1
|
Uzzal Hossain M, Khan Tanvir N, Naimur Rahman ABZ, Mahmud Chowdhury Z, Shahadat Hossain M, Dey S, Bhattacharjee A, Ahammad I, Salma Zohora U, Hashem A, Chandra Das K, Ara Keya C, Salimullah M. From sequence to significance: A thorough investigation of the distinctive genome features uncovered in C. Werkmanii strain NIB003. Gene 2025; 933:148965. [PMID: 39332601 DOI: 10.1016/j.gene.2024.148965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Citrobacter werkmanii (C. werkmanii), an opportunistic urinary bacterium that causes diarrhea, is poorly understood. Our research focuses on genetic features that are crucial to disease development, such as pathogenic interactions, antibiotic resistance, virulence genes and genetic variation. Following its morphological, biochemical, and molecular identification, the whole genome of C. werkmanii strain NIB003 was sequenced in Bangladesh for the first time. Despite having around 80% whole genome conservation, the research shows that the Bangladeshi strain forms a separate phylogenetic cluster. This emphasises the genetic variability within C. werkmanii, resulting in particular modifications at the strain level and changes in its ability to cause disease. The results of the genetic diversity analysis indicate that the Bangladeshi sequenced genome is more diverse than the other strains due to the existence of unique features, such as the presence of t-RNA binding domain and N-6 adenine-specific DNA methylases.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Neyamat Khan Tanvir
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - A B Z Naimur Rahman
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Md Shahadat Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shajib Dey
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Umme Salma Zohora
- Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Md Salimullah
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh.
| |
Collapse
|
2
|
Rodgers KJ, Kabalan J, Phillips CR. A comprehensive review of the proline mimic azetidine-2-carboxylic acid (A2C). Toxicology 2025; 510:153999. [PMID: 39549916 DOI: 10.1016/j.tox.2024.153999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The imino acid azetidine-2-carboxylic acid (A2C), a proline homologue, was first identified in liliaceous plants in 1955. Its ability to exchange for proline in protein synthesis is responsible for its teratogenic effects and has made it a very useful tool for generating non-native proteins to study proteotoxic stress and ER stress. The tRNA synthetases from some A2C-producing plants can discriminate between proline and A2C, but for most plants and for mammalian cells, A2C is mistakenly used in protein synthesis in place of proline and can avoid cell proof-reading mechanisms. Human exposure to A2C would be very limited had it not been for the development of sugar beets as an alternative source of dietary sucrose to sugar cane, and the widespread use of the plentiful byproducts as livestock fodder. Fodder beets, a very high yielding forage crop, are also used as livestock fodder particularly for lactating cows. It is therefore possible for A2C to enter the human food chain and impact human health. It was hypothesised that its ability to replace proline in protein synthesis generates immunogenic neo-epitopes in myelin basic protein and could therefore be a causative factor for multiple sclerosis. In this review we discuss the distribution of A2C in nature, what is known about its toxicity, and the impact of the proline to A2C exchange on protein structure and function and in particular the proteins collagen and myelin basic protein. We summarise analytical approaches that can be used to quantify A2C in complex biological samples and the adaptations made by some organisms to avoid its toxic effects. We summarise the evidence for human exposure to A2C and the geographical and temporal links to higher incidences of MS. Finally, we highlight gaps in our knowledge that require addressing before we can determine if this non-protein amino acid is a threat to human health.
Collapse
Affiliation(s)
- Kenneth J Rodgers
- The Neurotoxin Research Group, The University of Technology Sydney, Australia.
| | - James Kabalan
- The Neurotoxin Research Group, The University of Technology Sydney, Australia
| | - Connor R Phillips
- The Neurotoxin Research Group, The University of Technology Sydney, Australia
| |
Collapse
|
3
|
Turvey AK, Cavalcanti ARO. Human disease-causing missense genetic variants are enriched in the evolutionarily ancient domains of the cytosolic aminoacyl-tRNA synthetase proteins. IUBMB Life 2025; 77:e2932. [PMID: 39710895 DOI: 10.1002/iub.2932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024]
Abstract
All life depends on accurate and efficient protein synthesis. The aminoacyl-tRNA synthetases (aaRSs) are a family of proteins that play an essential role in protein translation, as they catalyze the esterification reaction that charges a transfer RNA (tRNA) with its cognate amino acid. However, new domains added to the aaRSs over the course of evolution in eukaryotes confer novel functions unrelated to protein translation. To date, damaging variants that affect aaRS-encoding genes have been linked to over 50 human diseases. In this study, we leverage the evolutionary history of the aaRS proteins to better understand the distribution of disease-causing missense variants in human cytosolic aaRSs. We hypothesized that disease-causing missense variants in human aaRSs were more likely to be located in the ancient domains of the aaRS, essential for the aminoacylation reaction, rather than in the evolutionarily more recent domains found in eukaryotes. We determined the locations of the modern and ancient domains in each aaRS protein found in humans. We then statistically assessed the positional conservation across each domain and examined the distribution of pathogenic and benign/unknown missense human genetic variants across these domains. We establish that pathogenic missense variants in the human aaRS proteins are enriched in the evolutionarily ancient domains while benign/unknown missense variants are enriched in the modern domains. In addition to defining the evolutionary history of human aaRS proteins through domain identification, we anticipate that this work will improve the ability to diagnose patients affected by damaging genetic variants in the aaRS protein family.
Collapse
Affiliation(s)
- Alexandra K Turvey
- Department of Biology, Pomona College, Claremont, California, USA
- Health Sciences and Technology Program, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Li Q, Yuan W, Deng X, Chen Y, Li L, Chen L, Che R, Huang W, Wu Y, Wang C, Wang Z, Zhou M, Fan Z, Wang B. High lead-tolerant mutant Bacillus tropicus AT31-1 from rhizosphere soil of Pu-erh and its remediation mechanism. BIORESOURCE TECHNOLOGY 2025; 416:131751. [PMID: 39521187 DOI: 10.1016/j.biortech.2024.131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
In this study, we successfully generated the mutant strain Bacillus tropicus AT31-1 from AT31 through atmospheric room-temperature plasma mutagenesis. This mutant strain AT31-1 demonstrated an impressive 48.6 % removal efficiency in 400 mg/L lead medium. Comparative genomic analysis showed that the mutant strain AT31-1 had three mutation sites, which affect the efflux RND transporter permease subunit, the response regulator transcription factor, and a gene with unknown function. The transcriptional analysis showed a notable upregulation in the expression of 283 genes in AT31-1 as lead concentrations increased from 0 to 200 mg/L and then to 400 mg/L, which include zinc-transporting ATPase, ferrous iron transport protein B, NADH dehydrogenase, and others. The Gene ontology function of the peptide metabolic process, along with the KEGG pathway of carbon metabolism were identified as closely linked to the extreme lead tolerance of AT31-1. This study presents novel insights into the lead tolerance mechanisms of bacteria.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Wenxia Yuan
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
| | - Xiujuan Deng
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yaping Chen
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Li
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Lijiao Chen
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Raoqiong Che
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Wei Huang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yamin Wu
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Wang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming 650201, China
| | - Zejun Wang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Miao Zhou
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Zongpei Fan
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Baijuan Wang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
5
|
Zhang H, Ling J. Aminoacyl-tRNA synthetase defects in neurological diseases. IUBMB Life 2025; 77:e2924. [PMID: 39487674 PMCID: PMC11611227 DOI: 10.1002/iub.2924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes to support protein synthesis in all organisms. Recent studies, empowered by advancements in genome sequencing, have uncovered an increasing number of disease-causing mutations in aaRSs. Monoallelic aaRS mutations typically lead to dominant peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease, whereas biallelic aaRS mutations often impair the central nervous system (CNS) and cause neurodevelopmental disorders. Here, we review recent progress in the disease onsets, molecular basis, and potential therapies for diseases caused by aaRS mutations, with a focus on biallelic mutations in cytoplasmic aaRSs.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| |
Collapse
|
6
|
Samuels TN, Wu F, Mahmood M, Abuzaid WA, Sun N, Moresco A, Siu VM, O'Donoghue P, Heinemann IU. Transfer RNA and small molecule therapeutics for aminoacyl-tRNA synthetase diseases. FEBS J 2024. [PMID: 39702998 DOI: 10.1111/febs.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Aminoacyl-tRNA synthetases catalyze the ligation of a specific amino acid to its cognate tRNA. The resulting aminoacyl-tRNAs are indispensable intermediates in protein biosynthesis, facilitating the precise decoding of the genetic code. Pathogenic alleles in the aminoacyl-tRNA synthetases can lead to several dominant and recessive disorders. To date, disease-specific treatments for these conditions are largely unavailable. We review pathogenic human synthetase alleles, the molecular and cellular mechanisms of tRNA synthetase diseases, and emerging approaches to allele-specific treatments, including small molecules and nucleic acid-based therapeutics. Current treatment approaches to rescue defective or dysfunctional tRNA synthetase mutants include supplementation with cognate amino acids and delivery of cognate tRNAs to alleviate bottlenecks in translation. Complementary approaches use inhibitors to target the integrated stress response, which can be dysregulated in tRNA synthetase diseases.
Collapse
Affiliation(s)
- Tristan N Samuels
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Fanqi Wu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Maria Mahmood
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Wajd A Abuzaid
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Nancy Sun
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Angelica Moresco
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Victoria M Siu
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Chemistry, Western University, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| |
Collapse
|
7
|
Zhang W, Zong Y, Zhang J, Ai J, He H, Li L, Peng S, Zhou H, Wang D, Wang Q. Mechanistic insights into the viral microorganism inactivation during lime stabilization for wastewater sludges. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136884. [PMID: 39689559 DOI: 10.1016/j.jhazmat.2024.136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The pathogens inactivation in wastewater sludges is vitally important for safely managing solid wastes and protecting public and environmental health especially in the emergency. Reports have shown the effectiveness of lime to kill virus pathogens in sludges, but mechanism of virus inactivation and related human diseases is unclear. This study evaluated representative limes of CaO/CaO2 on actual viral microorganism inactivation by viral metagenomic sequencing technology. As results, the CaO2 treatment enhanced the sludge hydrolysis and enveloped viral pathogens suppression via EPS structure destruction by oxidative radical generations; while CaO suppressed most of none-enveloped plant related viral pathogens. Most of the viromes of plant virus including Virgaviridae and Nodaviridae were inactivated by CaO, but the human virus-Feirsviridae and plant virus-Solemoviridae were occurred after lime stabilization compared to untreated sludge, with abundances of 1 %-37 % and 21 %-32 % in CaO-treated (CaO-T) and CaO2-treated (CaO2-T) samples, respectively. In addition, metatranscriptome analysis revealed distinct gene expression patterns between the CaO-T and CaO2-T sludges, in which lipopolysaccharide biosynthesis (LPS) and aminoacyl-tRNA synthetases (ARSs) in CaO-T, the formation of ribosome in CaO2-T were crucial to RNA virus regrowth in sludge. These findings suggested neither of CaO and CaO2 could completely suppress pathogens in sludge, and the effect of representative limes of CaO and CaO2 on the viral pathogen diversity, abundance, and metabolic function of the core microbiome on virus suppression and regrowth were ignored. Therefore, combined processes were recommended to provide possible alternatives for sludge safe management in pandemic emergencies.
Collapse
Affiliation(s)
- Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxi Zong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Hang He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Sainan Peng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- College of Environmental and Resource Science of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
8
|
Christian T, Maharjan S, Yin S, Yamaki Y, Masuda I, Li F, Muraresku C, Clever S, Ganetzky RD, Hou YM. A Kinetic Model for Compound Heterozygous Pathogenic Variants in Tyrosyl-tRNA Synthetase Gene YARS2-Associated Neonatal Phenotype. J Biol Chem 2024:108092. [PMID: 39675712 DOI: 10.1016/j.jbc.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Human genetic disorders are often caused by mutations of compound heterozygosity, where each allele of the mutant gene harbors a different genetic lesion. However, studies of such mutations are hampered, due to the lack of an appropriate model. Here we describe a kinetic model of compound heterozygous variants in an obligate enzyme dimer that contains one mutation in one monomer and the other mutation in the second monomer. This enzyme is encoded by human YARS2 for mitochondrial tyrosyl-tRNA synthetase (mt-TyrRS), which aminoacylates tyrosine to mt-tRNATyr. YARS2 is a member of the genes for mt-aminoacyl-tRNA synthetases, where pathogenic mutations present limited correlation between disease severity and enzyme activity. We identify a pair of compound heterozygous variants in YARS2 that is associated with neonatal fatality. We show that, while each mutation causes a minor-to-modest defect in aminoacylation in the homodimer of mt-TyrRS, the two mutations in trans synergistically reduce the enzyme activity to a greater effect. This kinetic model thus accurately recapitulates the disease severity, emphasizing its utility to study YARS2 mutations and its potential for generalization to other diseases with compound heterozygous mutations.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Sitao Yin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Yuka Yamaki
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Fenglin Li
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, USA
| | - Colleen Muraresku
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sheila Clever
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca D Ganetzky
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA; Mitochondrial Medicine Frontier Program, Human Genetics Division, CHOP, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
9
|
Kochavi A, Nagel R, Körner PR, Bleijerveld OB, Lin CP, Huinen Z, Malka Y, Proost N, van de Ven M, Feng X, Navarro JM, Pataskar A, Peeper DS, Champagne J, Agami R. Chemotherapeutic agents and leucine deprivation induce codon-biased aberrant protein production in cancer. Nucleic Acids Res 2024; 52:13964-13979. [PMID: 39588782 DOI: 10.1093/nar/gkae1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Messenger RNA (mRNA) translation is a tightly controlled process frequently deregulated in cancer. Key to this deregulation are transfer RNAs (tRNAs), whose expression, processing and post-transcriptional modifications are often altered in cancer to support cellular transformation. In conditions of limiting levels of amino acids, this deregulated control of protein synthesis leads to aberrant protein production in the form of ribosomal frameshifting or misincorporation of non-cognate amino acids. Here, we studied leucine, an essential amino acid coded by six different codons. Surprisingly, we found that leucine deprivation leads to ribosomal stalling and aberrant protein production in various cancer cell types, predominantly at one codon, UUA. Similar effects were observed after treatment with chemotherapeutic agents, implying a shared mechanism controlling the downstream effects on mRNA translation. In both conditions, a limitation in the availability of tRNALeu(UAA) for protein production was shown to be the cause for this dominant effect on UUA codons. The induced aberrant proteins can be processed and immune-presented as neoepitopes and can direct T-cell killing. Altogether, we uncovered a novel mode of interplay between DNA damage, regulation of tRNA availability for mRNA translation and aberrant protein production in cancer that could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Pierre-Rene Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Zowi Huinen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Kok G, Schene IF, Ilcken EF, Alcaraz PS, Mendes MI, Smith DEC, Salomons G, Shehata S, Jans JJM, Maroofian R, Hoek TA, van Es RM, Rehmann H, Nieuwenhuis EES, Vos HR, Fuchs SA. Isoleucine-to-valine substitutions support cellular physiology during isoleucine deprivation. Nucleic Acids Res 2024:gkae1184. [PMID: 39657787 DOI: 10.1093/nar/gkae1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) couple tRNAs with their corresponding amino acids. While ARSs can bind structurally similar amino acids, extreme specificity is ensured by subsequent editing activity. Yet, we found that upon isoleucine (I) restriction, healthy fibroblasts consistently incorporated valine (V) into proteins at isoleucine codons, resulting from misacylation of tRNAIle with valine by wildtype IARS1. Using a dual-fluorescent reporter of translation, we found that valine supplementation could fully compensate for isoleucine depletion and restore translation to normal levels in healthy, but not IARS1 deficient cells. Similarly, the antiproliferative effects of isoleucine deprivation could be fully restored by valine supplementation in healthy, but not IARS1 deficient cells. This indicates I > V substitutions help prevent translational termination and maintain cellular function in human primary cells during isoleucine deprivation. We suggest that this is an example of a more general mechanism in mammalian cells to preserve translational speed at the cost of translational fidelity in response to (local) amino acid deficiencies.
Collapse
Affiliation(s)
- Gautam Kok
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Eveline F Ilcken
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marisa I Mendes
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Desiree E C Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gajja Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sawsan Shehata
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Judith J M Jans
- Laboratory of Metabolic Diseases, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Tim A Hoek
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Holger Rehmann
- Department Energy and Biotechnology, Flensburg University of Applied Sciences, Kanzleistraße 91-93 24943 Flensburg, Germany
| | - Edward E S Nieuwenhuis
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
11
|
Devarkar SC, Budding CR, Pathirage C, Kavoor A, Herbert C, Limbach PA, Musier-Forsyth K, Xiong Y. Structural basis for aminoacylation of cellular modified tRNA Lys3 by human lysyl-tRNA synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627298. [PMID: 39677689 PMCID: PMC11643047 DOI: 10.1101/2024.12.07.627298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The average eukaryotic tRNA contains 13 posttranscriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully-modified cellular tRNALys3 by human lysyl-tRNA synthetase (h-LysRS). The tRNALys3 anticodon loop modifications S34 (mcm5s2U) and R37 (ms2t6A) play an integral role in recognition by h-LysRS. Modifications in the T-, variable-, and D-loops of tRNALys3 are critical for ordering the metazoan-specific N-terminal domain of LysRS. The two catalytic steps of tRNALys3 aminoacylation are structurally ordered; docking of the 3'-CCA end in the active site cannot proceed until the lysyl-adenylate intermediate is formed and the pyrophosphate byproduct is released. Association of the h-LysRS-tRNALys3 complex with a multi-tRNA synthetase complex-derived peptide shifts the equilibrium towards the 3'-CCA end 'docked' conformation and allosterically enhances h-LysRS catalytic efficiency. The insights presented here have broad implications for understanding the role of tRNA modifications in protein synthesis, the human aminoacylation machinery, and the growing catalog of metabolic and neurological diseases linked to it.
Collapse
Affiliation(s)
- Swapnil C. Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT, 06511, USA
| | - Christina R. Budding
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT, 06511, USA
| |
Collapse
|
12
|
Douglas J, Cui H, Perona JJ, Vargas‐Rodriguez O, Tyynismaa H, Carreño CA, Ling J, Ribas de Pouplana L, Yang X, Ibba M, Becker H, Fischer F, Sissler M, Carter CW, Wills PR. AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases. IUBMB Life 2024; 76:1091-1105. [PMID: 39247978 PMCID: PMC11580382 DOI: 10.1002/iub.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| | - Haissi Cui
- Department of ChemistryUniversity of TorontoCanada
| | - John J. Perona
- Department of ChemistryPortland State UniversityPortlandOregonUSA
| | - Oscar Vargas‐Rodriguez
- Department of Molecular Biology and BiophysicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Lluís Ribas de Pouplana
- Institute for Research in BiomedicineThe Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Xiang‐Lei Yang
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Michael Ibba
- Biological SciencesChapman UniversityOrangeCaliforniaUSA
| | - Hubert Becker
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Marie Sissler
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Charles W. Carter
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Peter R. Wills
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| |
Collapse
|
13
|
Thives Santos W, Dwivedi V, Ngoc Duong H, Miederhoff M, Vanden Hoek K, Angelovici R, Schenck CA. Mechanism of action of the toxic proline mimic azetidine 2-carboxylic acid in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2904-2918. [PMID: 39625042 DOI: 10.1111/tpj.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Plants have an amazing capacity to outcompete neighboring organisms for space and resources. Toxic metabolites are major players in these interactions, which can have a broad range of effectiveness by targeting conserved molecular mechanisms, such as protein biosynthesis. However, lack of knowledge about defensive metabolite pathways, their mechanisms of action, and resistance mechanisms limits our ability to manipulate these pathways for enhanced crop resilience. Nonproteogenic amino acids (NPAAs) are a structurally diverse class of metabolites with a variety of functions but are typically not incorporated during protein biosynthesis. Here, we investigate the mechanism of action of the NPAA azetidine-2-carboxylic acid (Aze), an analog of the amino acid proline (Pro). Using a combination of plate-based assays, metabolite feeding, metabolomics, and proteomics, we show that Aze inhibits the root growth of Arabidopsis and other plants. Aze-induced growth reduction was restored by supplementing L-, but not D-Pro, and nontargeted proteomics confirm that Aze is misincorporated for Pro during protein biosynthesis, specifically on cytosolically translated proteins. Gene expression analysis, free amino acid profiling, and proteomics show that the unfolded protein response is upregulated during Aze treatment implicating that Aze misincorporation results in accumulation of misfolded proteins triggering a global stress response. This study demonstrates the mechanism of action of Aze in plants and provides a foundation for understanding the biological functions of proteotoxic metabolites.
Collapse
Affiliation(s)
- William Thives Santos
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Varun Dwivedi
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ha Ngoc Duong
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Madison Miederhoff
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Kathryn Vanden Hoek
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ruthie Angelovici
- Department of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Craig A Schenck
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
14
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
15
|
Wilhelm SDP, Moresco AA, Rivero AD, Siu VM, Heinemann IU. Characterization of a novel heterozygous variant in the histidyl-tRNA synthetase gene associated with Charcot-Marie-Tooth disease type 2W. IUBMB Life 2024; 76:1125-1138. [PMID: 39352000 PMCID: PMC11580374 DOI: 10.1002/iub.2918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Heterozygous pathogenic variants in the histidyl-tRNA synthetase (HARS) gene are associated with Charcot-Marie-Tooth (CMT) type 2W disease, classified as an axonal peripheral neuropathy. To date, at least 60 variants causing CMT symptoms have been identified in seven different aminoacyl-tRNA synthetases, with eight being found in the catalytic domain of HARS. The genetic data clearly show a causative role of aminoacyl-tRNA synthetases in CMT; however, the cellular mechanisms leading to pathology can vary widely and are unknown in the case of most identified variants. Here we describe a novel HARS variant, c.412T>C; p.Y138H, identified through a CMT gene panel in a patient with peripheral neuropathy. To determine the effect of p.Y138H we employed a humanized HARS yeast model and recombinant protein biochemistry, which identified a deficiency in protein dimerization and a growth defect which shows mild but significant improvement with histidine supplementation. This raises the potential for a clinical trial of histidine.
Collapse
Affiliation(s)
- Sarah D. P. Wilhelm
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Angelica A. Moresco
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
| | | | - Victoria Mok Siu
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Ilka U. Heinemann
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| |
Collapse
|
16
|
Patra S, Douglas J, Wills P, Betts L, Qing T, Carter C. A genomic database furnishes minimal functional glycyl-tRNA synthetases homologous to other, designed class II urzymes. Nucleic Acids Res 2024; 52:13305-13324. [PMID: 39494520 PMCID: PMC11602164 DOI: 10.1093/nar/gkae992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
The hypothesis that conserved core catalytic sites could represent ancestral aminoacyl-tRNA synthetases (AARS) drove the design of functional TrpRS, LeuRS, and HisRS 'urzymes'. We describe here new urzymes detected in the genomic record of the arctic fox, Vulpes lagopus. They are homologous to the α-subunit of bacterial heterotetrameric Class II glycyl-tRNA synthetase (GlyRS-B) enzymes. AlphaFold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to our designed HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment and the spliced open reading frame GlyCA1-2. Both exhibit robust single-turnover burst sizes and ATP consumption rates higher than those previously published for HisCA urzymes and comparable to those for LeuAC and TrpAC. GlyCA is more than twice as active in glycine activation by adenosine triphosphate as the full-length GlyRS-B α2 dimer. Michaelis-Menten rate constants for all three substrates reveal significant coupling between Exon2 and both substrates. GlyCA activation favors Class II amino acids that complement those favored by HisCA and LeuAC. Structural features help explain these results. These minimalist GlyRS catalysts are thus homologous to previously described urzymes. Their properties reinforce the notion that urzymes may have the requisite catalytic activities to implement a reduced, ancestral genetic coding alphabet.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, The University of Auckland, Auckland 1042, New Zealand
- Centre for Computational Evolution, University of Auckland, 1010, New Zealand
| | - Peter R Wills
- Department of Physics, The University of Auckland, Auckland 1042, New Zealand
| | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Tang Guo Qing
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
17
|
Rust BM, Nielsen FH, Yan L. Dietary Intake of Chromista Oil Alters Hepatic Metabolomic Profile of Mice With Excess Fat Mass. Nutr Metab Insights 2024; 17:11786388241297143. [PMID: 39568657 PMCID: PMC11577470 DOI: 10.1177/11786388241297143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Increasing dietary intake of fish oil is frequently recommended for decreasing the risk for cardiovascular diseases and improving metabolic health. We hypothesised that dietary intake of chromista oil (a marine food product and a rich source of long-chain n-3 polyunsaturated fatty acids) ameliorates metabolic impairments in mice with established excess adiposity. Three-to 4-week-old mice (male) were fed a control (n = 12) or a high-fat diet (HFD, n = 24) for 12 weeks to establish body fat mass. Then, mice on the HFD were assigned to 2 groups (n = 12 each) with 1 continuing being fed the HFD and the other fed the HFD with chromista oil for an additional 12 weeks. Intake of chromista oil did not affect body weight and body adiposity of the mice fed the HFD; mice fed the HFD had significantly more body weight and fat mass than control mice. The flattened daily oscillations of respiratory exchange ratio induced by the HFD were not changed by chromista oil intake. Intake of chromista oil significantly increased plasma concentration of insulin, the calculated value of HOMA-IR, and plasma concentration of adiponectin in the mice fed the HFD. However, blood glucose was unaffected by chromista oil. Transcription of genes encoding circadian rhythm and fatty acid metabolism of the 2 HFD-fed groups were similar. Untargeted metabolomic analysis showed that intake of chromista oil altered the hepatic metabolomic profile with substantial alterations in amino acid metabolism. Findings from this study indicate that dietary intake of chromista oil does not improve glucose homeostasis or alter the diminished metabolic flexibility in mice with excess adiposity induced by the HFD. argeted metabolomic analysis is warranted to investigate the effects of dietary chromista oil, as a source of n-3 poly unsaturated fatty acids, on metabolism in models of obesity.
Collapse
Affiliation(s)
- Bret M Rust
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Forrest H Nielsen
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Lin Yan
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| |
Collapse
|
18
|
Wang X, Ren Z, Wang B, Shi J, Liu J, Wang Y, Zheng X. Blood expression of NADK2 as a diagnostic biomarker for sciatica. iScience 2024; 27:111196. [PMID: 39569374 PMCID: PMC11576402 DOI: 10.1016/j.isci.2024.111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Sciatica is characterized by radiating pain along the sciatic nerve, with a lifetime prevalence of up to 43%. This study explored blood biomarkers for sciatica using transcriptomic microarray data (GSE124272 and GSE150408). Differential gene expression analysis identified NADK2 as a potential diagnostic biomarker. A diagnostic model based on NADK2 showed strong validation performance in 200 clinical cases. Gene set enrichment analysis (GSEA) suggested a connection between NADK2 and the aminoacyl-tRNA biosynthesis pathway. In conclusion, NADK2 emerges as promising diagnostic and therapeutic targets for sciatica, significantly advancing our comprehension of potential pathogenic mechanisms and offering perspectives for early diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenxiao Ren
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingyu Wang
- Department of Spine Surgery, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawei Shi
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingmin Liu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zheng
- Department of Spine Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hanzhou, China
| |
Collapse
|
19
|
Okamoto Y, Yasuda T, Morita R, Shigeta Y, Harada R. Structural Fluctuation in Homodimeric Aminoacyl-tRNA Synthetases Induces Half-of-the-Sites Activity. J Phys Chem B 2024; 128:10823-10830. [PMID: 39441699 PMCID: PMC11551958 DOI: 10.1021/acs.jpcb.4c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Enzymatic activity is regulated by various mechanisms to ensure biologically proper functions. Notable instances of such regulation in homodimeric enzymes include "all-of-the-sites activity" and "half-of-the-sites activity". The difference in these activities lies in whether one or both of the subunits are simultaneously active. Owing to its uniqueness, the mechanism of half-of-the-sites activity has been widely investigated. Consequently, structural asymmetry derived from cooperative motion is considered to induce half-of-the-sites activity. In contrast, recent investigations have suggested that subunit-intrinsic properties or structural fluctuation also induces structural asymmetry. Hence, the mechanism underlying half-of-the-sites activity has not been completely elucidated. Additionally, most previous studies have focused only on half-of-the-sites activity. Therefore, by comparing the structural and dynamical properties of two representative homodimers exhibiting all-of-the-sites and half-of-the-sites activities, respectively, we attempted to elucidate the mechanism of half-of-the-sites activity. Specifically, all-atom molecular dynamics simulations were applied to lysyl-tRNA synthetase and tyrosyl-tRNA synthetase. Our analysis revealed that structural fluctuation is sufficient to induce structural asymmetry in addition to the well-established factor of cooperative motion. Considering that structural fluctuation is a common characteristic of any enzyme, it could be a general factor in half-of-the-sites activity.
Collapse
Affiliation(s)
- Yoshino Okamoto
- Master’s
Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0821, Japan
| | - Takunori Yasuda
- Doctoral
Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0821, Japan
| | - Rikuri Morita
- Center
for Computational Sciences, University of
Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Center
for Computational Sciences, University of
Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
20
|
Nasim F, Jakkula P, Kumar MS, Alvala M, Qureshi IA. Structural and catalytic properties of histidyl-tRNA synthetase: A potential drug target against leishmaniasis. Int J Biol Macromol 2024; 282:137357. [PMID: 39515693 DOI: 10.1016/j.ijbiomac.2024.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Visceral leishmaniasis is caused by Leishmania donovani which affects the poorer sections of society, and despite the global spread, effective treatment is unavailable. The current study investigates the potential of leishmanial histidyl-tRNA synthetase (LdHisRS) as a drug target. LdHisRS delineated more closeness to other protozoan parasites than its mammalian counterparts and contained relevant differences in the active site residues. The important ATP-binding residues were mutated to alanine and all the proteins, including human HisRS, were purified to homogeneity. LdHisRS exhibited a dimeric state in solution and showed maximal amino acid activation activity in physiological conditions. It also demonstrated a greater affinity for substrate over cofactor, while magnesium and potassium enhanced its activity better than other tested metal ions. Comp-7m, a benzothiazolo-coumarin derivative, proved to be specific inhibitor of LdHisRS with competitive mode of inhibition for ATP whereas it displayed lower binding affinity towards mutants. LdHisRS majorly contained α-helices and most of the aromatic residues were present in its hydrophobic core. Additionally, Comp-7m superimposed on ATP adenine ring during docking analysis and LdHisRS-ligand complexes had comparable stability as well as rigidity in molecular dynamics simulation. We thus provide structural and functional insights of LdHisRS which can be useful for devising antileishmanials.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
21
|
Ten KE, Rahman S, Tan HS. Uncovering the transcriptome-wide RNA modifications in Acinetobacter baumannii. Microb Genom 2024; 10. [PMID: 39565092 DOI: 10.1099/mgen.0.001327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Despite being a major human pathogen, limited studies have reported RNA modifications in Acinetobacter baumannii. These post-transcriptional modifications play crucial regulatory roles in bacteria and have also been shown to modulate bacterial virulence. Using nanopore sequencing, we characterized RNA modifications in a virulent A. baumannii strain (Ab-C98) under free-living (mid-exponential phase in vitro culture) and during an early stage of infection (3 h post-infection) in Galleria mellonella larvae. Analysis revealed that m5C methylations are essential for ribosome synthesis, while m6A and Ψ are involved in metabolic pathways and translation processes. Iron-chelating genes exbD (m5C and m6A) and feoB (m6A and Ψ) and RNA polymerase subunit rpoC (m6A and Ψ) were selectively modified during infection. This first transcriptome-wide study highlights the potential regulatory roles of m5C, m6A and Ψ modifications in A. baumannii during infection.
Collapse
Affiliation(s)
- Kah Ern Ten
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
22
|
Peeters LD, Wills LJ, Cuozzo AM, Ahmed CD, Massey SR, Chen W, Chen Z, Wang C, Gass JT, Brown RW. Effects of positive mGlu5 modulation on D 2 signaling and nicotine-conditioned place preference: Mechanisms of epigenetic inheritance in a transgenerational model of drug abuse vulnerability in psychosis. J Psychopharmacol 2024:2698811241292902. [PMID: 39462877 DOI: 10.1177/02698811241292902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BACKGROUND The metabotropic glutamate type 5 (mGlu5) receptor has emerged as a potential target for the treatment of psychosis that is suggested to have greater efficacy than antipsychotic medications that are currently utilized. AIMS This study sought to elucidate mechanisms of therapeutic action associated with the modulation of the mGlu5 receptor in a disordered system marked by dopamine dysfunction. We further explored epigenetic mechanisms contributing to heritable transmission of a psychosis-like phenotype in a novel heritable model of drug abuse vulnerability in psychosis. METHODS F1 generation male and female Sprague-Dawley rats that were the offspring of two neonatal quinpirole-treated (QQ) or two saline-treated (SS) animals were tested on nicotine-conditioned place preference (CPP). Regulators of G protein signaling 9 (RGS9) and β-arrestin 2 (βA2), which mediate dopamine (DA) D2 signaling, were measured in the nucleus accumbens shell, prelimbic and infralimbic cortices. Reduced Representation Bisulfite Sequencing (RRBS) was used to analyze the cytosine methylation in these brain regions. RESULTS Pretreatment with the mGlu5-positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) 20 min prior to conditioning trials blocked enhanced nicotine CPP and mitigated aberrant G protein-dependent and -independent signaling in QQ animals. RRBS analysis revealed region-specific changes in several pathways, including nicotine addiction, dopamine synapses, and neural connectivity. CONCLUSIONS These results reveal an important region-specific mechanism of action for CDPPB in a system marked by enhanced DAD2 receptor signaling. Results additionally reveal DNA methylation as an epigenetic mechanism of heritability, further validating the current model as a useful tool for the study of psychosis and comorbid nicotine use.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Liza J Wills
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Cristal D Ahmed
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Samuel R Massey
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Wanqiu Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhong Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Justin T Gass
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Russell W Brown
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
23
|
Pawłowski PH, Zielenkiewicz P. Determining the Identity Nucleotides and the Energy of Binding of tRNAs to Their Aminoacyl-tRNA Synthetases Using a Simple Logistic Model. Life (Basel) 2024; 14:1328. [PMID: 39459628 PMCID: PMC11509504 DOI: 10.3390/life14101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study showed that the predictor in logistic regression can be applied to estimating the Gibbs free energy of tRNAs' recognition of and binding to their aminoacyl-tRNA synthetases. Then, 24 linear logistic regression models predicting different classes of tRNAs loaded with a corresponding amino acid were trained in a machine learning classification method, reducing the misclassification error to zero. The models were based on minimal subsets of Boolean explanatory variables describing the favorite presence of nucleotides or nucleosides localized in the different parts of the tRNA. In 90% of cases, they agree with the components of the consensus strand in a class of tRNAs loaded by a given amino acid. According to the proposed theoretical model, the values of the free energy for the entry of the recognition state in the process of tRNA charging were obtained, and the inputs from identity nucleotides and the tRNA strand backbone were distinguished. Almost all the resulting models indicated leading anticodon tandems defining the first and second positions of the anticodon (positions 35 and 36 of the tRNA strand) and the small sets (up to six positions) of the other nucleotides as the natural identity nucleotides most influential in the free energy balance. The magnitude of their input to this energy depends on the position in the strand, favoring positions -1, 35, and 36. The role of position 34 is relatively smaller. These identity attributes may not always be fully arranged in a real single adaptor molecule but were comprehensively present in a given tRNA class. A detailed analysis of the resulting models showed that the absolute value of the energy of binding the tandem 35-36 decreases with the number of identity positions, as well as with the decreasing number of possible hydrogen bonds. On the other hand, in these conditions, the absolute value of the energy of binding of other identity nucleotides increases. All the models indicate that the nucleotide-independent energy of the repulsion tRNA backbone decreases with the number of identity nucleotides. It was also shown that the total free energy change in entering the recognition state increases with the amino acid mass, making this process less spontaneous, which may have an evolutionary reference.
Collapse
Affiliation(s)
- Piotr H. Pawłowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
24
|
Wulff T, Hahnke K, Lécrivain AL, Schmidt K, Ahmed-Begrich R, Finstermeier K, Charpentier E. Dynamics of diversified A-to-I editing in Streptococcus pyogenes is governed by changes in mRNA stability. Nucleic Acids Res 2024; 52:11234-11253. [PMID: 39087550 PMCID: PMC11472039 DOI: 10.1093/nar/gkae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing plays an important role in the post-transcriptional regulation of eukaryotic cell physiology. However, our understanding of the occurrence, function and regulation of A-to-I editing in bacteria remains limited. Bacterial mRNA editing is catalysed by the deaminase TadA, which was originally described to modify a single tRNA in Escherichia coli. Intriguingly, several bacterial species appear to perform A-to-I editing on more than one tRNA. Here, we provide evidence that in the human pathogen Streptococcus pyogenes, tRNA editing has expanded to an additional tRNA substrate. Using RNA sequencing, we identified more than 27 editing sites in the transcriptome of S. pyogenes SF370 and demonstrate that the adaptation of S. pyogenes TadA to a second tRNA substrate has also diversified the sequence context and recoding scope of mRNA editing. Based on the observation that editing is dynamically regulated in response to several infection-relevant stimuli, such as oxidative stress, we further investigated the underlying determinants of editing dynamics and identified mRNA stability as a key modulator of A-to-I editing. Overall, our findings reveal the presence and diversification of A-to-I editing in S. pyogenes and provide novel insights into the plasticity of the editome and its regulation in bacteria.
Collapse
Affiliation(s)
- Thomas F Wulff
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | | | - Katja Schmidt
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | | | | | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
- Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
25
|
Choi J, Shakeri M, Kim WK, Kong B, Bowker B, Zhuang H. Comparative metabolomic analysis of spaghetti meat and wooden breast in broiler chickens: unveiling similarities and dissimilarities. Front Physiol 2024; 15:1456664. [PMID: 39444756 PMCID: PMC11496178 DOI: 10.3389/fphys.2024.1456664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Spaghetti meat (SM) and wooden breast (WB) are emerging myopathies in the breast meat of fast-growing broiler chickens. The purpose of the study was to investigate the metabolomic differences between normal (N), SM, and WB fillets 24 h postmortem. Materials and methods Eight chicken breasts for each experimental group were collected from a commercial processing plant. Supernatant from tissue homogenates were subjected to ultra-performance liquid chromatographytandem mass spectrometry (UPLC-MS) analysis. Results and methods A total of 3,090 metabolites were identified in the chicken breast meat. The comparison of WB and N showed 850 differential metabolites (P < 0.05), and the comparison of SM and N displayed 617 differential metabolites. The comparison of WB and SM showed 568 differential metabolites. The principal component analysis (PCA) plots showed a distinct separation between SM and N and between WB and N except for one sample, but SM and WB were not distinctly separated. Compared to N, 15-Hydroxyeicosatetraenoic acid (15-HETE) increased, and D-inositol-4-phosphate decreased in both SM and WB, indicating that cellular homeostasis and lipid metabolism can be affected in SM and WB. The abundance of nicotinamide adenine dinucleotide (NAD) + hydrogen (H) (NADH) was exclusively decreased between SM and N (P < 0.05). Purine metabolism was upregulated in SM and WB compared to N with a greater degree of upregulation in WB than SM. Folic acid levels decreased in SM and WB compared to N (P < 0.05). Steroid hormone biosynthesis was downregulated in SM compared to N (P < 0.05). Carbon metabolism was downregulated in SM and WB compared to N with greater degree of downregulation in WB than SM (P < 0.05). These data suggest both shared and unique metabolic alterations in SM and WB, indicating commonalities and differences in their underlying etiologies and meat quality traits. Dietary supplementation of deficient nutrients, such as NADH, folic acids, etc. and modulation of altered pathways in SM and WB would be strategies to reduce the incidence and severity of SM and WB.
Collapse
Affiliation(s)
- Janghan Choi
- USDA-ARS, US National Poultry Research Center, Athens, GA, United States
| | - Majid Shakeri
- USDA-ARS, US National Poultry Research Center, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Byungwhi Kong
- USDA-ARS, US National Poultry Research Center, Athens, GA, United States
| | - Brian Bowker
- USDA-ARS, US National Poultry Research Center, Athens, GA, United States
| | - Hong Zhuang
- USDA-ARS, US National Poultry Research Center, Athens, GA, United States
| |
Collapse
|
26
|
Scacchetti A, Shields EJ, Trigg NA, Lee GS, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. Mol Cell 2024; 84:3843-3859.e8. [PMID: 39096899 PMCID: PMC11455606 DOI: 10.1016/j.molcel.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/12/2023] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Despite the numerous sequencing methods available, the diversity in RNA size and chemical modification makes it difficult to capture all RNAs in a cell. We developed a method that combines quasi-random priming with template switching to construct sequencing libraries from RNA molecules of any length and with any type of 3' modifications, allowing for the sequencing of virtually all RNA species. Our ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to identify and quantify all classes of coding and non-coding RNAs. With LIDAR, we comprehensively characterized the transcriptomes of mouse embryonic stem cells, neural progenitor cells, mouse tissues, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared with traditional ligation-dependent sequencing methods and uncovered tDRs with blocked 3' ends that had previously escaped detection. Therefore, LIDAR can capture all RNAs in a sample and uncover RNA species with potential regulatory functions.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Urology and Institute of Neuropathology, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Natalie A Trigg
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace S Lee
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin C Conine
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Di Giulio M. The polyphyletic origins of glycyl-tRNA synthetase and lysyl-tRNA synthetase and their implications. Biosystems 2024; 244:105287. [PMID: 39127441 DOI: 10.1016/j.biosystems.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
I analyzed the polyphyletic origin of glycyl-tRNA synthetase (GlyRS) and lysyl-tRNA synthetase (LysRS), making plausible the following implications. The fact that the genetic code needed to evolve aminoacyl-tRNA synthetases (ARSs) only very late would be in perfect agreement with a late origin, in the main phyletic lineages, of both GlyRS and LysRS. Indeed, as suggested by the coevolution theory, since the genetic code was structured by biosynthetic relationships between amino acids and as these occurred on tRNA-like molecules which were evidently already loaded with amino acids during its structuring, this made possible a late origin of ARSs. All this corroborates the coevolution theory of the origin of the genetic code to the detriment of theories which would instead predict an early intervention of the action of ARSs in organizing the genetic code. Furthermore, the assembly of the GlyRS and LysRS protein domains in main phyletic lineages is itself at least evidence of the possibility that ancestral genes were assembled using pieces of genetic material that coded these protein domains. This is in accordance with the exon theory of genes which postulates that ancestral exons coded for protein domains or modules that were assembled to form the first genes. This theory is exemplified precisely in the evolution of both GlyRS and LysRS which occurred through the assembly of protein domains in the main phyletic lineages, as analyzed here. Furthermore, this late assembly of protein domains of these proteins into the two main phyletic lineages, i.e. a polyphyletic origin of both GlyRS and LysRS, appears to corroborate the progenote evolutionary stage for both LUCA and at least the first part of the evolutionary stages of the ancestor of bacteria and that of archaea. Indeed, this polyphyletic origin would imply that the genetic code was still evolving because at least two ARSs, i.e. proteins that make the genetic code possible today, were still evolving. This would imply that the evolutionary stages involved were characterized not by cells but by protocells, that is, by progenotes because this is precisely the definition of a progenote. This conclusion would be strengthened by the observation that both GlyRS and LysRS originating in the phyletic lineages leading to bacteria and archaea, would demonstrate that, more generally, proteins were most likely still in rapid and progressive evolution. Namely, a polyphyletic origin of proteins which would qualify at least the initial phase of the evolutionary stage of the ancestor of bacteria and that of archaea as stages belonging to the progenote.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
28
|
Huo C, Jiao X, Wang Y, Jiang Q, Ning F, Wang J, Jia Q, Zhu Z, Tian L. Silica aggravates pulmonary fibrosis through disrupting lung microbiota and amino acid metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174028. [PMID: 38889818 DOI: 10.1016/j.scitotenv.2024.174028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Silicosis, recognized as a severe global public health issue, is an irreversible pulmonary fibrosis caused by the long-term inhalation of silica particles. Given the intricate pathogenesis of silicosis, there is no effective intervention measure, which poses a severe threat to public health. Our previous study reported that dysbiosis of lung microbiota is associated with the development of pulmonary fibrosis, potentially involving the lipopolysaccharides/toll-like receptor 4 pathway. Similarly, the process of pulmonary fibrosis is accompanied by alterations in metabolic pathways. This study employed a combined approach of 16S rDNA sequencing and metabolomic analysis to investigate further the role of lung microbiota in silicosis delving deeper into the potential pathogenesis of silicosis. Silica exposure can lead to dysbiosis of the lung microbiota and the occurrence of pulmonary fibrosis, which was alleviated by a combination antibiotic intervention. Additionally, significant metabolic disturbances were found in silicosis, involving 85 differential metabolites among the three groups, which are mainly focused on amino acid metabolic pathways. The changed lung metabolites showed a substantial correlation with lung microbiota. The relative abundance of Pseudomonas negatively correlated with L-Aspartic acid, L-Glutamic acid, and L-Threonine levels. These results indicate that dysbiosis in pulmonary microbiota exacerbates silica-induced fibrosis through impacts on amino acid metabolism, providing new insights into the potential mechanisms and interventions of silicosis.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuao Ning
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
29
|
Živković I, Dulic M, Kozulic P, Mocibob M, Gruic-Sovulj I. Kinetic characterization of amino acid activation by aminoacyl-tRNA synthetases using radiolabelled γ-[ 32P]ATP. FEBS Open Bio 2024. [PMID: 39344714 DOI: 10.1002/2211-5463.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) are fundamental enzymes that pair amino acids and tRNAs for protein synthesis. Aminoacylation occurs in two discrete steps. The amino acid is first activated by ATP, leading to an aminoacyl-adenylate intermediate and pyrophosphate (PPi) formation. In a subsequent step, the aminoacyl moiety is transferred to the tRNA. Kinetic assays were developed to follow each of these steps independently, as well as cumulative two-step aminoacylation. The main advantage of following the activation step over two-step aminoacylation is that most AARSs can activate amino acids in the absence of the tRNA, the production of which is laborious. Hence, the activation step is often tested first in the kinetic analysis, including large screens exploring AARS-targeting inhibitors. Since the 1960s, the activation reaction has been routinely followed by the standard ATP/[32P]PPi exchange assay, which relies on the equilibrium exchange of radiolabel between PPi and ATP using [32P]PPi as a labelled compound. However, this method became much less convenient when [32P]PPi was discontinued in 2022. As a solution, we developed a modified assay that uses easily attainable γ-[32P]ATP as a labelled compound in the equilibrium-based assay. Using this assay, herein named the [32P]ATP/PPi assay, we followed the activation step of several AARSs. The obtained data are in good agreement with the previously published kinetic constants obtained with the standard ATP/[32P]PPi exchange assay.
Collapse
Affiliation(s)
- Igor Živković
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Petra Kozulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
30
|
Jing X, Ma Y, Li D, Zhang T, Xiang H, Xu F, Xia Y. Integration of bile proteomics and metabolomics analyses reveals novel insights into different types of gallstones in a high-altitude area. BMC Gastroenterol 2024; 24:330. [PMID: 39350090 PMCID: PMC11440720 DOI: 10.1186/s12876-024-03422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND To explore the pathogenesis of different subtypes of gallstones in high-altitude populations from a molecular perspective. METHODS We collected bile samples from 20 cholesterol gallstone disease (CGD) patients and 20 pigment gallstone disease (PGD) patients. Proteomics analysis was performed by LC/MS DIA, while metabolomics analysis was performed by UPLC- Q-TOF/MS. RESULTS We identified 154 up-regulated and 196 down-regulated differentially expressed proteins, which were significantly enriched in neurodegenerative diseases, energy metabolism, amino acid metabolism etc. In metabolomics analysis, 20 up-regulated and 63 down-regulated differentially expressed metabolites were identified, and they were significantly enriched in vitamin B6 metabolism. Three pathways of integrated proteomics and metabolomics were significantly enriched: porphyrin and chlorophyll metabolism, riboflavin metabolism and aminoacyl-tRNA biosynthesis. Remarkably, 7 differentially expressed proteins and metabolites showed excellent predictive performance and were selected as potential biomarkers. CONCLUSION The findings of our metabolomics and proteomics analyses help to elucidate the underlying mechanisms of gallstone formation in high-altitude populations.
Collapse
Affiliation(s)
- Xiaofeng Jing
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Xindu avenue 783, Chengdu, Sichuan, 610500, China
| | - Ying Ma
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Traffic lane 7, Xining, 810001, China
| | - Defu Li
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Traffic lane 7, Xining, 810001, China
| | - Tiecheng Zhang
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Xindu avenue 783, Chengdu, Sichuan, 610500, China
| | - Haiqi Xiang
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Xindu avenue 783, Chengdu, Sichuan, 610500, China
| | - Fan Xu
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Xindu avenue 783, Chengdu, Sichuan, 610500, China.
| | - Yonghong Xia
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Traffic lane 7, Xining, 810001, China.
| |
Collapse
|
31
|
Yan L, Rust BM, Sundaram S, Nielsen FH. Metabolomic Alteration in Adipose Monocyte Chemotactic Protein-1 Deficient Mice Fed a High-Fat Diet. Nutr Metab Insights 2024; 17:11786388241280859. [PMID: 39372559 PMCID: PMC11452861 DOI: 10.1177/11786388241280859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Monocyte chemotactic protein-1 (MCP-1), a small inducible cytokine, is involved in obesity-related chronic disorders. Adipocytes produce MCP-1 that is elevated in obese humans and in rodent models of obesity. This study examined the hepatic metabolomic alterations caused by adipose-specific MCP-1 deficiency in a rodent model of obesity. Wide-type (WT) and adipose-specific Mcp-1 knockdown mice (Mcp-1 -/-) were each assigned randomly to 2 groups and fed the standard AIN93G diet or a high-fat diet (HFD) for 12 weeks. Compared to the AIN93G diet, the HFD increased body weight, body fat mass, and plasma concentrations of insulin and leptin, regardless of genotype. There were no differences in these variables between WT and Mcp-1 -/- mice when they were fed the same diet. Eighty-seven of 172 identified metabolites met the criteria for metabolomic comparisons among the 4 groups. Thirty-nine metabolites differed significantly between the 2 dietary treatments and 15 differed when Mcp-1 -/- mice were compared to WT mice. The metabolites that significantly differed in both comparisons included those involved in amino acid, energy, lipid, nucleotide, and vitamin metabolism. Network analysis found that both HFD and adipose Mcp-1 knockdown may considerably impact amino acid metabolism as evidenced by alteration in the aminoacyl-tRNA biosynthesis pathways, in addition to alteration in the phenylalanine, tyrosine, and tryptophan biosynthesis pathway in Mcp-1 -/- mice. However, decreased signals of amino acid metabolites in mice fed the HFD and increased signals of amino acid metabolites in Mcp-1 -/- mice indicate that HFD may have down-regulated and adipose Mcp-1 knockdown may have up-regulated amino acid metabolism.
Collapse
Affiliation(s)
- Lin Yan
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Bret M Rust
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Sneha Sundaram
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Forrest H Nielsen
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| |
Collapse
|
32
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
33
|
Cain A, Krahn N. Overcoming Challenges with Biochemical Studies of Selenocysteine and Selenoproteins. Int J Mol Sci 2024; 25:10101. [PMID: 39337586 PMCID: PMC11431864 DOI: 10.3390/ijms251810101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Selenocysteine (Sec) is an essential amino acid that distinguishes itself from cysteine by a selenium atom in place of a sulfur atom. This single change imparts distinct chemical properties to Sec which are crucial for selenoprotein (Sec-containing protein) function. These properties include a lower pKa, enhanced nucleophilicity, and reversible oxidation. However, studying Sec incorporation in proteins is a complex process. While we find Sec in all domains of life, each domain has distinct translation mechanisms. These mechanisms are unique to canonical translation and are composed of Sec-specific enzymes and an mRNA hairpin to drive recoding of the UGA stop codon with Sec. In this review, we highlight the obstacles that arise when investigating Sec insertion, and the role that Sec has in proteins. We discuss the strategic methods implemented in this field to address these challenges. Though the Sec translation system is complex, a remarkable amount of information has been obtained and specialized tools have been developed. Continued studies in this area will provide a deeper understanding on the role of Sec in the context of proteins, and the necessity that we have for maintaining this complex translation machinery to make selenoproteins.
Collapse
Affiliation(s)
- Antavius Cain
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
34
|
Rosandić M, Paar V. Maximal Genetic Code Symmetry Is a Physicochemical Purine-Pyrimidine Symmetry Language for Transcription and Translation in the Flow of Genetic Information from DNA to Proteins. Int J Mol Sci 2024; 25:9543. [PMID: 39273490 PMCID: PMC11395414 DOI: 10.3390/ijms25179543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
Until now, research has not taken into consideration the physicochemical purine-pyrimidine symmetries of the genetic code in the transcription and translation processes of proteinogenesis. Our Supersymmetry Genetic Code table, developed in 2022, is common and unique for all RNA and DNA living species. Its basic structure is a purine-pyrimidine symmetry net with double mirror symmetry. Accordingly, the symmetry of the genetic code directly shows its organisation based on the principle of nucleotide Watson-Crick and codon-anticodon pairing. The maximal purine-pyrimidine symmetries of codons show that each codon has a strictly defined and unchangeable position within the genetic code. We discovered that the physicochemical symmetries of the genetic code play a fundamental role in recognising and differentiating codons from mRNA and the anticodon tRNA and aminoacyl-tRNA synthetases in the transcription and translation processes. These symmetries also support the wobble hypothesis with non-Watson-Crick pairing interactions between the translation process from mRNA to tRNA. The Supersymmetry Genetic Code table shows a specific arrangement of the second base of codons, according to which it is possible that an anticodon from tRNA recognises whether a codon from mRNA belongs to an amino acid with two or four codons, which is very important in the purposeful use of the wobble pairing process. Therefore, we show that canonical and wobble pairings essentially do not lead to misreading and errors during translation, and we point out the role of physicochemical purine-pyrimidine symmetries in decreasing disorder according to error minimisation and preserving the integrity of biological processes during proteinogenesis.
Collapse
Affiliation(s)
- Marija Rosandić
- Department of Internal Medicine, University Hospital Centre Zagreb, (Ret.), 10000 Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia;
| | - Vladimir Paar
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia;
- Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
36
|
Zong L, Wang X, Huo M, Yi F, Huang S, Ling T, Fang Y, Ma F, Zhang X, Guan M. Insights into the synergistic toxicity mechanisms caused by nano- and microplastics with triclosan using a dose-dependent functional genomics approach in Saccharomyces cerevisiae. CHEMOSPHERE 2024; 362:142629. [PMID: 38885766 DOI: 10.1016/j.chemosphere.2024.142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The emergence of polystyrene (PS) nano- and microplastics (NMPs) and triclosan (TCS) as environmental contaminants has raised concerns about their combined toxicities to organisms, but the complex toxicity arising from their interactions and the underlying molecular mechanisms remain obscure to us. In this study, we comprehensively detected the combined toxicity of PS-NMPs and TCS via the dose-dependent yeast functional genomics profiling. Firstly, our findings demonstrated that the combined exposure to PS-NMPs and TCS elicited a synergistic toxic effect in which the toxicity depended on the size of the PS-NMPs. Secondly, we found that TCS exposure, either alone or in combination with PS-NMPs, influenced lipid biosynthetic processes and ATP export pathways, while the unique responsive genes triggered by combined exposure to TCS and PS-NMPs are significantly enriched in mitochondrial translation, ribosomal small subunit assembly, and tRNA wobble uridine modification. Thirdly, our results demonstrated that point of departure (POD) at the pathway level was positively correlated with IC50, and POD was a more sensitive predictor of toxicity than the apical toxicity endpoints. More importantly, our findings suggested that the combined exposure of PS-NMPs in a size-dependent manner not only alleviated the harmful effects of TCS on glycerophospholipid metabolism, but also exacerbated its negative impact on oxidative phosphorylation. Collectively, our study not only provides new insights into the intricate molecular mechanisms that control the combined toxicity of PS-NMPs and TCS, but also confirms the effectiveness of the dose-dependent functional genomics approach in elucidating the molecular mechanisms of the combined toxicity of pollutants.
Collapse
Affiliation(s)
- Linhao Zong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Miaomiao Huo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Fangying Yi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Shan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Tianqi Ling
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yumo Fang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
37
|
Olotu F, Tali MBT, Chepsiror C, Sheik Amamuddy O, Boyom FF, Tastan Bishop Ö. Repurposing DrugBank compounds as potential Plasmodium falciparum class 1a aminoacyl tRNA synthetase multi-stage pan-inhibitors with a specific focus on mitomycin. Int J Parasitol Drugs Drug Resist 2024; 25:100548. [PMID: 38805932 PMCID: PMC11152978 DOI: 10.1016/j.ijpddr.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis. We combined multiple in silico structure-based discovery strategies that first helped identify functional and druggable sites that were preferentially targeted by the compound in each of the plasmodial proteins: Ins1-Ins2 domain in Pf-ARS; anticodon binding domain in Pf-CRS; CP1-editing domain in Pf-IRS and Pf-MRS; C-terminal domain in Pf-LRS; and CP-core region in Pf-VRS. Molecular dynamics studies further revealed that MMC allosterically induced changes in the global structures of each protein. Likewise, prominent structural perturbations were caused by the compound across the functional domains of the proteins. More so, MMC induced systematic alterations in the binding of the catalytic nucleotide and amino acid substrates which culminated in the loss of key interactions with key active site residues and ultimate reduction in the nucleotide-binding affinities across all proteins, as deduced from the binding energy calculations. These altogether confirmed that MMC uniformly disrupted the structure of the target proteins and essential substrates. Further, MMC demonstrated IC50 < 5 μM against the Dd2 and 3D7 strains of parasite making it a good starting point for malarial drug development. We believe that findings from our study will be important in the current search for highly effective multi-stage antimalarial drugs.
Collapse
Affiliation(s)
- Fisayo Olotu
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Mariscal Brice Tchatat Tali
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry & Medicinal Plants Studies, Department of Biochemistry, Faculty of Science-University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Advanced Research and Health Innovation Hub (ARHIH), Magzi Street, P.O. Box 812, Yaounde, Cameroon
| | - Curtis Chepsiror
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry & Medicinal Plants Studies, Department of Biochemistry, Faculty of Science-University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Advanced Research and Health Innovation Hub (ARHIH), Magzi Street, P.O. Box 812, Yaounde, Cameroon
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa.
| |
Collapse
|
38
|
Azevedo LG, Sosa E, de Queiroz ATL, Barral A, Wheeler RJ, Nicolás MF, Farias LP, Do Porto DF, Ramos PIP. High-throughput prioritization of target proteins for development of new antileishmanial compounds. Int J Parasitol Drugs Drug Resist 2024; 25:100538. [PMID: 38669848 PMCID: PMC11068527 DOI: 10.1016/j.ijpddr.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Leishmaniasis, a vector-borne disease, is caused by the infection of Leishmania spp., obligate intracellular protozoan parasites. Presently, human vaccines are unavailable, and the primary treatment relies heavily on systemic drugs, often presenting with suboptimal formulations and substantial toxicity, making new drugs a high priority for LMIC countries burdened by the disease, but a low priority in the agenda of most pharmaceutical companies due to unattractive profit margins. New ways to accelerate the discovery of new, or the repositioning of existing drugs, are needed. To address this challenge, our study aimed to identify potential protein targets shared among clinically-relevant Leishmania species. We employed a subtractive proteomics and comparative genomics approach, integrating high-throughput multi-omics data to classify these targets based on different druggability metrics. This effort resulted in the ranking of 6502 ortholog groups of protein targets across 14 pathogenic Leishmania species. Among the top 20 highly ranked groups, metabolic processes known to be attractive drug targets, including the ubiquitination pathway, aminoacyl-tRNA synthetases, and purine synthesis, were rediscovered. Additionally, we unveiled novel promising targets such as the nicotinate phosphoribosyltransferase enzyme and dihydrolipoamide succinyltransferases. These groups exhibited appealing druggability features, including less than 40% sequence identity to the human host proteome, predicted essentiality, structural classification as highly druggable or druggable, and expression levels above the 50th percentile in the amastigote form. The resources presented in this work also represent a comprehensive collection of integrated data regarding trypanosomatid biology.
Collapse
Affiliation(s)
- Lucas G Azevedo
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Ezequiel Sosa
- Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Artur T L de Queiroz
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Aldina Barral
- Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| | - Leonardo P Farias
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | | | - Pablo Ivan P Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| |
Collapse
|
39
|
Domínguez-Ruiz M, Olarte M, Onecha E, García-Vaquero I, Gelvez N, López G, Villamar M, Morín M, Moreno-Pelayo MA, Morales-Angulo C, Polo R, Tamayo ML, del Castillo I. Novel Cases of Non-Syndromic Hearing Impairment Caused by Pathogenic Variants in Genes Encoding Mitochondrial Aminoacyl-tRNA Synthetases. Genes (Basel) 2024; 15:951. [PMID: 39062730 PMCID: PMC11276111 DOI: 10.3390/genes15070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Dysfunction of some mitochondrial aminoacyl-tRNA synthetases (encoded by the KARS1, HARS2, LARS2 and NARS2 genes) results in a great variety of phenotypes ranging from non-syndromic hearing impairment (NSHI) to very complex syndromes, with a predominance of neurological signs. The diversity of roles that are played by these moonlighting enzymes and the fact that most pathogenic variants are missense and affect different domains of these proteins in diverse compound heterozygous combinations make it difficult to establish genotype-phenotype correlations. We used a targeted gene-sequencing panel to investigate the presence of pathogenic variants in those four genes in cohorts of 175 Spanish and 18 Colombian familial cases with non-DFNB1 autosomal recessive NSHI. Disease-associated variants were found in five cases. Five mutations were novel as follows: c.766C>T in KARS1, c.475C>T, c.728A>C and c.1012G>A in HARS2, and c.795A>G in LARS2. We provide audiograms from patients at different ages to document the evolution of the hearing loss, which is mostly prelingual and progresses from moderate/severe to profound, the middle frequencies being more severely affected. No additional clinical sign was observed in any affected subject. Our results confirm the involvement of KARS1 in DFNB89 NSHI, for which until now there was limited evidence.
Collapse
Affiliation(s)
- María Domínguez-Ruiz
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Margarita Olarte
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Esther Onecha
- Servicio de Genética, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain
| | - Irene García-Vaquero
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Programa de Doctorado en Biología, Escuela de Doctorado de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nancy Gelvez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Greizy López
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Manuela Villamar
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Matías Morín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Miguel A. Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Carmelo Morales-Angulo
- Servicio de Otorrinolaringología, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain
- Facultad de Medicina, Universidad de Cantabria, 39005 Santander, Spain
| | - Rubén Polo
- Servicio de Otorrinolaringología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Martha L. Tamayo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| |
Collapse
|
40
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
41
|
Watkins RR, Vradi A, Shulgina I, Musier-Forsyth K. Trypanosoma brucei multi-aminoacyl-tRNA synthetase complex formation limits promiscuous tRNA proofreading. Front Microbiol 2024; 15:1445687. [PMID: 39081885 PMCID: PMC11286415 DOI: 10.3389/fmicb.2024.1445687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Faithful mRNA decoding depends on the accuracy of aminoacyl-tRNA synthetases (ARSs). Aminoacyl-tRNA proofreading mechanisms have been well-described in bacteria, humans, and plants. However, our knowledge of translational fidelity in protozoans is limited. Trypanosoma brucei (Tb) is a eukaryotic, protozoan pathogen that causes Human African Trypanosomiasis, a fatal disease if untreated. Tb undergoes many physiological changes that are dictated by nutrient availability throughout its insect-mammal lifecycle. In the glucose-deprived insect vector, the tsetse fly, Tb use proline to make ATP via mitochondrial respiration. Alanine is one of the major by-products of proline consumption. We hypothesize that the elevated alanine pool challenges Tb prolyl-tRNA synthetase (ProRS), an ARS known to misactivate alanine in all three domains of life, resulting in high levels of misaminoacylated Ala-tRNAPro. Tb encodes two domains that are members of the INS superfamily of aminoacyl-tRNA deacylases. One homolog is appended to the N-terminus of Tb ProRS, and a second is the major domain of multi-aminoacyl-tRNA synthetase complex (MSC)-associated protein 3 (MCP3). Both ProRS and MCP3 are housed in the Tb MSC. Here, we purified Tb ProRS and MCP3 and observed robust Ala-tRNAPro deacylation activity from both enzymes in vitro. Size-exclusion chromatography multi-angle light scattering used to probe the oligomerization state of MCP3 revealed that although its unique N-terminal extension confers homodimerization in the absence of tRNA, the protein binds to tRNA as a monomer. Kinetic assays showed MCP3 alone has relaxed tRNA specificity and promiscuously hydrolyzes cognate Ala-tRNAAla; this activity is significantly reduced in the presence of Tb alanyl-tRNA synthetase, also housed in the MSC. Taken together, our results provide insight into translational fidelity mechanisms in Tb and lay the foundation for exploring MSC-associated proteins as novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
42
|
Qiao H, Wang Z, Yang H, Xia M, Yang G, Bai F, Wang J, Fang P. Specific glycine-dependent enzyme motion determines the potency of conformation selective inhibitors of threonyl-tRNA synthetase. Commun Biol 2024; 7:867. [PMID: 39014102 PMCID: PMC11252418 DOI: 10.1038/s42003-024-06559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
The function of proteins depends on their correct structure and proper dynamics. Understanding the dynamics of target proteins facilitates drug design and development. However, dynamic information is often hidden in the spatial structure of proteins. It is important but difficult to identify the specific residues that play a decisive role in protein dynamics. Here, we report that a critical glycine residue (Gly463) dominates the motion of threonyl-tRNA synthetase (ThrRS) and the sensitivity of the enzyme to antibiotics. Obafluorin (OB), a natural antibiotic, is a novel covalent inhibitor of ThrRS. The binding of OB induces a large conformational change in ThrRS. Through five crystal structures, biochemical and biophysical analyses, and computational simulations, we found that Gly463 plays an important role in the dynamics of ThrRS. Mutating this flexible residue into more rigid residues did not damage the enzyme's three-dimensional structure but significantly improved the thermal stability of the enzyme and suppressed its ability to change conformation. These mutations cause resistance of ThrRS to antibiotics that are conformationally selective, such as OB and borrelidin. This work not only elucidates the molecular mechanism of the self-resistance of OB-producing Pseudomonas fluorescens but also emphasizes the importance of backbone kinetics for aminoacyl-tRNA synthetase-targeting drug development.
Collapse
Affiliation(s)
- Hang Qiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zilu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Guang Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China.
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China.
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China.
| | - Jing Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, 510006, Guangzhou, China.
| |
Collapse
|
43
|
Kushkevych I, Procházka V, Vítězová M, Dordević D, Abd El-Salam M, Rittmann SKMR. Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments. Front Microbiol 2024; 15:1417714. [PMID: 39056005 PMCID: PMC11269200 DOI: 10.3389/fmicb.2024.1417714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
The bacterial light-dependent energy metabolism can be divided into two types: oxygenic and anoxygenic photosynthesis. Bacterial oxygenic photosynthesis is similar to plants and is characteristic for cyanobacteria. Bacterial anoxygenic photosynthesis is performed by anoxygenic phototrophs, especially green sulfur bacteria (GSB; family Chlorobiaceae) and purple sulfur bacteria (PSB; family Chromatiaceae). In anoxygenic photosynthesis, hydrogen sulfide (H2S) is used as the main electron donor, which differs from plants or cyanobacteria where water is the main source of electrons. This review mainly focuses on the microbiology of GSB, which may be found in water or soil ecosystems where H2S is abundant. GSB oxidize H2S to elemental sulfur. GSB possess special structures-chlorosomes-wherein photosynthetic pigments are located. Chlorosomes are vesicles that are surrounded by a lipid monolayer that serve as light-collecting antennas. The carbon source of GSB is carbon dioxide, which is assimilated through the reverse tricarboxylic acid cycle. Our review provides a thorough introduction to the comparative eco-physiology of GSB and discusses selected application possibilities of anoxygenic phototrophs in the fields of environmental management, bioremediation, and biotechnology.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vít Procházka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czechia
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| |
Collapse
|
44
|
Tang GQ, Hu H, Douglas J, Carter C. Primordial aminoacyl-tRNA synthetases preferred minihelices to full-length tRNA. Nucleic Acids Res 2024; 52:7096-7111. [PMID: 38783009 PMCID: PMC11229368 DOI: 10.1093/nar/gkae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.
Collapse
Affiliation(s)
- Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Hao Hu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, New Zealand
- Department of Computer Science, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
45
|
Qian W, Yuan L, Zhuge W, Gu L, Chen Y, Zhuge Q, Ni H, Lv X. Regulating Lars2 in mitochondria: A potential Alzheimer's therapy by inhibiting tau phosphorylation. Neurotherapeutics 2024; 21:e00353. [PMID: 38575503 PMCID: PMC11067343 DOI: 10.1016/j.neurot.2024.e00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Driven by the scarcity of effective treatment options in clinical settings, the present study aimed to identify a new potential target for Alzheimer's disease (AD) treatment. We focused on Lars2, an enzyme synthesizing mitochondrial leucyl-tRNA, and its role in maintaining mitochondrial function. Bioinformatics analysis of human brain transcriptome data revealed downregulation of Lars2 in AD patients compared to healthy controls. During in vitro experiments, the knockdown of Lars2 in mouse neuroblastoma cells (neuro-2a cells) and primary cortical neurons led to morphological changes and decreased density in mouse hippocampal neurons. To explore the underlying mechanisms, we investigated how downregulated Lars2 expression could impede the phosphatidylinositol 3-kinase/protein kinase B (PI3K-AKT) pathway, thereby mitigating AKT's inhibitory effect on glycogen synthase kinase 3 beta (GSK3β). This led to the activation of GSK3β, causing excessive phosphorylation of Tau protein and subsequent neuronal degeneration. During in vivo experiments, knockout of lars2 in hippocampal neurons confirmed cognitive impairment through the Barnes maze test, the novel object recognition test, and nest-building experiments. Additionally, immunofluorescence assays indicated an increase in p-tau, atrophy in the hippocampal region, and a decrease in neurons following Lars2 knockout. Taken together, our findings indicate that Lars2 represents a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Wenqi Qian
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Yuan
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Weishan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Liuqing Gu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yutian Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Haoqi Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xinhuang Lv
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
46
|
Saha S, Mukherjee B, Banerjee P, Das D. The 'Not-So-Famous Five' in tumorigenesis: tRNAs, tRNA fragments, and tRNA epitranscriptome in concert with AARSs and AIMPs. Biochimie 2024; 222:45-62. [PMID: 38401639 DOI: 10.1016/j.biochi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
Collapse
Affiliation(s)
- Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India.
| | - Biyas Mukherjee
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India
| | - Proma Banerjee
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| | - Debadrita Das
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| |
Collapse
|
47
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
48
|
Zivkovic I, Gruic-Sovulj I. Exploring mechanisms of mupirocin resistance and hyper-resistance. Biochem Soc Trans 2024; 52:1109-1120. [PMID: 38884776 DOI: 10.1042/bst20230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Mupirocin is a broad-spectrum antibiotic that acts predominantly against Gram-positive bacteria. It is produced by Pseudomonas fluorescens NCIMB 10586 and has been clinically used to treat primary and secondary skin infections and to eradicate nasal colonisation of methicillin-resistant Staphylococcus aureus strains. Mupirocin inhibits protein synthesis by blocking the active site of isoleucyl-tRNA synthetase (IleRS), which prevents the enzyme from binding isoleucine and ATP for Ile-tRNAIle synthesis. Two types of IleRS are found in bacteria - while IleRS1 is susceptible to mupirocin inhibition, IleRS2 provides resistance to cells. These two types belong to distinct evolutionary clades which likely emerged from an early gene duplication in bacteria. Resistance in IleRS2 is based on the loss of interactions that govern mupirocin binding to IleRS1, such as hydrogen bonding to the carboxylate moiety of mupirocin. IleRS2 enzymes with Ki in the millimolar range have recently been discovered. These hyper-resistant IleRS2 variants surprisingly have a non-canonical version of the catalytic motif, which serves as a signature motif of class I aminoacyl-tRNA synthetases to which IleRS belongs. The non-canonical motif, in which the 1st and 3rd positions are swapped, is key for hyper-resistance and can be accommodated without abolishing enzyme activity in IleRS2 but not in IleRS1. Clinical use of mupirocin led to the emergence of resistance in S. aureus. Low-level resistance arises by mutations of the housekeeping IleRS1, while high-level resistance develops by the acquisition of the resistant IleRS2 on a plasmid. There is no evidence that hyper-resistant variants have been found in clinical isolates.
Collapse
Affiliation(s)
- Igor Zivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
49
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
50
|
Koper K, Han SW, Kothadia R, Salamon H, Yoshikuni Y, Maeda HA. Multisubstrate specificity shaped the complex evolution of the aminotransferase family across the tree of life. Proc Natl Acad Sci U S A 2024; 121:e2405524121. [PMID: 38885378 PMCID: PMC11214133 DOI: 10.1073/pnas.2405524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Sang-Woo Han
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Biotechnology, Konkuk University, Chungju27478, South Korea
| | - Ramani Kothadia
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Hugh Salamon
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan 060-8589
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo183-8538, Japan
| | - Hiroshi A. Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|