1
|
Sakurai M, Motoike IN, Hishinuma E, Aoki Y, Tadaka S, Kogure M, Orui M, Ishikuro M, Obara T, Nakaya N, Kumada K, Hozawa A, Kuriyama S, Yamamoto M, Koshiba S, Kinoshita K. Identifying critical age and gender-based metabolomic shifts in a Japanese population of the Tohoku Medical Megabank cohort. Sci Rep 2024; 14:15681. [PMID: 38977808 PMCID: PMC11231361 DOI: 10.1038/s41598-024-66180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Understanding the physiological changes associated with aging and the associated disease risks is essential to establish biomarkers as indicators of biological aging. This study used the NMR-measured plasma metabolome to calculate age-specific metabolite indices. In doing so, the scope of the study was deliberately simplified to capture general trends and insights into age-related changes in metabolic patterns. In addition, changes in metabolite concentrations with age were examined in detail, with the period from 55-59 to 60-64 years being a period of significant metabolic change, particularly in men, and from 45-49 to 50-54 years in females. These results illustrate the different variations in metabolite concentrations by sex and provide new insights into the relationship between age and metabolic diseases.
Collapse
Affiliation(s)
- Miyuki Sakurai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Eiji Hishinuma
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masatsugu Orui
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mami Ishikuro
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Taku Obara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan.
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Nutrients, Physical Activity, and Mitochondrial Dysfunction in the Setting of Metabolic Syndrome. Nutrients 2023; 15:nu15051217. [PMID: 36904216 PMCID: PMC10004804 DOI: 10.3390/nu15051217] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic risk factors for diabetes, coronary heart disease, non-alcoholic fatty liver disease, and some tumors. It includes insulin resistance, visceral adiposity, hypertension, and dyslipidemia. MetS is primarily linked to lipotoxicity, with ectopic fat deposition from fat storage exhaustion, more than obesity per se. Excessive intake of long-chain saturated fatty acid and sugar closely relates to lipotoxicity and MetS through several pathways, including toll-like receptor 4 activation, peroxisome proliferator-activated receptor-gamma regulation (PPARγ), sphingolipids remodeling, and protein kinase C activation. These mechanisms prompt mitochondrial dysfunction, which plays a key role in disrupting the metabolism of fatty acids and proteins and in developing insulin resistance. By contrast, the intake of monounsaturated, polyunsaturated, and medium-chain saturated (low-dose) fatty acids, as well as plant-based proteins and whey protein, favors an improvement in sphingolipid composition and metabolic profile. Along with dietary modification, regular exercises including aerobic, resistance, or combined training can target sphingolipid metabolism and improve mitochondrial function and MetS components. This review aimed to summarize the main dietary and biochemical aspects related to the physiopathology of MetS and its implications for mitochondrial machinery while discussing the potential role of diet and exercise in counteracting this complex clustering of metabolic dysfunctions.
Collapse
|
3
|
Role of Impaired Glycolysis in Perturbations of Amino Acid Metabolism in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24021724. [PMID: 36675238 PMCID: PMC9863464 DOI: 10.3390/ijms24021724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The most frequent alterations in plasma amino acid concentrations in type 1 and type 2 diabetes are decreased L-serine and increased branched-chain amino acid (BCAA; valine, leucine, and isoleucine) levels. The likely cause of L-serine deficiency is decreased synthesis of 3-phosphoglycerate, the main endogenous precursor of L-serine, due to impaired glycolysis. The BCAA levels increase due to decreased supply of pyruvate and oxaloacetate from glycolysis, enhanced supply of NADH + H+ from beta-oxidation, and subsequent decrease in the flux through the citric acid cycle in muscles. These alterations decrease the supply of α-ketoglutarate for BCAA transamination and the activity of branched-chain keto acid dehydrogenase, the rate-limiting enzyme in BCAA catabolism. L-serine deficiency contributes to decreased synthesis of phospholipids and increased synthesis of deoxysphinganines, which play a role in diabetic neuropathy, impaired homocysteine disposal, and glycine deficiency. Enhanced BCAA levels contribute to increased levels of aromatic amino acids (phenylalanine, tyrosine, and tryptophan), insulin resistance, and accumulation of various metabolites, whose influence on diabetes progression is not clear. It is concluded that amino acid concentrations should be monitored in patients with diabetes, and systematic investigation is needed to examine the effects of L-serine and glycine supplementation on diabetes progression when these amino acids are decreased.
Collapse
|
4
|
Taghizadeh H, Emamgholipour S, Hosseinkhani S, Arjmand B, Rezaei N, Dilmaghani-Marand A, Ghasemi E, Panahi N, Dehghanbanadaki H, Ghodssi-Ghassemabadi R, Najjar N, Asadi M, khoshniat M, Larijani B, Razi F. The association between acylcarnitine and amino acids profile and metabolic syndrome and its components in Iranian adults: Data from STEPs 2016. Front Endocrinol (Lausanne) 2023; 14:1058952. [PMID: 36923214 PMCID: PMC10008865 DOI: 10.3389/fendo.2023.1058952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Evidence, albeit with conflicting results, has suggested that cardiometabolic risk factors, including obesity, type 2 diabetes (T2D), dyslipidemia, and hypertension, are highly associated with changes in metabolic signature, especially plasma amino acids and acylcarnitines levels. Here, we aimed to evaluate the association of circulating levels of amino acids and acylcarnitines with metabolic syndrome (MetS) and its components in Iranian adults. METHODS This cross-sectional study was performed on 1192 participants from the large-scale cross-sectional study of Surveillance of Risk Factors of non-communicable diseases (NCDs) in Iran (STEP 2016). The circulating levels of amino acids and acylcarnitines were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in individuals with MetS (n=529) and without MetS (n=663). RESULTS The higher plasma levels of branched-chain amino acids (Val, Leu), aromatic amino acids (Phe, Tyr), Pro, Ala, Glu, and the ratio of Asp to Asn were significantly associated with MetS, whereas lower circulating levels of Gly, Ser, His, Asn, and citrulline were significantly associated with MetS. As for plasma levels of free carnitine and acylcarnitines, higher levels of short-chain acylcarnitines (C2, C3, C4DC), free carnitine (C0), and long-chain acylcarnitines (C16, C18OH) were significantly associated with MetS. Principal component analysis (PCA) showed that factor 3 (Tyr, Leu, Val, Met, Trp, Phe, Thr) [OR:1.165, 95% CI: 1.121-1.210, P<0.001], factor 7 (C0, C3, C4) [OR:1.257, 95% CI: 1.150-1.374, P<0.001], factor 8 (Gly, Ser) [OR:0.718, 95% CI: 0.651-0.793, P< 0.001], factor 9 (Ala, Pro, C4DC) [OR:1.883, 95% CI: 1.669-2.124, P<0.001], factor 10 (Glu, Asp, C18:2OH) [OR:1.132, 95% CI: 1.032-1.242, P= 0.009], factor 11 (citrulline, ornithine) [OR:0.862, 95% CI: 0.778-0.955, P= 0.004] and 13 (C18OH, C18:1 OH) [OR: 1.242, 95% CI: 1.042-1.480, P= 0.016] were independently correlated with metabolic syndrome. CONCLUSION Change in amino acid, and acylcarnitines profiles were seen in patients with MetS. Moreover, the alteration in the circulating levels of amino acids and acylcarnitines is along with an increase in MetS component number. It also seems that amino acid and acylcarnitines profiles can provide valuable information on evaluating and monitoring MetS risk. However, further studies are needed to establish this concept.
Collapse
Affiliation(s)
- Hananeh Taghizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran, Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Dilmaghani-Marand
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nekoo Panahi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Najjar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen khoshniat
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Farideh Razi,
| |
Collapse
|
5
|
Holeček M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients 2022; 14:nu14091987. [PMID: 35565953 PMCID: PMC9105362 DOI: 10.3390/nu14091987] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
L-serine plays an essential role in a broad range of cellular functions including protein synthesis, neurotransmission, and folate and methionine cycles and synthesis of sphingolipids, phospholipids, and sulphur containing amino acids. A hydroxyl side-chain of L-serine contributes to polarity of proteins, and serves as a primary site for binding a phosphate group to regulate protein function. D-serine, its D-isoform, has a unique role. Recent studies indicate increased requirements for L-serine and its potential therapeutic use in some diseases. L-serine deficiency is associated with impaired function of the nervous system, primarily due to abnormal metabolism of phospholipids and sphingolipids, particularly increased synthesis of deoxysphingolipids. Therapeutic benefits of L-serine have been reported in primary disorders of serine metabolism, diabetic neuropathy, hyperhomocysteinemia, and amyotrophic lateral sclerosis. Use of L-serine and its metabolic products, specifically D-serine and phosphatidylserine, has been investigated for the therapy of renal diseases, central nervous system injury, and in a wide range of neurological and psychiatric disorders. It is concluded that there are disorders in which humans cannot synthesize L-serine in sufficient quantities, that L-serine is effective in therapy of disorders associated with its deficiency, and that L-serine should be classified as a “conditionally essential” amino acid.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance. Biomolecules 2021; 11:biom11101414. [PMID: 34680047 PMCID: PMC8533624 DOI: 10.3390/biom11101414] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The microbiota-harboring human gut is an exquisitely active ecosystem that has evolved in a constant symbiosis with the human host. It produces numerous compounds depending on its metabolic capacity and substrates availability. Diet is the major source of the substrates that are metabolized to end-products, further serving as signal molecules in the microbiota-host cross-talk. Among these signal molecules, branched-chain amino acids (BCAAs) has gained significant scientific attention. BCAAs are abundant in animal-based dietary sources; they are both produced and degraded by gut microbiota and the host circulating levels are associated with the risk of type 2 diabetes. This review aims to summarize the current knowledge on the complex relationship between gut microbiota and its functional capacity to handle BCAAs as well as the host BCAA metabolism in insulin resistance development. Targeting gut microbiota BCAA metabolism with a dietary modulation could represent a promising approach in the prevention and treatment of insulin resistance related states, such as obesity and diabetes.
Collapse
|
7
|
Blood Metabolite Signatures of Metabolic Syndrome in Two Cross-Cultural Older Adult Cohorts. Int J Mol Sci 2020; 21:ijms21041324. [PMID: 32079087 PMCID: PMC7072935 DOI: 10.3390/ijms21041324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) affects an increasing number of older adults worldwide. Cross-cultural comparisons can provide insight into how factors, including genetic, environmental, and lifestyle, may influence MetS prevalence. Metabolomics, which measures the biochemical products of cell processes, can be used to enhance a mechanistic understanding of how biological factors influence metabolic outcomes. In this study we examined associations between serum metabolite concentrations, representing a range of biochemical pathways and metabolic syndrome in two older adult cohorts: The Tsuruoka Metabolomics Cohort Study (TMCS) from Japan (n = 104) and the Baltimore Longitudinal Study of Aging (BLSA) from the United States (n = 146). We used logistic regression to model associations between MetS and metabolite concentrations. We found that metabolites from the phosphatidylcholines-acyl-alkyl, sphingomyelin, and hexose classes were significantly associated with MetS and risk factor outcomes in both cohorts. In BLSA, metabolites across all classes were uniquely associated with all outcomes. In TMCS, metabolites from the amino acid, biogenic amines, and free fatty acid classes were uniquely associated with MetS, and metabolites from the sphingomyelin class were uniquely associated with elevated triglycerides. The metabolites and metabolite classes we identified may be relevant for future studies exploring disease mechanisms and identifying novel precision therapy targets for individualized medicine.
Collapse
|
8
|
Tamura Y, Ohta H, Kagawa Y, Osuga T, Morishita K, Sasaki N, Takiguchi M. Plasma amino acid profiles in dogs with inflammatory bowel disease. J Vet Intern Med 2019; 33:1602-1607. [PMID: 31111561 PMCID: PMC6639477 DOI: 10.1111/jvim.15525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lymphocytic-plasmacytic enteritis is the common form of idiopathic inflammatory bowel disease (IBD) in dogs. In human IBD, disturbances of amino acid metabolism have been demonstrated to be involved in the pathophysiology of IBD. Therefore, plasma amino acid profile might represent a novel marker of human IBD. OBJECTIVES To determine the plasma amino acid profiles of dogs with IBD and its usefulness as a novel marker of IBD in dogs. ANIMALS Fasting blood plasma was obtained from 10 dogs with IBD and 12 healthy dogs. METHODS All IBD dogs were prospectively included in this study, and heparinized blood samples were collected. The plasma concentrations of 21 amino acids were determined using the ninhydrin method. The relationships among the plasma amino acid concentrations and plasma C-reactive protein (CRP) concentration, canine chronic enteropathy clinical activity index (CCECAI), and overall World Small Animal Veterinary Association (WSAVA) score were investigated. RESULTS Median concentration (nmol/mL) of methionine [46.2; range, 30.0-59.3], proline [119.4; range, 76.7-189.2], serine [115.1; range, 61.4-155.9], and tryptophan [17.4; range, 11.9-56.3]) were significantly lower than in control dogs [62.6; range, 51.0-83.6, 199.1; range, 132.5-376.7, 164.3; range, 124.7-222.9, and 68.3; range, 35.7-94.8, respectively]. A negative correlation was identified between the plasma serine concentration and CCECAI (r s = -.67, P = .03), but there were no correlations between plasma amino acid concentrations and CRP concentration or overall WSAVA score. CONCLUSIONS AND CLINICAL IMPORTANCE Plasma serine concentration might represent a novel maker of IBD in dogs.
Collapse
Affiliation(s)
- Yu Tamura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yumiko Kagawa
- Diagnostic Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tatsuyuki Osuga
- Veterinary Teaching Hospital, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
9
|
Yao X, Xu C, Cao Y, Lin L, Wu H, Wang C. Early metabolic characterization of brain tissues after whole body radiation based on gas chromatography–mass spectrometry in a rat model. Biomed Chromatogr 2018; 33:e4448. [DOI: 10.1002/bmc.4448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Xueting Yao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chao Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Yurong Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Lin Lin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Hanxu Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| |
Collapse
|
10
|
Libert DM, Nowacki AS, Natowicz MR. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018; 6:e5410. [PMID: 30186675 PMCID: PMC6120443 DOI: 10.7717/peerj.5410] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Metabolic syndrome (MS) is a construct used to separate “healthy” from “unhealthy” obese patients, and is a major risk factor for type 2 diabetes (T2D) and cardiovascular disease. There is controversy over whether obese “metabolically well” persons have a higher morbidity and mortality than lean counterparts, suggesting that MS criteria do not completely describe physiologic risk factors or consequences of obesity. We hypothesized that metabolomic analysis of plasma would distinguish obese individuals with and without MS and T2D along a spectrum of obesity-associated metabolic derangements, supporting metabolomic analysis as a tool for a more detailed assessment of metabolic wellness than currently used MS criteria. Methods Fasting plasma samples from 90 adults were assigned to groups based on BMI and ATP III criteria for MS: (1) lean metabolically well (LMW; n = 24); (2) obese metabolically well (OBMW; n = 26); (3) obese metabolically unwell (OBMUW; n = 20); and (4) obese metabolically unwell with T2D (OBDM; n = 20). Forty-one amino acids/dipeptides, 33 acylcarnitines and 21 ratios were measured. Obesity and T2D effects were analyzed by Wilcoxon rank-sum tests comparing obese nondiabetics vs LMW, and OBDM vs nondiabetics, respectively. Metabolic unwellness was analyzed by Jonckheere-Terpstra trend tests, assuming worsening health from LMW → OBMW → OBMUW. To adjust for multiple comparisons, statistical significance was set at p < 0.005. K-means cluster analysis of aggregated amino acid and acylcarnitine data was also performed. Results Analytes and ratios significantly increasing in obesity, T2D, and with worsening health include: branched-chain amino acids (BCAAs), cystine, alpha-aminoadipic acid, phenylalanine, leucine + lysine, and short-chain acylcarnitines/total carnitines. Tyrosine, alanine and propionylcarnitine increase with obesity and metabolic unwellness. Asparagine and the tryptophan/large neutral amino acid ratio decrease with T2D and metabolic unwellness. Malonylcarnitine decreases in obesity and 3-OHbutyrylcarnitine increases in T2D; neither correlates with unwellness. Cluster analysis did not separate subjects into discreet groups based on metabolic wellness. Discussion Levels of 15 species and metabolite ratios trend significantly with worsening metabolic health; some are newly recognized. BCAAs, aromatic amino acids, lysine, and its metabolite, alpha-aminoadipate, increase with worsening health. The lysine pathway is distinct from BCAA metabolism, indicating that biochemical derangements associated with MS involve pathways besides those affected by BCAAs. Even those considered “obese, metabolically well” had metabolite levels which significantly trended towards those found in obese diabetics. Overall, this analysis yields a more granular view of metabolic wellness than the sole use of cardiometabolic MS parameters. This, in turn, suggests the possible utility of plasma metabolomic analysis for research and public health applications.
Collapse
Affiliation(s)
- Diane M Libert
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Amy S Nowacki
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America.,Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States of America
| | - Marvin R Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America.,Pathology and Laboratory Medicine, Genomic Medicine, Pediatrics and Neurological Institutes, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
11
|
Gar C, Rottenkolber M, Prehn C, Adamski J, Seissler J, Lechner A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit Rev Clin Lab Sci 2017; 55:21-32. [PMID: 29239245 DOI: 10.1080/10408363.2017.1414143] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Presently, routine screening misses many cases of prediabetes and early type 2 diabetes (T2D). Therefore, better biomarkers are needed for a simple and early detection of abnormalities of glucose metabolism and prediction of future T2D. Possible candidates for this include plasma or serum amino acids because glucose and amino acid metabolism are closely connected. This review presents the available evidence of this connectivity and discusses its clinical implications. First, we examine the underlying physiological, pre-analytical, and analytical issues. Then, we summarize results of human studies that evaluate amino acid levels as markers for insulin resistance, prediabetes, and future incident T2D. Finally, we illustrate the interconnection of amino acid levels and metabolic syndrome with our own data from a deeply phenotyped human cohort. We also discuss how amino acids may contribute to the pathophysiology of T2D. We conclude that elevated branched-chain amino acids and reduced glycine are currently the most robust and consistent amino acid markers for prediabetes, insulin resistance, and future T2D. Yet, we are cautious regarding the clinical potential even of these parameters because their discriminatory power is insufficient and their levels depend not only on glycemia, but also on other components of the metabolic syndrome. The identification of more precise intermediates of amino acid metabolism or combinations with other biomarkers will, therefore, be necessary to obtain in order to develop laboratory tests that can improve T2D screening.
Collapse
Affiliation(s)
- C Gar
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - M Rottenkolber
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - C Prehn
- d Institute of Experimental Genetics, Genome Analysis Center , Helmholtz Zentrum München, German Research Center for Environmental Health , Neuherberg , Germany
| | - J Adamski
- c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany.,d Institute of Experimental Genetics, Genome Analysis Center , Helmholtz Zentrum München, German Research Center for Environmental Health , Neuherberg , Germany.,e Lehrstuhl fu¨r Experimentelle Genetik , Technische Universität München , Freising , Germany
| | - J Seissler
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - A Lechner
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| |
Collapse
|
12
|
Okekunle AP, Li Y, Liu L, Du S, Wu X, Chen Y, Li Y, Qi J, Sun C, Feng R. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res Clin Pract 2017; 132:45-58. [PMID: 28783532 DOI: 10.1016/j.diabres.2017.07.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/02/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
AIM To evaluate circulating amino acids (AA) profiles in obesity, type 2 diabetes (T2D) and metabolic syndrome (MetS). METHODS Serum AA were profiled among 200; healthy, obese, T2D and MetS subjects matched by sex, age and BMI using ultra-high performance liquid chromatography tandem quadruple mass spectrometry (UPLC-TQ-MS). A meta-analysis, including 47 case-control studies (including the current study) on serum AA in obesity, T2D and MetS searched through October 2016 was conducted to explore the AA differences in obesity, T2D and MetS. RESULTS In comparison with healthy controls, 14 AA (10 increased and 4 decreased) were significantly altered (P<0.05) in all non-healthy subjects. Also, mean differences of valine (obese: 34.13 [27.70, 40.56]µmol/L, P<0.001, T2D: 19.49 [3.31, 35.68]µmol/L, P<0.05, MetS: 29.18 [16.04, 42.33]µmol/L, P<0.001), glutamic acid (obese: 18.62 [11.64, 25.61]µmol/L, P<0.001, T2D: 19.94 [0.28, 39.61]µmol/L, P<0.05, MetS: 12.45 [3.98, 20.91]µmol/L, P<0.001), proline (obese: 16.72 [6.20, 27.24]µmol/L, P<0.001, T2D: 20.72 [15.82, 25.61]µmol/L, P<0.001, MetS: 29.95 [25.18, 34.71]µmol/L, P<0.001) and isoleucine (obese: 11.39 [8.54, 14.24]µmol/L, P<0.001, T2D: 7.37 [1.52, 13.22]µmol/L, P<0.05, MetS: 10.40 [4.90, 15.89]µmol/L, P<0.001) were significantly higher compared to healthy controls. Similarly, mean differences of glycine (obese: -30.99 [-39.69, -22.29]µmol/L, P<0.001, T2D: -30.37 [-41.80, -18.94]µmol/L, P<0.001 and MetS: -35.24 [-39.28, -31.21]µmol/L, P<0.001) were significantly lower compared to healthy controls. CONCLUSION In both the case-control study and meta-analysis, obesity was related to the most circulating AA changes, followed by MetS and T2D. Valine, isoleucine, glutamic acid and proline increased, while Glycine decreased in all metabolic disorders.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Shanshan Du
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Yang Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Yanchuan Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Jiayue Qi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China.
| |
Collapse
|
13
|
Barceló A, Morell-Garcia D, Salord N, Esquinas C, Pérez G, Pérez A, Monasterio C, Gasa M, Fortuna AM, Montserrat JM, Mayos M. A randomized controlled trial: branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea. J Sleep Res 2017; 26:773-781. [PMID: 28513068 DOI: 10.1111/jsr.12551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
Abstract
There is evidence that changes in branched-chain amino acid (BCAA) levels may correlate with the efficacy of therapeutic interventions for affecting improvement in metabolic control. The objective of this study was to evaluate whether serum concentrations of BCAAs (leucine, isoleucine, valine) could mediate in insulin sensitivity and glucose tolerance after continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). A prospective randomized controlled trial of OSA patients with morbid obesity was conducted. Eighty patients were randomized into two groups: 38 received conservative treatment and 42 received CPAP treatment for 12 weeks. Plasma levels of BCAA, glucose tolerance and insulin resistance were evaluated at baseline and after treatment. After treatment, significant decreases of leucine levels were observed in both groups when compared with baseline levels (P < 0.005). With respect to patients with normal glucose tolerance (NGT), patients with impaired glucose tolerance (IGT) had higher baseline levels of isoleucine (78 ± 16 versus 70 ± 13 μmol L-1 , P = 0.014) and valine (286 ± 36 versus 268 ± 41 μmol L-1 , P = 0.049), respectively. Changes in levels of leucine and isoleucine after treatment were related negatively to changes in fasting plasma glucose and glycosylated haemoglobin values only in the conservative group (P < 0.05). In summary, we found that the treatment with CPAP for 12 weeks caused similar changes in circulating BCAAs concentrations to conservative treatment and a differential metabolic response of CPAP and conservative treatment was observed between the relationship of BCAAs and glucose homeostasis. Additional studies are needed to determine the interplay between branched-chain amino acids and glucose metabolism in patients with sleep apnea.
Collapse
Affiliation(s)
- Antonia Barceló
- Servei Análisis Clíniques, Hospital Universitari Son Espases, Palma de Mallorca, Spain.,CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Spain.,Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
| | - Daniel Morell-Garcia
- Servei Análisis Clíniques, Hospital Universitari Son Espases, Palma de Mallorca, Spain.,Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
| | - Neus Salord
- CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Spain.,Sleep Unit. Department of Respiratory Medicine, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Respiratory Medicine Section, Hospitalet de Llobregat, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Esquinas
- Department of Respiratory Medicine, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Gerardo Pérez
- Servei Análisis Clíniques, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Antonio Pérez
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Spain
| | - Carmen Monasterio
- CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Spain.,Sleep Unit. Department of Respiratory Medicine, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Respiratory Medicine Section, Hospitalet de Llobregat, Spain
| | - Merce Gasa
- Sleep Unit. Department of Respiratory Medicine, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Respiratory Medicine Section, Hospitalet de Llobregat, Spain
| | - Ana Maria Fortuna
- CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Sleep Unit, Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Josep Maria Montserrat
- CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Spain.,Sleep Unit, Department of Respiratory Medicine, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mercedes Mayos
- CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Sleep Unit, Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
14
|
Associations between plasma branched-chain amino acids, β-aminoisobutyric acid and body composition. J Nutr Sci 2016; 5:e6. [PMID: 27313851 PMCID: PMC4791517 DOI: 10.1017/jns.2015.37] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023] Open
Abstract
Plasma branched-chain amino acids (BCAA) are elevated in obesity and associated with
increased cardiometabolic risk. β-Aminoisobutyric acid (B-AIBA), a recently identified
small molecule metabolite, is associated with decreased cardiometabolic risk. Therefore,
we investigated the association of BCAA and B-AIBA with each other and with detailed body
composition parameters, including abdominal visceral adipose tissue (VAT) and subcutaneous
adipose tissue (SAT). A cross-sectional study was carried out with lean
(n 15) and obese (n 33) men and women. Detailed
metabolic evaluations, including measures of body composition, insulin sensitivity and
plasma metabolomics were completed. Plasma BCAA were higher (1·6 (se 0·08)
(×107) v. 1·3 (se 0·06) (×107) arbitrary
units; P = 0·005) in obese v. lean subjects. BCAA were
positively associated with VAT (R 0·49; P = 0·0006) and
trended to an association with SAT (R 0·29; P = 0·052).
The association between BCAA and VAT, but not SAT, remained significant after controlling
for age, sex and race on multivariate modelling (P < 0·05). BCAA
were also associated with parameters of insulin sensitivity (Matsuda index:
R −0·50, P = 0·0004; glucose AUC: R
0·53, P < 0·001). BCAA were not associated with B-AIBA
(R −0·04; P = 0·79). B-AIBA was negatively associated
with SAT (R −0·37; P = 0·01) but only trended to an
association with VAT (R 0·27; P = 0·07). However,
neither relationship remained significant after multivariate modelling
(P > 0·05). Plasma B-AIBA was associated with parameters of
insulin sensitivity (Matsuda index R 0·36, P = 0·01;
glucose AUC: R −0·30, P = 0·04). Plasma BCAA levels were
positively correlated with VAT and markers of insulin resistance. The results suggest a
possible complex role of adipose tissue in BCAA homeostasis and insulin resistance.
Collapse
Key Words
- AU, arbitrary units
- B-AIBA, β-aminoisobutyric acid
- BCAA, branched-chain amino acid
- BCAT, branched-chain amino acid aminotransferase
- BCKD, branched-chain α-ketoacid dehydrogenase
- Branched-chain amino acids
- DXA, dual-energy X-ray absorptiometry
- HOMA-IR, homeostasis model assessment for insulin resistance
- Lean body mass
- Metabolomics
- OGTT, oral glucose tolerance test
- SAT, subcutaneous adipose tissue
- Subcutaneous adipose tissue
- VAT, visceral adipose tissue
- Visceral adiposity
- β-Aminoisobutyric acid
Collapse
|
15
|
Takashina C, Tsujino I, Watanabe T, Sakaue S, Ikeda D, Yamada A, Sato T, Ohira H, Otsuka Y, Oyama-Manabe N, Ito YM, Nishimura M. Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japanese adults with normal glucose tolerance. Nutr Metab (Lond) 2016; 13:5. [PMID: 26788116 PMCID: PMC4717594 DOI: 10.1186/s12986-015-0059-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Amino acids (AAs) are emerging as a new class of effective molecules in the etiology of obesity and diabetes mellitus. However, most investigations have focused on subjects with obesity and/or impaired glucose regulation; the possible involvement of AAs in the initial phase of glucose dysregulation remains poorly understood. Furthermore, little attention has been given to possible associations between the pattern/degree of fat deposition and the plasma AA profile. Our objective was therefore to determine the relationships between plasma AA concentrations and the type/degree of obesity and glucose regulation in Japanese adults with normal glucose tolerance. Methods Eighty-three subjects with normal glucose tolerance were classified as obese or nonobese and as visceral obesity or nonvisceral obesity. Correlations between the plasma levels of 23 AAs and somatometric measurements, visceral fat area (VFA), subcutaneous fat area (SFA), and 75-g oral glucose tolerance test results were analyzed. Results Obesity or visceral obesity was associated with higher levels of branched-chain AAs (isoleucine, leucine, and valine), lysine, tryptophan, cystine, and glutamate but lower levels of asparagine, citrulline, glutamine, glycine, and serine (p < 0.04). Age- and gender-adjusted analyses indicated that VFA was positively correlated with tryptophan and glutamate levels, whereas VFA and SFA were negatively correlated with citrulline, glutamine, and glycine levels (p < 0.05). The fasting and 2-h plasma glucose levels or the homeostasis model assessment of insulin resistance were positively correlated with valine, glutamate, and tyrosine levels but negatively correlated with citrulline, glutamine, and glycine levels. The homeostasis model assessment for the β-cell function index was positively correlated with leucine, tryptophan, valine, and glutamate levels but negatively correlated with citrulline, glutamine, glycine, and serine levels (p < 0.05). Conclusions The present study identified specific associations between 10 AAs and the type/degree of obesity, and indices of glucose/insulin regulation, in Japanese adults with preserved glucose metabolism. With the growing concern about the increasing prevalence of obesity and diabetes, the possible roles of these AAs as early markers and/or precursors warrant further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0059-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chisa Takashina
- First Department of Medicine, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8648 Japan
| | - Ichizo Tsujino
- First Department of Medicine, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8648 Japan
| | - Taku Watanabe
- First Department of Medicine, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8648 Japan
| | - Shinji Sakaue
- First Department of Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daisuke Ikeda
- First Department of Medicine, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8648 Japan
| | - Asuka Yamada
- First Department of Medicine, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8648 Japan
| | - Takahiro Sato
- First Department of Medicine, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8648 Japan
| | - Hiroshi Ohira
- First Department of Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshinori Otsuka
- Department of Human Developmental Science, Faculty of Education, Hokkaido University, Sapporo, Japan
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Postprandial Differences in the Amino Acid and Biogenic Amines Profiles of Impaired Fasting Glucose Individuals after Intake of Highland Barley. Nutrients 2015; 7:5556-71. [PMID: 26184292 PMCID: PMC4517015 DOI: 10.3390/nu7075238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to measure the postprandial changes in amino acid and biogenic amine profiles in individuals with impaired fasting glucose (IFG) and to investigate the changes of postprandial amino acid and biogenic amine profiles after a meal of highland barley (HB). Firstly, 50 IFG and 50 healthy individuals were recruited for the measurement of 2 h postprandial changes of amino acid and biogenic amine profiles after a glucose load. Secondly, IFG individuals received three different loads: Glucose (GL), white rice (WR) and HB. Amino acid and biogenic amine profiles, glucose and insulin were assayed at time zero and 30, 60, 90 and 120 min after the test load. The results showed fasting and postprandial amino acid and biogenic amine profiles were different between the IFG group and the controls. The level of most amino acids and their metabolites decreased after an oral glucose tolerance test, while the postprandial level of γ-aminobutyric acid (GABA) increased significantly in IFG individuals. After three different test loads, the area under the curve for glucose, insulin, lysine and GABA after a HB load decreased significantly compared to GL and WR loads. Furthermore, the postprandial changes in the level of GABA between time zero and 120 min during a HB load were associated positively with 2 h glucose and fasting insulin secretion in the IFG individuals. Thus, the HB load produced low postprandial glucose and insulin responses, which induced changes in amino acid and biogenic amine profiles and improved insulin sensitivity.
Collapse
|
17
|
Esaki K, Sayano T, Sonoda C, Akagi T, Suzuki T, Ogawa T, Okamoto M, Yoshikawa T, Hirabayashi Y, Furuya S. L-Serine Deficiency Elicits Intracellular Accumulation of Cytotoxic Deoxysphingolipids and Lipid Body Formation. J Biol Chem 2015; 290:14595-609. [PMID: 25903138 DOI: 10.1074/jbc.m114.603860] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 12/18/2022] Open
Abstract
L-serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize L-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external L-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of L-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in L-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external L-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with L-serine but was potentiated by increasing the ratio of L-alanine to L-serine in the medium. Unlike with L-serine, depriving cells of external L-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, L-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of L-alanine to L-serine in cells and tissues lacking Phgdh, and de novo synthesis of L-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.
Collapse
Affiliation(s)
- Kayoko Esaki
- From the Laboratories of Functional Genomics and Metabolism and the Laboratories for Molecular Psychiatry and Molecular Membrane Neuroscience
| | - Tomoko Sayano
- From the Laboratories of Functional Genomics and Metabolism and Molecular Membrane Neuroscience
| | - Chiaki Sonoda
- From the Laboratories of Functional Genomics and Metabolism and
| | - Takumi Akagi
- Support Unit for Neuromorphological Analysis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, and
| | - Takeshi Suzuki
- Synthetic Biology, Division of Systems Bioengineering, Graduate School of Bioresource and Bioenvironmental Sciences, and
| | - Takuya Ogawa
- the Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi 324-8501, Japan
| | - Masahiro Okamoto
- Synthetic Biology, Division of Systems Bioengineering, Graduate School of Bioresource and Bioenvironmental Sciences, and Bio-Architecture Center, Kyushu University, Fukuoka 812-8581
| | | | | | - Shigeki Furuya
- From the Laboratories of Functional Genomics and Metabolism and Bio-Architecture Center, Kyushu University, Fukuoka 812-8581,
| |
Collapse
|
18
|
Tůma P, Gojda J. Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 2015; 36:1969-75. [DOI: 10.1002/elps.201400585] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Petr Tůma
- Institute of Biochemistry; Cell and Molecular Biology; Third Faculty of Medicine; Charles University in Prague; Prague Czech Republic
| | - Jan Gojda
- 2nd Internal Department of Third Faculty of Medicine and Faculty Hospital Královské Vinohrady; Centre for Research on Diabetes, Metabolism and Nutrition; Charles University in Prague; Prague Czech Republic
| |
Collapse
|
19
|
Xie G, Ma X, Zhao A, Wang C, Zhang Y, Nieman D, Nicholson JK, Jia W, Bao Y, Jia W. The metabolite profiles of the obese population are gender-dependent. J Proteome Res 2014; 13:4062-73. [PMID: 25132568 DOI: 10.1021/pr500434s] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studies have identified that several amino acids, in particular, branched-chain amino acids (BCAAs), have increased significantly in obese individuals when compared to lean individuals. Additionally, these metabolites were strongly associated with future diabetes, which rendered them prognostic markers suitable for obese populations. Here we report a metabonomic study that reveals new findings on the role of these amino acid markers, particularly BCAAs, in a Chinese cohort including 106 healthy obese and 105 healthy lean participants. We found that the BCAAs were correlated with insulin resistance and differentially expressed in obese men, but not in obese women. The results were verified with two independent groups of participants (Chinese, n = 105 and American, n = 72) and demonstrate that the serum metabolite profiles of the obese population are gender-dependent. The study supports the previous findings of a panel of several key metabolites as prognostic markers of the obese population and highlights the need to take into account gender differences when using these markers for risk assessment.
Collapse
Affiliation(s)
- Guoxiang Xie
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thalacker-Mercer AE, Ingram KH, Guo F, Ilkayeva O, Newgard CB, Garvey WT. BMI, RQ, diabetes, and sex affect the relationships between amino acids and clamp measures of insulin action in humans. Diabetes 2014; 63:791-800. [PMID: 24130332 PMCID: PMC3900549 DOI: 10.2337/db13-0396] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have used indirect measures of insulin sensitivity to link circulating amino acids with insulin resistance and identify potential biomarkers of diabetes risk. Using direct measures (i.e., hyperinsulinemic-euglycemic clamps), we examined the relationships between the metabolomic amino acid profile and insulin action (i.e., glucose disposal rate [GDR]). Relationships between GDR and serum amino acids were determined among insulin-sensitive, insulin-resistant, and type 2 diabetic (T2DM) individuals. In all subjects, glycine (Gly) had the strongest correlation with GDR (positive association), followed by leucine/isoleucine (Leu/Ile) (negative association). These relationships were dramatically influenced by BMI, the resting respiratory quotient (RQ), T2DM, and sex. Gly had a strong positive correlation with GDR regardless of BMI, RQ, or sex but became nonsignificant in T2DM. In contrast, Leu/Ile was negatively associated with GDR in nonobese and T2DM subjects. Increased resting fat metabolism (i.e., low RQ) and obesity were observed to independently promote and negate the association between Leu/Ile and insulin resistance, respectively. Additionally, the relationship between Leu/Ile and GDR was magnified in T2DM males. Future studies are needed to determine whether Gly has a mechanistic role in glucose homeostasis and whether dietary Gly enrichment may be an effective intervention in diseases characterized by insulin resistance.
Collapse
Affiliation(s)
- Anna E. Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL
- Nutrition Sciences, University of Alabama, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Katherine H. Ingram
- Nutrition Sciences, University of Alabama, Birmingham, AL
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA
| | - Fangjian Guo
- Nutrition Sciences, University of Alabama, Birmingham, AL
| | | | - Christopher B. Newgard
- Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - W. Timothy Garvey
- Nutrition Sciences, University of Alabama, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Corresponding author: W. Timothy Garvey,
| |
Collapse
|
21
|
Luo Y, Yoneda J, Ohmori H, Sasaki T, Shimbo K, Eto S, Kato Y, Miyano H, Kobayashi T, Sasahira T, Chihara Y, Kuniyasu H. Cancer usurps skeletal muscle as an energy repository. Cancer Res 2013; 74:330-40. [PMID: 24197136 DOI: 10.1158/0008-5472.can-13-1052] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells produce energy through aerobic glycolysis, but contributions of host tissues to cancer energy metabolism are unclear. In this study, we aimed to elucidate the cancer-host energy production relationship, in particular, between cancer energy production and host muscle. During the development and progression of colorectal cancer, expression of the secreted autophagy-inducing stress protein HMGB1 increased in the muscle of tumor-bearing animals. This effect was associated with decreased expression of pyruvate kinase PKM1 and pyruvate kinase activity in muscle via the HMGB1 receptor for advanced glycation endproducts (RAGE). However, muscle mitochondrial energy production was maintained. In contrast, HMGB1 addition to colorectal cancer cells increased lactate fermentation. In the muscle, HMGB1 addition induced autophagy by decreasing levels of active mTOR and increasing autophagy-associated proteins, plasma glutamate, and (13)C-glutamine incorporation into acetyl-CoA. In a mouse model of colon carcinogenesis, a temporal increase in HMGB1 occurred in serum and colonic mucosa with an increase in autophagy associated with altered plasma free amino acid levels, increased glutamine, and decreased PKM1 levels. These differences were abolished by administration of an HMGB1 neutralizing antibody. Similar results were obtained in a mouse xenograft model of human colorectal cancer. Taken together, our findings suggest that HMGB1 released during tumorigenesis recruits muscle to supply glutamine to cancer cells as an energy source.
Collapse
Affiliation(s)
- Yi Luo
- Authors' Affiliations: Department of Molecular Pathology, Nara Medical University, Shijo-cho, Kashihara; Institute for Innovation Ajinomoto Co., Inc., Suzuki-cho, Kawasaki; and Department of Gastrointestinal Surgery, Fukuoka University School of Medicine, Nanakuma, Minami-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nagata C, Wada K, Tsuji M, Hayashi M, Takeda N, Yasuda K. Plasma amino acid profiles are associated with biomarkers of breast cancer risk in premenopausal Japanese women. Cancer Causes Control 2013; 25:143-9. [PMID: 24186145 DOI: 10.1007/s10552-013-0316-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/19/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Recently, profiles of plasma amino acids have been utilized to detect diseases including breast cancer. However, there is a possibility that the amino acid status may be associated with the risk of breast cancer. We investigated the relationship of plasma levels of amino acids with levels of sex hormones and insulin-like growth factor (IGF)-1, which are relevant to the etiology of premenopausal breast cancer, in normal premenopausal women. METHODS Participants were 350 Japanese women who had regular menstrual cycles less than 40-day long. Fasting plasma samples were assayed for estradiol, testosterone, dehydroepiandrosterone sulfate, sex-hormone-binding globulin (SHBG), and IGF-1. A total of 20 amino acids in plasma were quantified by liquid chromatography-mass spectrometry. Information on lifestyle and reproductive factors was obtained using a self-administered questionnaire. RESULTS The plasma arginine level was significantly inversely correlated with plasma levels of total and free estradiol and IGF-1 after adjusting for age, body mass index, and phase of the menstrual cycle. Plasma leucine and tyrosine levels were significantly positively correlated with the free testosterone level. The ratio of plasma asparagine to the total amino acids was significantly positively correlated with SHBG level. CONCLUSIONS Plasma levels of some specific amino acids, such as arginine, leucine, tyrosine, and asparagine, were associated with the levels of sex hormones, SHBG, or IGF-1 in premenopausal women. However, the present cross-sectional study cannot provide a cause-effect relation. The implication of amino acids in the etiology of breast cancer needs to be addressed in future studies.
Collapse
Affiliation(s)
- Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan,
| | | | | | | | | | | |
Collapse
|
23
|
de Vogel S, Ulvik A, Meyer K, Ueland PM, Nygård O, Vollset SE, Tell GS, Gregory JF, Tretli S, Bjørge T. Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer--a large nested case-control study within the JANUS cohort in Norway. Int J Cancer 2013; 134:197-206. [PMID: 23797698 DOI: 10.1002/ijc.28347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Abstract
Methyl group donors and intermediates of one-carbon metabolism affect DNA synthesis and DNA methylation, and may thereby affect prostate carcinogenesis. Choline, the precursor of betaine, and the one-carbon metabolite sarcosine have been associated with increased prostate cancer risk. Within JANUS, a prospective cohort in Norway (n = 317,000) with baseline serum samples, we conducted a nested case-control study among 3,000 prostate cancer cases and 3,000 controls. Using conditional logistic regression, odds ratios (ORs) and 95% confidence intervals (CIs) for prostate cancer risk were estimated according to quintiles of circulating betaine, dimethylglycine (DMG), sarcosine, glycine and serine. High sarcosine and glycine concentrations were associated with reduced prostate cancer risk of borderline significance (sarcosine: highest vs. lowest quintile OR = 0.86, CI = 0.72-1.01, p(trend) = 0.03; glycine: OR = 0.83, CI = 0.70-1.00, p(trend) = 0.07). Serum betaine, DMG and serine were not associated with prostate cancer risk. However, individuals with a high glycine/serine ratio were at decreased prostate cancer risk (OR = 0.74, CI = 0.69-0.85, p(trend) < 0.001). This population-based study suggested that men with high serum sarcosine or glycine concentrations have modestly reduced prostate cancer risk. Ratios of metabolites reflecting one-carbon balance may be associated with prostate cancer risk, as demonstrated for the glycine/serine ratio, and should be explored in future studies.
Collapse
Affiliation(s)
- Stefan de Vogel
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu H, Wang Z, Zhang X, Qiao Y, Wu S, Dong F, Chen Y. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by GC/TOFMS-based metabolomics. RADIATION PROTECTION DOSIMETRY 2013; 154:9-17. [PMID: 22951997 DOI: 10.1093/rpd/ncs138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the study, gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) techniques coupled with principal components analysis (PCA) were used to investigate metabolite perturbations in the serum of the rats exposed to 0.75, 3 or 8 Gy gamma rays. Male standard deviation rats were gamma-irradiated at doses of 0.75, 3 and 8 Gy (1.9 Gy min(-1)) or sham-irradiated. Serum samples were collected over the first 24 h under the exposure to irradiation in order to analyse the samples by GC/TOFMS. And multivariate data were analysed by PCA. The composition of metabolites in serum yielded distinct metabolomic phenotypes for 0.75, 3 and 8 Gy at 24 h after irradiation. Nine serum metabolites were significantly altered as a result of radiation exposure. Up-regulated metabolites included inositol, serine, lysine, glycine, threonine and glycerol; down-regulated metabolites included isocitrate, gluconic acid and stearic acid. The nine metabolites were significantly altered after ionising radiation for they may be the potential biomarkers for the diagnosis of radiation injury.
Collapse
|
25
|
Morris C, Grada CO, Ryan M, Roche HM, De Vito G, Gibney MJ, Gibney ER, Brennan L. The relationship between aerobic fitness level and metabolic profiles in healthy adults. Mol Nutr Food Res 2013; 57:1246-54. [PMID: 23505034 DOI: 10.1002/mnfr.201200629] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 11/09/2022]
Abstract
SCOPE Application of metabolomics to nutrition and health research is increasing and while much effort has been invested in understanding factors that influence the metabolomic profile there is relatively little known about the impact of fitness level. This study aimed to examine the relationship between fitness level, substrate oxidation rates, and the metabolic profile. METHODS AND RESULTS Two hundred and fourteen healthy adults (18-60 years) were recruited and 65 subjects were selected based on their estimated maximal oxygen consumption levels. Metabolomic analysis was performed. The subjects were split into fitness groups according to their maximal oxygen consumption levels (mL/kg/min) and analysis revealed significant differences in normalized fat and carbohydrate oxidation levels between the groups. Urinary metabolomic analysis revealed significantly different profiles in the groups with 15 amino acids significantly higher in the low fitness groups. Effects of fitness level in the plasma metabolic profiles were also demonstrated. CONCLUSION This study demonstrates a relationship between fitness level and the amino acid profile. Moreover, the metabolite changes show that a reduced excretion of amino acids in adults is associated with increased fitness levels and an increased fat oxidation rate during exercise. Interestingly, higher levels of branched chain amino acids were associated with lower fitness levels and higher insulin resistance.
Collapse
Affiliation(s)
- Ciara Morris
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ishikura K, Ra SG, Ohmori H. Exercise-induced changes in amino acid levels in skeletal muscle and plasma. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2013. [DOI: 10.7600/jpfsm.2.301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Othman A, Rütti MF, Ernst D, Saely CH, Rein P, Drexel H, Porretta-Serapiglia C, Lauria G, Bianchi R, von Eckardstein A, Hornemann T. Plasma deoxysphingolipids: a novel class of biomarkers for the metabolic syndrome? Diabetologia 2012; 55:421-31. [PMID: 22124606 DOI: 10.1007/s00125-011-2384-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/10/2011] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Sphingolipid synthesis is typically initiated by the conjugation of L-serine and palmitoyl-CoA, a reaction catalysed by serine palmitoyltransferase (SPT). SPT can also metabolise other acyl-CoAs (C(12) to C(18)) and other amino acids such as L-alanine and glycine, giving rise to a spectrum of atypical sphingolipids. Here, we aimed to identify changes in plasma levels of these atypical sphingolipids to explore their potential as biomarkers in the metabolic syndrome and diabetes. METHODS We compared the plasma profiles of ten sphingoid bases in healthy individuals with those of patients with the metabolic syndrome but not diabetes, and diabetic patients (n = 25 per group). The results were verified in a streptozotocin (STZ) rat model. Univariate and multivariate statistical analyses were used. RESULTS Deoxysphingolipids (dSLs) were significantly elevated (p = 5 × 10⁻⁶) in patients with the metabolic syndrome (0.11 ± 0.04 μmol/l) compared with controls (0.06 ± 0.02 μmol/l) but did not differ between the metabolic syndrome and diabetes groups. Levels of C(16)-sphingosine-based sphingolipids were significantly lowered in diabetic patients but not in patients with the metabolic syndrome but without diabetes (p = 0.008). Significantly elevated dSL levels were also found in the plasma and liver of STZ rats. A principal component analysis revealed a similar or even closer association of dSLs with diabetes and the metabolic syndrome in comparison with the established biomarkers. CONCLUSIONS/INTERPRETATION We showed that dSLs are significantly elevated in patients with type 2 diabetes mellitus and non-diabetic metabolic syndrome compared with healthy controls. They may, therefore, be useful novel biomarkers to improve risk prediction and therapy monitoring in these patients.
Collapse
Affiliation(s)
- A Othman
- Institute for Clinical Chemistry, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|