did not influence locomotor activity of mice. Moreover, for compounds 8 and 9, no deleterious effect on memory was observed, but compound 4 might induce memory deficits. All tested compounds (4, 5, 8, 9, 15, and 16) inhibited psychomotor seizures with the ED50 values = 24.66–47.21 mg/kg. The binding studies showed that compound 4 only at the high concentrations revealed the effective binding to the neuronal sodium channels and moderately binding to the L-type calcium (verapamil site) channels and NMDA receptors. The present preclinical results proved that novel hybrid molecules demonstrate very promising anticonvulsant and analgesic activity.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
38
|
Zhu M, Sun X, Chen X, Xiao H, Duan M, Xu J. Impact of gabapentin on neuronal high voltage-activated Ca 2+ channel properties of injured-side axotomized and adjacent uninjured dorsal root ganglions in a rat model of spinal nerve ligation. Exp Ther Med 2017; 13:851-860. [PMID: 28450909 PMCID: PMC5403705 DOI: 10.3892/etm.2017.4071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/27/2016] [Indexed: 11/17/2022] Open
Abstract
The density and properties of ion channels in the injured axon and dorsal root ganglion (DRG) neuronal soma membrane change following nerve injury, which may result in the development of neuropathic pain. Gabapentin (GBP) is a drug for the first-line treatment of neuropathic pain. One of its therapeutic targets is the voltage-activated calcium channel (VACC). In the present study, the whole-cell patch clamp technique was used to examine the changes of high voltage-activated Ca2+ (HVA-Ca2+) channels in DRG neurons from sham and neuropathic rats in the absence and presence of GBP. The results demonstrated a reduction in peak current density and the ‘window current’ between activation and inactivation in adjacent and axotomized neurons from rats that had undergone L5 spinal nerve ligation, thus attenuating the total inward Ca2+ current. Following the use of the specific channel blockers nifedipine, ω-conotoxin MVIIC and ω-conotoxin MVIIA, increased HVA-Ca2+ channels as well as an increased proportion of N-type Ca2+ currents were observed in axotomized neurons. GBP inhibited HVA calcium channel currents in a dose-dependent manner. The activation and steady-state inactivation curves for HVA channels were shifted in a hyperpolarizing direction by 100 µmol/l GBP. Following the application of GBP, a reduction in the ‘window current’ was observed in control and axotomized neurons, whereas the ‘window current’ was unchanged in adjacent neurons. This indicates that the inhibitory effects of GBP may be dependent on particular neuropathological or inflammatory conditions. The proportion of N-type Ca2+ currents and sensitivity to GBP were increased in axotomized neurons, which indicated the involvement of N-type Ca2+ currents in the inhibitory effect of GBP.
Collapse
Affiliation(s)
- Minmin Zhu
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,Department of Anaesthesiology, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Xiaodi Sun
- Department of Anaesthesiology, First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaodong Chen
- Department of Anaesthesiology, First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Hang Xiao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Manlin Duan
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianguo Xu
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
39
|
Aromolaran KA, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain 2017; 13:1744806917714693. [PMID: 28580836 PMCID: PMC5480635 DOI: 10.1177/1744806917714693] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN.
Collapse
Affiliation(s)
- Kelly A Aromolaran
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
40
|
Taguchi K. [Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy]. YAKUGAKU ZASSHI 2016; 136:287-96. [PMID: 26831807 DOI: 10.1248/yakushi.15-00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral neuropathy is a common adverse effect of paclitaxel and oxaliplatin treatment. The major dose-limiting side effect of these drugs is peripheral sensory neuropathy. The symptoms of paclitaxel-induced neuropathy are mostly sensory and peripheral in nature, consisting of mechanical allodynia/hyperalgesia, tingling, and numbness. Oxaliplatin-induced neurotoxicity manifests as rapid-onset neuropathic symptoms that are exacerbated by cold exposure and as chronic neuropathy that develops after several treatment cycles. Although many basic and clinical researchers have studied anticancer drug-induced peripheral neuropathy, the mechanism is not well understood. In this review, we focus on (1) analysis of transient receptor potential vanilloid 1 (TRPV1) channel expression in the rat dorsal root ganglion (DRG) after paclitaxel treatment and (2) analysis of transient receptor potential ankyrin 1 (TRPA1) channel in the DRG after oxaliplatin treatment. This review describes that (1) paclitaxel-induced neuropathic pain may be the result of up-regulation of TRPV1 in small- and medium-diameter DRG neurons. In addition, paclitaxel treatment increases the release of substance P, but not calcitonin gene-related peptide, in the superficial layers of the spinal dorsal horn. (2) TRPA1 expression via activation of p38 mitogen-activated protein kinase in small-diameter DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia. We suggest that TRPV1 or TRPA1 antagonists may be potential therapeutic lead compounds for treating anticancer drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Kyoji Taguchi
- Departments of Medicinal Pharmacology, Showa Pharmaceutical University
| |
Collapse
|
41
|
Hopkins HL, Duggett NA, Flatters SJ. Chemotherapy-induced painful neuropathy: pain-like behaviours in rodent models and their response to commonly used analgesics. Curr Opin Support Palliat Care 2016; 10:119-128. [PMID: 27054288 PMCID: PMC4982532 DOI: 10.1097/spc.0000000000000204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy-induced painful neuropathy (CIPN) is a major dose-limiting side-effect of several widely used chemotherapeutics. Rodent models of CIPN have been developed using a range of dosing regimens to reproduce pain-like behaviours akin to patient-reported symptoms. This review aims to connect recent evidence-based suggestions for clinical treatment to preclinical data. RECENT FINDINGS We will discuss CIPN models evoked by systemic administration of taxanes (paclitaxel and docetaxel), platinum-based agents (oxaliplatin and cisplatin), and the proteasome-inhibitor - bortezomib. We present an overview of dosing regimens to produce CIPN models and their phenotype of pain-like behaviours. In addition, we will discuss how potential, clinically available treatments affect pain-like behaviours in these rodent models, relating those effects to clinical trial data wherever possible. We have focussed on antidepressants, opioids, and gabapentinoids given their broad usage. SUMMARY The review outlines the latest description of the most-relevant rodent models of CIPN enabling comparison between chemotherapeutics, dosing regimen, rodent strain, and sex. Preclinical data support many of the recent suggestions for clinical management of established CIPN and provides evidence for potential treatments warranting clinical investigation. Continued research using rodent CIPN models will provide much needed understanding of the causal mechanisms of CIPN, leading to new treatments for this major clinical problem.
Collapse
Affiliation(s)
- Holly L. Hopkins
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Sarah J.L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| |
Collapse
|
42
|
Rapacz A, Obniska J, Wiklik-Poudel B, Rybka S, Sałat K, Filipek B. Anticonvulsant and antinociceptive activity of new amides derived from 3-phenyl-2,5-dioxo-pyrrolidine-1-yl-acetic acid in mice. Eur J Pharmacol 2016; 781:239-49. [PMID: 27089821 DOI: 10.1016/j.ejphar.2016.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
The aim of the present experiments was to examine the anticonvulsant and antinociceptive activity of five new amides derived from 3-phenyl-2,5-dioxo-pyrrolidine-1-yl-acetic acid in animal models of seizures and pain. The antiseizure activity was investigated in three acute models of seizures, namely, the maximal electroshock (MES), the subcutaneous pentylenetetrazole (scPTZ), and 6Hz psychomotor seizure tests in mice. The antinociceptive properties were estimated in the formalin model of tonic pain, and in the oxaliplatin-induced neuropathic pain model in mice. Considering drug safety evaluation, acute neurological toxicity was determined in the rotarod test. Three tested compounds (3, 4, and 7) displayed a broad spectrum of anticonvulsant activity and showed better protective indices than those obtained for MES/scPTZ/6Hz active reference drug - valproic acid. Furthermore, three compounds (3, 4, and 6) demonstrated a significant antinociceptive effect in the formalin test, as well as antiallodynic activity in the oxaliplatin-induced neuropathic pain model. Among the tested agents, compounds 3 and 4 displayed not only antiseizure properties, but also collateral prominent analgesic properties. The in vitro binding study indicated that the plausible mechanism of action of chosen compound (4) was the influence on neuronal voltage-sensitive sodium (site 2) and L-type calcium channels.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Beata Wiklik-Poudel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sabina Rybka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
43
|
Gris G, Portillo-Salido E, Aubel B, Darbaky Y, Deseure K, Vela JM, Merlos M, Zamanillo D. The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats. Sci Rep 2016; 6:24591. [PMID: 27087602 PMCID: PMC4834548 DOI: 10.1038/srep24591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 12/31/2022] Open
Abstract
E-52862 is a selective σ1R antagonist currently undergoing phase II clinical trials for neuropathic pain and represents a potential first-in-class analgesic. Here, we investigated the effect of single and repeated administration of E-52862 on different pain-related behaviours in several neuropathic pain models in rats: mechanical allodynia in cephalic (trigeminal) neuropathic pain following chronic constriction injury of the infraorbital nerve (IoN), mechanical hyperalgesia in streptozotocin (STZ)-induced diabetic polyneuropathy, and cold allodynia in oxaliplatin (OX)-induced polyneuropathy. Mechanical hypersensitivity induced after IoN surgery or STZ administration was reduced by acute treatment with E-52862 and morphine, but not by pregabalin. In the OX model, single administration of E-52862 reversed the hypersensitivity to cold stimuli similarly to 100 mg/kg of gabapentin. Interestingly, repeated E-52862 administration twice daily over 7 days did not induce pharmacodynamic tolerance but an increased antinociceptive effect in all three models. Additionally, as shown in the STZ and OX models, repeated daily treatment with E-52862 attenuated baseline pain behaviours, which supports a sustained modifying effect on underlying pain-generating mechanisms. These preclinical findings support a role for σ1R in neuropathic pain and extend the potential for the use of selective σ1R antagonists (e.g., E-52862) to the chronic treatment of cephalic and extra-cephalic neuropathic pain.
Collapse
Affiliation(s)
- Georgia Gris
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Enrique Portillo-Salido
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Bertrand Aubel
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - Kristof Deseure
- Laboratory of Anesthesiology, University of Antwerp, Antwerp, Belgium
| | - José Miguel Vela
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| |
Collapse
|
44
|
Yamamoto K, Tsuboi M, Kambe T, Abe K, Nakatani Y, Kawakami K, Utsunomiya I, Taguchi K. Oxaliplatin administration increases expression of the voltage-dependent calcium channel α2δ-1 subunit in the rat spinal cord. J Pharmacol Sci 2016; 130:117-22. [PMID: 26883453 DOI: 10.1016/j.jphs.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent that is effective against various types of cancer including colorectal cancer. Acute cold hyperalgesia is a serious side effect of oxaliplatin treatment. Although the therapeutic drug pregabalin is beneficial for preventing peripheral neuropathic pain by targeting the voltage-dependent calcium channel α2δ-1 (Cavα2δ-1) subunit, the effect of oxaliplatin-induced acute cold hypersensitivity is uncertain. To analyze the contribution of the Cavα2δ-1 subunit to the development of oxaliplatin-induced acute cold hypersensitivity, Cavα2δ-1 subunit expression in the rat spinal cord was analyzed after oxaliplatin treatment. Behavioral assessment using the acetone spray test showed that 6 mg/kg oxaliplatin-induced cold hypersensitivity 2 and 4 days later. Oxaliplatin-induced acute cold hypersensitivity 4 days after treatment was significantly inhibited by pregabalin (50 mg/kg, p.o.). Oxaliplatin (6 mg/kg, i.p.) treatment increased the expression level of Cavα2δ-1 subunit mRNA and protein in the spinal cord 2 and 4 days after treatment. Immunohistochemistry showed that oxaliplatin increased Cavα2δ-1 subunit protein expression in superficial layers of the spinal dorsal horn 2 and 4 days after treatment. These results suggest that oxaliplatin treatment increases Cavα2δ-1 subunit expression in the superficial layers of the spinal cord and may contribute to functional peripheral acute cold hypersensitivity.
Collapse
Affiliation(s)
- Ken Yamamoto
- Department of Education and Research Center for Clinical Pharmacy, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Mayuko Tsuboi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Toshie Kambe
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenji Abe
- Department of Pharmacology, School of Pharmaceutical Sciences, Ohu University, 31-1 Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yoshihiko Nakatani
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kazuyoshi Kawakami
- Department of Pharmacy, Cancer Institute Hospital, 3-10-6 Ariake, Koto-Ku, Tokyo 135-8550, Japan
| | - Iku Utsunomiya
- Department of Developmental Education, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kyoji Taguchi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
45
|
Cheng XL, Liu HQ, Wang Q, Huo JG, Wang XN, Cao P. Chemotherapy-induced peripheral neurotoxicity and complementary and alternative medicines: progress and perspective. Front Pharmacol 2015; 6:234. [PMID: 26557088 PMCID: PMC4615942 DOI: 10.3389/fphar.2015.00234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe and dose-limiting side effect of antineoplastic drugs. It can cause sensory, motor and autonomic system dysfunction, and ultimately force patients to discontinue chemotherapy. Until now, little is understood about CIPN and no consistent caring standard is available. Since CIPN is a multifactorial disease, the clinical efficacy of single pharmacological drugs is disappointing, prompting patients to seek alternative treatment options. Complementary and alternative medicines (CAMs), especially herbal medicines, are well known for their multifaceted implications and widely used in human health care. Up to date, several phytochemicals, plant extractions, and herbal formulas have been evaluated for their potential therapeutic benefit of preventing the onset and progression of CIPN in experimental models. Clinical acupuncture has also been shown to improve CIPN symptoms. In this review, we will give an outline of our current knowledge regrading the advanced research of CIPN, the role of CAMs in alleviating CIPN and possible lacunae in research that needs to be addressed.
Collapse
Affiliation(s)
- Xiao L Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China ; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing, China
| | - Hong Q Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Qi Wang
- Jiangsu Shenlong Pharmaceutical Co., Ltd. Yancheng, China
| | - Jie G Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Xiao N Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China ; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing, China
| |
Collapse
|
46
|
Fehrenbacher JC. Chemotherapy-Induced Peripheral Neuropathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:471-508. [DOI: 10.1016/bs.pmbts.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Carozzi VA, Chiorazzi A, Canta A, Meregalli C, Oggioni N, Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity in immune-deficient mice: new useful ready-to-use animal models. Exp Neurol 2014; 264:92-102. [PMID: 25450467 DOI: 10.1016/j.expneurol.2014.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 12/13/2022]
Abstract
Cisplatin, paclitaxel and bortezomib are effective chemotherapy drugs in cancer treatment. However, they share severe peripheral neurotoxicity (PN) as one of their major dose-limiting side effects, often impairing cancer patients' quality of life and sometimes being permanent. Even if preclinical oncology is largely based on the use of immune-deficient mice, rodent models used to study the chemotherapy-induced PN are available only in immune-competent animals. In this study we characterized for the first time the PN induced by these chemotherapies through neurophysiological, behavioral, morphological and morphometric studies in athymic nude mice, a commonly employed strain in the preclinical oncology. The animals, divided into four groups, were chronically treated with cisplatin, paclitaxel or bortezomib once or twice a week for 4 or 6 weeks or were left untreated. These schedules were tolerated, neurotoxic and in the range of antineoplastic effectiveness. Despite similarities, differences in the features of PN were evident if compared with immune-competent models under comparable regimens of treatment. The results of this study may provide a basis for future combined analysis of antineoplastic and neurotoxic effects of chemotherapy in the same animals.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy; Young Against Pain (YAP) Italian Group, Italy.
| | - Alessia Chiorazzi
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Annalisa Canta
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| |
Collapse
|
48
|
Kuraishi Y. [A memoir of my research on pain and analgesia for 39 years]. YAKUGAKU ZASSHI 2014; 134:1125-42. [PMID: 25366910 DOI: 10.1248/yakushi.14-00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review describes my research for the past 39 years regarding the pharmacology of pain and analgesia. We have demonstrated that the descending noradrenergic system is involved in the analgesic effect of morphine injected into the nucleus reticularis gigantocellularis, and that noradrenaline exerts antinociception mediated by α-adrenoceptors. We have found that noxious mechanical and thermal stimuli to the skin increase the release of substance P and somatostatin, respectively, from the dorsal horn in situ, and that noradrenaline inhibits the release of substance P and glutamate from primary afferents. We developed an animal model of cancer pain using melanoma cells. We have shown that the suppression of cancer pain results in the inhibition of tumor growth and lung metastasis, and that melanoma cells release several algogenic substances including ATP, endothelin-1, and bradykinin. We investigated neuropathic allodynia induced by the chemotherapeutic drugs paciltaxel, oxaliplatin, vincristine, and bortezomib. Single administration of these drugs caused allodynia with similar time-courses. However, antiallodynic actions of adjuvant analgesics, including gabapentin and limaprost, were dependent on the chemotherapeutic drugs used. Limaprost experiments have revealed that a decrease in peripheral blood flow is involved in allodynia exacerbation after the administration of paciltaxel and oxaliplatin. We have developed animal models of herpetic pain and postherpetic neuralgia using herpes simplex virus 1. We have demonstrated that nitric oxide, prostaglandin E2, and galectin-3 are involved in herpetic allodynia, that risk factors associated with postherpetic allodynia include severe herpetic pain, nociceptin, and major histocompatibility complex, and that deafferentation and nitric oxide are involved in postherpetic allodynia.
Collapse
Affiliation(s)
- Yasushi Kuraishi
- Laboratory of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
49
|
Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 2014; 171:636-45. [PMID: 24117398 DOI: 10.1111/bph.12439] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/12/2013] [Accepted: 08/26/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Paclitaxel (PAC) is associated with chemotherapy-induced neuropathic pain (CIPN) that can lead to the cessation of treatment in cancer patients even in the absence of alternate therapies. We previously reported that chronic administration of the non-psychoactive cannabinoid cannabidiol (CBD) prevents PAC-induced mechanical and thermal sensitivity in mice. Hence, we sought to determine receptor mechanisms by which CBD inhibits CIPN and whether CBD negatively effects nervous system function or chemotherapy efficacy. EXPERIMENTAL APPROACH The ability of acute CBD pretreatment to prevent PAC-induced mechanical sensitivity was assessed, as was the effect of CBD on place conditioning and on an operant-conditioned learning and memory task. The potential interaction of CBD and PAC on breast cancer cell viability was determined using the MTT assay. KEY RESULTS PAC-induced mechanical sensitivity was prevented by administration of CBD (2.5 - 10 mg·kg⁻¹) in female C57Bl/6 mice. This effect was reversed by co-administration of the 5-HT(1A) antagonist WAY 100635, but not the CB₁ antagonist SR141716 or the CB₂ antagonist SR144528. CBD produced no conditioned rewarding effects and did not affect conditioned learning and memory. Also, CBD + PAC combinations produce additive to synergistic inhibition of breast cancer cell viability. CONCLUSIONS AND IMPLICATIONS Our data suggest that CBD is protective against PAC-induced neurotoxicity mediated in part by the 5-HT(1A) receptor system. Furthermore, CBD treatment was devoid of conditioned rewarding effects or cognitive impairment and did not attenuate PAC-induced inhibition of breast cancer cell viability. Hence, adjunct treatment with CBD during PAC chemotherapy may be safe and effective in the prevention or attenuation of CIPN.
Collapse
Affiliation(s)
- Sara Jane Ward
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
50
|
Effect of histone deacetylase inhibitor JNJ-26481585 in pain. J Mol Neurosci 2014; 55:570-8. [PMID: 25085711 DOI: 10.1007/s12031-014-0391-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that histone deacetylase (HDAC) inhibitors can alleviate inflammatory and neuropathic pain. We investigated the effects of JNJ-26481585, a pan-HDAC inhibitor on basal mechanical sensitivity. Unlike previous reports for HDAC inhibitors, JNJ-26481585 induced mechanical hypersensitivity in mice. This effect was reversible with gabapentin. Voltage-dependent calcium channel subunit alpha-2/delta-1, one of the putative targets for gabapentin, was upregulated in the spinal cord from JNJ-26481585-treated mice. Transcriptional profiling of spinal cord from JNJ-26481585-treated mice showed significant alterations in pathways involved in axon guidance, suggesting overlap in mechanisms underlying neurotoxicity caused by other known chemotherapeutic agents. To investigate the mechanisms underlying the development of pain, RAW 264.7 mouse macrophage cells were treated with JNJ-26481585. There was a dose- and time-dependent activation of nuclear factor-kappaB and interleukin-1β increase. Thus, alterations in the axon guidance pathway, increase in voltage-dependent calcium channel alpha(2)delta-1 subunit, and the induction of proinflammatory mediators by JNJ-26481585 could all contribute to increased mechanical sensitivity. Our data indicate that the effect of HDAC inhibitors may be unique to the compound studied and highlights the potential to develop chemotherapy-induced peripheral neuropathy with the use of a pan-HDAC inhibitor for cancer treatment, and this pain may be alleviated by gabapentin.
Collapse
|