1
|
Neill B, Romero AR, Fenton OS. Advances in Nonviral mRNA Delivery Materials and Their Application as Vaccines for Melanoma Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4894-4913. [PMID: 37930174 PMCID: PMC11220486 DOI: 10.1021/acsabm.3c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising platforms for cancer immunotherapy because of their potential to encode for a variety of tumor antigens, high tolerability, and capacity to induce strong antitumor immune responses. However, the clinical translation of mRNA cancer vaccines can be hindered by the inefficient delivery of mRNA in vivo. In this review, we provide an overview of mRNA cancer vaccines by discussing their utility in treating melanoma. Specifically, we begin our review by describing the barriers that can impede mRNA delivery to target cells. We then review native mRNA structure and discuss various modification methods shown to enhance mRNA stability and transfection. Next, we outline the advantages and challenges of three nonviral carrier platforms (lipid nanoparticles, polymeric nanoparticles, and lipopolyplexes) frequently used for mRNA delivery. Last, we summarize preclinical and clinical studies that have investigated nonviral mRNA vaccines for the treatment of melanoma. In writing this review, we aim to highlight innovative nonviral strategies designed to address mRNA delivery challenges while emphasizing the exciting potential of mRNA vaccines as next-generation therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Bevin Neill
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana Retamales Romero
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen S. Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
2
|
Zhu XT, Sanz-Jimenez P, Ning XT, Tahir Ul Qamar M, Chen LL. Direct RNA sequencing in plants: Practical applications and future perspectives. PLANT COMMUNICATIONS 2024:101064. [PMID: 39155503 DOI: 10.1016/j.xplc.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The transcriptome serves as a bridge that links genomic variation to phenotypic diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) over the last 2 decades have emphasized the essential roles of the plant transcriptome in response to developmental and environmental conditions, providing numerous insights into the dynamic changes, evolutionary traces, and elaborate regulation of the plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for precise detection of native and full-length transcripts, overcoming many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we review recent advances in dissecting the complexity and diversity of plant transcriptomes using DRS as the main technological approach, covering many aspects of RNA metabolism, including novel isoforms, poly(A) tails, and RNA modification, and we propose a comprehensive workflow for processing of plant DRS data. Many challenges to the application of DRS in plants, such as the need for machine learning tools tailored to plant transcriptomes, remain to be overcome, and together we outline future biological questions that can be addressed by DRS, such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of the plant transcriptome.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Pablo Sanz-Jimenez
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Tong Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Hussain W, Chaman S, Koser HN, Aun SM, Bibi Z, Pirzadi AN, Hussain J, Zubaria Z, Nabi G, Ullah MW, Wang S, Perveen I. Nanoparticle-Mediated Mucosal Vaccination: Harnessing Nucleic Acids for Immune Enhancement. Curr Microbiol 2024; 81:279. [PMID: 39031239 DOI: 10.1007/s00284-024-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Recent advancements in in vitro transcribed mRNA (IVT-mRNA) vaccine manufacturing have attracted considerable interest as advanced methods for combating viral infections. The respiratory mucosa is a primary target for pathogen attack, but traditional intramuscular vaccines are not effective in generating protective ion mucosal surfaces. Mucosal immunization can induce both systemic and mucosal immunity by effectively eliminating microorganisms before their growth and development. However, there are several biological and physical obstacles to the administration of genetic payloads, such as IVT-mRNA and DNA, to the pulmonary and nasal mucosa. Nucleic acid vaccine nanocarriers should effectively protect and load genetic payloads to overcome barriers i.e., biological and physical, at the mucosal sites. This may aid in the transfection of specific antigens, epithelial cells, and incorporation of adjuvants. In this review, we address strategies for delivering genetic payloads, such as nucleic acid vaccines, that have been studied in the past and their potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Sciences and Technology, Wuhan, 430074, China
| | - Sadia Chaman
- University of Veterinary and Animals Sciences, Lahore, Pakistan
| | | | | | - Zainab Bibi
- University of the Punjab, Lahore, 54590, Pakistan
| | | | - Jawad Hussain
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Sciences and Technology, Wuhan, 430074, China
| | | | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Sciences and Technology, Wuhan, 430074, China.
| | - Ishrat Perveen
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| |
Collapse
|
4
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
5
|
Weissenboeck F, Klöcker N, Špaček P, Hüwel S, Rentmeister A. Stabilized 5' Cap Analogue for Optochemical Activation of mRNA Translation. ACS OMEGA 2024; 9:12810-12816. [PMID: 38524462 PMCID: PMC10955689 DOI: 10.1021/acsomega.3c08505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/26/2024]
Abstract
The 5' cap is a distinguishing feature of transcripts made by polymerase II and characterized by an N7-methylated guanosine (m7G) linked to the first transcribed nucleotide by a 5'-5' triphosphate bridge. It stabilizes eukaryotic mRNAs and plays a crucial role in translation initiation. Its importance in mRNA processing, translation, and turnover makes the 5' cap a privileged structure for engineering by non-natural modifications. A photocleavable group at the 5' cap of guanosine was recently used to mute translation of exogenous mRNAs. Its removal by light enabled direct control of protein production at the posttranscriptional level. Modifications in the triphosphate bridge impede degradation by specific decapping enzymes and maintain translation. Here, we combined 5' cap modifications at different positions and investigated how they impact 5' cap-dependent processes in distinct manners. We synthesized 5' cap analogues with a photocleavable group at the N2-position of m7G in addition to a medronate in the triphosphate bridge to obtain a photoactivatable 5' cap analogue featuring a methylene group between the β and γ phosphates. The resulting Medronate-FlashCap transiently or permanently impeded distinct crucial interactions of the 5' cap required for translation and degradation. We show that the Medronate-FlashCap is compatible with in vitro transcription to generate muted mRNA and that light can be used to activate translation in cells. After light-induced removal of the photocleavable group, the Medronate-FlashCap remained stable against degradation by the decapping enzyme DcpS. The additional methylene group renders the 5' cap resistant to DcpS, while maintaining the interaction with cap-binding proteins.
Collapse
Affiliation(s)
| | - Nils Klöcker
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| | - Petr Špaček
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| |
Collapse
|
6
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Pawlowska R, Graczyk A, Radzikowska-Cieciura E, Wielgus E, Madaj R, Chworos A. Substrate Specificity of T7 RNA Polymerase toward Hypophosphoric Analogues of ATP. ACS OMEGA 2024; 9:9348-9356. [PMID: 38434886 PMCID: PMC10905585 DOI: 10.1021/acsomega.3c08635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Modified nucleotides are commonly used in molecular biology as substrates or inhibitors for several enzymes but also as tools for the synthesis of modified DNA and RNA fragments. Introduction of modification into RNA, such as phosphorothioate (PS), has been demonstrated to provide higher stability, more effective transport, and enhanced activity of potential therapeutic molecules. Hence, in order to achieve widespread use of RNA molecules in medicine, it is crucial to continuously refine the techniques that enable the effective introduction of modifications into RNA strands. Numerous analogues of nucleotides have been tested for their substrate activity with the T7 RNA polymerase and therefore in the context of their utility for use in in vitro transcription. In the present studies, the substrate preferences of the T7 RNA polymerase toward β,γ-hypophospho-modified ATP derivatives for the synthesis of unmodified RNA and phosphorothioate RNA (PS) are presented. The performed studies revealed the stereoselectivity of this enzyme for α-thio-β,γ-hypo-ATP derivatives, similar to that for α-thio-ATP. Additionally, it is demonstrated herein that hypodiphosphoric acid may inhibit in vitro transcription catalyzed by T7 RNA polymerase.
Collapse
Affiliation(s)
- Roza Pawlowska
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Anna Graczyk
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Department
of Structural Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Rafal Madaj
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
8
|
VanKeulen-Miller R, Fenton OS. Messenger RNA Therapy for Female Reproductive Health. Mol Pharm 2024; 21:393-409. [PMID: 38189262 DOI: 10.1021/acs.molpharmaceut.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Female reproductive health has traditionally been an underrepresented area of research in the drug delivery sciences. This disparity is also seen in the emerging field of mRNA therapeutics, a class of medicines that promises to treat and prevent disease by upregulating protein expression in the body. Here, we review advances in mRNA therapies through the lens of improving female reproductive health. Specifically, we begin our review by discussing the fundamental structure and biochemical modifications associated with mRNA-based drugs. Then, we discuss various packaging technologies, including lipid nanoparticles, that can be utilized to protect and transport mRNA drugs to target cells in the body. Last, we conclude our review by discussing the usage of mRNA therapy for addressing pregnancy-related health and vaccination against sexually transmitted diseases in women. Of note, we also highlight relevant clinical trials using mRNA for female reproductive health while also providing their corresponding National Clinical Trial identifiers. In undertaking this review, our aim is to provide a fundamental background understanding of mRNA therapy and its usage to specifically address female health issues with an overarching goal of providing information toward addressing gender disparity in certain aspects of health research.
Collapse
Affiliation(s)
- Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
10
|
Warminski M, Mamot A, Depaix A, Kowalska J, Jemielity J. Chemical Modifications of mRNA Ends for Therapeutic Applications. Acc Chem Res 2023; 56:2814-2826. [PMID: 37782471 PMCID: PMC10586375 DOI: 10.1021/acs.accounts.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 10/03/2023]
Abstract
Messenger ribonucleic acid (mRNA) is the universal cellular instruction for ribosomes to produce proteins. Proteins are responsible for most of the functions of living organisms, and their abnormal structure or activity is the cause of many diseases. mRNA, which is expressed in the cytoplasm and, unlike DNA, does not need to be delivered into the nucleus, appears to be an ideal vehicle for pursuing the idea of gene therapy in which genetic information about proteins is introduced into an organism to exert a therapeutic effect. mRNA molecules of any sequence can be synthesized using the same set of reagents in a cell-free system via a process called in vitro transcription (IVT), which is very convenient for therapeutic applications. However, this does not mean that the path from the idea to the first mRNA-based therapeutic was short and easy. It took 30 years of trial and error in the search for solutions that eventually led to the first mRNA vaccines created in record time during the SARS-CoV-2 pandemic. One of the fundamental problems in the development of RNA-based therapeutics is the legendary instability of mRNA, due to the transient nature of this macromolecule. From the chemical point of view, mRNA is a linear biopolymer composed of four types of ribonucleic subunits ranging in length from a few hundred to hundreds of thousands of nucleotides, with unique structures at its ends: a 5'-cap at the 5'-end and a poly(A) tail at the 3'-end. Both are extremely important for the regulation of translation and mRNA durability. These elements are also convenient sites for sequence-independent labeling of mRNA to create probes for enzymatic assays and tracking of the fate of mRNA in cells and living organisms. Synthetic 5'-cap analogs have played an important role in the studies of mRNA metabolism, and some of them have also been shown to significantly improve the translational properties of mRNA or affect mRNA stability and reactogenicity. The most effective of these is used in clinical trials of mRNA-based anticancer vaccines. Interestingly, thanks to the knowledge gained from the biophysical studies of cap-related processes, even relatively large modifications such as fluorescent tags can be attached to the cap structure without significant effects on the biological properties of the mRNA, if properly designed cap analogs are used. This has been exploited in the development of molecular tools (fluorescently labeled mRNAs) to track these macromolecules in complex biological systems, including organisms. These tools are extremely valuable for better understanding of the cellular mechanisms involved in mRNA metabolism but also for designing therapeutic mRNAs with superior properties. Much less is known about the usefulness/utility of poly(A) tail modifications in the therapeutic context, but it is clear that chemical modifications of poly(A) can also affect biochemical properties of mRNA. This Account is devoted to chemical modifications of both the 5'- and 3'-ends of mRNA aimed at improving the biological properties of mRNA, without interfering with its translational function, and is based on the authors' more than 20 years of experience in this field.
Collapse
Affiliation(s)
- Marcin Warminski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Adam Mamot
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anaïs Depaix
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Cornelissen NV, Mineikaitė R, Erguven M, Muthmann N, Peters A, Bartels A, Rentmeister A. Post-synthetic benzylation of the mRNA 5' cap via enzymatic cascade reactions. Chem Sci 2023; 14:10962-10970. [PMID: 37829022 PMCID: PMC10566477 DOI: 10.1039/d3sc03822j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
mRNAs are emerging modalities for vaccination and protein replacement therapy. Increasing the amount of protein produced by stabilizing the transcript or enhancing translation without eliciting a strong immune response are major steps towards overcoming the present limitations and improving their therapeutic potential. The 5' cap is a hallmark of mRNAs and non-natural modifications can alter the properties of the entire transcript selectively. Here, we developed a versatile enzymatic cascade for regioselective benzylation of various biomolecules and applied it for post-synthetic modification of mRNA at the 5' cap to demonstrate its potential. Starting from six synthetic methionine analogues bearing (hetero-)benzyl groups, S-adenosyl-l-methionine analogues are formed and utilized for N7G-cap modification of mRNAs. This post-synthetic enzymatic modification exclusively modifies mRNAs at the terminal N7G, producing mRNAs with functional 5' caps. It avoids the wrong orientation of the 5' cap-a problem in common co-transcriptional capping. In the case of the 4-chlorobenzyl group, protein production was increased to 139% during in vitro translation and to 128-150% in four different cell lines. This 5' cap modification did not activate cytosolic pathogen recognition receptors TLR3, TLR7 or TLR8 significantly more than control mRNAs, underlining its potential to contribute to the development of future mRNA therapeutics.
Collapse
Affiliation(s)
- N V Cornelissen
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - R Mineikaitė
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - M Erguven
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
- University of Münster, Cells in Motion Interfaculty Centre Waldeyerstr. 15 48149 Münster Germany
| | - N Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - A Peters
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - A Bartels
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - A Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
- University of Münster, Cells in Motion Interfaculty Centre Waldeyerstr. 15 48149 Münster Germany
| |
Collapse
|
12
|
Han G, Noh D, Lee H, Lee S, Kim S, Yoon HY, Lee SH. Advances in mRNA therapeutics for cancer immunotherapy: From modification to delivery. Adv Drug Deliv Rev 2023; 199:114973. [PMID: 37369262 PMCID: PMC10290897 DOI: 10.1016/j.addr.2023.114973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
RNA vaccines have demonstrated their ability to solve the issues posed by the COVID-19 pandemic. This success has led to the renaissance of research into mRNA and their nanoformulations as potential therapeutic modalities for various diseases. The potential of mRNA as a template for synthesizing proteins and protein fragments for cancer immunotherapy is now being explored. Despite the promise, the use of mRNA in cancer immunotherapy is limited by challenges, such as low stability against extracellular RNases, poor delivery efficiency to the target organs and cells, short circulatory half-life, variable expression levels and duration. This review highlights recent advances in chemical modification and advanced delivery systems that are helping to address these challenges and unlock the biological and pharmacological potential of mRNA therapeutics in cancer immunotherapy. The review concludes by discussing future perspectives for mRNA-based cancer immunotherapy, which holds great promise as a next-generation therapeutic modality.
Collapse
Affiliation(s)
- Geonhee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792; Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792.
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
13
|
Kenderdine T, Fabris D. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. MASS SPECTROMETRY REVIEWS 2023; 42:1332-1357. [PMID: 34939674 PMCID: PMC9218015 DOI: 10.1002/mas.21766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 06/07/2023]
Abstract
The deceptively simple concepts of mass determination and fragment analysis are the basis for the application of mass spectrometry (MS) to a boundless range of analytes, including fundamental components and polymeric forms of nucleic acids (NAs). This platform affords the intrinsic ability to observe first-hand the effects of NA-active drugs on the chemical structure, composition, and conformation of their targets, which might affect their ability to interact with cognate NAs, proteins, and other biomolecules present in a natural environment. The possibility of interfacing with high-performance separation techniques represents a multiplying factor that extends these capabilities to cover complex sample mixtures obtained from organisms that were exposed to NA-active drugs. This report provides a brief overview of these capabilities in the context of the analysis of the products of NA-drug activity and NA therapeutics. The selected examples offer proof-of-principle of the applicability of this platform to all phases of the journey undertaken by any successful NA drug from laboratory to bedside, and provide the rationale for its rapid expansion outside traditional laboratory settings in support to ever growing manufacturing operations.
Collapse
Affiliation(s)
| | - Dan Fabris
- Department of Chemistry, University of Connecticut
| |
Collapse
|
14
|
Xu Z, Fisher DE. mRNA melanoma vaccine revolution spurred by the COVID-19 pandemic. Front Immunol 2023; 14:1155728. [PMID: 37063845 PMCID: PMC10101324 DOI: 10.3389/fimmu.2023.1155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The advent of mRNA vaccines represents a significant advance in the field of vaccinology. While several vaccine approaches (mRNA, DNA, recombinant protein, and viral-vectored vaccines) had been investigated at the start of the COVID-19 pandemic, mRNA vaccines quickly gained popularity due to superior immunogenicity at a low dose, strong safety/tolerability profiles, and the possibility of rapid vaccine mass manufacturing and deployment to rural regions. In addition to inducing protective neutralizing antibody responses, mRNA vaccines can also elicit high-magnitude cytotoxic T-cell responses comparable to natural viral infections; thereby, drawing significant interest from cancer immunotherapy experts. This mini-review will highlight key developmental milestones and lessons we have learned from mRNA vaccines during the COVID-19 pandemic, with a specific emphasis on clinical trial data gathered so far for mRNA vaccines against melanoma and other forms of cancer.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David E. Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: David E. Fisher,
| |
Collapse
|
15
|
Sun H, Zhang Y, Wang G, Yang W, Xu Y. mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15020622. [PMID: 36839944 PMCID: PMC9964383 DOI: 10.3390/pharmaceutics15020622] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past two decades, significant technological innovations have led to messenger RNA (mRNA) becoming a promising option for developing prophylactic and therapeutic vaccines, protein replacement therapies, and genome engineering. The success of the two COVID-19 mRNA vaccines has sparked new enthusiasm for other medical applications, particularly in cancer treatment. In vitro-transcribed (IVT) mRNAs are structurally designed to resemble naturally occurring mature mRNA. Delivery of IVT mRNA via delivery platforms such as lipid nanoparticles allows host cells to produce many copies of encoded proteins, which can serve as antigens to stimulate immune responses or as additional beneficial proteins for supplements. mRNA-based cancer therapeutics include mRNA cancer vaccines, mRNA encoding cytokines, chimeric antigen receptors, tumor suppressors, and other combination therapies. To better understand the current development and research status of mRNA therapies for cancer treatment, this review focused on the molecular design, delivery systems, and clinical indications of mRNA therapies in cancer.
Collapse
Affiliation(s)
- Han Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ge Wang
- Department of Oral Maxillofacial & Head and Neck Oncology, National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
16
|
Aditham A, Shi H, Guo J, Zeng H, Zhou Y, Wade SD, Huang J, Liu J, Wang X. Chemically Modified mocRNAs for Highly Efficient Protein Expression in Mammalian Cells. ACS Chem Biol 2022; 17:3352-3366. [PMID: 34995053 DOI: 10.1021/acschembio.1c00569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
mRNA has recently been established as a new class of therapeutics, due to its programmability and ability to produce proteins of interest rapidly in vivo. Despite its demonstrated utility, mRNA as a protein expression platform remains limited by its translational capacity and RNA stability. Here, we introduce messenger-oligonucleotide conjugated RNAs (mocRNAs) to enable site-specific, robust, and modularized encoding of chemical modifications for highly efficient and stable protein expression. In mocRNA constructs, chemically synthesized oligonucleotides are ligated to the 3' terminus of mRNA substrates to protect poly(A) tails from degradation, without compromising their potency in stimulating translation. As a proof-of-concept, mocRNAs modified by deadenylase-resistant oligonucleotides result in augmented protein production by factors of 2-4 in human HeLa cells and by 10-fold in primary rat cortical neuronal cultures. By directly linking enzymatic and organic synthesis of mRNA, we envision that the mocRNA design will open new avenues to expand the chemical space and translational capacity of RNA-based vectors in basic research and therapeutic applications.
Collapse
Affiliation(s)
- Abhishek Aditham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Hailing Shi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jianting Guo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hu Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sarah Dunn Wade
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Neuroscience, University of California San Francisco, San Francisco, California 94158, United States
| | - Jiahao Huang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Li CY, Liang Z, Hu Y, Zhang H, Setiasabda KD, Li J, Ma S, Xia X, Kuang Y. Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:300-310. [PMID: 36320322 PMCID: PMC9614650 DOI: 10.1016/j.omtn.2022.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Synthetic mRNAs are rising rapidly as alternative therapeutic agents for delivery of proteins. However, the practical use of synthetic mRNAs has been restricted by their low cellular stability as well as poor protein production efficiency. The key roles of poly(A) tail on mRNA biology inspire us to explore the optimization of tail sequence to overcome the aforementioned limitations. Here, the systematic substitution of non-A nucleotides in the tails revealed that cytidine-containing tails can substantially enhance the protein production rate and duration of synthetic mRNAs both in vitro and in vivo. Such C-containing tails shield synthetic mRNAs from deadenylase CCR4-NOT transcription complex, as the catalytic CNOT proteins, especially CNOT6L and CNOT7, have lower efficiency in trimming of cytidine. Consistently, these enhancement effects of C-containing tails were observed on all synthetic mRNAs tested and were independent of transfection reagents and cell types. As the C-containing tails can be used along with other mRNA enhancement technologies to synergically boost protein production, we believe that these tails can be broadly used on synthetic mRNAs to directly promote their clinical applications.
Collapse
Affiliation(s)
- Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Kharis Daniel Setiasabda
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiawei Li
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China,HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China,Corresponding author Yi Kuang, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Perzanowska O, Smietanski M, Jemielity J, Kowalska J. Chemically Modified Poly(A) Analogs Targeting PABP: Structure Activity Relationship and Translation Inhibitory Properties. Chemistry 2022; 28:e202201115. [PMID: 35575378 PMCID: PMC9400960 DOI: 10.1002/chem.202201115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/13/2022]
Abstract
Poly(A)‐binding protein (PABP) is an essential element of cellular translational machinery. Recent studies have revealed that poly(A) tail modifications can modulate mRNA stability and translational potential, and that oligoadenylate‐derived PABP ligands can act as effective translational inhibitors with potential applications in pain management. Although extensive research has focused on protein‐RNA and protein‐protein interactions involving PABPs, further studies are required to examine the ligand specificity of PABP. In this study, we developed a microscale thermophoresis‐based assay to probe the interactions between PABP and oligoadenylate analogs containing different chemical modifications. Using this method, we evaluated oligoadenylate analogs modified with nucleobase, ribose, and phosphate moieties to identify modification hotspots. In addition, we determined the susceptibility of the modified oligos to CNOT7 to identify those with the potential for increased cellular stability. Consequently, we selected two enzymatically stable oligoadenylate analogs that inhibit translation in rabbit reticulocyte lysates with a higher potency than a previously reported PABP ligand. We believe that the results presented in this study and the implemented methodology can be capitalized upon in the future development of RNA‐based biological tools.
Collapse
Affiliation(s)
- Olga Perzanowska
- Division of Biophysics Faculty of Physics University of Warsaw Ludwika Pasteura 5 02-093 Warsaw Poland
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Miroslaw Smietanski
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Joanna Kowalska
- Division of Biophysics Faculty of Physics University of Warsaw Ludwika Pasteura 5 02-093 Warsaw Poland
| |
Collapse
|
19
|
Liu A, Wang X. The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Front Cell Dev Biol 2022; 10:901510. [PMID: 35912117 PMCID: PMC9326091 DOI: 10.3389/fcell.2022.901510] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
After over a decade of development, mRNA has recently matured into a potent modality for therapeutics. The advantages of mRNA therapeutics, including their rapid development and scalability, have been highlighted due to the SARS-CoV-2 pandemic, in which the first two clinically approved mRNA vaccines have been spotlighted. These vaccines, as well as multiple other mRNA therapeutic candidates, are modified to modulate their immunogenicity, stability, and translational efficiency. Despite the importance of mRNA modifications for harnessing the full efficacy of mRNA drugs, the full breadth of potential modifications has yet to be explored clinically. In this review, we survey the field of mRNA modifications, highlighting their ability to tune the properties of mRNAs. These include cap and tail modifications, nucleoside substitutions, and chimeric mRNAs, each of which represents a component of mRNA that can be exploited for modification. Additionally, we cover clinical and preclinical trials of the modified mRNA platform not only to illustrate the promise of modified mRNAs but also to call attention to the room for diversifying future therapeutics.
Collapse
Affiliation(s)
- Albert Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
20
|
Deng Z, Tian Y, Song J, An G, Yang P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front Immunol 2022; 13:887125. [PMID: 35720301 PMCID: PMC9201022 DOI: 10.3389/fimmu.2022.887125] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
mRNA therapy is a novel anticancer strategy based on in vitro transcription (IVT), which has potential for the treatment of malignant tumors. The outbreak of the COVID-19 pandemic in the early 21st century has promoted the application of mRNA technologies in SARS-CoV-2 vaccines, and there has been a great deal of interest in the research and development of mRNA cancer vaccines. There has been progress in a number of key technologies, including mRNA production strategies, delivery systems, antitumor immune strategies, etc. These technologies have accelerated the progress and clinical applications of mRNA therapy, overcoming problems encountered in the past, such as instability, inefficient delivery, and weak immunogenicity of mRNA vaccines. This review provides a detailed overview of the production, delivery systems, immunological mechanisms, and antitumor immune response strategies for mRNA cancer vaccines. We list some mRNA cancer vaccines that are candidates for cancer treatment and discuss clinical trials in the field of tumor immunotherapy. In addition, we discuss the immunological mechanism of action by which mRNA vaccines destroy tumors as well as challenges and prospects for the future.
Collapse
Affiliation(s)
- Zhuoya Deng
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuying Tian
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Guangwen An
- Department of Pharmacy, No. 984 Hospital of the PLA, Beijing, China
| | - Penghui Yang
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Poly(m 6A) tails stabilize transcripts. Mol Cell 2022; 82:1979-1980. [PMID: 35659324 DOI: 10.1016/j.molcel.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viegas et al. (2022) discover that in Trypanosoma brucei the poly(A) tails of the variant surface glycoprotein (VSG) transcripts are methylated, a mechanism that stabilizes these transcripts and ensures protection against the immune response in mammals.
Collapse
|
22
|
Wei J, Hui AM. The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treat Rev 2022; 107:102405. [PMID: 35576777 PMCID: PMC9068246 DOI: 10.1016/j.ctrv.2022.102405] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/08/2023]
Abstract
mRNA vaccines have gained popularity over the last decade as a versatile tool for developing novel therapeutics. The recent success of coronavirus disease (COVID-19) mRNA vaccine has unlocked the potential of mRNA technology as a powerful therapeutic platform. In this review, we apprise the literature on the various types of cancer vaccines, the novel platforms available for delivery of the vaccines, the recent progress in the RNA-based therapies and the evolving role of mRNA vaccines for various cancer indications, along with a future strategy to treat the patients. Literature reveals that despite multifaceted challenges in the development of mRNA vaccines, the promising and durable efficacy of the RNA in pre-clinical and clinical studies deserves consideration. The introduction of mRNA-transfected DC vaccine is an approach that has gained interest for cancer vaccine development due to its ability to circumvent the necessity of DC isolation, ex vivo cultivation and re-infusion. The selection of appropriate antigen of interest remains one of the major challenges for cancer vaccine development. The rapid development and large-scale production of mRNA platform has enabled for the development of both personalized vaccines (mRNA 4157, mRNA 4650 and RO7198457) and tetravalent vaccines (BNT111 and mRNA-5671). In addition, mRNA vaccines combined with checkpoint modulators and other novel medications that reverse immunosuppression show promise, however further research is needed to discover which combinations are most successful and the best dosing schedule for each component. Each delivery route (intradermal, subcutaneous, intra tumoral, intranodal, intranasal, intravenous) has its own set of challenges to overcome, and these challenges will decide the best delivery method. In other words, while developing a vaccine design, the underlying motivation should be a reasonable combination of delivery route and format. Exploring various administration routes and delivery route systems has boosted the development of mRNA vaccines.
Collapse
Affiliation(s)
- Jiao Wei
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA
| | - Ai-Min Hui
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA.
| |
Collapse
|
23
|
Synthetic RNA-based post-transcriptional expression control methods and genetic circuits. Adv Drug Deliv Rev 2022; 184:114196. [PMID: 35288218 DOI: 10.1016/j.addr.2022.114196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022]
Abstract
RNA-based synthetic genetic circuits provide an alternative for traditional transcription-based circuits in applications where genomic integration is to be avoided. Incorporating various post-transcriptional control methods into such circuits allows for controlling the behaviour of the circuit through the detection of certain biomolecular inputs or reconstituting defined circuit behaviours, thus manipulating cellular functions. In this review, recent developments of various types of post-transcriptional control methods in mammalian cells are discussed as well as auxiliary components that allow for the creation and development of mRNA-based switches. How such post-transcriptional switches are combined into synthetic circuits as well as their applications in biomedical and preclinical settings are also described. Finally, we examine the challenges that need to be surmounted before RNA-based synthetic circuits can be reliably deployed into clinical settings.
Collapse
|
24
|
Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J Clin Invest 2022; 132:e156211. [PMID: 35289317 PMCID: PMC8920340 DOI: 10.1172/jci156211] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.
Collapse
Affiliation(s)
- Amanda L. Huff
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neeha Zaidi
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. MED 2022; 3:167-187. [DOI: 10.1016/j.medj.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
26
|
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2021; 10:50. [PMID: 35052730 PMCID: PMC8773365 DOI: 10.3390/biomedicines10010050] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the quest for a formidable weapon against the SARS-CoV-2 pandemic, mRNA therapeutics have stolen the spotlight. mRNA vaccines are a prime example of the benefits of mRNA approaches towards a broad array of clinical entities and druggable targets. Amongst these benefits is the rapid cycle "from design to production" of an mRNA product compared to their peptide counterparts, the mutability of the production line should another target be chosen, the side-stepping of safety issues posed by DNA therapeutics being permanently integrated into the transfected cell's genome and the controlled precision over the translated peptides. Furthermore, mRNA applications are versatile: apart from vaccines it can be used as a replacement therapy, even to create chimeric antigen receptor T-cells or reprogram somatic cells. Still, the sudden global demand for mRNA has highlighted the shortcomings in its industrial production as well as its formulation, efficacy and applicability. Continuous, smart mRNA manufacturing 4.0 technologies have been recently proposed to address such challenges. In this work, we examine the lab and upscaled production of mRNA therapeutics, the mRNA modifications proposed that increase its efficacy and lower its immunogenicity, the vectors available for delivery and the stability considerations concerning long-term storage.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evdokia Mandala
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Davidopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine K Markopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
27
|
Mamot A, Sikorski PJ, Siekierska A, de Witte P, Kowalska J, Jemielity J. Ethylenediamine derivatives efficiently react with oxidized RNA 3' ends providing access to mono and dually labelled RNA probes for enzymatic assays and in vivo translation. Nucleic Acids Res 2021; 50:e3. [PMID: 34591964 PMCID: PMC8755103 DOI: 10.1093/nar/gkab867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Development of RNA-based technologies relies on the ability to detect, manipulate, and modify RNA. Efficient, selective and scalable covalent modification of long RNA molecules remains a challenge. We report a chemical method for modification of RNA 3′-end based on previously unrecognized superior reactivity of N-substituted ethylenediamines in reductive amination of periodate-oxidized RNA. Using this method, we obtained fluorescently labelled or biotinylated RNAs varying in length (from 3 to 2000 nt) and carrying different 5′ ends (including m7G cap) in high yields (70–100% by HPLC). The method is scalable (up to sub-milligrams of mRNA) and combined with label-facilitated HPLC purification yields highly homogeneous products. The combination of 3′-end labelling with 5′-end labelling by strain-promoted azide-alkyne cycloaddition (SPAAC) afforded a one-pot protocol for site-specific RNA bifunctionalization, providing access to two-colour fluorescent RNA probes. These probes exhibited fluorescence resonance energy transfer (FRET), which enabled real-time monitoring of several RNA hydrolase activities (RNase A, RNase T1, RNase R, Dcp1/2, and RNase H). Dually labelled mRNAs were efficiently translated in cultured cells and in zebrafish embryos, which combined with their detectability by fluorescent methods and scalability of the synthesis, opens new avenues for the investigation of mRNA metabolism and the fate of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Adam Mamot
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| |
Collapse
|
28
|
van Dülmen M, Muthmann N, Rentmeister A. Chemo-Enzymatic Modification of the 5' Cap Maintains Translation and Increases Immunogenic Properties of mRNA. Angew Chem Int Ed Engl 2021; 60:13280-13286. [PMID: 33751748 PMCID: PMC8250829 DOI: 10.1002/anie.202100352] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/19/2022]
Abstract
Eukaryotic mRNAs are emerging modalities for protein replacement therapy and vaccination. Their 5' cap is important for mRNA translation and immune response and can be naturally methylated at different positions by S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). We report on the cosubstrate scope of the MTase CAPAM responsible for methylation at the N6 -position of adenosine start nucleotides using synthetic AdoMet analogs. The chemo-enzymatic propargylation enabled production of site-specifically modified reporter-mRNAs. These cap-propargylated mRNAs were efficiently translated and showed ≈3-fold increased immune response in human cells. The same effects were observed when the receptor binding domain (RBD) of SARS-CoV-2-a currently tested epitope for mRNA vaccination-was used. Site-specific chemo-enzymatic modification of eukaryotic mRNA may thus be a suitable strategy to modulate translation and immune response of mRNAs for future therapeutic applications.
Collapse
Affiliation(s)
- Melissa van Dülmen
- Department of Chemistry and PharmacyInstitute of BiochemistryCorrensstrasse 3648149MünsterGermany
| | - Nils Muthmann
- Department of Chemistry and PharmacyInstitute of BiochemistryCorrensstrasse 3648149MünsterGermany
| | - Andrea Rentmeister
- Department of Chemistry and PharmacyInstitute of BiochemistryCorrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterGermany
| |
Collapse
|
29
|
Dülmen M, Muthmann N, Rentmeister A. Eine chemo‐enzymatische Modifizierung der 5′‐Kappe erhält die Translation und erhöht die Immunogenität der mRNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Melissa Dülmen
- Fachbereich Chemie und Pharmazie Institut für Biochemie Corrensstrasse 36 48149 Münster Deutschland
| | - Nils Muthmann
- Fachbereich Chemie und Pharmazie Institut für Biochemie Corrensstrasse 36 48149 Münster Deutschland
| | - Andrea Rentmeister
- Fachbereich Chemie und Pharmazie Institut für Biochemie Corrensstrasse 36 48149 Münster Deutschland
- Cells in Motion Interfaculty Center Westfälische Wilhelms-Universität Münster Deutschland
| |
Collapse
|
30
|
Demelenne A, Servais AC, Crommen J, Fillet M. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. J Chromatogr A 2021; 1651:462283. [PMID: 34107400 DOI: 10.1016/j.chroma.2021.462283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023]
Abstract
The number of RNA-based therapeutics has significantly grown in number on the market over the last 20 years. This number is expected to further increase in the coming years as many RNA therapeutics are being tested in late clinical trials stages. The first part of this paper considers the mechanism of action, the synthesis and the potential impurities resulting from synthesis as well as the strategies used to increase RNA-based therapeutics efficacy. In the second part of this review, the tests that are usually performed in the pharmaceutical industry for the quality testing of antisense oligonucleotides (ASOs), small-interfering RNAs (siRNAs) and messenger RNAs (mRNAs) will be described. In the last part, the remaining challenges and the ongoing developments to meet them are discussed.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium.
| |
Collapse
|
31
|
Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer 2021; 20:52. [PMID: 33722265 PMCID: PMC7957288 DOI: 10.1186/s12943-021-01339-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
In vitro-transcribed messenger RNA-based therapeutics represent a relatively novel and highly efficient class of drugs. Several recently published studies emphasize the potential efficacy of mRNA vaccines in treating different types of malignant and infectious diseases where conventional vaccine strategies and platforms fail to elicit protective immune responses. mRNA vaccines have lately raised high interest as potent vaccines against SARS-CoV2. Direct application of mRNA or its electroporation into dendritic cells was shown to induce polyclonal CD4+ and CD8+ mediated antigen-specific T cell responses as well as the production of protective antibodies with the ability to eliminate transformed or infected cells. More importantly, the vaccine composition may include two or more mRNAs coding for different proteins or long peptides. This enables the induction of polyclonal immune responses against a broad variety of epitopes within the encoded antigens that are presented on various MHC complexes, thus avoiding the restriction to a certain HLA molecule or possible immune escape due to antigen-loss. The development and design of mRNA therapies was recently boosted by several critical innovations including the development of technologies for the production and delivery of high quality and stable mRNA. Several technical obstacles such as stability, delivery and immunogenicity were addressed in the past and gradually solved in the recent years.This review will summarize the most recent technological developments and application of mRNA vaccines in clinical trials and discusses the results, challenges and future directions with a special focus on the induced innate and adaptive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Drug Delivery Systems
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Humans
- Immunity
- Immunotherapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Neoplasms/etiology
- Neoplasms/pathology
- Neoplasms/therapy
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Annkristin Heine
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Stefan Juranek
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Brossart
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|