1
|
Hanusrichterova J, Mokry J, Al-Saiedy MR, Koetzler R, Amrein MW, Green FHY, Calkovska A. Factors influencing airway smooth muscle tone: a comprehensive review with a special emphasis on pulmonary surfactant. Am J Physiol Cell Physiol 2024; 327:C798-C816. [PMID: 39099420 DOI: 10.1152/ajpcell.00337.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
A thin film of pulmonary surfactant lines the surface of the airways and alveoli, where it lowers the surface tension in the peripheral lungs, preventing collapse of the bronchioles and alveoli and reducing the work of breathing. It also possesses a barrier function for maintaining the blood-gas interface of the lungs and plays an important role in innate immunity. The surfactant film covers the epithelium lining both large and small airways, forming the first line of defense between toxic airborne particles/pathogens and the lungs. Furthermore, surfactant has been shown to relax airway smooth muscle (ASM) after exposure to ASM agonists, suggesting a more subtle function. Whether surfactant masks irritant sensory receptors or interacts with one of them is not known. The relaxant effect of surfactant on ASM is absent in bronchial tissues denuded of an epithelial layer. Blocking of prostanoid synthesis inhibits the relaxant function of surfactant, indicating that prostanoids might be involved. Another possibility for surfactant to be active, namely through ATP-dependent potassium channels and the cAMP-regulated epithelial chloride channels [cystic fibrosis transmembrane conductance regulators (CFTRs)], was tested but could not be confirmed. Hence, this review discusses the mechanisms of known and potential relaxant effects of pulmonary surfactant on ASM. This review summarizes what is known about the role of surfactant in smooth muscle physiology and explores the scientific questions and studies needed to fully understand how surfactant helps maintain the delicate balance between relaxant and constrictor needs.
Collapse
Affiliation(s)
- Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Mustafa R Al-Saiedy
- Department of Internal Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rommy Koetzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthias W Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Niu C, Liu N, Liu J, Zhang M, Ying L, Wang L, Tian D, Dai J, Luo Z, Liu E, Zou L, Fu Z. Vitamin A maintains the airway epithelium in a murine model of asthma by suppressing glucocorticoid-induced leucine zipper. Clin Exp Allergy 2017; 46:848-60. [PMID: 26399569 DOI: 10.1111/cea.12646] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND The effects of glucocorticoids (GCs) on the repair of the airway epithelium in asthma are controversial, and we previously reported that the GC dexamethasone (Dex) inhibits the repair of human airway epithelial cells and that this process is mediated by glucocorticoid-induced leucine zipper (GILZ) through MAPK-ERK signaling in vitro. Vitamin A (VA) is involved in the regulation of the MAPK-ERK pathway but has not been widely supplied during asthma treatment. It is unclear whether VA attenuates the negative regulation of GILZ on the MAPK-ERK pathway and maintains airway epithelium integrity during asthma treatment. METHODS Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) and subsequently treated with Dex, VA or intranasal inhalation of adenovirus sh-GILZ vectors. Indexes of airway epithelium integrity, including pathological alterations, pulmonary EGFR expression and airway hyperresponsiveness (AHR), were then measured. The expression of GILZ and key components of activated MAPK-ERK signals (p-Raf-1, p-MEK, and p-Erk1/2) were also detected. RESULTS Dex failed to relieve OVA-induced asthma airway epithelium injury, as assessed through H&E staining, EGFR expression and AHR. Moreover, in the OVA-challenged mice treated with Dex, GLIZ expression was increased, whereas the ratios of p-Raf-1/Raf-1, p-MEK/MEK and p-Erk1/2/Erk1/2 were significantly decreased. Further study indicated that GILZ expression was decreased and that the ratios of p-Raf-1/Raf-1, p-MEK/MEK and p-Erk1/2/Erk1/2 were up-regulated in the GILZ-silenced OVA-challenged mice and VA-fed OVA-challenged mice, independent of Dex treatment. The airway epithelium integrity of the OVA-challenged mice was maintained by treatment with both VA and Dex. CONCLUSIONS Vitamin A maintained the Dex-treated asthma airway epithelium via the down-regulation of GILZ expression and the activation MAPK-ERK signaling, and these effects might contribute to improving the effects of GC therapeutics on asthma.
Collapse
Affiliation(s)
- C Niu
- Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - N Liu
- Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - J Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - M Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - L Ying
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - L Wang
- Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - D Tian
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - J Dai
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Z Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - E Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - L Zou
- Center for Clinical Molecular Medicine, Chongqing Stem Cell Therapy Technology Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Z Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Brg1 inhibits E-cadherin expression in lung epithelial cells and disrupts epithelial integrity. J Mol Med (Berl) 2017; 95:1117-1126. [PMID: 28801844 DOI: 10.1007/s00109-017-1576-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/04/2017] [Accepted: 07/28/2017] [Indexed: 12/07/2022]
Abstract
Brahma-related gene-1 (Brg1), a key chromatin remodeling factor, is associated with cell proliferation and migration in kidney and heart cells, but few reports have examined its role in airway epithelial cell. Airway epithelial injury, which is involved in the entire pathological process of asthma, is an important cause of recurrent asthma. Here, we studied the function of Brg1 in an ovalbumin (OVA)-induced asthma model (lung-specific conditional Brg1 (Brg1-/-) knockdown mice) and human bronchial epithelial 16HBE cells stably expressing Brg1 shRNA. Our results showed that high expression of Brg1 was detected in asthmatic children and in mouse models. Brg1-/- mice showed improved airway hyperresponsiveness (AHR) and bronchial epithelial integrity, along with reduced inflammatory cell infiltration and airway mucus secretion, when challenged with OVA. Furthermore, cell proliferation, migration, and expression of E-cadherin increased in 16HBE cells in which Brg1 was silenced. We further demonstrated that Brg1 bound to and inactivated a critical region (-86/+60 bp) within the E-cadherin promoter in bronchial epithelial cells. Thus, Brg1 might act as an important regulator of airway epithelial integrity in asthma progression and might be a novel therapeutic target. KEY MESSAGES • Depletion of Brg1 improves the integrity of airway epithelium in asthma by regulating E-cadherin expression in lung epithelial cells. • Knockdown of Brg1 increased the cell proliferation and migration by human bronchial epithelial 16HBE cells. • Brg1 might bLLe a novel therapeutic target in asthma.
Collapse
|
4
|
Wicher SA, Jacoby DB, Fryer AD. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs. Am J Physiol Lung Cell Mol Physiol 2017; 312:L969-L982. [PMID: 28258108 PMCID: PMC5495948 DOI: 10.1152/ajplung.00530.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals.
Collapse
Affiliation(s)
- Sarah A Wicher
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; and
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
5
|
Koike E, Watanabe H, Kobayashi T. Exposure to ozone enhances antigen-presenting activity concentration dependently in rats. Toxicology 2004; 197:37-46. [PMID: 15003332 DOI: 10.1016/j.tox.2003.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Accepted: 12/14/2003] [Indexed: 11/17/2022]
Abstract
The effect of ozone (O(3)) on the symptoms of allergic asthma and the mechanisms underlying have not yet been fully elucidated. Antigen presentation is one of the factors contributing to the allergic reaction. Therefore, we investigated the effects of repeated exposure to O(3) on antigen-presenting (AP) activity, on the expression of cell-surface molecules associated with antigen presentation (Ia, B7.1, B7.2 and CD11b/c) in bronchoalveolar lavage cells (BAL cells), and on allergic asthma-like symptoms. Rats were exposed to 0.3, 0.56, 1ppm O(3) or filtered air for a 3-day period every 2 weeks, this was replicated three times. AP activity was assessed by measuring antigen-specific T-cell proliferation; and the expression of cell-surface molecules, by flow cytometry. Rats were also made to inhale aerosolized 1% ovalbumin (OVA) or saline for 10min post-exposure to O(3), and allergic asthma-like symptoms were measured by determining the increase in enhanced pause (Penh), which correlates well with lung resistance. O(3) increased both AP activity and expression of Ia and costimulatory molecules in BAL cells concentration dependently. It also increased lung resistance, and the increase in lung resistance after O(3) exposure was significantly higher in the OVA-inhaled group than in the saline-inhaled group. The present results show that O(3) increased AP activity concentration dependently and suggest that O(3) might aggravate allergy symptoms by enhancing AP activity.
Collapse
Affiliation(s)
- Eiko Koike
- PM2.5 and DEP Research Project, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | |
Collapse
|
6
|
Agopyan N, Bhatti T, Yu S, Simon SA. Vanilloid receptor activation by 2- and 10-microm particles induces responses leading to apoptosis in human airway epithelial cells. Toxicol Appl Pharmacol 2003; 192:21-35. [PMID: 14554100 DOI: 10.1016/s0041-008x(03)00259-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exposure to airborne particulate matter (PM) is associated with increased mortality and morbidity. It has been previously shown that PMs and synthetic particles (PC10 and PC2) that have similar characteristics to PMs induced depolarizing currents and increases in intracellular calcium ([Ca2+]i) in capsaicin- and acid-sensitive sensory neurons and in TRPV1-expressing HEK 293 cells. To determine whether such mechanisms also underlie PM-induced toxicity in epithelial cells lining the human airways, we tested the responses of PCs on BEAS-2B (immortalized human bronchial epithelial cells), NHBE (normal human bronchial/tracheal epithelial cells), and SAEC (normal human small airway epithelial cells from the distal airways). RT-PCR revealed that all these cell types expressed TRPV1 (VR1), ASIC1a, and ASIC3 subunits of proton-gated ion channels. Calcium imaging studies revealed that in all three cell types approximately 30% were activated by both capsaicin and acid. In these cells, PCs induced an increase in [Ca2+]i that was inhibited by capsazepine, a TRPV1 antagonist, and/or by amiloride, an ASIC antagonist. The capsazepine-sensitive contribution to PC-induced increases in [Ca2+]i was approximately 70%. Measurements of apoptosis revealed that exposure to PCs induced a time-dependent increase in the number of apoptotic cells. After incubation for 24 (PC10) or 48 h (PC2) approximately 60% of these cells were apoptotic. Pretreatment with capsazepine as well as removal of external calcium completely (approximately 100%) prevented PC-induced apoptosis. These data suggest that pharmacological inhibition of calcium-permeable vanilloid receptors could be used to prevent some of the pathological actions of PMs.
Collapse
Affiliation(s)
- N Agopyan
- Department of Anesthesiology, Duke University Medical Center, Room 435, DUMC 3209, Research Drive, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
7
|
Kloek J, Nijkamp F, Bloksma N, De Clerck F, Folkerts G. Differential responsiveness of proximal and distal parts of isolated guinea pig trachea. Eur J Pharmacol 2002; 442:289-94. [PMID: 12065083 DOI: 10.1016/s0014-2999(02)01549-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study addressed the question whether proximal and distal guinea pig tracheal segments respond differently to contractile agents. Using a perfused trachea set-up, histamine, KCl or the cyclo-oxygenase inhibitor, indomethacin, could be administered selectively to the mucosa (at the inside) or the serosa (at the outside) of the tracheal segments. Proximal parts contracted significantly more (40-60%) than distal parts when 1 mM histamine was administered to the mucosal or serosal side or when KCl (50 mM) was added to the serosal side. When histamine was administered to the mucosal side of epithelium-denuded segments, the contractions were twice as high in proximal than in distal parts (3057 vs. 1526 mg). Inhibition of tracheal cyclo-oxygenase with indomethacin at the mucosal side increased proximal and distal reactivity to mucosally administered histamine to the same extent. Serosal administration of indomethacin, however, increased histamine reactivity only in proximal segments (from 2690 to 5180 mg). In the latter segments, subsequent administration of histamine to the serosal side further increased the contraction, while serosal histamine in the absence of serosal indomethacin produced a relaxation (net difference of 4672 mg). In conclusion, the higher intrinsic contractility of proximal tracheal segments is counteracted by serosal cyclo-oxygenase products.
Collapse
Affiliation(s)
- Joris Kloek
- Department of Pharmacology and Pathophysiology, Faculty of Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Schlesinger RB, Cohen MD, Gordon T, Nadziejko C, Zelikoff JT, Sisco M, Regal JF, Ménache MG. Ozone differentially modulates airway responsiveness in atopic versus nonatopic guinea pigs. Inhal Toxicol 2002; 14:431-57. [PMID: 12028802 PMCID: PMC2978653 DOI: 10.1080/089583701753678562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
While acute exposures to ozone (O(3)) can alter airway responsiveness, effects from long-term exposures at low concentrations are less clear. This study assessed whether such exposures could induce nonspecific hyperresponsiveness in nonatopic (nonsensitized) guinea pigs and/or could exacerbate the pre-existing hyperresponsive state in atopic (sensitized) animals, and whether gender was a factor modulating any effect of O(3). Responsiveness was measured during and following exposures to 0.1 and 0.3 ppm O(3) for 4 h/day, 4 days/wk for 24 wk in male and female nonsensitized animals, those sensitized to allergen (ovalbumin) prior to initiation of O(3) exposures, and those sensitized concurrently with exposures. Ozone did not produce hyperresponsiveness in nonsensitized animals, but did exacerbate hyperresponsiveness to both specific and nonspecific bronchoprovocation challenges in sensitized animals, an effect that persisted through at least 4 wk after exposures ended. Gender was not a factor modulating response to O(3). Induced effects on responsiveness were not associated with numbers of eosinophils in the lungs nor with any chronic pulmonary inflammatory response, but were correlated with antigen-specific antibodies in blood. This study supports a role for chronic O(3) exposure in the exacerbation of airways dysfunction in a certain segment of the general population, namely, those demonstrating atopy.
Collapse
Affiliation(s)
- Richard B Schlesinger
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fortner CN, Breyer RM, Paul RJ. EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2. Am J Physiol Lung Cell Mol Physiol 2001; 281:L469-74. [PMID: 11435222 DOI: 10.1152/ajplung.2001.281.2.l469] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of constricted mouse tracheal smooth muscle. Relaxation to either SP or ATP is blocked by indomethacin, but the specific eicosanoid(s) involved have not been definitively identified. SP and ATP are reported to release PGE2 from airway epithelium in other species, suggesting PGE2 as a likely mediator in epithelium-dependent airway relaxation. Using mice homozygous for a gene-targeted deletion of the EP2 receptor [EP2(-/-)], one of the PGE2 receptors, we tested the hypothesis that PGE2 is the primary mediator of relaxation to SP or ATP. Relaxation in response to SP or ATP was significantly reduced in tracheas from EP2(-/-) mice. There were no differences between EP2(-/-) and wild-type tracheas in their physical dimensions, contraction to ACh, or relaxation to isoproterenol, thus ruling out any general alterations of smooth muscle function. There were also no differences between EP2(-/-) and wild-type tracheas in basal or stimulated PGE2 production. Exogenous PGE2 produced significantly less relaxation in EP2(-/-) tracheas compared with the wild type. Taken together, this experimental evidence supports the following two conclusions: EP2 receptors are of primary importance in airway relaxation to PGE2 and relaxation to SP or ATP is mediated through PGE2 acting on EP2 receptors.
Collapse
Affiliation(s)
- C N Fortner
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0576, USA
| | | | | |
Collapse
|
10
|
Veronesi B, Oortgiesen M, Carter JD, Devlin RB. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Toxicol Appl Pharmacol 1999; 154:106-15. [PMID: 9882597 DOI: 10.1006/taap.1998.8567] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent experiments have shown that human bronchial epithelial cells (i.e., BEAS-2B) release pro-inflammatory cytokines (i.e., IL-6 and TNFalpha) in a receptor-mediated fashion in response to the neuropeptides, substance P (SP), calcitonin gene-related protein (CGRP), and the prototype botanical irritant capsaicin. In the present experiments, we examined the relevance of these receptors to particulate matter (PM)-associated cellular inflammation. BEAS-2B cells, exposed to residual oil fly ash particles (ROFA), responded with an immediate (<30 s) increase in intracellular calcium levels ([Ca2+]i), increases of key inflammatory cytokine transcripts (i.e., IL-6, IL-8, TNFalpha) within 2 h exposure, and subsequent release of IL-6 and IL-8 cytokine protein after 4 h exposure. Pretreatment of BEAS-2B cells with pharmacological antagonists selective for the SP or CGRP receptors reduced the ROFA-stimulated IL-6 cytokine production by approximately 25 and 50%, respectively. However, pretreatment of these cells with capsazepine (CPZ), an antagonist for capsaicin (i.e., vanilloid) receptors, inhibited the immediate increases in [Ca2+]i, diminished transcript (i.e., IL-6, IL-8, TNFalpha) levels and reduced IL-6 cytokine release to control levels. BEAS-2B cells exposed to ROFA in calcium-free media failed to demonstrate increases of [Ca2+]i and showed reduced levels of cytokine transcript (i.e., IL-6, IL-8, TNFalpha) and IL-6 release, suggesting that ROFA-stimulated cytokine formation was partially dependent on extracellular calcium sources. A final set of experiments compared the inflammatory properties of the soluble and acidic insoluble components of ROFA. BEAS-2B cells, exposed to ROFA or ROFA that had been filtered through a 0.2-micrometer pore filter, produced equivocal IL-6. BEAS-2B cells exposed to pH 5.0 media for 15 min released moderate amounts of IL-6, 4 h later. This cytokine release could be blocked by amiloride, a pH receptor antagonist, but not by CPZ. BEAS-2B cells, pretreated with amiloride before ROFA exposure, showed a partial (approximately 25%) reduction of IL-6. Together, these data indicate that the acidic, soluble components of ROFA initiate cytokine release in BEAS-2B cells through activation of both capsaicin- and pH-sensitive irritant receptors.
Collapse
Affiliation(s)
- B Veronesi
- Neurotoxicology Division, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratories, Research Triangle Park, North Carolina, 27711, USA
| | | | | | | |
Collapse
|
11
|
Noviski N, Brewer JP, Skornik WA, Galli SJ, Drazen JM, Martin TR. Mast cell activation is not required for induction of airway hyperresponsiveness by ozone in mice. J Appl Physiol (1985) 1999; 86:202-10. [PMID: 9887132 DOI: 10.1152/jappl.1999.86.1.202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to ambient ozone (O3) is associated with increased exacerbations of asthma. We sought to determine whether mast cell degranulation is induced by in vivo exposure to O3 in mice and whether mast cells play an essential role in the development of pulmonary pathophysiological alterations induced by O3. For this we exposed mast cell-deficient WBB6F1-kitW/kitW-v (kitW/kitW-v) mice and the congenic normal WBB6F1 (+/+) mice to air or to 1 or 3 parts/million O3 for 4 h and studied them at different intervals from 4 to 72 h later. We found evidence of O3-induced cutaneous, as well as bronchial, mast cell degranulation. Polymorphonuclear cell influx into the pulmonary parenchyma was observed after exposure to 1 part/milllion O3 only in mice that possessed mast cells. Airway hyperresponsiveness to intravenous methacholine measured in vivo under pentobarbital anesthesia was observed in both kitW/kitW-v and +/+ mice after exposure to O3. Thus, although mast cells are activated in vivo by O3 and participate in O3-induced polymorphonuclear cell infiltration into the pulmonary parenchyma, they do not participate detectably in the development of O3-induced airway hyperresponsiveness in mice.
Collapse
Affiliation(s)
- N Noviski
- Children's Service, Neonatal and Pediatric Intensive Care Units, Massachusetts General Hospital, Boston 02114, Massachusetts
| | | | | | | | | | | |
Collapse
|
12
|
Potter-Perigo S, Kaplan ED, Luchtel DL, Baker C, Altman LC, Wight TN. Ozone alters the expression of tenascin-C in cultured primate nasal epithelial cells. Am J Respir Cell Mol Biol 1998; 18:471-8. [PMID: 9533934 DOI: 10.1165/ajrcmb.18.4.2966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tenascin-C is an extracellular matrix component which is transiently expressed in association with epithelial cell detachment, proliferation, and migration. This molecule has been identified in respiratory tissue, but little is known about the cellular source of tenascin-C or the factors that regulate its production. Since air pollutants are known to disrupt epithelial integrity, we investigated the regulation of tenascin-C in response to 0.3 ppm ozone in differentiated primate nasal epithelial cells in culture at an air-medium interface. The expression of tenascin-C was upregulated in response to ozone, as determined by Northern blot analysis, Western blotting, and immunofluorescent staining. In contrast, there was no change in the mRNA levels for versican, biglycan, perlecan, or collagen type I. Reduced cellular attachment to the substrate was evident in ozone-treated cultures in association with tenascin-C deposition at the interfaces between cells and basal surfaces. The presence of tenascin-C on denuded areas of the matrix suggests that tenascin-C may have been instrumental in the loss of patches of cells. The modulation of tenascin-C synthesis and distribution may play a significant role in the response of respiratory epithelial cells to ozone exposure.
Collapse
Affiliation(s)
- S Potter-Perigo
- Department of Pathology, University of Washington, Seattle, Washington 98195-7470, USA
| | | | | | | | | | | |
Collapse
|
13
|
Matsubara S, Kikkawa H, Kaminuma O, Ikezawa K. Angiotensin-converting enzyme inhibitors can potentiate ozone-induced airway hyperresponsiveness. Eur J Pharmacol 1997; 337:259-65. [PMID: 9430423 DOI: 10.1016/s0014-2999(97)01316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the effects of single and chronic oral administration of angiotensin-converting enzyme inhibitors on ozone-induced airway hyperresponsiveness in guinea pigs. Ozone exposure (3 ppm for 2 h) significantly increased airway responsiveness in vehicle-treated animals and in animals with either single or chronic administration (8 days) of drugs. Single administration of imidapril, enalapril and captopril significantly potentiated ozone-induced airway hyperresponsiveness at a dose of 100, 50 and 50 mg/kg, respectively, although these doses did not influence airway responsiveness in normal guinea pigs, i.e., the magnitude of potentiation was captopril > enalapril > imidapril. In the study of chronic administration of the drugs, imidapril (10-100 mg/kg per day) had no influence on airway responsiveness in both normal and ozone-treated animals. In contrast, captopril and enalapril (10-100 mg/kg per day) dose-dependently potentiated ozone-induced airway hyperresponsiveness, with no influence on airway responsiveness in normal animals. That is, the magnitude was enalapril > captopril. These results indicate that angiotensin-converting enzyme inhibitors potentiate airway responsiveness in ozone-treated guinea pigs but not in normal guinea pigs and that imidapril is less potent than enalapril and captopril in potentiating ozone-induced airway hyperresponsiveness in guinea pigs.
Collapse
Affiliation(s)
- S Matsubara
- Lead Optimization Research Laboratory, Tanabe Seiyaku Co., Ltd., Toda, Saitama, Japan.
| | | | | | | |
Collapse
|
14
|
Matsubara S, Fushimi K, Kaminuma O, Kikkawa H, Ikezawa K, Naito K. Prevention of ozone-induced airway hyperresponsiveness and epithelial injury by phosphodiesterase inhibitors in guinea pigs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1997; 3:201-209. [PMID: 21781779 DOI: 10.1016/s1382-6689(97)00014-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/1997] [Revised: 04/09/1997] [Accepted: 04/10/1997] [Indexed: 05/31/2023]
Abstract
We investigated the effects of phosphodiesterase (PDE) inhibitors on ozone-induced airway hyperresponsiveness (AHR) in guinea pigs. Theophylline (10-100 mg/kg), rolipram (1-100 mg/kg) and T-440 (1-100 mg/kg) were orally administered 30 min before ozone exposure (3 ppm, for 30 min). Ozone exposure caused an increase in airway responsiveness to methacholine aerosol, and log PC(10) (log-transformed methacholine concentration causing a 10 cm H(2)O increase in pulmonary inflation pressure) in the control and ozone-exposed group was 4.43±0.05 (n=6) and 3.26±0.15 (n=12), respectively. Theophylline at 100 mg/kg, 10 mg/kg rolipram and 10 mg/kg T-440 significantly inhibited AHR with log PC(10) value of 4.73±0.16 (n=7), 3.74±0.11 (n=7), 3.82±0.15 (n=6), respectively. On histological examination, epithelial damage in the trachea and peripheral airways was recognized after ozone exposure. At 100 mg/kg, rolipram, T-440 and theophylline caused complete inhibition of AHR, and prevented epithelial damage of the trachea and peripheral airways. These results indicate that PDE inhibitors prevent not only ozone-induced AHR but also airway epithelial injury by ozone.
Collapse
Affiliation(s)
- S Matsubara
- Lead Optimization Research Laboratory, Tanabe Seiyaku Co., Ltd., 2-2-50, Kawagishi, Toda, Saitama 335, Japan
| | | | | | | | | | | |
Collapse
|