1
|
Colella MF, Salvino RA, Gaglianò M, Litrenta F, Oliviero Rossi C, Le Pera A, De Luca G. NMR Spectroscopy Applied to the Metabolic Analysis of Natural Extracts of Cannabis sativa. Molecules 2022; 27:3509. [PMID: 35684451 PMCID: PMC9182145 DOI: 10.3390/molecules27113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabis sativa is a herbaceous multiple-use species commonly employed to produce fiber, oil, and medicine. It is now becoming popular for the high nutritional properties of its seed oil and for the pharmacological activity of its cannabinoid fraction in inflorescences. The present study aims to apply nuclear magnetic resonance (NMR) spectroscopy to provide useful qualitative and quantitative information on the chemical composition of seed and flower Cannabis extracts obtained by ultra-sound-assisted extraction, and to evaluate NMR as an alternative to the official procedure for the quantification of cannabinoids. The estimation of the optimal ω-6/ω-3 ratio from the 1H NMR spectrum for the seed extracts of the Futura 75 variety and the quantitative results from the 1H and 13C NMR spectra for the inflorescence extracts of the Tiborszallasi and Kompolti varieties demonstrate that NMR technology represents a good alternative to classical chromatography, supplying sufficiently precise, sensitive, rapid, and informative data without any sample pre-treatment. In addition, different extraction procedures were tested and evaluated to compare the elaboration of spectral data with the principal component analysis (PCA) statistical method and the quantitative NMR results: the extracts obtained with higher polarity solvents (acetone or ethanol) were poor in psychotropic agents (THC < LOD) but had an appreciable percentage of both cannabinoids and triacylgliceroles (TAGs). These bioactive-rich extracts could be used in the food and pharmaceutical industries, opening new pathways for the production of functional foods and supplements.
Collapse
Affiliation(s)
- Maria Francesca Colella
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Rosachiara Antonia Salvino
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Martina Gaglianò
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (Biomorf), University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Adolfo Le Pera
- Calabra Maceri e Servizi s.p.a., Via M. Polo 54, 87036 Rende, Italy;
| | - Giuseppina De Luca
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| |
Collapse
|
2
|
Direct Quantitation of Phytocannabinoids by One-Dimensional 1H qNMR and Two-Dimensional 1H- 1H COSY qNMR in Complex Natural Mixtures. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092965. [PMID: 35566314 PMCID: PMC9103933 DOI: 10.3390/molecules27092965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
The widespread use of phytocannabinoids or cannabis extracts as ingredients in numerous types of products, in combination with the legal restrictions on THC content, has created a need for the development of new, rapid, and universal analytical methods for their quantitation that ideally could be applied without separation and standards. Based on previously described qNMR studies, we developed an expanded 1H qNMR method and a novel 2D-COSY qNMR method for the rapid quantitation of ten major phytocannabinoids in cannabis plant extracts and cannabis-based products. The 1H qNMR method was successfully developed for the quantitation of cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabichromenic acid (CBCA), cannabigerol (CBG), cannabigerolic acid (CBGA), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabinolic acid (Δ9-THCA), Δ8-tetrahydrocannabinol (Δ8-THC), cannabielsoin (CBE), and cannabidivarin (CBDV). Moreover, cannabidivarinic acid (CBDVA) and Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA) can be distinguished from CBDA and Δ9-THCA respectively, while cannabigerovarin (CBGV) and Δ8-tetrahydrocannabivarin (Δ8-THCV) present the same 1H-spectra as CBG and Δ8-THC, respectively. The COSY qNMR method was applied for the quantitation of CBD, CBDA, CBN, CBG/CBGA, and THC/THCA. The two methods were applied for the analysis of hemp plants; cannabis extracts; edible cannabis medium-chain triglycerides (MCT); and hemp seed oils and cosmetic products with cannabinoids. The 1H-NMR method does not require the use of reference compounds, and it requires only a short time for analysis. However, complex extracts in 1H-NMR may have a lot of signals, and quantitation with this method is often hampered by peak overlap, with 2D NMR providing a solution to this obstacle. The most important advantage of the COSY NMR quantitation method was the determination of the legality of cannabis plants, extracts, and edible oils based on their THC/THCA content, particularly in the cases of some samples for which the determination of THC/THCA content by 1H qNMR was not feasible.
Collapse
|
3
|
Ohtsuki T, Friesen JB, Chen SN, McAlpine JB, Pauli GF. Selective Preparation and High Dynamic-Range Analysis of Cannabinoids in "CBD Oil" and Other Cannabis sativa Preparations. JOURNAL OF NATURAL PRODUCTS 2022; 85:634-646. [PMID: 34990123 PMCID: PMC8957589 DOI: 10.1021/acs.jnatprod.1c00976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Much confusion exists about the chemical composition of widely sold Cannabis sativa products that utilize the cannabidiol (CBD) acronym and related terms such as "CBD oil", "CBD plus hemp oil", "full spectrum CBD", "broad spectrum CBD", and "cannabinoids". Their rational chemical and subsequent biological assessment requires both knowledge of the chemical complexity and the characterization of significant individual constituents. Applicable to hemp preparations in general, this study demonstrates how the combination of liquid-liquid-based separation techniques, NMR analysis, and quantum mechanical-based NMR interpretation facilitates the process of natural product composition analysis by allowing specific structural characterization and absolute quantitation of cannabinoids present in such products with a large dynamic range. Countercurrent separation of a commercial "CBD oil" yielded high-purity CBD plus a more polar cannabinoid fraction containing cannabigerol and cannabidivarin, as well as a less polar cannabinoid fraction containing cannabichromene, trans-Δ9-tetrahydrocannabinol, cis-Δ9-tetrahydrocannabinol, and cannabinol. Representatives of six cannabinoid classes were identified within a narrow range of polarity, which underscores the relevance of residual complexity in biomedical research on cannabinoids. Characterization of the individual components and their quantitation in mixed fractions were undertaken by TLC, HPLC, 1H (q)NMR spectroscopy, 1H iterative full spin analysis (HiFSA), 13C NMR, and 2D NMR. The developed workflow and resulting analytical data enhance the reproducible evaluation of "CBD et al." products, which inevitably represent complex mixtures of varying molecular populations, structures, abundances, and polarity features.
Collapse
Affiliation(s)
- Takashi Ohtsuki
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - J Brent Friesen
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Physical Sciences, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - Shao-Nong Chen
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James B McAlpine
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F Pauli
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
4
|
Wang Z, Wang Z, Jiang M, Yang J, Meng Q, Guan J, Xu M, Chai X. Qualitative and Quantitative Evaluation of Chemical Constituents from Shuanghuanglian Injection Using Nuclear Magnetic Resonance Spectroscopy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:7763207. [PMID: 35309716 PMCID: PMC8926469 DOI: 10.1155/2022/7763207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
By employing nuclear magnetic resonance (NMR), we implemented a chemical research on Shuanghuanglian injection (SHLI) and identified 17 components, including eight primary metabolites and nine secondary metabolites. Guided by the approach of network pharmacology, the potential activities were briefly predicted for seven primary metabolites except for formic acid, such as anti-inflammation, antioxidation, and cardiovascular protection. The focused primary metabolites were quantified by a proton nuclear magnetic resonance (1H-NMR) method, which was verified with good linearity and satisfactory precision, repeatability, stability, and accuracy (except for myo-inositol with mean recovery at 135.78%). Based on the successfully established method, seven primary metabolites were effectively quantified with a slight fluctuation in 20 batches of SHLIs. The average total content of these compounds was 6.85 mg/mL, accounting for 24.84% in total solid of SHLI. This research provides an alternative method for analysis of primary metabolites and contributes to the quality control of SHLI.
Collapse
Affiliation(s)
- Ziyan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zuoyuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingfen Meng
- Henan Fusen Pharmaceutical Co.,Ltd., Henan 474450, China
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co.,Ltd., Henan 474450, China
| | - Maoling Xu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
6
|
Pattnaik F, Nanda S, Mohanty S, Dalai AK, Kumar V, Ponnusamy SK, Naik S. Cannabis: Chemistry, extraction and therapeutic applications. CHEMOSPHERE 2022; 289:133012. [PMID: 34838836 DOI: 10.1016/j.chemosphere.2021.133012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Cannabis, a genus of perennial indigenous plants is well known for its recreational and medicinal activities. Cannabis and its derivatives have potential therapeutic activities to treat epilepsy, anxiety, depression, tumors, cancer, Alzheimer's disease, Parkinson's disease, to name a few. This article reviews some recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes. The biochemistry of some notable cannabinoids such as tetrahydrocannabinol, cannabidiol, cannabinol, cannabigerol, cannabichromene and their carboxylic acid derivatives is explained in the context of therapeutic activities. The medicinal features of Cannabis-derived terpenes are elucidated for treating several neuro and non-neuro disorders. Different extraction techniques to recover cannabinoids are systematically discussed. Besides the medicinal activities, the traditional and recreational utilities of Cannabis and its derivatives are presented. A brief note on the legalization of Cannabis-derived products is provided. This review provides comprehensive knowledge about the medicinal properties, recreational usage, extraction techniques, legalization and some prospects of cannabinoids and terpenes extracted from Cannabis.
Collapse
Affiliation(s)
- Falguni Pattnaik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India; Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Vivek Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, India
| | - Satyanarayan Naik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Stefkov G, Cvetkovikj Karanfilova I, Stoilkovska Gjorgievska V, Trajkovska A, Geskovski N, Karapandzova M, Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products-A Comprehensive Review. Molecules 2022; 27:975. [PMID: 35164240 PMCID: PMC8838193 DOI: 10.3390/molecules27030975] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980-2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Collapse
Affiliation(s)
- Gjoshe Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ivana Cvetkovikj Karanfilova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ana Trajkovska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia;
| | - Marija Karapandzova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Svetlana Kulevanova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| |
Collapse
|
8
|
Tran J, Elkins AC, Spangenberg GC, Rochfort SJ. High-Throughput Quantitation of Cannabinoids by Liquid Chromatography Triple-Quadrupole Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030742. [PMID: 35164007 PMCID: PMC8840290 DOI: 10.3390/molecules27030742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
The high-throughput quantitation of cannabinoids is important for the cannabis industry. As medicinal products increase, and research into compounds that have pharmacological benefits increase, and the need to quantitate more than just the main cannabinoids becomes more important. This study aims to provide a rapid, high-throughput method for cannabinoid quantitation using a liquid chromatography triple-quadrupole mass spectrometer (LC-QQQ-MS) with an ultraviolet diode array detector (UV-DAD) for 16 cannabinoids: CBDVA, CBDV, CBDA, CBGA, CBG, CBD, THCV, THCVA, CBN, CBNA, THC, Δ8-THC, CBL, CBC, THCA-A and CBCA. Linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision, recovery and matrix effect were all evaluated. The validated method was used to determine the cannabinoid concentration of four different Cannabis sativa strains and a low THC strain, all of which have different cannabinoid profiles. All cannabinoids eluted within five minutes with a total analysis time of eight minutes, including column re-equilibration. This was twice as fast as published LC-QQQ-MS methods mentioned in the literature, whilst also covering a wide range of cannabinoid compounds.
Collapse
Affiliation(s)
- Jonathan Tran
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
| | - Aaron C. Elkins
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
- Correspondence:
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
9
|
Pugazhendhi A, Suganthy N, Chau TP, Sharma A, Unpaprom Y, Ramaraj R, Karuppusamy I, Brindhadevi K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Cannabinoids vs. whole metabolome: Relevance of cannabinomics in analyzing Cannabis varieties. Anal Chim Acta 2021; 1184:339020. [PMID: 34625242 DOI: 10.1016/j.aca.2021.339020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Cannabis sativa has a long history of domestication both for its bioactive compounds and its fibers. This has produced hundreds of varieties, usually characterized in the literature by chemotypes, with Δ9-THC and CBD content as the main markers. However, chemotyping could also be done based on minor compounds (phytocannabinoids and others). In this work, a workflow, which we propose to name cannabinomics, combines mass spectrometry of the whole metabolome and statistical analysis to help differentiate C. sativa varieties and deciphering their characteristic markers. By applying this cannabinomics approach to the data obtained from 20 varieties of C. sativa (classically classified as chemotype I, II, or III), we compared the results with those obtained by a targeted quantification of 11 phytocannabinoids. Cannabinomics can be considered as a complementary tool for phenotyping and genotyping, allowing the identification of minor compounds playing a key role as markers of differentiation.
Collapse
|
11
|
Very Fast RP–UHPLC–PDA Method for Identification and Quantification of the Cannabinoids from Hemp Oil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, hemp oils have become ubiquitous in health products on the European market. As the trend continues to grow and more cannabinoids are researched for their therapeutic benefits, more academic and industrial interests are drawn to this direction. Cannabidiol, Δ9-tetrahydrocannabinol, and their acidic forms remain the most examined cannabinoids in hemp and cannabis oils, in the case of cannabidiol due to its proven health implications in numerous articles, and in the case of Δ9-tetrahydrocannabinol, due to the legislation in the European area. These oils sold on the internet contain a wide range of cannabinoids that could demonstrate their effects and benefits. As a result of these claims, we developed a robust and rapid method that can identify and quantify 10 of the most common cannabinoids found in hemp oils: cannabivarin, cannabidiolic acid, cannabigerolic acid, cannabigerol, cannabidiol, cannabinol, Δ9-tetrahydrocannabinol, Δ8-tetrahydrocannabinol, cannabichromene, and tetrahydrocannabinolic acid in less than 11 min, with reverse-phase–high-performance liquid chromatography–photodiode matrix system (RP–UHPLC–PDA) equipped with C18 column, eluting in a gradient using water and acetonitrile with formic acid as mobile phases. The quantification of 9 sample products presented in different matrixes was performed using a calibration curve obtained by analyzing standard solutions from a 10-cannabinoid-mix-certified reference standard. The developed method demonstrated the ability to identify and quantify the main cannabinoids in hemp oil and is a useful tool for pharmaceutical professionals.
Collapse
|
12
|
Barthlott I, Scharinger A, Golombek P, Kuballa T, Lachenmeier DW. A Quantitative 1H NMR Method for Screening Cannabinoids in CBD Oils. TOXICS 2021; 9:136. [PMID: 34200567 PMCID: PMC8228318 DOI: 10.3390/toxics9060136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/15/2023]
Abstract
Toxicologically relevant levels of the psychoactive ∆9-tetrahydocannabinol (∆9-THC) as well as high levels of non-psychoactive cannabinoids potentially occur in CBD (cannabidiol) oils. For consumer protection in the fast-growing CBD oil market, facile and rapid quantitative methods to determine the cannabinoid content are crucial. However, the current standard method, i.e., liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS), requires a time-consuming multistep sample preparation. In this study, a quantitative nuclear magnetic resonance spectroscopy (qNMR) method for screening cannabinoids in CBD oils was developed. Contrary to the HPLC-MS/MS method, this qNMR features a simple sample preparation, i.e., only diluting the CBD oil in deuterochloroform. Pulse length-based concentration determination (PULCON) enables a direct quantification using an external standard. The signal intensities of the cannabinoids were enhanced during the NMR spectra acquisition by means of multiple suppression of the triglycerides which are a major component of the CBD oil matrix. The validation confirmed linearity for CBD, cannabinol (CBN), ∆9-THC and ∆8-THC in hemp seed oil with sufficient recoveries and precision for screening. Comparing the qNMR results to HPLC-MS/MS data for 46 commercial CBD oils verified the qNMR accuracy for ∆9-THC and CBD, but with higher limits of detection. The developed qNMR method paves the way for increasing the sample throughput as a complementary screening before HPLC-MS/MS.
Collapse
Affiliation(s)
| | | | | | | | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Straße 3, 76187 Karlsruhe, Germany; (I.B.); (A.S.); (P.G.); (T.K.)
| |
Collapse
|
13
|
Ioannidis K, Dadiotis E, Mitsis V, Melliou E, Magiatis P. Biotechnological Approaches on Two High CBD and CBG Cannabis sativa L. (Cannabaceae) Varieties: In Vitro Regeneration and Phytochemical Consistency Evaluation of Micropropagated Plants Using Quantitative 1H-NMR. Molecules 2020; 25:E5928. [PMID: 33333745 PMCID: PMC7765244 DOI: 10.3390/molecules25245928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
High cannabidiol (CBD) and cannabigerol (CBG) varieties of Cannabis sativa L., a species with medicinal properties, were regenerated in vitro. Explants of nodal segments including healthy axillary bud, after sterilization, were placed in Murashige-Skoog (MS) culture medium. The shoots formed after 30 days were subcultured in full- or half-strength MS medium supplemented with several concentrations of 6-benzyl-amino-purine (BA) or thidiazuron (TDZ). The highest average number and length of shoots was achieved when both full and half-strength MS media were supplemented with 4.0 μM BA. The presence of 4.0 μM TDZ showed also comparable results. BA and TDZ at concentrations of 4.0, 8.0 μM and 2.0, 4.0 μM respectively, displayed the maximum shooting frequency. The new shoots were transferred on the same media and were either self-rooted or after being enhanced with different concentrations of indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA). Presence of 2.0 or 4.0 μM IBA or 4.0 μM NAA resulted to the optimum rooting rates. The maximum average number and length of roots per shoot was observed when the culture media was supplemented with 4.0 μM IBA or NAA. Approximately 92% of the plantlets were successfully established and acclimatized in field. The consistency of the chemical profile of the acclimatized in vitro propagated clones was assessed using quantitative 1H-NMR high throughput screening. In each variety, analysis of the micropropagated plant in comparison with the mother plant showed no statistically significant differences (p ≤ 0.05) in CBD+ cannabidiolic acid (CBDA) and CBG+ cannabigerolic acid (CBGA) content respectively, thus indicating stability of their chemical profile.
Collapse
Affiliation(s)
- Kostas Ioannidis
- Laboratory of Sylviculture, Forest Genetics and Biotechnology, Institute of Mediterranean and Forest Ecosystems, Hellenic Agricultural Organization “Demeter”, Ilissia, 11528 Athens, Greece
| | - Evangelos Dadiotis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.D.); (E.M.); (P.M.)
| | | | - Eleni Melliou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.D.); (E.M.); (P.M.)
| | - Prokopios Magiatis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.D.); (E.M.); (P.M.)
| |
Collapse
|
14
|
Nelson KM, Bisson J, Singh G, Graham JG, Chen SN, Friesen JB, Dahlin JL, Niemitz M, Walters MA, Pauli GF. The Essential Medicinal Chemistry of Cannabidiol (CBD). J Med Chem 2020; 63:12137-12155. [PMID: 32804502 PMCID: PMC7666069 DOI: 10.1021/acs.jmedchem.0c00724] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Perspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labeled health products and CBD-associated health claims lacks a rigorous scientific foundation. CBD's reputation as a cure-all puts it in the same class as other "natural" panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the "natural" label. Literature evidence associates CBD with certain semiubiquitous, broadly screened, primarily plant-based substances of undocumented purity that interfere with bioassays and have a low likelihood of becoming therapeutic agents. Widespread health challenges and pandemic crises such as SARS-CoV-2 create circumstances under which scientists must be particularly vigilant about healing claims that lack solid foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a therapeutic agent.
Collapse
Affiliation(s)
- Kathryn M. Nelson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jonathan Bisson
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Gurpreet Singh
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - James G. Graham
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - J. Brent Friesen
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Jayme L. Dahlin
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Michael A. Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Guido F. Pauli
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
15
|
Musetti B, González-Ramos H, González M, Bahnson EM, Varela J, Thomson L. Cannabis sativa extracts protect LDL from Cu 2+-mediated oxidation. J Cannabis Res 2020; 2. [PMID: 33123676 PMCID: PMC7592720 DOI: 10.1186/s42238-020-00042-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Multiple therapeutic properties have been attributed to Cannabis sativa. However, further research is required to unveil the medicinal potential of Cannabis and the relationship between biological activity and chemical profile. Objectives The primary objective of this study was to characterize the chemical profile and antioxidant properties of three varieties of Cannabis sativa available in Uruguay during progressive stages of maturation. Methods Fresh samples of female inflorescences from three stable Cannabis sativa phenotypes, collected at different time points during the end of the flowering period were analyzed. Chemical characterization of chloroform extracts was performed by 1H-NMR. The antioxidant properties of the cannabis sativa extracts, and pure cannabinoids, were measured in a Cu2+-induced LDL oxidation assay. Results The main cannabinoids in the youngest inflorescences were tetrahydrocannabinolic acid (THC-A, 242 ± 62 mg/g) and tetrahydrocannabinol (THC, 7.3 ± 6.5 mg/g). Cannabinoid levels increased more than twice in two of the mature samples. A third sample showed a lower and constant concentration of THC-A and THC (177 ± 25 and 1 ± 1, respectively). The THC-A/THC rich cannabis extracts increased the latency phase of LDL oxidation by a factor of 1.2-3.5 per μg, and slowed down the propagation phase of lipoperoxidation (IC50 1.7-4.6 μg/mL). Hemp, a cannabidiol (CBD, 198 mg/g) and cannabidiolic acid (CBD-A, 92 mg/g) rich variety, also prevented the formation of conjugated dienes during LDL oxidation. In fact, 1 μg of extract was able to stretch the latency phase 3.7 times and also to significantly reduce the steepness of the propagation phase (IC50 of 8 μg/mL). Synthetic THC lengthened the duration of the lag phase by a factor of 21 per μg, while for the propagation phase showed an IC50 ≤ 1 μg/mL. Conversely, THC-A was unable to improve any parameter. Meanwhile, the presence of 1 μg of pure CBD and CBD-A increased the initial latency phase 4.8 and 9.4 times, respectively, but did not have an effect on the propagation phase. Conclusion Cannabis whole extracts acted on both phases of lipid oxidation in copper challenged LDL. Those effects were just partially related with the content of cannabinoids and partially recapitulated by isolated pure cannabinoids. Our results support the potentially beneficial effects of cannabis sativa whole extracts on the initial phase of atherosclerosis.
Collapse
Affiliation(s)
- Bruno Musetti
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Helena González-Ramos
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.,Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Mercedes González
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Edward M Bahnson
- Division of Vascular Surgery, Department of Surgery, and Department of Cell Biology & Physiology, Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Javier Varela
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
16
|
Araneda JF, Chu T, Leclerc MC, Riegel SD, Spingarn N. Quantitative analysis of cannabinoids using benchtop NMR instruments. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4853-4857. [PMID: 33043914 DOI: 10.1039/d0ay01511c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The quantification of cannabinoids is an essential part of cannabis profiling and testing, whether for medical or recreational use. As regulatory bodies continue to increase testing requirements for these products, it is crucial that alternative and effective analytical methods be developed. Herein, we describe the use of benchtop NMR instruments for the quantification of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a variety of cannabis concentrates and compare the values to those obtained using HPLC, the most common approach for the quantification of cannabinoids. Based on the discrepancies observed in test values from different laboratories using only HPLC, the value of orthogonal testing methods has been identified and is increasingly desired.
Collapse
Affiliation(s)
- Juan F Araneda
- Nanalysis Corp., 1-4600 5 St NE, Calgary, AB T2E 7C3, Canada.
| | | | | | | | | |
Collapse
|
17
|
Pourseyed Lazarjani M, Torres S, Hooker T, Fowlie C, Young O, Seyfoddin A. Methods for quantification of cannabinoids: a narrative review. J Cannabis Res 2020; 2:35. [PMID: 33526084 PMCID: PMC7819317 DOI: 10.1186/s42238-020-00040-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Around 144 cannabinoids have been identified in cannabis plant, among them tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prominent ones. Because of the legal restrictions on cannabis in many countries, it is difficult to obtain standards to use in research; nonetheless, it is important to develop a cannabinoid quantification technique with pharmaceutical applications for quality control of future therapeutic cannabinoids. METHOD To find relevant articles for this narrative review paper, a combination of keywords such as medicinal cannabis, analytical, quantification and cannabinoids were searched for in PubMed, EMBASE, MEDLINE, Google Scholar and Cochrane Library (Wiley) databases. RESULTS The most common cannabinoid quantification techniques include gas chromatography (GC) and high-performance liquid chromatography (HPLC). GC is often used in conjunction with mass spectrometry (MS) or flame ionization detection (FID). The major advantage of GC is terpenes quantification however, for evaluating acidic cannabinoids it needs to be derivatised. The main advantage of HPLC is the ability to quantify both acidic and neutral forms of cannabinoids without derivatisation which is often with MS or ultraviolet (UV) detectors. CONCLUSION Based on the information presented in this review, the ideal cannabinoid quantification method is HPLC- MS/MS for the cannabinoids.
Collapse
Affiliation(s)
- Masoumeh Pourseyed Lazarjani
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Stephanie Torres
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,Chapman University, Orange, California, USA
| | | | | | - Owen Young
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
18
|
Citti C, Russo F, Sgrò S, Gallo A, Zanotto A, Forni F, Vandelli MA, Laganà A, Montone CM, Gigli G, Cannazza G. Pitfalls in the analysis of phytocannabinoids in cannabis inflorescence. Anal Bioanal Chem 2020; 412:4009-4022. [DOI: 10.1007/s00216-020-02554-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/03/2023]
|
19
|
Siciliano C, Bartella L, Mazzotti F, Aiello D, Napoli A, De Luca P, Temperini A. 1H NMR quantification of cannabidiol (CBD) in industrial products derived from Cannabis sativa L. (hemp) seeds. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/572/1/012010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Quantitative determination of CBD and THC and their acid precursors in confiscated cannabis samples by HPLC-DAD. Forensic Sci Int 2019; 299:142-150. [DOI: 10.1016/j.forsciint.2019.03.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 11/19/2022]
|
21
|
Abstract
In recent years, the Cannabis plant (Cannabis sativa L.) has been rediscovered as a source of
new medicines around the world. Despite the fact that a number of registered medicines have been developed
on the basis of purified cannabis components, there is a rapid increasing acceptance and use of
cannabis in its herbal form. Licensed producers of high quality cannabis plants now operate in various
countries including The Netherlands, Canada, Israel, and Australia, and in many US states. The legal
availability of cannabis flowers allows to prescribe and prepare different cannabis galenic preparations
by pharmacists. It is believed that synergy between cannabis components, known as “entourage effect”,
may be responsible for the superior effects of using herbal cannabis versus isolated compounds. So far,
only a few cannabis components have been properly characterized for their therapeutic potential, making
it unclear which of the isolated compounds should be further developed into registered medicines.
Until such products become available, simple and accessible galenic preparations from the cannabis
plant could play an important role. In cannabis, phytochemical and pharmacological attention has been
attributed mainly to four major cannabinoids (Δ9- tetrahydrocannabinol, cannabidiol, cannabigerol and
cannabichromene) and to terpene components. This means a basic knowledge of these compounds and
their bioavailability in different administration forms is useful for producers as well as prescribers of
galenic preparations. This work will outline the most important aspects of cannabinoids and terpenes,
and their behaviors during preparation and use of various administration forms including vaporizing,
cannabis oils and extracts, tea, and skin creams.
Collapse
|
22
|
Backer R, Schwinghamer T, Rosenbaum P, McCarty V, Eichhorn Bilodeau S, Lyu D, Ahmed MB, Robinson G, Lefsrud M, Wilkins O, Smith DL. Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield. FRONTIERS IN PLANT SCIENCE 2019; 10:495. [PMID: 31068957 PMCID: PMC6491815 DOI: 10.3389/fpls.2019.00495] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of cannabis yields reported in scientific literature aimed to identify the main factors contributing to cannabis yield per plant, per square meter, and per W of lighting electricity. In line with previous research we found that variety, plant density, light intensity and fertilization influence cannabis yield and cannabinoid content; we also identified pot size, light type and duration of the flowering period as predictors of yield and THC accumulation. We provide insight into the critical role of light intensity, quality, and photoperiod in determining cannabis yields, with particular focus on the potential for light-emitting diodes (LEDs) to improve growth and reduce energy requirements. We propose that the vast amount of genomics data currently available for cannabis can be used to better understand the effect of genotype on yield. Finally, we describe diversification that is likely to emerge in cannabis growing systems and examine the potential role of plant-growth promoting rhizobacteria (PGPR) for growth promotion, regulation of cannabinoid biosynthesis, and biocontrol.
Collapse
Affiliation(s)
- Rachel Backer
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- *Correspondence: Rachel Backer
| | - Timothy Schwinghamer
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Phillip Rosenbaum
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vincent McCarty
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Samuel Eichhorn Bilodeau
- Biomass Production Laboratory, Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Dongmei Lyu
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Md Bulbul Ahmed
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | - Mark Lefsrud
- Biomass Production Laboratory, Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Olivia Wilkins
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Donald L. Smith
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
23
|
de A. Leite J, de Oliveira MV, Conti R, de S. Borges W, Rosa TR, Filgueiras PR, Lacerda V, Romão W, Neto ÁC. Extraction and isolation of cannabinoids from marijuana seizures and characterization by 1H NMR allied to chemometric tools. Sci Justice 2018; 58:355-365. [DOI: 10.1016/j.scijus.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/28/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
|
24
|
|
25
|
ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 103:1-36. [PMID: 28120229 DOI: 10.1007/978-3-319-45541-9_1] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cannabis (Cannabis sativa, or hemp) and its constituents-in particular the cannabinoids-have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ9-tetrahydrocannabinol (Δ9-THC). The plant's behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ9-THC, which is produced mainly in the leaves and flower buds of the plant. Besides Δ9-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and cannabigerol (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products. Today, more than 560 constituents have been identified in cannabis. The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer's, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.
Collapse
Affiliation(s)
- Mahmoud A ElSohly
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, 38655, USA.
| | - Mohamed M Radwan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Waseem Gul
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, 38655, USA
| | - Suman Chandra
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Ahmed Galal
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
26
|
Hazekamp A, Tejkalová K, Papadimitriou S. Cannabis: From Cultivar to Chemovar II—A Metabolomics Approach to Cannabis Classification. Cannabis Cannabinoid Res 2016. [DOI: 10.1089/can.2016.0017] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Arno Hazekamp
- Department of Research and Education, Bedrocan BV, Veendam, The Netherlands
| | - Katerina Tejkalová
- Natural Products Laboratory, Institute of Biology, Leiden University, The Netherlands
| | - Stelios Papadimitriou
- Natural Products Laboratory, Institute of Biology, Leiden University, The Netherlands
| |
Collapse
|
27
|
Kumar D. Nuclear Magnetic Resonance (NMR) Spectroscopy For Metabolic Profiling of Medicinal Plants and Their Products. Crit Rev Anal Chem 2015; 46:400-12. [PMID: 26575437 DOI: 10.1080/10408347.2015.1106932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NMR spectroscopy has multidisciplinary applications, including excellent impact in metabolomics. The analytical capacity of NMR spectroscopy provides information for easy qualitative and quantitative assessment of both endogenous and exogenous metabolites present in biological samples. The complexity of a particular metabolite and its contribution in a biological system are critically important for understanding the functional state that governs the organism's phenotypes. This review covers historical aspects of developments in the NMR field, its applications in chemical profiling, metabolomics, and quality control of plants and their derived medicines, foods, and other products. The bottlenecks of NMR in metabolic profiling are also discussed, keeping in view the future scope and further technological interventions.
Collapse
Affiliation(s)
- Dinesh Kumar
- a Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology , Palampur , India
| |
Collapse
|
28
|
¹H NMR and HPLC/DAD for Cannabis sativa L. chemotype distinction, extract profiling and specification. Talanta 2015; 140:150-165. [PMID: 26048837 DOI: 10.1016/j.talanta.2015.02.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The medicinal use of different chemovars and extracts of Cannabis sativa L. requires standardization beyond ∆9-tetrahydrocannabinol (THC) with complementing methods. We investigated the suitability of (1)H NMR key signals for distinction of four chemotypes measured in deuterated dimethylsulfoxide together with two new validated HPLC/DAD methods used for identification and extract profiling based on the main pattern of cannabinoids and other phenolics alongside the assayed content of THC, cannabidiol (CBD), cannabigerol (CBG) their acidic counterparts (THCA, CBDA, CBGA), cannabinol (CBN) and cannflavin A and B. Effects on cell viability (MTT assay, HeLa) were tested. The dominant cannabinoid pairs allowed chemotype recognition via assignment of selective proton signals and via HPLC even in cannabinoid-low extracts from the THC, CBD and CBG type. Substantial concentrations of cannabinoid acids in non-heated extracts suggest their consideration for total values in chemotype distinction and specifications of herbal drugs and extracts. Cannflavin A/B are extracted and detected together with cannabinoids but always subordinated, while other phenolics can be accumulated via fractionation and detected in a wide fingerprint but may equally serve as qualitative marker only. Cell viability reduction in HeLa was more determined by the total cannabinoid content than by the specific cannabinoid profile. Therefore the analysis and labeling of total cannabinoids together with the content of THC and 2-4 lead cannabinoids are considered essential. The suitability of analytical methods and the range of compound groups summarized in group and ratio markers are discussed regarding plant classification and pharmaceutical specification.
Collapse
|
29
|
Solowij N, Broyd SJ, van Hell HH, Hazekamp A. A protocol for the delivery of cannabidiol (CBD) and combined CBD and ∆9-tetrahydrocannabinol (THC) by vaporisation. BMC Pharmacol Toxicol 2014; 15:58. [PMID: 25319497 PMCID: PMC4274767 DOI: 10.1186/2050-6511-15-58] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/30/2014] [Indexed: 01/30/2023] Open
Abstract
Background Significant interest has emerged in the therapeutic and interactive effects of different cannabinoids. Cannabidiol (CBD) has been shown to have anxiolytic and antipsychotic effects with high doses administered orally. We report a series of studies conducted to determine the vaporisation efficiency of high doses of CBD, alone and in combination with ∆9-tetrahydrocannabinol (THC), to achieve faster onset effects in experimental and clinical trials and emulate smoked cannabis. Methods Purified THC and CBD (40 mg/ml and 100 mg/ml respectively) were loaded onto a liquid absorbing pad in a Volcano® vaporiser, vaporised and the vapours quantitatively analysed. Preliminary studies determined 200 mg CBD to be the highest dose effectively vaporised at 230°C, yielding an availability of approximately 40% in the vapour phase. Six confirmatory studies examined the quantity of each compound delivered when 200 mg or 4 mg CBD was loaded together with 8 mg of THC. Results THC showed 55% availability when vaporised alone or with low dose CBD, while large variation in the availability of high dose CBD impacted upon the availability of THC when co-administered, with each compound affecting the vaporisation efficiency of the other in a dynamic and dose-dependent manner. We describe optimised protocols that enable delivery of 160 mg CBD through vaporisation. Conclusions While THC administration by vaporisation is increasingly adopted in experimental studies, often with oral predosing with CBD to examine interactive effects, no studies to date have reported the administration of CBD by vaporisation. We report the detailed methodology aimed at optimising the efficiency of delivery of therapeutic doses of CBD, alone and in combination with THC, by vaporisation. These protocols provide a technical advance that may inform methodology for clinical trials in humans, especially for examining interactions between THC and CBD and for therapeutic applications of CBD. Trial registration Current Controlled Trials ISRCTN24109245
Collapse
Affiliation(s)
- Nadia Solowij
- School of Psychology, Ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|
30
|
|
31
|
Kusari P, Kusari S, Spiteller M, Kayser O. Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0216-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Direct determination of deuterium of wide concentration range in water by Nuclear Magnetic Resonance. Talanta 2012; 97:450-5. [DOI: 10.1016/j.talanta.2012.04.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022]
|
33
|
Indrayanto G. Validation of analytical methods-update 2011. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2012; 37:439-465. [PMID: 22469326 DOI: 10.1016/b978-0-12-397220-0.00012-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
34
|
Hazekamp A, Fischedick JT. Cannabis - from cultivar to chemovar. Drug Test Anal 2012; 4:660-7. [PMID: 22362625 DOI: 10.1002/dta.407] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 11/29/2011] [Accepted: 11/29/2011] [Indexed: 11/09/2022]
Abstract
The medicinal use of Cannabis is increasing as countries worldwide are setting up official programs to provide patients with access to safe sources of medicinal-grade Cannabis. An important question that remains to be answered is which of the many varieties of Cannabis should be made available for medicinal use. Drug varieties of Cannabis are commonly distinguished through the use of popular names, with a major distinction being made between Indica and Sativa types. Although more than 700 different cultivars have already been described, it is unclear whether such classification reflects any relevant differences in chemical composition. Some attempts have been made to classify Cannabis varieties based on chemical composition, but they have mainly been useful for forensic applications, distinguishing drug varieties, with high THC content, from the non-drug hemp varieties. The biologically active terpenoids have not been included in these approaches. For a clearer understanding of the medicinal properties of the Cannabis plant, a better classification system, based on a range of potentially active constituents, is needed. The cannabinoids and terpenoids, present in high concentrations in Cannabis flowers, are the main candidates. In this study, we compared cultivars obtained from multiple sources. Based on the analysis of 28 major compounds present in these samples, followed by principal component analysis (PCA) of the quantitative data, we were able to identify the Cannabis constituents that defined the samples into distinct chemovar groups. The study indicates the usefulness of a PCA approach for chemotaxonomic classification of Cannabis varieties.
Collapse
Affiliation(s)
- A Hazekamp
- R&D Department, Bedrocan BV, Veendam, the Netherlands.
| | | |
Collapse
|
35
|
Spronk D, Dumont GJH, Verkes RJ, de Bruijn ERA. Acute effects of delta-9-tetrahydrocannabinol on performance monitoring in healthy volunteers. Front Behav Neurosci 2011; 5:59. [PMID: 22046151 PMCID: PMC3202219 DOI: 10.3389/fnbeh.2011.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/24/2011] [Indexed: 11/13/2022] Open
Abstract
Rationale: The error-related negativity (ERN) is a negative event-related potential that occurs immediately after an erroneous response and is thought to reflect human performance monitoring. Delta-9-Tetrahydrocannabinol (THC) administration in healthy volunteers has been linked to impaired performance monitoring in behavioral studies, but to date no studies have examined the effects of cannabinoids on the ERN. Methods: EEG data from 10 healthy volunteers was recorded during execution of a speeded choice-reaction-time task (Flankers task) after administration of THC or placebo vapor in a double-blind randomized crossover design. Results: The findings of this study show that the ERN was significantly reduced after administration of THC. The behavioral outcomes on the Flankers task showed no indications of drug-induced impairments. Discussion: The diminished ERN reflects impairments in the process of performance monitoring. The task design was not optimized to find behavioral effects. The study shows that cannabinoids impair performance monitoring.
Collapse
Affiliation(s)
- Desirée Spronk
- Department of Psychiatry, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | |
Collapse
|
36
|
Pieri V, Belancic A, Morales S, Stuppner H. Identification and quantification of major steviol glycosides in Stevia rebaudiana purified extracts by 1H NMR spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4378-4384. [PMID: 21417451 DOI: 10.1021/jf104922q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The use of (1)H NMR spectroscopy for the characterization of Stevia rebaudiana extracts is presented. The developed method allows qualitative and quantitative determination of the major steviol glycosides in purified extracts and fractions obtained from various stages of the purification process. Moreover, it proved to be a powerful tool to differentiate between glycosides which are naturally occurring in the stevia plant and artifacts formed in the course of the manufacturing process. Identification of steviol glycosides was achieved by the use of 2D NMR techniques, whereas quantification is based on qHNMR using anthracene as internal standard. The solvent mixture pyridine-d(5)-DMSO-d(6) (6:1) enabled satisfactory separation of the signals to be integrated. Validation of the method was performed in terms of specificity, precision, accuracy, linearity, robustness, and stability. Quantitative results were compared to those obtained with the JECFA HPLC-UV method and were found to be in reasonable agreement. NMR analysis does not rely on the use of reference compounds and enables significantly faster analysis compared to HPLC-UV. Thus, NMR represents a feasible alternative to HPLC-based methods for the quality control of Stevia rebaudiana extracts.
Collapse
Affiliation(s)
- Valerio Pieri
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
37
|
Dumont GJH, van Hasselt JGC, de Kam M, van Gerven JMA, Touw DJ, Buitelaar JK, Verkes RJ. Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers. J Psychopharmacol 2011; 25:478-89. [PMID: 20817749 DOI: 10.1177/0269881110376687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Western societies a considerable percentage of young people expose themselves to the combination of 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') and cannabis. The aim of the present study was to assess the acute effects of co-administration of MDMA and THC (the main psychoactive compound of cannabis) on pharmacokinetics, psychomotor performance, memory and subjective experience over time. We performed a four-way, double blind, randomized, crossover, placebo-controlled study in 16 healthy volunteers (12 male, four female) between the ages of 18 and 27. MDMA (100 mg) was given orally, THC (4, 6, and 6 mg, interval of 90 min) was vaporized and inhaled. THC induced more robust cognitive impairment compared with MDMA, and co-administration did not exacerbate single drug effects on cognitive function. However, co-administration of THC with MDMA increased desired subjective drug effects and drug strength compared with the MDMA condition, which may explain the widespread use of this combination.
Collapse
Affiliation(s)
- G J H Dumont
- Donders Institute for Brain, Cognition and Behaviour, Department of Psychiatry, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ruhaak LR, Felth J, Karlsson PC, Rafter JJ, Verpoorte R, Bohlin L. Evaluation of the Cyclooxygenase Inhibiting Effects of Six Major Cannabinoids Isolated from Cannabis sativa. Biol Pharm Bull 2011; 34:774-8. [DOI: 10.1248/bpb.34.774] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lucia Renee Ruhaak
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University
| | - Jenny Felth
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University
| | | | | | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University
| | - Lars Bohlin
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University
| |
Collapse
|
39
|
Lansbergen MM, Dumont GJH, van Gerven JMA, Buitelaar JK, Verkes RJ. Acute effects of MDMA (3,4-methylenedioxymethamphetamine) on EEG oscillations: alone and in combination with ethanol or THC (delta-9-tetrahydrocannabinol). Psychopharmacology (Berl) 2011; 213:745-56. [PMID: 20924751 PMCID: PMC3033515 DOI: 10.1007/s00213-010-2031-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/20/2010] [Indexed: 01/09/2023]
Abstract
RATIONALE Typical users of 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") are polydrug users, combining MDMA with alcohol or cannabis [most active compound: delta-9-tetrahydrocannabinol (THC)]. OBJECTIVES The aim of the present study was to investigate whether co-administration of alcohol or THC with MDMA differentially affects ongoing electroencephalogram (EEG) oscillations compared to the administration of each drug alone. METHODS In two separate experiments, 16 volunteers received four different drug conditions: (1) MDMA (100 mg); (2) alcohol clamp (blood alcohol concentration = 0.6‰) or THC (inhalation of 4, 6 and 6 mg, interval of 1.5 h); (3) MDMA in combination with alcohol or THC; and (4) placebo. Before and after drug administration, electroencephalography was recorded during an eyes closed resting state. RESULTS Theta and alpha power increased after alcohol intake compared to placebo and reduced after MDMA intake. No interaction between alcohol and MDMA was found. Significant MDMA x THC effects for theta and lower-1-alpha power indicated that the power attenuation after the combined intake of MDMA and THC was less than the sum of each drug alone. For the lower-2-alpha band, the intake of MDMA or THC alone did not significantly affect power, but the intake of combined MDMA and THC significantly decreased lower-2-alpha power. CONCLUSIONS The present findings indicate that the combined intake of MDMA and THC, but not of MDMA and alcohol, affects ongoing EEG oscillations differently than the sum of either one drug alone. Changes in ongoing EEG oscillations may be related to the impaired task performance that has often been reported after drug intake.
Collapse
Affiliation(s)
- Marieke M. Lansbergen
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Glenn J. H. Dumont
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands ,Moleman Psychopharmacology, Amerongen, the Netherlands
| | | | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands ,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Robbert-Jan Verkes
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. PHYTOCHEMISTRY 2010; 71:2058-73. [PMID: 21040939 DOI: 10.1016/j.phytochem.2010.10.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/20/2010] [Accepted: 10/06/2010] [Indexed: 05/18/2023]
Abstract
Cannabis sativa L. is an important medicinal plant. In order to develop cannabis plant material as a medicinal product quality control and clear chemotaxonomic discrimination between varieties is a necessity. Therefore in this study 11 cannabis varieties were grown under the same environmental conditions. Chemical analysis of cannabis plant material used a gas chromatography flame ionization detection method that was validated for quantitative analysis of cannabis monoterpenoids, sesquiterpenoids, and cannabinoids. Quantitative data was analyzed using principal component analysis to determine which compounds are most important in discriminating cannabis varieties. In total 36 compounds were identified and quantified in the 11 varieties. Using principal component analysis each cannabis variety could be chemically discriminated. This methodology is useful for both chemotaxonomic discrimination of cannabis varieties and quality control of plant material.
Collapse
Affiliation(s)
- Justin Thomas Fischedick
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Fischedick J, Van Der Kooy F, Verpoorte R. Cannabinoid Receptor 1 Binding Activity and Quantitative Analysis of Cannabis sativa L. Smoke and Vapor. Chem Pharm Bull (Tokyo) 2010; 58:201-7. [DOI: 10.1248/cpb.58.201] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Justin Fischedick
- Division of Pharmacognosy, Section of Metabolomics, Institute of Biology, Leiden University
| | - Frank Van Der Kooy
- Division of Pharmacognosy, Section of Metabolomics, Institute of Biology, Leiden University
| | - Robert Verpoorte
- Division of Pharmacognosy, Section of Metabolomics, Institute of Biology, Leiden University
| |
Collapse
|
42
|
Jiang Y, David B, Tu P, Barbin Y. Recent analytical approaches in quality control of traditional Chinese medicines--a review. Anal Chim Acta 2009; 657:9-18. [PMID: 19951752 DOI: 10.1016/j.aca.2009.10.024] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 10/10/2009] [Accepted: 10/12/2009] [Indexed: 11/19/2022]
Abstract
Traditional Chinese medicines (TCMs) are gaining more and more attention all over the world, due to their specific theory and long historical clinical practice. But the uncontrollable quality is a bottleneck for its modernization and globalization. This paper reviewed the recent analytical methods in the quality control of TCMs, including screening strategies of bioactive markers from TCMs through biochromatographic methods, the traditional chromatographic methods, DNA methods, as well as the spectroscopic methods, including FT-IR, NIR and NMR. The comprehensive methods, such as fingerprint and multi-component quantification are emphasized; hyphenated techniques, like HPLC-MS, GC-MS, CE-MS, LC-NMR, chemometric methods, and combination of chemical and biological methods, such as biofingerprint, metabolic fingerprint are now more and more widely used in TCMs. In a few word, the analysis and quality control of TCMs are moving towards an integrative and comprehensive direction, in order to better address the inherent holistic nature of TCMs.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | | | | | | |
Collapse
|
43
|
Fischedick JT, Glas R, Hazekamp A, Verpoorte R. A qualitative and quantitative HPTLC densitometry method for the analysis of cannabinoids in Cannabis sativa L. PHYTOCHEMICAL ANALYSIS : PCA 2009; 20:421-6. [PMID: 19609880 DOI: 10.1002/pca.1143] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Cannabis and cannabinoid based medicines are currently under serious investigation for legitimate development as medicinal agents, necessitating new low-cost, high-throughput analytical methods for quality control. OBJECTIVE The goal of this study was to develop and validate, according to ICH guidelines, a simple rapid HPTLC method for the quantification of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and qualitative analysis of other main neutral cannabinoids found in cannabis. METHODOLOGY The method was developed and validated with the use of pure cannabinoid reference standards and two medicinal cannabis cultivars. Accuracy was determined by comparing results obtained from the HTPLC method with those obtained from a validated HPLC method. RESULTS Delta(9)-THC gives linear calibration curves in the range of 50-500 ng at 206 nm with a linear regression of y = 11.858x + 125.99 and r(2) = 0.9968. CONCLUSION Results have shown that the HPTLC method is reproducible and accurate for the quantification of Delta(9)-THC in cannabis. The method is also useful for the qualitative screening of the main neutral cannabinoids found in cannabis cultivars.
Collapse
Affiliation(s)
- Justin T Fischedick
- Division of Pharmacognosy, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Hazekamp A, Simons R, Peltenburg‐Looman A, Sengers M, van Zweden R, Verpoorte R. Preparative Isolation of Cannabinoids from Cannabis sativa by Centrifugal Partition Chromatography. J LIQ CHROMATOGR R T 2009. [DOI: 10.1081/jlc-200028170] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Arno Hazekamp
- a Division of Pharmacognosy , Institute of Biology, Leiden University , Einsteinweg 55, 2300 RA , Leiden , The Netherlands
| | - Ruud Simons
- a Division of Pharmacognosy , Institute of Biology, Leiden University , Einsteinweg 55, 2300 RA , Leiden , The Netherlands
| | - Anja Peltenburg‐Looman
- a Division of Pharmacognosy , Institute of Biology, Leiden University , Einsteinweg 55, 2300 RA , Leiden , The Netherlands
| | - Melvin Sengers
- a Division of Pharmacognosy , Institute of Biology, Leiden University , Einsteinweg 55, 2300 RA , Leiden , The Netherlands
| | - Rianne van Zweden
- a Division of Pharmacognosy , Institute of Biology, Leiden University , Einsteinweg 55, 2300 RA , Leiden , The Netherlands
| | - Robert Verpoorte
- a Division of Pharmacognosy , Institute of Biology, Leiden University , Einsteinweg 55, 2300 RA , Leiden , The Netherlands
| |
Collapse
|
45
|
Cannabis coadministration potentiates the effects of "ecstasy" on heart rate and temperature in humans. Clin Pharmacol Ther 2009; 86:160-6. [PMID: 19440186 DOI: 10.1038/clpt.2009.62] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study assessed the acute physiologic effects over time of (co)administration of Delta9-tetrahydrocannabinol (Delta9-THC) (the main psychoactive compound of cannabis) and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") in 16 healthy volunteers. Pharmacokinetics and cardiovascular, temperature, and catecholamine responses were assessed over time. Both single-drug conditions robustly increased heart rate, and coadministration showed additive effects. MDMA increased epinephrine and norepinephrine concentrations, whereas THC did not affect the catecholamine response. Coadministration of MDMA and THC attenuated the increase of norepinephrine concentrations relative to administration of MDMA alone. These results show that THC mediates heart rate increase independent of sympathetic (catecholaminergic) activity, probably through direct cannabinoid receptor type 1 (CB(1)) agonism in cardiac tissue. Furthermore, THC coadministration did not prevent MDMA-induced temperature increase, but it delayed the onset and prolonged the duration of temperature elevation. These effects may be of particular relevance for the cardiovascular safety of ecstasy users who participate in energetic dancing in nightclubs with high ambient temperature.
Collapse
|
46
|
Monnet-Tschudi F, Hazekamp A, Perret N, Zurich MG, Mangin P, Giroud C, Honegger P. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures. Toxicol Appl Pharmacol 2008; 228:8-16. [DOI: 10.1016/j.taap.2007.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/28/2007] [Accepted: 11/07/2007] [Indexed: 11/27/2022]
|
47
|
Politi M, Peschel W, Wilson N, Zloh M, Prieto JM, Heinrich M. Direct NMR analysis of cannabis water extracts and tinctures and semi-quantitative data on delta9-THC and delta9-THC-acid. PHYTOCHEMISTRY 2008; 69:562-570. [PMID: 17964620 DOI: 10.1016/j.phytochem.2007.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 07/21/2007] [Accepted: 07/25/2007] [Indexed: 05/25/2023]
Abstract
Cannabis sativa L. is the source for a whole series of chemically diverse bioactive compounds that are currently under intensive pharmaceutical investigation. In this work, hot and cold water extracts as well as ethanol/water mixtures (tinctures) of cannabis were compared in order to better understand how these extracts differ in their overall composition. NMR analysis and in vitro cell assays of crude extracts and fractions were performed. Manufacturing procedures to produce natural remedies can strongly affect the final composition of the herbal medicines. Temperature and polarity of the solvents used for the extraction resulted to be two factors that affect the total amount of Delta(9)-THC in the extracts and its relative quantity with respect to Delta(9)-THC-acid and other metabolites. Diffusion-edited (1)H NMR (1D DOSY) and (1)H NMR with suppression of the ethanol and water signals were used. With this method it was possible, without any evaporation or separation step, to distinguish between tinctures from different cannabis cultivars. This approach is proposed as a direct analysis of plant tinctures.
Collapse
Affiliation(s)
- M Politi
- Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | | | |
Collapse
|
48
|
Liu SY, Hu CQ. A comparative uncertainty study of the calibration of macrolide antibiotic reference standards using quantitative nuclear magnetic resonance and mass balance methods. Anal Chim Acta 2007; 602:114-21. [DOI: 10.1016/j.aca.2007.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/25/2022]
|
49
|
Hazekamp A, Bastola K, Rashidi H, Bender J, Verpoorte R. Cannabis tea revisited: a systematic evaluation of the cannabinoid composition of cannabis tea. JOURNAL OF ETHNOPHARMACOLOGY 2007; 113:85-90. [PMID: 17604926 DOI: 10.1016/j.jep.2007.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 04/18/2007] [Accepted: 05/01/2007] [Indexed: 05/16/2023]
Abstract
Cannabis is one of the oldest known medicinal plants, and a large variety of biological activities have been described. The main constituents, the cannabinoids, are thought to be most important for these activities. Although smoking of cannabis is by far the most common way of consumption, a significant part of medicinal users consume it in the form of a tea. However, not much is known about the composition of cannabis tea, or the effect of different parameters during preparation, handling or storage. In this study we used the high-grade cannabis available in Dutch pharmacies to study the cannabinoid composition of tea under standardized and quantitative conditions. Experimental conditions were systematically varied in order to mimic the possible variations made by medicinal users. During analysis there was a specific focus on the cannabinoid tetrahydrocannabinol and its acidic precursor, tetrahydrocannabinolic acid. Also the role of non-psychoactive cannabinoids as components of cannabis tea are discussed. The results obtained in this study provide a clear quantitative insight in the phytochemistry of cannabis tea preparation and can contribute to a better appreciation of this mode of cannabis administration.
Collapse
Affiliation(s)
- Arno Hazekamp
- Leiden University, Department of Pharmacognosy, Gorlaeus Laboratories, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Seger C, Sturm S. Analytical aspects of plant metabolite profiling platforms: current standings and future aims. J Proteome Res 2007; 6:480-97. [PMID: 17269705 DOI: 10.1021/pr0604716] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past years, metabolic profiling has been established as a comprehensive systems biology tool. Mass spectrometry or NMR spectroscopy-based technology platforms combined with unsupervised or supervised multivariate statistical methodologies allow a deep insight into the complex metabolite patterns of plant-derived samples. Within this review, we provide a thorough introduction to the analytical hard- and software requirements of metabolic profiling platforms. Methodological limitations are addressed, and the metabolic profiling workflow is exemplified by summarizing recent applications ranging from model systems to more applied topics.
Collapse
Affiliation(s)
- Christoph Seger
- Institute of Pharmacy/Pharmacognosy, Center of Molecular Biosciences, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria.
| | | |
Collapse
|