1
|
Katamesh AA, Abdel-Bar HM, Break MKB, Hassoun SM, Subaiea G, Radwan A, Abo El-Enin HA. Manipulation of Lipid Nanocapsules as an Efficient Intranasal Platform for Brain Deposition of Clozapine as an Antipsychotic Drug. Pharmaceutics 2024; 16:1417. [PMID: 39598541 PMCID: PMC11597305 DOI: 10.3390/pharmaceutics16111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The blood-brain barrier (BBB) significantly limits the treatment of central nervous system disorders, such as schizophrenia, by restricting drug delivery to the brain. This study explores the potential of intranasal clozapine-loaded lipid nanocapsules (IN LNCsClo) as a targeted and effective delivery system to the brain. METHODS LNCsClo were prepared using the phase inversion technique and characterized in terms of size, zeta potential, entrapment efficiency (EE%), and in vitro drug release. The pharmacokinetic, safety, and pharmacodynamic effects of LNCsClo were then evaluated in a rat model through intranasal (IN) administration and compared with those of oral and intravenous (IV) Clo solutions. RESULTS LNCsClo were prepared using a phase inversion technique, resulting in a nanocarrier with a particle size of 28.6 ± 3.6 nm, homogenous dispersion, and high EE% (84.66 ± 5.66%). Pharmacokinetic analysis demonstrated that IN LNCsClo provided enhanced Clo brain bioavailability, rapid CNS targeting, and prolonged drug retention compared to oral and intravenous routes. Notably, the area under the curve (AUC) for brain concentration showed more than two-fold and eight-fold increases with LNCsClo, compared to IV and oral solutions, respectively, indicating improved brain-targeting efficiency. Safety assessments indicated that LNCsClo administration mitigated Clo-associated metabolic side effects, such as hyperglycemia, insulin imbalance, and liver enzyme alterations. Additionally, pharmacodynamic studies showed that LNCsClo significantly improved antipsychotic efficacy and reduced schizophrenia-induced hyperactivity, while preserving motor function. CONCLUSIONS These results highlight the potential of IN LNCsClo as a novel drug delivery system, offering improved therapeutic efficacy, reduced systemic side effects, and better patient compliance in the treatment of schizophrenia and potentially other CNS disorders.
Collapse
Affiliation(s)
- Ahmed A. Katamesh
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics, Egyptian Drug Authority, Giza 12511, Egypt;
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Shimaa M. Hassoun
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Northeast Delta Branch, Department of Pharmacies, Health Insurance Organization, Mansoura 35511, Egypt
| | - Gehad Subaiea
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo 11694, Egypt
- Egyptian Center for Innovation and Technology Development, Cairo 11512, Egypt
| | | |
Collapse
|
2
|
Yang B, Wang Z, Wang S, Li X. Unveiling the Hub Genes Involved in Cadmium-Induced Hepatotoxicity. Biol Trace Elem Res 2024:10.1007/s12011-024-04307-0. [PMID: 39012411 DOI: 10.1007/s12011-024-04307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can cause severe liver damage in both humans and animals. However, the specific genes responsible for Cd-induced hepatotoxicity are still not fully understood. Therefore, the aim of this study was to identify the key genes associated with Cd-induced liver damage. To achieve this, we utilized the GSE19662 dataset from the Gene Expression Omnibus (GEO), which consisted of rat hepatocyte samples treated with cadmium chloride (CdCl2) as well as control groups. By focusing on rat hepatocytes treated with 0.10 ppm of CdCl2, the study identified 851 differentially expressed genes (DEGs), with 438 genes being upregulated and 413 genes being downregulated. Gene Ontology (GO) analysis revealed that these DEGs were primarily involved in inflammatory responses, xenobiotic metabolic processes, and the response to drugs and xenobiotic stimuli. Finally, the study identified several hub genes, including CYP2E1, CYP3A62, CYP2C11, CYP2C13, CYP2B3, HSP90B1, HSP90AA1, GSTA2, and MAPK8, which were associated with CdCl2-induced liver damage. Furthermore, pathway analysis demonstrated that these hub genes were mainly linked to pathways involved in chemical carcinogenesis, metabolic processes, steroid hormone biosynthesis, retinol metabolism, linoleic acid metabolism, arachidonic acid metabolism, inflammatory mediator regulation, Ras, and protein processing in the endoplasmic reticulum. In conclusion, this study provides important insights into the molecular mechanisms underlying Cd-induced liver damage.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongyuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
3
|
Sernoskie SC, Bonneil É, Thibault P, Jee A, Uetrecht J. Involvement of Extracellular Vesicles in the Proinflammatory Response to Clozapine: Implications for Clozapine-Induced Agranulocytosis. J Pharmacol Exp Ther 2024; 388:827-845. [PMID: 38262745 DOI: 10.1124/jpet.123.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-β signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Éric Bonneil
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Pierre Thibault
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Alison Jee
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Jack Uetrecht
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| |
Collapse
|
4
|
Sernoskie SC, Lobach AR, Kato R, Jee A, Weston JK, Uetrecht J. Clozapine induces an acute proinflammatory response that is attenuated by inhibition of inflammasome signaling: implications for idiosyncratic drug-induced agranulocytosis. Toxicol Sci 2021; 186:70-82. [PMID: 34935985 PMCID: PMC8883353 DOI: 10.1093/toxsci/kfab154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although clozapine is a highly efficacious schizophrenia treatment, it is under-prescribed due to the risk of idiosyncratic drug-induced agranulocytosis (IDIAG). Clinical data indicate that most patients starting clozapine experience a transient immune response early in treatment and a similar response has been observed in clozapine-treated rats, but the mechanism by which clozapine triggers this transient inflammation remains unclear. Therefore, the aim of this study was to characterize the role of inflammasome activation during the early immune response to clozapine using in vitro and in vivo models. In both differentiated and nondifferentiated human monocytic THP-1 cells, clozapine, but not its structural analogues fluperlapine and olanzapine, caused inflammasome-dependent caspase-1 activation and IL-1β release that was inhibited using the caspase-1 inhibitor yVAD-cmk. In Sprague Dawley rats, a single dose of clozapine caused an increase in circulating neutrophils and a decrease in lymphocytes within hours of drug administration along with transient spikes in the proinflammatory mediators IL-1β, CXCL1, and TNF-α in the blood, spleen, and bone marrow. Blockade of inflammasome signaling using the caspase-1 inhibitor VX-765 or the IL-1 receptor antagonist anakinra attenuated this inflammatory response. These data indicate that caspase-1-dependent IL-1β production is fundamental for the induction of the early immune response to clozapine and, furthermore, support the general hypothesis that inflammasome activation is a common mechanism by which drugs associated with the risk of idiosyncratic reactions trigger early immune system activation. Ultimately, inhibition of inflammasome signaling may reduce the risk of IDIAG, enabling safer, more frequent use of clozapine in patients.
Collapse
Affiliation(s)
| | - Alexandra R Lobach
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Ryuji Kato
- Department of Cardiovascular Pharmacotherapy and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, 569-1094, Japan
| | - Alison Jee
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - J Kyle Weston
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.,Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
5
|
Luan Y, Zhao J, Han H, Shen J, Tang S, Cheng L. Toxicologic effect and transcriptome analysis for short-term orally dosed enrofloxacin combined with two veterinary antimicrobials on rat liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112398. [PMID: 34116333 DOI: 10.1016/j.ecoenv.2021.112398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Presently, toxicological assessment of multiple veterinary antimicrobials has not been performed on mammals. In this study, we assessed the short-term toxicity of enrofloxacin (E) combined with colistin (C) and quinocetone (Q). Young male rats were orally dosed drug mixtures and single drugs in 14 consecutive days, each at the dose of 20, 80, and 400 mg/(kg·BW) for environmental toxicologic study. The results showed that at the high dose treatment, the combination of E + C+Q significantly decreased body intake, lymphocytes count on rats; significantly increased the values of Alanine aminotransferase (ALT), Glutamic oxaloacetic transaminase (AST) and, cholinesterase (CHE); it also got the severest histopathological changes, where sinusoidal congestion and a large number of black particles in sinusoids were observed. This means E + C+Q in the high dose groups was able to cause significant damage to the liver. Other combinations or doses did not induce significant liver damage. Transcriptome analysis was then performed on rats in high dose group for further research. For E + C and E + Q, an amount of 375 and 480 differently expressed genes were filtered out, revealing their possible underlying effect on genomes. For E + C+Q, a weighted gene co-expression network analysis was performed and 96 hub genes were identified to reveal the specific effect induced by this combination. This study indicates that joint toxicity should be taken into consideration when involving the risk assessment of these antimicrobials.
Collapse
Affiliation(s)
- Yehui Luan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junjie Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongfei Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Linli Cheng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Animal-derived Food Safety Testing Technology, Beijing 100193, China; Chinese National Reference Laboratory for Veterinary Drug Residues, Beijing 100193, China.
| |
Collapse
|
6
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
7
|
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113216. [PMID: 32763420 DOI: 10.1016/j.jep.2020.113216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus. AIM OF THE STUDY To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus. METHODS PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019. RESULTS Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds. CONCLUSION Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA, 15261, USA
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
Wang Z, Yang H, Xu J, Zhao K, Chen Y, Liang L, Li P, Chen N, Geng D, Zhang X, Liu X, Liu L. Prediction of Atorvastatin Pharmacokinetics in High-Fat Diet and Low-Dose Streptozotocin-Induced Diabetic Rats Using a Semiphysiologically Based Pharmacokinetic Model Involving Both Enzymes and Transporters. Drug Metab Dispos 2019; 47:1066-1079. [PMID: 31399507 DOI: 10.1124/dmd.118.085902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/01/2019] [Indexed: 12/16/2022] Open
Abstract
Atorvastatin is a substrate of cytochrome P450 3a (CYP3a), organic anion-transporting polypeptides (OATPs), breast cancer-resistance protein (BCRP), and P-glycoprotein (P-gp). We aimed to develop a semiphysiologically based pharmacokinetic (semi-PBPK) model involving both enzyme and transporters for predicting the contributions of altered function and expression of CYP3a and transporters to atorvastatin transport in diabetic rats by combining high-fat diet feeding and low-dose streptozotocin injection. Atorvastatin metabolism and transport parameters comes from in situ intestinal perfusion, primary hepatocytes, and intestinal or hepatic microsomes. We estimated the expressions and functions of these proteins and their contributions. Diabetes increased the expression of hepatic CYP3a, OATP1b2, and P-gp but decreased the expression of intestinal CYP3a, OATP1a5, and P-gp. The expression and function of intestinal BCRP were significantly decreased in 10-day diabetic rats but increased in 22-day diabetic rats. Based on alterations in CYP3a and transporters by diabetes, the developed semi-PBPK model was successfully used to predict atorvastatin pharmacokinetics after oral and intravenous doses to rats. Contributions to oral atorvastatin PK were intestinal OATP1a5 < intestinal P-gp < intestinal CYP3a < hepatic CYP3a < hepatic OATP1b2 < intestinal BRCP. Contributions of decreased expression and function of intestinal CYP3a and P-gp by diabetes to oral atorvastatin plasma exposure were almost attenuated by increased expression and function of hepatic CYP3a and OATP1b2. Opposite alterations in oral plasma atorvastatin exposure in 10- and 22-day diabetic rats may be explained by altered intestinal BCRP. In conclusion, the altered atorvastatin pharmacokinetics by diabetes was the synergistic effects of altered intestinal or hepatic CYP3a and transporters and could be predicted using the developed semi-PBPK.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Atorvastatin/pharmacokinetics
- Atorvastatin/therapeutic use
- Cells, Cultured
- Cytochrome P-450 CYP3A/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diet, High-Fat/adverse effects
- Hepatocytes/metabolism
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Hypercholesterolemia/drug therapy
- Hypercholesterolemia/etiology
- Intestinal Mucosa/metabolism
- Male
- Microsomes, Liver/metabolism
- Models, Biological
- Primary Cell Culture
- Rats
- Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
- Streptozocin/toxicity
Collapse
Affiliation(s)
- Zhongjian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiong Xu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kaijing Zhao
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Chen
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Limin Liang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Nan Chen
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Donghao Geng
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiangping Zhang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Xu SF, Hu AL, Xie L, Liu JJ, Wu Q, Liu J. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ 2019; 7:e7429. [PMID: 31396457 PMCID: PMC6681801 DOI: 10.7717/peerj.7429] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450s (CYPs) are phase-I metabolic enzymes playing important roles in drug metabolism, dietary chemicals and endogenous molecules. Age is a key factor influencing P450s expression. Thus, age-related changes of CYP 1–4 families and bile acid homeostasis-related CYPs, the corresponding nuclear receptors and a few phase-II genes were examined. Livers from male Sprague-Dawley rats at fetus (−2 d), neonates (1, 7, and 14 d), weanling (21 d), puberty (28 and 35 d), adulthood (60 and 180 d), and aging (540 and 800 d) were collected and subjected to qPCR analysis. Liver proteins from 14, 28, 60, 180, 540 and 800 days of age were also extracted for selected protein analysis by western blot. In general, there were three patterns of their expression: Some of the drug-metabolizing enzymes and related nuclear receptors were low in fetal and neonatal stage, increased with liver maturation and decreased quickly at aging (AhR, Cyp1a1, Cyp2b1, Cyp2b2, Cyp3a1, Cyp3a2, Ugt1a2); the majority of P450s (Cyp1a2, Cyp2c6, Cyp2c11, Cyp2d2, Cyp2e1, CAR, PXR, FXR, Cyp7a1, Cyp7b1. Cyp8b1, Cyp27a1, Ugt1a1, Sult1a1, Sult1a2) maintained relatively high levels throughout the adulthood, and decreased at 800 days of age; and some had an early peak between 7 and 14 days (CAR, PXR, PPARα, Cyp4a1, Ugt1a2). The protein expression of CYP1A2, CYP2B1, CYP2E1, CYP3A1, CYP4A1, and CYP7A1 corresponded the trend of mRNA changes. In summary, this study characterized three expression patterns of 16 CYPs, five nuclear receptors, and four phase-II genes during development and aging in rat liver, adding to our understanding of age-related CYP expression changes and age-related disorders.
Collapse
Affiliation(s)
- Shang-Fu Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - An-Ling Hu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lu Xie
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jia-Jia Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144:210-226. [PMID: 31022523 DOI: 10.1016/j.phrs.2019.04.025] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. Licorice is one of the most commonly used herbal drugs in Traditional Chinese Medicine for the treatment of liver diseases and drug-induced liver injury (DILI). Various bioactive components have been isolated and identified from the licorice, including glycyrrhizin, glycyrrhetinic acid, liquiritigenin, Isoliquiritigenin, licochalcone A, and glycycoumarin. Emerging evidence suggested that these natural products relieved liver diseases and prevented DILI through multi-targeting therapeutic mechanisms, including anti-steatosis, anti-oxidative stress, anti-inflammation, immunoregulation, anti-fibrosis, anti-cancer, and drug-drug interactions. In the current review, we summarized the recent progress in the research of hepatoprotective and toxic effects of different licorice-derived bioactive ingredients and also highlighted the potency of these compounds as promising therapeutic options for the treatment of liver diseases and DILI. We also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in licorice and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
|
11
|
Liu L, Miao M, Chen Y, Wang Z, Sun B, Liu X. Altered Function and Expression of ABC Transporters at the Blood-Brain Barrier and Increased Brain Distribution of Phenobarbital in Acute Liver Failure Mice. Front Pharmacol 2018; 9:190. [PMID: 29559914 PMCID: PMC5845647 DOI: 10.3389/fphar.2018.00190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
This study investigated alterations in the function and expression of P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2) at the blood–brain barrier (BBB) of acute liver failure (ALF) mice and its clinical significance. ALF mice were developed using intraperitoneal injection of thioacetamide. P-GP, BCRP, and MRP2 functions were determined by measuring the ratios of brain-to-plasma concentration of rhodamine 123, prazosin, and dinitrophenyl-S-glutathione, respectively. The mRNA and proteins expression levels of P-GP, BCRP, and MRP2 were evaluated with quantitative real-time PCR and western blot, respectively. MDCK-MDR1 and HCMEC/D3 cells were used to document the effects of the abnormally altered components in serum of ALF mice on the function and expression of P-GP. The clinical significance of alteration in P-GP function and expression was investigated by determining the distribution of the P-GP substrate phenobarbital (60 mg/kg, intravenous administration) in the brain and loss of righting reflex (LORR) induced by the drug (100 mg/kg). The results showed that ALF significantly downregulated the function and expression of both P-GP and BCRP, but increased the function and expression of MRP2 in the brain of mice. Cell study showed that increased chenodeoxycholic acid may be a reason behind the downregulated P-GP function and expression. Compared with control mice, ALF mice showed a significantly higher brain concentration of phenobarbital and higher brain-to-plasma concentration ratios. In accordance, ALF mice showed a significantly larger duration of LORR and shorter latency time of LORR by phenobarbital, inferring the enhanced pharmacological effect of phenobarbital on the central nervous system (CNS). In conclusion, the function and expression of P-GP and BCRP decreased, while the function and expression of MRP2 increased in the brain of ALF mice. The attenuated function and expression of P-GP at the BBB might enhance phenobarbital distribution in the brain and increase phenobarbital efficacy on the CNS of ALF mice.
Collapse
Affiliation(s)
- Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mingxing Miao
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Chen
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongjian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Binbin Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Wang S, Tang X, Yang T, Xu J, Zhang J, Liu X, Liu L. Predicted contributions of cytochrome P450s to drug metabolism in human liver microsomes using relative activity factor were dependent on probes. Xenobiotica 2018; 49:161-168. [PMID: 29375004 DOI: 10.1080/00498254.2018.1433902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contributions of cytochrome P450 (CYP450) isoforms to drug metabolism are often predicted using relative activity factor (RAF) method, assuming RAF values were independent of probe. We aimed to report probe-dependent characteristic of RAF values using CYP3A4 or CYP2C9 probes. Metabolism of four CYP3A4 probes (testosterone, midazolam, verapamil and atorvastatin) and three CYP2C9 probes (tolbutamide, diclofenac and S-warfarin) in human liver microsomes (HLM) and cDNA-expressed recombinant CYP450 (Rec-CYP450) systems were characterized and RAFCL value was estimated as ratio of probe intrinsic clearance in HLM to that in Rec-CYP450. CYP450i contributions to metabolic reaction of a probe were predicted using other probes and compared with data from specific inhibitions. Contributions of CYP3A4 and CYP2C9 to metabolism of deoxypodophyllotoxin and nateglinide were also predicted. RAF values were dependent on probes, leading to probe-dependently predicted contributions. Predicted contributions of CYP3A4 to formations of 6β-hydroxytestosterone, 1'-hydroxymidazolam, norverapamil, ortho-hydroxyatorvastatin and para-hydroxyatorvastatin using other probes were 47.46-219.46%, 21.62-98.87%, 186.49-462.44%, 21.87-101.15% and 53.62-247.97%, respectively. Predicted contributions of CYP3A4 and CYP2C9 to nateglinide metabolism were 8.18-37.84% and 36.08-94.04%, separately. In conclusion, CYP450i contribution to drug metabolism in HLM estimated using RAF approach were probe-dependent. Therefore, contribution of each isoform must be confirmed by multiple probes.
Collapse
Affiliation(s)
- Shuting Wang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Xiange Tang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Tingting Yang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Jiong Xu
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Jiaxin Zhang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Xiaodong Liu
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Li Liu
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
13
|
Wakuri S, Yamakage K, Kazuki Y, Kazuki K, Oshimura M, Aburatani S, Yasunaga M, Nakajima Y. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase. Anal Biochem 2017; 522:18-29. [PMID: 28111305 DOI: 10.1016/j.ab.2017.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay.
Collapse
Affiliation(s)
- S Wakuri
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Kanagawa 257-8523, Japan
| | - K Yamakage
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Kanagawa 257-8523, Japan
| | - Y Kazuki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 683-8503, Japan
| | - K Kazuki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan
| | - M Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan
| | - S Aburatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Tokyo 135-0064, Japan
| | - M Yasunaga
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Y Nakajima
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan.
| |
Collapse
|
14
|
Involvement of the histamine H4 receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells. Toxicol Appl Pharmacol 2016; 306:8-16. [DOI: 10.1016/j.taap.2016.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/14/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022]
|
15
|
Tang X, Di X, Zhong Z, Xie Q, Chen Y, Wang F, Ling Z, Xu P, Zhao K, Wang Z, Liu L, Liu X. In vitro metabolism of l-corydalmine, a potent analgesic drug, in human, cynomolgus monkey, beagle dog, rat and mouse liver microsomes. J Pharm Biomed Anal 2016; 128:98-105. [PMID: 27239758 DOI: 10.1016/j.jpba.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
l-Corydalmine (l-CDL) was under development as an oral analgesic agent, exhibiting potent analgesic activity in preclinical models. The objective of this study was to compare metabolic profiles of l-CDL in liver microsomes from mouse, rat, monkey, dog and human. Six metabolites (M1-M6) were identified using LC-Q/TOF in liver microsomes from the five species. The metabolism of l-CDL included O-demethylation (M1-3) and hydroxylation (M4-6). The desmethyl metabolites were the major ones among the five species, which accounted for more than 84%. Data from chemical inhibition in human liver microsomes (HLM) and human recombinant CYP450s demonstrated that CYP2D6 exhibited strong catalytic activity towards M1 and M2 formations, while CYP2C9 and CYP2C19 also catalyzed M2 formation. Formations of M3 and hydroxyl metabolites (M4 and M5) were mainly catalyzed by CYP3A4. Further studies showed that M1 and M2 were main metabolites in HLM. The kinetics of M1 and M2 formations in HLM and recombinant CYP450s were also investigated. The results showed that M1 and M2 formations in HLM and recombinant CYP2D6 characterized biphasic kinetics, whereas sigmoid Vmax model was better used to fit M2 formation by recombinant CYP2C9 and CYP2C19. The contributions of CYP2D6 to M1 and M2 formations in HLM were estimated to be 75.3% and 50.7%, respectively. However, the contributions of CYP2C9 and CYP2C19 to M2 formation were only 5.0% and 4.1%, respectively. All these data indicated that M1 and M2 were main metabolites in HLM, and CYP2D6 was the primary enzyme responsible for their formations.
Collapse
Affiliation(s)
- Xiange Tang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Di
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiushi Xie
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Chen
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoli Ling
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Kaijing Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjian Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Shu N, Hu M, Liu C, Zhang M, Ling Z, Zhang J, Xu P, Zhong Z, Chen Y, Liu L, Liu X. Decreased exposure of atorvastatin in diabetic rats partly due to induction of hepatic Cyp3a and Oatp2. Xenobiotica 2016; 46:875-81. [PMID: 26864241 DOI: 10.3109/00498254.2016.1141437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1. Atorvastatin is frequently prescribed for lowering blood cholesterol and for prevention of events associated with cardiovascular disease. The aim of this study was to investigate the pharmacokinetics of atorvastatin in diabetic rats. 2. Diabetes was induced in rats by combination of high-fat diet and low-dose streptozotocin (35 mg/kg). Plasma concentrations of atorvastatin following oral (10 mg/kg) and intravenous (2 mg/kg) administrations to rats were measured by LC-MS. Metabolism and uptake of atorvastatin in primary hepatocytes of experimental rats were assessed. Protein expressions and activities of hepatic Cyp3a and Oatp2 were further investigated. 3. Clearances of atorvastatin in diabetic rats following oral and intravenous administrations were remarkably increased, leading to marked decreases in area-under-the-plasma concentration-time curve (AUC). The estimated oral and systematic clearances of atorvastatin in diabetic rats were 4.5-fold and 2.0-fold of control rats, respectively. Metabolism and uptake of atorvastatin in primary hepatocytes isolated from diabetic rats were significantly increased, which were consistent with the up-regulated protein expressions and activities of hepatic Cyp3a and Oatp2. 4. All these results demonstrated that the plasma exposure of atorvastatin was significantly decreased in diabetic rats, which was partly due to the up-regulated activities and expressions of both hepatic Cyp3a and Oatp2.
Collapse
Affiliation(s)
- Nan Shu
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Mengyue Hu
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Can Liu
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA , and
| | - Mian Zhang
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Zhaoli Ling
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Ji Zhang
- c Department of Pharmacy , the First Affiliated Hospital, Zhengzhou University , Zhengzhou , Henan , China
| | - Ping Xu
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Zeyu Zhong
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Yang Chen
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Li Liu
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xiaodong Liu
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , Jiangsu , China
| |
Collapse
|
17
|
Ling Z, Shu N, Xu P, Wang F, Zhong Z, Sun B, Li F, Zhang M, Zhao K, Tang X, Wang Z, Zhu L, Liu L, Liu X. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes. Biochem Pharmacol 2015; 100:98-111. [PMID: 26616219 DOI: 10.1016/j.bcp.2015.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023]
Abstract
Accumulating evidences demonstrated that statins impaired glucose utilization. This study was aimed to investigate whether PXR was involved in the atorvastatin-impaired glucose utilization. Rifampicin/PCN served as PXR activator control. Glucose utilization, glucose uptake, protein levels of GLUT2, GCK, PDK2, PEPCK1 and G6Pase in HepG2 cells were measured. PXR inhibitors, PXR overexpression and PXR siRNA were applied to verify the role of PXR in atorvastatin-impaired glucose utilization in cells. Hypercholesterolemia rats induced by high fat diet feeding, orally received atorvastatin (5 and 10 mg/kg), pravastatin (10 mg/kg) for 14 days, or intraperitoneally received PCN (35 mg/kg) for 4 days. Results showed that glucose utilization was markedly inhibited by atorvastatin, simvastatin, pitavastatin, lovastatin and rifampicin. Neither rosuvastatin nor pravastatin showed the similar effect. Atorvastatin and pravastatin were selected for the following study. Atorvastatin and rifampicin significantly inhibited glucose uptake and down-regulated GLUT2 and GCK expressions. Similarly, overexpressed PXR significantly down-regulated GLUT2 and GCK expressions and impaired glucose utilization. Ketoconazole and resveratrol attenuated the impaired glucose utilization by atorvastatin and rifampicin in both parental and overexpressed PXR cells. PXR knockdown significantly up-regulated GLUT2 and GCK proteins and abolished the decreased glucose consumption and uptake by atorvastatin and rifampicin. Animal experiments showed that atorvastatin and PCN significantly elicited postprandial hyperglycemia, leading to increase in glucose AUC. Expressions of GLUT2 and GCK in rat livers were markedly down-regulated by atorvastatin and PCN. In conclusion, atorvastatin impaired glucose utilization in hepatocytes via repressing GLUT2 and GCK expressions, which may be partly due to PXR activation.
Collapse
Affiliation(s)
- Zhaoli Ling
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Shu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Binbin Sun
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Li
- College of Chinese Pharmacy, Shanxi University of Chinese Medicine, Shanxi, Xianyang 712046, China
| | - Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Kaijing Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiange Tang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjian Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Zhao WM, Jiang SW, Chen Y, Zhong ZY, Wang ZJ, Zhang M, Li Y, Xu P, Liu L, Liu XD. Laminaria japonica increases plasma exposure of glycyrrhetinic acid following oral administration of Liquorice extract in rats. Chin J Nat Med 2015; 13:540-9. [PMID: 26233845 DOI: 10.1016/s1875-5364(15)30049-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of Laminaria japonica (Laminaria) on pharmacokinetics of glycyrrhetinic acid (GA) following oral administration of Liquorice extract in rats. Following oral administrations of single-dose and multi-dose Liquorice extract and Liquorice-Laminaria extract, respectively, plasma samples were obtained at various times and the concentrations of GA, liquiritigenin, and isoliquiritigenin were measured by LC-MS. The effects of Laminaria extract on pharmacokinetics of GA were also investigated, following single-dose and multidose of glycyrrhizic acid (GL). The effects of Laminaria extract on intestinal absorption of GA and GL were studied using the in situ single-pass intestinal perfusion model. The metabolism of GL to GA in the contents of small and large intestines was also studied. The results showed Liquorice-Laminaria extract markedly increased the plasma concentration of GA, accompanied by a shorter Tmax. Similar alteration was observed following multidose administration. However, pharmacokinetics of neither liquiritigenin nor isoliquiritigenin was affected by Laminaria. Similarly, Laminaria markedly increased concentration and decreased Tmax of GA following oral GL were observed. The data from the intestinal perfusion model showed that Laminaria markedly increased GL absorption in duodenum and jejunum, but did not affect the intestinal absorption of GA. It was found that Laminaria enhanced the metabolism of GL to GA in large intestine. In conclusion, Laminaria increased plasma exposures of GA following oral administration of liquorice or GL, which partly resulted from increased intestinal absorption of GL and metabolism of GL to GA in large intestine.
Collapse
Affiliation(s)
- Wei-Man Zhao
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Shu-Wen Jiang
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Ze-Yu Zhong
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Zhong-Jian Wang
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Mian Zhang
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Xu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Li Liu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiao-Dong Liu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
19
|
Zhang M, Liu C, Hu MY, Zhang J, Xu P, Li F, Zhong ZY, Liu L, Liu XD. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats. J Pharmacol Sci 2015; 127:430-8. [PMID: 25953270 DOI: 10.1016/j.jphs.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/26/2023] Open
Abstract
Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs) and alcohol dehydrogenases (ADHs), further converted to retinoic acid by retinal dehydrogenases (RALDHs). The aim of this study was to investigate whether high-fat diet (HFD) induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.
Collapse
Affiliation(s)
- Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Can Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Meng-yue Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ji Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ze-yu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiao-dong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
20
|
Anzenbacherova E, Spicakova A, Jourova L, Ulrichova J, Adamus M, Bachleda P, Anzenbacher P. Interaction of rocuronium with human liver cytochromes P450. J Pharmacol Sci 2014; 127:190-5. [PMID: 25727956 DOI: 10.1016/j.jphs.2014.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/13/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022] Open
Abstract
Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed.
Collapse
Affiliation(s)
- Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | - Alena Spicakova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Ulrichova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Milan Adamus
- Department of Anesthesiology and Resuscitation, Faculty Hospital, IP Pavlova 6, 775 15 Olomouc, Czech Republic
| | - Petr Bachleda
- Department of Surgery II - Vascular and Transplantation Surgery, Faculty Hospital, IP Pavlova 6, 775 15 Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|