1
|
Nielsen LLK, Lambert MNT, Jensen J, Jeppesen PB. The Effect of Ingesting Alginate-Encapsulated Carbohydrates and Branched-Chain Amino Acids During Exercise on Performance, Gastrointestinal Symptoms, and Dental Health in Athletes. Nutrients 2024; 16:4412. [PMID: 39771033 PMCID: PMC11676411 DOI: 10.3390/nu16244412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimising absorption, increasing substrate utilisation, and reducing gastrointestinal distress as well as carious lesions. METHODS In a randomised, double-blinded, crossover trial, 10 trained male cyclists/triathletes completed three experimental days separated by ~6 days. During the experimental days, participants completed a standardised 2 h cycling bout (EX1), followed by a time-to-exhaustion (TTE) performance test at W75%. Supplements were ingested during EX1. RESULTS Participants cycled ~8.8 (29.6%) and ~5.4 (29.1%) minutes longer during TTE with ALG-CP compared to ALG-C and CON, respectively. TTE was 65.28 ± 2.8 min with ALG-CP, 56.46 ± 10.92 min with ALG-C, and 59.89 ± 11.89 min with CON. Heart rate (HR) was lower during EX1 with ALG-CP (p = 0.03), and insulin levels increased more significantly during the first 45 min with ALG-CP. Plasma glucose and glucagon levels remained consistent across supplements, although glucagon was higher with ALG-CP before TTE. Post-exercise myoglobin levels were lower with ALG-CP compared to ALG-C (p = 0.02), indicating reduced muscle damage. CONCLUSIONS While ALG-CP improved performance duration compared to ALG-C and CON, the difference did not reach statistical significance. Additionally, there was a lower HR during the cycling session, alongside a significantly lower level of myoglobin with ALG-CP. These findings suggest that ALG-CP may offer advantages in cycling performance and recovery.
Collapse
Affiliation(s)
- Lotte L. K. Nielsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark (M.N.T.L.)
| | - Max Norman Tandrup Lambert
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark (M.N.T.L.)
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, 0863 Oslo, Norway
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark (M.N.T.L.)
| |
Collapse
|
2
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
3
|
Burke LM, Whitfield J, Hawley JA. The race within a race: Together on the marathon starting line but miles apart in the experience. Free Radic Biol Med 2024; 227:367-378. [PMID: 39395564 DOI: 10.1016/j.freeradbiomed.2024.10.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Every four years the world's best athletes come together to compete in the Olympic games, electrifying audiences with incredible feats of speed, strength, endurance and skill as personal best performances and new records are set. However, the exceptional talent that underpin such performances is incomprehensible to most casual observers who often cannot appreciate how unique these athletes are. In this regard, endurance running, specifically the marathon, a 42.195 km foot race, provides one of the few occasions in sport outside of Olympic, world and national competitions, that permits sport scientists and fans alike to directly compare differences in the physiology between recreational and elite competitors. While these individuals may all cover the same distance, on the same course, on the same day - their experience and the physiological and psychological demands placed upon them are vastly different. There is, in effect, a "race within a race". In the current review we highlight the superior physiology of the elite endurance athlete, emphasizing the gap between elite competitors and well-trained, but less genetically endowed athletes. We draw attention to a range of inconsistencies in how current sports science practices are understood, implemented, and communicated in terms of the elite and not-so-elite endurance athlete.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, United Kingdom.
| |
Collapse
|
4
|
Berger NJA, Best R, Best AW, Lane AM, Millet GY, Barwood M, Marcora S, Wilson P, Bearden S. Limits of Ultra: Towards an Interdisciplinary Understanding of Ultra-Endurance Running Performance. Sports Med 2024; 54:73-93. [PMID: 37751076 DOI: 10.1007/s40279-023-01936-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Ultra-endurance running (UER) poses extreme mental and physical challenges that present many barriers to completion, let alone performance. Despite these challenges, participation in UER events continues to increase. With the relative paucity of research into UER training and racing compared with traditional endurance running distance (e.g., marathon), it follows that there are sizable improvements still to be made in UER if the limitations of the sport are sufficiently understood. The purpose of this review is to summarise our current understanding of the major limitations in UER. We begin with an evolutionary perspective that provides the critical background for understanding how our capacities, abilities and limitations have come to be. Although we show that humans display evolutionary adaptations that may bestow an advantage for covering large distances on a daily basis, these often far exceed the levels of our ancestors, which exposes relative limitations. From that framework, we explore the physiological and psychological systems required for running UER events. In each system, the factors that limit performance are highlighted and some guidance for practitioners and future research are shared. Examined systems include thermoregulation, oxygen delivery and utilisation, running economy and biomechanics, fatigue, the digestive system, nutritional and psychological strategies. We show that minimising the cost of running, damage to lower limb tissue and muscle fatigability may become crucial in UER events. Maintaining a sustainable core body temperature is critical to performance, and an even pacing strategy, strategic heat acclimation and individually calculated hydration all contribute to sustained performance. Gastrointestinal issues affect almost every UER participant and can be due to a variety of factors. We present nutritional strategies for different event lengths and types, such as personalised and evidence-based approaches for varying types of carbohydrate, protein and fat intake in fluid or solid form, and how to avoid flavour fatigue. Psychology plays a vital role in UER performance, and we highlight the need to be able to cope with complex situations, and that specific long and short-term goal setting improves performance. Fatigue in UER is multi-factorial, both physical and mental, and the perceived effort or level of fatigue have a major impact on the ability to continue at a given pace. Understanding the complex interplay of these limitations will help prepare UER competitors for the different scenarios they are likely to face. Therefore, this review takes an interdisciplinary approach to synthesising and illuminating limitations in UER performance to assist practitioners and scientists in making informed decisions in practice and applicable research.
Collapse
Affiliation(s)
- Nicolas J A Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
| | - Russ Best
- Centre for Sport Science and Human Performance, Wintec, Hamilton, New Zealand
| | - Andrew W Best
- Department of Biology, Massachusetts College of Liberal Arts, North Adams, MA, USA
| | - Andrew M Lane
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Guillaume Y Millet
- Univ Lyon, UJM Saint-Etienne, Inter-University Laboratory of Human Movement Biology, Saint Etienne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University Horsforth, Leeds, UK
| | - Samuele Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrick Wilson
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA
| | - Shawn Bearden
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
5
|
Best R, Williams JM, Pearce J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients 2023; 15:4977. [PMID: 38068833 PMCID: PMC10708571 DOI: 10.3390/nu15234977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Equestrian sport is under-researched within the sport science literature, creating a possible knowledge vacuum for athletes and support personnel wishing to train and perform in an evidence-based manner. This review aims to synthesise available evidence from equitation, sport, and veterinary sciences to describe the pertinent rider physiology of equestrian disciplines. Estimates of energy expenditure and the contribution of underpinning energy systems to equestrian performance are used to provide nutrition and hydration recommendations for competition and training in equestrian disciplines. Relative energy deficiency and disordered eating are also considered. The practical challenges of the equestrian environment, including competitive, personal, and professional factors, injury and concussion, and female participation, are discussed to better highlight novelty within equestrian disciplines compared to more commonly studied sports. The evidence and recommendations are supported by example scenarios, and future research directions are outlined.
Collapse
Affiliation(s)
- Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Te Pūkenga, Hamilton 3200, New Zealand
| | - Jane M. Williams
- Department of Animal Science, Hartpury University, Hartpury Gl19 3BE, UK;
| | - Jeni Pearce
- High Performance Sport New Zealand, Auckland 0632, New Zealand;
| |
Collapse
|
6
|
Ong MLY, Green CG, Rowland SN, Heaney LM. Mass Sportrometry: An annual look back at applications of mass spectrometry in sport and exercise science. ANALYTICAL SCIENCE ADVANCES 2023; 4:60-80. [PMID: 38715927 PMCID: PMC10989560 DOI: 10.1002/ansa.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 11/17/2024]
Abstract
Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of 'omics' to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.
Collapse
Affiliation(s)
- Marilyn LY Ong
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
- School of Health SciencesExercise and Sports Science ProgrammeUniversiti Sains MalaysiaKota BharuMalaysia
| | - Christopher G Green
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Samantha N Rowland
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M Heaney
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|
7
|
Huang Z, Wang B, Song K, Wu S, Kong H, Guo L, Liang Q. Metabolic and cardiovascular responses to continuous and intermittent plank exercises. BMC Sports Sci Med Rehabil 2023; 15:1. [PMID: 36593498 PMCID: PMC9806881 DOI: 10.1186/s13102-022-00613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Plank exercise (PE) is a whole-body isometric muscle training which is beneficial for physical health. However, none of the previous studies investigated the responses within a typical isometric muscle training or PE protocol consisting of multiple sets. The application of PE was restricted for the understudied metabolic and cardiovascular responses, especially for the patients with cardiovascular diseases. This study is to alleviate the safety concerns of PE by investigating the PE-induced metabolic and cardiovascular responses. METHODS Eleven male recreational-level college students completed a baseline cardiopulmonary exercise test, continuous PE (CPE) and intermittent PE (IPE). Ratio of maximal oxygen uptake per kilogram of body mass (%VO2max/kg), ratio of maximal heart rate (%HRmax), and respiratory exchange ratio (RER) were continuously measured during PEs and divided into seven equal timepoints. Blood pressure (BP) was measured every minute during, before, and after PEs. A mixed-model repeated measures ANOVA was used to examine the interaction effect of exercise × phase. RESULTS The %VO2max/kg (F6,69=11.25, P < 0.001), %HRmax (F6,65=7.74, P < 0.001), RER (F6,69=11.56, P < 0.001), and BP (systolic BP, F2,26=8.42, P = 0.002; diastolic BP, F2,24=22.63, P < 0.001) increased by safe magnitudes. Compared with the corresponding period in the IPE group, the %VO2max/kg (33.5 [2.2] vs. 27.7 [1.9], P = 0.043) and %HRmax (63.2 [3.9] vs. 53.3 [2.1], P = 0.019) increased more significantly from the 40% duration of CPE. Systolic BP increased by larger magnitudes during CPE than IPE (154.2 [3.8] vs. 142.3 [4.8] mmHg, P = 0.002). RERs were over 1 during PEs without cardiovascular and metabolic variables over the anaerobic threshold. CONCLUSION Energy was mainly supplied by anaerobic metabolism during PEs. CPE may be preferable for trainees aiming at anaerobic capacity enhancement. IPEs may be preferable to CPEs for youth patients with mild and borderline cardiovascular diseases due to their lower metabolic and cardiovascular responses.
Collapse
Affiliation(s)
- Zihao Huang
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Biru Wang
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangping Song
- grid.13291.380000 0001 0807 1581Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shaoping Wu
- grid.452223.00000 0004 1757 7615Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Huimin Kong
- grid.12981.330000 0001 2360 039XLaboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Guo
- grid.413405.70000 0004 1808 0686Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Qi Liang
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
8
|
For Flux Sake: Isotopic Tracer Methods of Monitoring Human Carbohydrate Metabolism During Exercise. Int J Sport Nutr Exerc Metab 2023; 33:60-70. [PMID: 36448486 DOI: 10.1123/ijsnem.2022-0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 12/05/2022]
Abstract
Isotopic tracers can reveal insights into the temporal nature of metabolism and track the fate of ingested substrates. A common use of tracers is to assess aspects of human carbohydrate metabolism during exercise under various established models. The dilution model is used alongside intravenous infusion of tracers to assess carbohydrate appearance and disappearance rates in the circulation, which can be further delineated into exogenous and endogenous sources. The incorporation model can be used to estimate exogenous carbohydrate oxidation rates. Combining methods can provide insight into key factors regulating health and performance, such as muscle and liver glycogen utilization, and the underlying regulation of blood glucose homeostasis before, during, and after exercise. Obtaining accurate, quantifiable data from tracers, however, requires careful consideration of key methodological principles. These include appropriate standardization of pretrial diet, specific tracer choice, whether a background trial is necessary to correct expired breath CO2 enrichments, and if so, what the appropriate background trial should consist of. Researchers must also consider the intensity and pattern of exercise, and the type, amount, and frequency of feeding (if any). The rationale for these considerations is discussed, along with an experimental design checklist and equation list which aims to assist researchers in performing high-quality research on carbohydrate metabolism during exercise using isotopic tracer methods.
Collapse
|
9
|
Sutehall S, Muniz-Pardos B, Bosch A, Pitsiladis Y. The Effect of Sodium Alginate and Pectin Added to a Carbohydrate Beverage on Endurance Performance, Substrate Oxidation and Blood Glucose Concentration: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:82. [PMID: 35727377 PMCID: PMC9213602 DOI: 10.1186/s40798-022-00472-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Scientific and public interest in the potential ergogenic effects of sodium alginate added to a carbohydrate (CHO) beverage has increased in the last ~ 5 years. Despite an extensive use of this technology by elite athletes and recent research into the potential effects, there has been no meta-analysis to objectively elucidate the effects of adding sodium alginate to a CHO beverage on parameters relevant to exercise performance and to highlight gaps in the literature. METHODS Three literature databases were systematically searched for studies investigating the effects of sodium alginate added to CHO beverage during prolonged, endurance exercise in healthy athletes. For the systematic review, the PROSPERO guidelines were followed, and risk assessment was made using the Cochrane collaboration's tool for assessing the risk of bias. Additionally, a random-effects meta-analysis model was used to determine the standardised mean difference between a CHO beverage containing sodium alginate and an isocaloric control for performance, whole-body CHO oxidation and blood glucose concentration. RESULTS Ten studies were reviewed systematically, of which seven were included within the meta-analysis. For each variable, there was homogeneity between studies for performance (n = 5 studies; I2 = 0%), CHO oxidation (n = 7 studies; I2 = 0%) and blood glucose concentration (n = 7 studies; I2 = 0%). When compared with an isocaloric control, the meta-analysis demonstrated that there is no difference in performance (Z = 0.54, p = 0.59), CHO oxidation (Z = 0.34, p = 0.71) and blood glucose concentration (Z = 0.44, p = 0.66) when ingesting a CHO beverage containing sodium alginate. The systematic review revealed that several of the included studies did not use sufficient exercise intensity to elicit significant gastrointestinal disturbances or demonstrate any ergogenic benefit of CHO ingestion. Risk of bias was generally low across the included studies. CONCLUSIONS This systematic review and meta-analysis demonstrate that the current literature indicates no benefit of adding sodium alginate to a CHO beverage during exercise. Further research is required, however, before firm conclusions are drawn considering the range of exercise intensities, feeding rates and the apparent lack of benefit of CHO reported in the current literature investigating sodium alginate.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Andrew Bosch
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Yannis Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN, UK.
| |
Collapse
|
10
|
King AJ, Etxebarria N, Ross ML, Garvican-Lewis L, Heikura IA, McKay AKA, Tee N, Forbes SF, Beard NA, Saunders PU, Sharma AP, Gaskell SK, Costa RJS, Burke LM. Short-Term Very High Carbohydrate Diet and Gut-Training Have Minor Effects on Gastrointestinal Status and Performance in Highly Trained Endurance Athletes. Nutrients 2022; 14:nu14091929. [PMID: 35565896 PMCID: PMC9105618 DOI: 10.3390/nu14091929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15−63 s]; MAX = 36 s [13−59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes.
Collapse
Affiliation(s)
- Andy J. King
- Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia; (M.L.R.); (L.G.-L.); (I.A.H.); (A.K.A.M.); (L.M.B.)
- Correspondence:
| | - Naroa Etxebarria
- Research Institute for Sport and Exercise, University of Canberra, Bruce, ACT 2617, Australia;
| | - Megan L. Ross
- Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia; (M.L.R.); (L.G.-L.); (I.A.H.); (A.K.A.M.); (L.M.B.)
- Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia; (N.T.); (P.U.S.)
| | - Laura Garvican-Lewis
- Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia; (M.L.R.); (L.G.-L.); (I.A.H.); (A.K.A.M.); (L.M.B.)
- Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia; (N.T.); (P.U.S.)
| | - Ida A. Heikura
- Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia; (M.L.R.); (L.G.-L.); (I.A.H.); (A.K.A.M.); (L.M.B.)
- Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia; (N.T.); (P.U.S.)
| | - Alannah K. A. McKay
- Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia; (M.L.R.); (L.G.-L.); (I.A.H.); (A.K.A.M.); (L.M.B.)
| | - Nicolin Tee
- Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia; (N.T.); (P.U.S.)
| | - Sara F. Forbes
- UniSA Online, University of South Australia, Adelaide, SA 5001, Australia;
| | - Nicole A. Beard
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia;
| | - Philo U. Saunders
- Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia; (N.T.); (P.U.S.)
| | - Avish P. Sharma
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Stephanie K. Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3800, Australia; (S.K.G.); (R.J.S.C.)
| | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3800, Australia; (S.K.G.); (R.J.S.C.)
| | - Louise M. Burke
- Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia; (M.L.R.); (L.G.-L.); (I.A.H.); (A.K.A.M.); (L.M.B.)
- Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia; (N.T.); (P.U.S.)
| |
Collapse
|
11
|
Jonvik KL, King M, Rollo I, Stellingwerff T, Pitsiladis Y. New Opportunities to Advance the Field of Sports Nutrition. Front Sports Act Living 2022; 4:852230. [PMID: 35252862 PMCID: PMC8891369 DOI: 10.3389/fspor.2022.852230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Sports nutrition is a relatively new discipline; with ~100 published papers/year in the 1990s to ~3,500+ papers/year today. Historically, sports nutrition research was primarily initiated by university-based exercise physiologists who developed new methodologies that could be impacted by nutrition interventions (e.g., carbohydrate/fat oxidation by whole body calorimetry and muscle glycogen by muscle biopsies). Application of these methods in seminal studies helped develop current sports nutrition guidelines as compiled in several expert consensus statements. Despite this wealth of knowledge, a limitation of the current evidence is the lack of appropriate intervention studies (e.g., randomized controlled clinical trials) in elite athlete populations that are ecologically valid (e.g., in real-life training and competition settings). Over the last decade, there has been an explosion of sports science technologies, methodologies, and innovations. Some of these recent advances are field-based, thus, providing the opportunity to accelerate the application of ecologically valid personalized sports nutrition interventions. Conversely, the acceleration of novel technologies and commercial solutions, especially in the field of biotechnology and software/app development, has far outstripped the scientific communities' ability to validate the effectiveness and utility of the vast majority of these new commercial technologies. This mini-review will highlight historical and present innovations with particular focus on technological innovations in sports nutrition that are expected to advance the field into the future. Indeed, the development and sharing of more “big data,” integrating field-based measurements, resulting in more ecologically valid evidence for efficacy and personalized prescriptions, are all future key opportunities to further advance the field of sports nutrition.
Collapse
Affiliation(s)
- Kristin L. Jonvik
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Michelle King
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Barrington, IL, United States
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, United Kingdom
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Yannis Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- *Correspondence: Yannis Pitsiladis
| |
Collapse
|
12
|
Sutehall S, Muniz-Pardos B, Bosch AN, Galloway SD, Pitsiladis Y. The Impact of Sodium Alginate Hydrogel on Exogenous Glucose Oxidation Rate and Gastrointestinal Comfort in Well-Trained Runners. Front Nutr 2022; 8:810041. [PMID: 35127792 PMCID: PMC8811475 DOI: 10.3389/fnut.2021.810041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study is to quantify the effect of adding sodium alginate and pectin to a carbohydrate (CHO) beverage on exogenous glucose (ExGluc) oxidation rate compared with an isocaloric CHO beverage. Methods Following familiarization, eight well-trained endurance athletes performed four bouts of prolonged running (105 min; 71 ± 4% of VO2max) while ingesting 175 mL of one of the experimental beverages every 15 min. In randomized order, participants consumed either 70 g.h−1 of maltodextrin and fructose (10% CHO; NORM), 70 g.h−1 of maltodextrin, fructose, sodium alginate, and pectin (10% CHO; ENCAP), 180 g.h−1 of maltodextrin, fructose, sodium alginate, and pectin (26% CHO; HiENCAP), or water (WAT). All CHO beverages had a maltodextrin:fructose ratio of 1:0.7 and contained 1.5 g.L−1 of sodium chloride. Total substrate oxidation, ExGluc oxidation rate, blood glucose, blood lactate, serum non-esterified fatty acid (NEFA) concentration, and RPE were measured for every 15 min. Every 30 min participants provided information regarding their gastrointestinal discomfort (GID). Results There was no significant difference in peak ExGluc oxidation between NORM and ENCAP (0.63 ± 0.07 and 0.64 ± 0.11 g.min−1, respectively; p > 0.5), both of which were significantly lower than HiENCAP (1.13 ± 0.13 g.min−1, p < 0.01). Both NORM and HiENCAP demonstrated higher total CHO oxidation than WAT from 60 and 75 min, respectively, until the end of exercise, with no differences between CHO trials. During the first 60 min, blood glucose was significantly lower in WAT compared with NORM and HiENCAP, but no differences were found between CHO beverages. Both ENCAP and HiENCAP demonstrated a higher blood glucose concentration from 60–105 min than WAT, and ENCAP was significantly higher than HiENCAP. There were no significant differences in reported GID symptoms between the trials. Conclusions At moderate ingestion rates (i.e., 70 g.h−1), the addition of sodium alginate and pectin did not influence the ExGluc oxidation rate compared with an isocaloric CHO beverage. At very high ingestion rates (i.e., 180 g.h−1), high rates of ExGluc oxidation were achieved in line with the literature.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Andrew N. Bosch
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Stuart D. Galloway
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Yannis Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- *Correspondence: Yannis Pitsiladis
| |
Collapse
|
13
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|
14
|
Wilson P. Sport supplements and the athlete's gut: a review. Int J Sports Med 2021; 43:840-849. [PMID: 34814219 DOI: 10.1055/a-1704-3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vigorous or prolonged exercise poses a challenge to gastrointestinal system functioning and is associated with digestive symptoms. This narrative review addresses 1) the potential of dietary supplements to enhance gut function and reduce exercise-associated gastrointestinal symptoms and 2) strategies for reducing gastrointestinal-related side effects resulting from popular sports supplements. Several supplements, including probiotics, glutamine, and bovine colostrum, have been shown to reduce markers of gastrointestinal damage and permeability with exercise. Yet, the clinical ramifications of these findings are uncertain, as improvements in symptoms have not been consistently observed. Among these supplements, probiotics modestly reduced exercise-associated gastrointestinal symptoms in a few studies, suggesting they are the most evidenced-based choice for athletes looking to manage such symptoms through supplementation. Carbohydrate, caffeine, and sodium bicarbonate are evidence-based supplements that can trigger gastrointestinal symptoms. Using glucose-fructose mixtures is beneficial when carbohydrate ingestion is high (>50 g/h) during exercise, and undertaking multiple gut training sessions prior to competition may also be helpful. Approaches for preventing caffeine-induced gastrointestinal disturbances include using low-to-moderate doses (<500 mg) and avoiding/minimizing exacerbating factors (stress, anxiety, other stimulants, fasting). Adverse gastrointestinal effects of sodium bicarbonate can be avoided by using enteric-coated formulations, low doses (0.2 g/kg), or multi-day loading protocols.
Collapse
Affiliation(s)
- Patrick Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, United States
| |
Collapse
|
15
|
Burke LM. Nutritional approaches to counter performance constraints in high-level sports competition. Exp Physiol 2021; 106:2304-2323. [PMID: 34762329 PMCID: PMC9299184 DOI: 10.1113/ep088188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
New Findings What is the topic of this review? The nutritional strategies that athletes use during competition events to optimize performance and the reasons they use them. What advances does it highlight? A range of nutritional strategies can be used by competitive athletes, alone or in combination, to address various event‐specific factors that constrain event performance. Evidence for such practices is constantly evolving but must be combined with understanding of the complexities of real‐life sport for optimal implementation.
Abstract High‐performance athletes share a common goal despite the unique nature of their sport: to pace or manage their performance to achieve the highest sustainable outputs over the duration of the event. Periodic or sustained decline in the optimal performance of event tasks, involves an interplay between central and peripheral phenomena that can often be reduced or delayed in onset by nutritional strategies. Contemporary nutrition practices undertaken before, during or between events include strategies to ensure the availability of limited muscle fuel stores. This includes creatine supplementation to increase muscle phosphocreatine content and consideration of the type, amount and timing of dietary carbohydrate intake to optimize muscle and liver glycogen stores or to provide additional exogenous substrate. Although there is interest in ketogenic low‐carbohydrate high‐fat diets and exogenous ketone supplements to provide alternative fuels to spare muscle carbohydrate use, present evidence suggests a limited utility of these strategies. Mouth sensing of a range of food tastants (e.g., carbohydrate, quinine, menthol, caffeine, fluid, acetic acid) may provide a central nervous system derived boost to sports performance. Finally, despite decades of research on hypohydration and exercise capacity, there is still contention around their effect on sports performance and the best guidance around hydration for sporting events. A unifying model proposes that some scenarios require personalized fluid plans while others might be managed by an ad hoc approach (ad libitum or thirst‐driven drinking) to fluid intake.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|