1
|
Chen T, Zhang L, Zhang Y, Gao W, Zhang P, Guo L, Yang D. Genome-wide identification of the endonuclease family genes implicates potential roles of TaENDO23 in drought-stressed response and grain development in wheat. BMC Genomics 2024; 25:919. [PMID: 39358686 PMCID: PMC11448025 DOI: 10.1186/s12864-024-10840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Endonucleases play a crucial role in plant growth and stress response by breaking down nuclear DNA. However, the specific members and biological functions of the endonuclease encoding genes in wheat remain to be determined. RESULTS In this study, we identified a total of 26 TaENDO family genes at the wheat genome-wide level. These genes were located on chromosomes 2 A, 2B, 2D, 3 A, 3B, and 3D and classified into four groups, each sharing similar gene structures and conserved motifs. Furthermore, we identified diverse stress-response and growth-related cis-elements in the promoter of TaENDO genes, which were broadly expressed in different organs, and several TaENDO genes were significantly induced under drought and salt stresses. We further examined the biological function of TaENDO23 gene since it was rapidly induced under drought stress and exhibited high expression in spikes and grains. Subcellular localization analysis revealed that TaENDO23 was localized in the cytoplasm of wheat protoplasts. qRT-PCR results indicated that the expression of TaENDO23 increased under PEG6000 and abscisic acid treatments, but decreased under NaCl treatment. TaENDO23 mainly expressed in leaves and spikes. A kompetitive allele-specific PCR (KASP) marker was developed to identify single nucleotide polymorphisms in TaENDO23 gene in 256 wheat accessions. The alleles with TaENDO23-HapI haplotypes had higher grain weight and size compared to TaENDO23-HapII. The geographical and annual frequency distributions of the two TaENDO23 haplotypes revealed that the elite haplotype TaENDO23-HapI was positively selected in the wheat breeding process. CONCLUSION We systematically analyzed the evolutionary relationships, gene structure characteristics, and expression patterns of TaENDO genes in wheat. The expression of TaENDO23, in particular, was induced under drought stress, mainly expressed in the leaves and grains. The KASP marker of TaENDO23 gene successfully distinguished between the wheat accessions, revealing TaENDO23-HapI as the elite haplotype associated with improved grain weight and size. These findings provide insights into the evolution and characteristics of TaENDO genes at the genome-wide level in wheat, laying the foundation for further biological analysis of TaENDO23 gene, especially in response to drought stress and grain development.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Long Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Weidong Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Lijian Guo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
2
|
Huynh TN, Parker R. The PARN, TOE1, and USB1 RNA deadenylases and their roles in non-coding RNA regulation. J Biol Chem 2023; 299:105139. [PMID: 37544646 PMCID: PMC10493513 DOI: 10.1016/j.jbc.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023] Open
Abstract
The levels of non-coding RNAs (ncRNAs) are regulated by transcription, RNA processing, and RNA degradation pathways. One mechanism for the degradation of ncRNAs involves the addition of oligo(A) tails by non-canonical poly(A) polymerases, which then recruit processive sequence-independent 3' to 5' exonucleases for RNA degradation. This pathway of decay is also regulated by three 3' to 5' exoribonucleases, USB1, PARN, and TOE1, which remove oligo(A) tails and thereby can protect ncRNAs from decay in a manner analogous to the deubiquitination of proteins. Loss-of-function mutations in these genes lead to premature degradation of some ncRNAs and lead to specific human diseases such as Poikiloderma with Neutropenia (PN) for USB1, Dyskeratosis Congenita (DC) for PARN and Pontocerebellar Hypoplasia type 7 (PCH7) for TOE1. Herein, we review the biochemical properties of USB1, PARN, and TOE1, how they modulate ncRNA levels, and their roles in human diseases.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
3
|
Wang P, Zhou J, Sun W, Li H, Rehman S, Xu C, Li D, Zhuge Q. Poplar CCR4-associated factor PtCAF1I is necessary for poplar development and defense response. Int J Biol Macromol 2023:125090. [PMID: 37247707 DOI: 10.1016/j.ijbiomac.2023.125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Poplar is one of the most widely used tree species in afforestation projects. CCR4 associated factor 1 (CAF1) is a major member of CCR4-NOT and plays an important role in eukaryotic mRNA deadenylation. However, its role in poplar remains unclear. In this study, the full-length cDNA of the PtCAF1I gene was cloned from the poplar by screening the highly expressed PtCAF1I gene in the identified PtCAF1 gene family by poplar sterilization. PtCAF1I was localized in the nucleus. Through sequence alignment, it was found that the PtCAF1I sequence contains three motifs and is highly similar to the CAF1 protein sequence of other species. In the quantitative expression analysis of tissues, the expression of PtCAF1I in different tissues of Populus trichocarpa, 'Nanlin895', and Shanxinyang was not much different. In addition, the analysis of the expression of the PtCAF1I gene under different stress treatments showed that PtCAF1I responded to abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl, PEG6000, hydrogen peroxide (H2O2) and cold stress to different degrees. To study the potential biological functions of PtCAF1I, 6 transgenic lines were obtained through transformation using an Agrobacterium tumefaciens infection system. The transcriptome sequencing results showed that DEGs were mainly concentrated in pathways of phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, carbon metabolism, and carotenoid biosynthesis. Compared with WT poplar, the contents of cellulose, hemicellulose, lignin, total sugar, and flavonoids, and the cell wall thickness of PtCAF1I overexpression poplars were significantly higher. Under Septotinia populiperda treatment, transgenic poplars clearly exhibited certain disease resistance. Meanwhile, upregulation of the expression of JA and SA pathway-related genes also contributed to improving the disease tolerance of transgenic poplar. In conclusion, our results suggest that PtCAF1I plays an important role in the growth and development of poplars and their resistance to pathogens.
Collapse
Affiliation(s)
- Pu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongyan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Xu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
5
|
Hirayama T. PARN-like Proteins Regulate Gene Expression in Land Plant Mitochondria by Modulating mRNA Polyadenylation. Int J Mol Sci 2021; 22:ijms221910776. [PMID: 34639116 PMCID: PMC8509313 DOI: 10.3390/ijms221910776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondria have their own double-stranded DNA genomes and systems to regulate transcription, mRNA processing, and translation. These systems differ from those operating in the host cell, and among eukaryotes. In recent decades, studies have revealed several plant-specific features of mitochondrial gene regulation. The polyadenylation status of mRNA is critical for its stability and translation in mitochondria. In this short review, I focus on recent advances in understanding the mechanisms regulating mRNA polyadenylation in plant mitochondria, including the role of poly(A)-specific ribonuclease-like proteins (PARNs). Accumulating evidence suggests that plant mitochondria have unique regulatory systems for mRNA poly(A) status and that PARNs play pivotal roles in these systems.
Collapse
Affiliation(s)
- Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurahiki 710-0046, Okayama, Japan
| |
Collapse
|
6
|
Wang P, Li L, Wei H, Sun W, Zhou P, Zhu S, Li D, Zhuge Q. Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor 1) Family and Its Expression in Poplar. PLANTS 2021; 10:plants10050981. [PMID: 34068989 PMCID: PMC8155972 DOI: 10.3390/plants10050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Poplar is one of the most widely used tree in afforestation projects. However, it is susceptible to abiotic and biotic stress. CCR4-associated factor 1 (CAF1) is a major member of CCR4-NOT, and it is mainly involved in transcriptional regulation and mRNA degradation in eukaryotes. However, there are no studies on the molecular phylogeny and expression of the CAF1 gene in poplar. In this study, a total of 19 PtCAF1 genes were identified in the Populus trichocarpa genome. Phylogenetic analysis of the PtCAF1 gene family was performed with two closely related species (Arabidopsis thaliana and Oryza sativa) to investigate the evolution of the PtCAF1 gene. The tissue expression of the PtCAF1 gene showed that 19 PtCAF1 genes were present in different tissues of poplar. Additionally, the analysis of the expression of the PtCAF1 gene showed that the CAF1 family was up-regulated to various degrees under biotic and abiotic stresses and participated in the poplar stress response. The results of our study provide a deeper understanding of the structure and function of the PtCAF1 gene and may contribute to our understanding of the molecular basis of stress tolerance in poplar.
Collapse
|
7
|
Ueno D, Mikami M, Yamasaki S, Kaneko M, Mukuta T, Demura T, Kato K. Changes in mRNA Degradation Efficiencies under Varying Conditions Are Regulated by Multiple Determinants in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2021; 62:143-155. [PMID: 33289533 DOI: 10.1093/pcp/pcaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Multiple mechanisms are involved in gene expression, with mRNA degradation being critical for the control of mRNA accumulation. In plants, although some trans-acting factors and motif sequences have been identified in deadenylation-dependent mRNA degradation, endonucleolytic cleavage-dependent mRNA degradation has not been studied in detail. Previously, we developed truncated RNA-end sequencing (TREseq) in Arabidopsis thaliana and detected G-rich sequence motifs around 5' degradation intermediates. However, it remained to be elucidated whether degradation efficiencies of 5' degradation intermediates in A. thaliana vary among growth conditions and developmental stages. To address this issue, we conducted TREseq of cultured cells under heat stress and at three developmental stages (seedlings, expanding leaves and expanded leaves) and compared 5' degradation intermediates data among the samples. Although some 5' degradation intermediates had almost identical degradation efficiencies, others differed among conditions. We focused on the genes and sites whose degradation efficiencies differed. Changes in degradation efficiencies at the gene and site levels revealed an effect on mRNA accumulation in all comparisons. These changes in degradation efficiencies involved multiple determinants, including mRNA length and translation efficiency. These results suggest that several determinants govern the efficiency of mRNA degradation in plants, helping the organism to adapt to varying conditions by controlling mRNA accumulation.
Collapse
Affiliation(s)
- Daishin Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Maki Mikami
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Shotaro Yamasaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Miho Kaneko
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Takafumi Mukuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Ko Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| |
Collapse
|
8
|
Otsuka K, Mamiya A, Konishi M, Nozaki M, Kinoshita A, Tamaki H, Arita M, Saito M, Yamamoto K, Hachiya T, Noguchi K, Ueda T, Yagi Y, Kobayashi T, Nakamura T, Sato Y, Hirayama T, Sugiyama M. Temperature-dependent fasciation mutants provide a link between mitochondrial RNA processing and lateral root morphogenesis. eLife 2021; 10:61611. [PMID: 33443014 PMCID: PMC7846275 DOI: 10.7554/elife.61611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Although mechanisms that activate organogenesis in plants are well established, much less is known about the subsequent fine-tuning of cell proliferation, which is crucial for creating properly structured and sized organs. Here we show, through analysis of temperature-dependent fasciation (TDF) mutants of Arabidopsis, root redifferentiation defective 1 (rrd1), rrd2, and root initiation defective 4 (rid4), that mitochondrial RNA processing is required for limiting cell division during early lateral root (LR) organogenesis. These mutants formed abnormally broadened (i.e. fasciated) LRs under high-temperature conditions due to extra cell division. All TDF proteins localized to mitochondria, where they were found to participate in RNA processing: RRD1 in mRNA deadenylation, and RRD2 and RID4 in mRNA editing. Further analysis suggested that LR fasciation in the TDF mutants is triggered by reactive oxygen species generation caused by defective mitochondrial respiration. Our findings provide novel clues for the physiological significance of mitochondrial activities in plant organogenesis.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihito Mamiya
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mineko Konishi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mamoru Nozaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsuko Kinoshita
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tamaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Arita
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masato Saito
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kayoko Yamamoto
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Shimane, Japan
| | - Ko Noguchi
- Department of Applied Life Science, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Aichi, Japan
| | - Yusuke Yagi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takehito Kobayashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasushi Sato
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, Ehime, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
MacIntosh GC, Castandet B. Organellar and Secretory Ribonucleases: Major Players in Plant RNA Homeostasis. PLANT PHYSIOLOGY 2020; 183:1438-1452. [PMID: 32513833 PMCID: PMC7401137 DOI: 10.1104/pp.20.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Organellar and secretory RNases, associated with different cellular compartments, are essential to maintain cellular homeostasis during development and in stress responses.
Collapse
Affiliation(s)
- Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Benoît Castandet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| |
Collapse
|
10
|
Kanazawa M, Ikeda Y, Nishihama R, Yamaoka S, Lee NH, Yamato KT, Kohchi T, Hirayama T. Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. PLANT & CELL PHYSIOLOGY 2020; 61:470-480. [PMID: 31722408 DOI: 10.1093/pcp/pcz212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.
Collapse
Affiliation(s)
- Mai Kanazawa
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Yoko Ikeda
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nam-Hee Lee
- Department of Life Sciences, Faculty of Science and Engineering, Sorbonne University, 4 Place Jussieu, Paris 75005, France
| | - Katsuyuki T Yamato
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Takashi Hirayama
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
11
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
12
|
The Recovery from Sulfur Starvation Is Independent from the mRNA Degradation Initiation Enzyme PARN in Arabidopsis. PLANTS 2019; 8:plants8100380. [PMID: 31569782 PMCID: PMC6843384 DOI: 10.3390/plants8100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022]
Abstract
When plants are exposed to sulfur limitation, they upregulate the sulfate assimilation pathway at the expense of growth-promoting measures. Upon cessation of the stress, however, protective measures are deactivated, and growth is restored. In accordance with these findings, transcripts of sulfur-deficiency marker genes are rapidly degraded when starved plants are resupplied with sulfur. Yet it remains unclear which enzymes are responsible for the degradation of transcripts during the recovery from starvation. In eukaryotes, mRNA decay is often initiated by the cleavage of poly(A) tails via deadenylases. As mutations in the poly(A) ribonuclease PARN have been linked to altered abiotic stress responses in Arabidopsis thaliana, we investigated the role of PARN in the recovery from sulfur starvation. Despite the presence of putative PARN-recruiting AU-rich elements in sulfur-responsive transcripts, sulfur-depleted PARN hypomorphic mutants were able to reset their transcriptome to pre-starvation conditions just as readily as wildtype plants. Currently, the subcellular localization of PARN is disputed, with studies reporting both nuclear and cytosolic localization. We detected PARN in cytoplasmic speckles and reconciled the diverging views in literature by identifying two PARN splice variants whose predicted localization is in agreement with those observations.
Collapse
|
13
|
Abshire ET, Chasseur J, Bohn JA, Del Rizzo PA, Freddolino PL, Goldstrohm AC, Trievel RC. The structure of human Nocturnin reveals a conserved ribonuclease domain that represses target transcript translation and abundance in cells. Nucleic Acids Res 2019; 46:6257-6270. [PMID: 29860338 PMCID: PMC6158716 DOI: 10.1093/nar/gky412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
The circadian protein Nocturnin (NOCT) belongs to the exonuclease, endonuclease and phosphatase superfamily and is most similar to the CCR4-class of deadenylases that degrade the poly-adenosine tails of mRNAs. NOCT-deficient mice are resistant to high-fat diet induced weight gain, and exhibit dysregulation of bone formation. However, the mechanisms by which NOCT regulates these processes remain to be determined. Here, we describe a pair of high-resolution crystal structures of the human NOCT catalytic domain. The active site of NOCT is highly conserved with other exoribonucleases, and when directed to a transcript in cells, NOCT can reduce translation and abundance of that mRNA in a manner dependent on key active site residues. In contrast to the related deadenylase CNOT6L, purified recombinant NOCT lacks in vitro ribonuclease activity, suggesting that unidentified factors are necessary for enzymatic activity. We also find the ability of NOCT to repress reporter mRNAs in cells depends upon the 3' end of the mRNA, as reporters terminating with a 3' MALAT1 structure cannot be repressed by NOCT. Together, these data demonstrate that NOCT is an exoribonuclease that can degrade mRNAs to inhibit protein expression, suggesting a molecular mechanism for its regulatory role in lipid metabolism and bone development.
Collapse
Affiliation(s)
- Elizabeth T Abshire
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Chasseur
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul A Del Rizzo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol 2019; 27:792-805. [PMID: 31213342 DOI: 10.1016/j.tim.2019.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
Abstract
RNA silencing is a fundamental, evolutionarily conserved mechanism that regulates gene expression in eukaryotes. It also functions as a primary immune defense in microbes, such as viruses in plants. In addition to RNA silencing, RNA decay and RNA quality-control pathways are also two ancestral forms of intrinsic antiviral immunity, and the three RNA-targeted pathways may operate cooperatively for their antiviral function. Plant viruses encode viral suppressors of RNA silencing (VSRs) to suppress RNA silencing and facilitate virus infection. In response, plants may activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression. In this review, we summarize current knowledge of RNA silencing, RNA decay, and RNA quality control in antiviral defense, and highlight the mechanisms by which viruses compromise RNA-targeted immunity for their infection and survival in plants.
Collapse
|
15
|
Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J. Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:167. [PMID: 30873189 PMCID: PMC6401655 DOI: 10.3389/fpls.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 05/04/2023]
Abstract
It has long been assumed that the wide reprogramming of gene expression that modulates plant response to unfavorable environmental conditions is mainly controlled at the transcriptional level. A growing body of evidence, however, indicates that posttranscriptional regulatory mechanisms also play a relevant role in this control. Thus, the LSMs, a family of proteins involved in mRNA metabolism highly conserved in eukaryotes, have emerged as prominent regulators of plant tolerance to abiotic stress. Arabidopsis contains two main LSM ring-shaped heteroheptameric complexes, LSM1-7 and LSM2-8, with different subcellular localization and function. The LSM1-7 ring is part of the cytoplasmic decapping complex that regulates mRNA stability. On the other hand, the LSM2-8 complex accumulates in the nucleus to ensure appropriate levels of U6 snRNA and, therefore, correct pre-mRNA splicing. Recent studies reported unexpected results that led to a fundamental change in the assumed consideration that LSM complexes are mere components of the mRNA decapping and splicing cellular machineries. Indeed, these data have demonstrated that LSM1-7 and LSM2-8 rings operate in Arabidopsis by selecting specific RNA targets, depending on the environmental conditions. This specificity allows them to actively imposing particular gene expression patterns that fine-tune plant responses to abiotic stresses. In this review, we will summarize current and past knowledge on the role of LSM rings in modulating plant physiology, with special focus on their function in abiotic stress responses.
Collapse
|
16
|
Li F, Wang A. RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLoS Pathog 2018; 14:e1007228. [PMID: 30075014 PMCID: PMC6101400 DOI: 10.1371/journal.ppat.1007228] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/20/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022] Open
Abstract
Exonuclease-mediated RNA decay in plants is known to be involved primarily in endogenous RNA degradation, and several RNA decay components have been suggested to attenuate RNA silencing possibly through competing for RNA substrates. In this paper, we report that overexpression of key cytoplasmic 5'-3' RNA decay pathway gene-encoded proteins (5'RDGs) such as decapping protein 2 (DCP2) and exoribonuclease 4 (XRN4) in Nicotiana benthamiana fails to suppress sense transgene-induced post-transcriptional gene silencing (S-PTGS). On the contrary, knock-down of these 5'RDGs attenuates S-PTGS and supresses the generation of small interfering RNAs (siRNAs). We show that 5'RDGs degrade transgene transcripts via the RNA decay pathway when the S-PTGS pathway is disabled. Thus, RNA silencing and RNA decay degrade exogenous gene transcripts in a hierarchical and coordinated manner. Moreover, we present evidence that infection by turnip mosaic virus (TuMV) activates RNA decay and 5'RDGs also negatively regulate TuMV RNA accumulation. We reveal that RNA silencing and RNA decay can mediate degradation of TuMV RNA in the same way that they target transgene transcripts. Furthermore, we demonstrate that VPg and HC-Pro, the two known viral suppressors of RNA silencing (VSRs) of potyviruses, bind to DCP2 and XRN4, respectively, and the interactions compromise their antiviral function. Taken together, our data highlight the overlapping function of the RNA silencing and RNA decay pathways in plants, as evidenced by their hierarchical and concerted actions against exogenous and viral RNA, and VSRs not only counteract RNA silencing but also subvert RNA decay to promote viral infection.
Collapse
Affiliation(s)
- Fangfang Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
17
|
Johnson JM, Thürich J, Petutschnig EK, Altschmied L, Meichsner D, Sherameti I, Dindas J, Mrozinska A, Paetz C, Scholz SS, Furch ACU, Lipka V, Hedrich R, Schneider B, Svatoš A, Oelmüller R. A Poly(A) Ribonuclease Controls the Cellotriose-Based Interaction between Piriformospora indica and Its Host Arabidopsis. PLANT PHYSIOLOGY 2018; 176:2496-2514. [PMID: 29371249 PMCID: PMC5841714 DOI: 10.1104/pp.17.01423] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.
Collapse
Affiliation(s)
- Joy M Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Johannes Thürich
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Elena K Petutschnig
- Department of Plant Cell Biology, Albrecht von Haller Institute, Georg August University, 37077 Goettingen, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany
| | - Doreen Meichsner
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Julian Dindas
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, D-97082 Wuerzburg, Germany
| | - Anna Mrozinska
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht von Haller Institute, Georg August University, 37077 Goettingen, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, D-97082 Wuerzburg, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| |
Collapse
|
18
|
Chantarachot T, Bailey-Serres J. Polysomes, Stress Granules, and Processing Bodies: A Dynamic Triumvirate Controlling Cytoplasmic mRNA Fate and Function. PLANT PHYSIOLOGY 2018; 176:254-269. [PMID: 29158329 PMCID: PMC5761823 DOI: 10.1104/pp.17.01468] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/17/2017] [Indexed: 05/05/2023]
Abstract
Discoveries illuminate highly regulated dynamics of mRNA translation, sequestration, and degradation within the cytoplasm of plants.
Collapse
Affiliation(s)
- Thanin Chantarachot
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
19
|
Tsuzuki M, Motomura K, Kumakura N, Takeda A. Interconnections between mRNA degradation and RDR-dependent siRNA production in mRNA turnover in plants. JOURNAL OF PLANT RESEARCH 2017; 130:211-226. [PMID: 28197782 DOI: 10.1007/s10265-017-0906-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kazuki Motomura
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Naoyoshi Kumakura
- Center for Sustainable Resource Science, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Takeda
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
20
|
Zhang X, Guo H. mRNA decay in plants: both quantity and quality matter. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:138-144. [PMID: 28011423 DOI: 10.1016/j.pbi.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
In eukaryotes, degradation of messenger RNAs (mRNAs) is required for both mRNA quantity and quality control. Fine-tuning of the abundance of mRNAs that are to be translated can be achieved through a deadenylation-mediated RNA decay pathway involving progressive removal of poly(A) tails, decapping and exoribonuclease digestion. While the classical view assumes that mRNAs are degraded only after their exit from protein translation, recent studies have revealed mRNA decay can occur during translation in plants. Those mRNAs that have structural or functional defects can be filtered by translation-dependent RNA quality control pathways and rapidly degraded, so that translation fidelity is preserved. In addition, aberrant transcripts can also be efficiently eliminated through bidirectional RNA decay pathways. In the absence of those pathways, accumulation of those aberrant transcripts evokes the activation of RNA silencing, with detrimental consequences.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
21
|
Delis C, Krokida A, Tomatsidou A, Tsikou D, Beta RAA, Tsioumpekou M, Moustaka J, Stravodimos G, Leonidas DD, Balatsos NAA, Papadopoulou KK. AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants. RNA Biol 2016; 13:68-82. [PMID: 26619288 DOI: 10.1080/15476286.2015.1119363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We report the identification and characterization of a novel gene, AtHesperin (AtHESP) that codes for a deadenylase in Arabidopsis thaliana. The gene is under circadian clock-gene regulation and has similarity to the mammalian Nocturnin. AtHESP can efficiently degrade poly(A) substrates exhibiting allosteric kinetics. Size exclusion chromatography and native electrophoresis coupled with kinetic analysis support that the native enzyme is oligomeric with at least 3 binding sites. Knockdown and overexpression of AtHESP in plant lines affects the expression and rhythmicity of the clock core oscillator genes TOC1 and CCA1. This study demonstrates an evolutionary conserved poly(A)-degrading activity in plants and suggests deadenylation as a mechanism involved in the regulation of the circadian clock. A role of AtHESP in stress response in plants is also depicted.
Collapse
Affiliation(s)
- Costas Delis
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Afrodite Krokida
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Anastasia Tomatsidou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Daniela Tsikou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Rafailia A A Beta
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Maria Tsioumpekou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Julietta Moustaka
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Georgios Stravodimos
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Demetres D Leonidas
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Nikolaos A A Balatsos
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Kalliope K Papadopoulou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| |
Collapse
|
22
|
Kawa D, Testerink C. Regulation of mRNA decay in plant responses to salt and osmotic stress. Cell Mol Life Sci 2016; 74:1165-1176. [PMID: 27677492 PMCID: PMC5346435 DOI: 10.1007/s00018-016-2376-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
Plant acclimation to environmental stresses requires fast signaling to initiate changes in developmental and metabolic responses. Regulation of gene expression by transcription factors and protein kinases acting upstream are important elements of responses to salt and drought. Gene expression can be also controlled at the post-transcriptional level. Recent analyses on mutants in mRNA metabolism factors suggest their contribution to stress signaling. Here we highlight the components of mRNA decay pathways that contribute to responses to osmotic and salt stress. We hypothesize that phosphorylation state of proteins involved in mRNA decapping affect their substrate specificity.
Collapse
Affiliation(s)
- Dorota Kawa
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Anastasakis D, Skeparnias I, Shaukat AN, Grafanaki K, Kanellou A, Taraviras S, Papachristou DJ, Papakyriakou A, Stathopoulos C. Mammalian PNLDC1 is a novel poly(A) specific exonuclease with discrete expression during early development. Nucleic Acids Res 2016; 44:8908-8920. [PMID: 27515512 PMCID: PMC5062988 DOI: 10.1093/nar/gkw709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
PNLDC1 is a homologue of poly(A) specific ribonuclease (PARN), a known deadenylase with additional role in processing of non-coding RNAs. Both enzymes were reported recently to participate in piRNA biogenesis in silkworm and C. elegans, respectively. To get insights on the role of mammalian PNLDC1, we characterized the human and mouse enzymes. PNLDC1 shows limited conservation compared to PARN and represents an evolutionary related but distinct group of enzymes. It is expressed specifically in mouse embryonic stem cells, human and mouse testes and during early mouse embryo development, while it fades during differentiation. Its expression in differentiated cells, is suppressed through methylation of its promoter by the de novo methyltransferase DNMT3B. Both enzymes are localized mainly in the ER and exhibit in vitro specificity restricted solely to 3′ RNA or DNA polyadenylates. Knockdown of Pnldc1 in mESCs and subsequent NGS analysis showed that although the expression of the remaining deadenylases remains unaffected, it affects genes involved mainly in reprogramming, cell cycle and translational regulation. Mammalian PNLDC1 is a novel deadenylase expressed specifically in cell types which share regulatory mechanisms required for multipotency maintenance. Moreover, it could be involved both in posttranscriptional regulation through deadenylation and genome surveillance during early development.
Collapse
Affiliation(s)
- Dimitrios Anastasakis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | | | - Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Alexandra Kanellou
- Department of Physiology, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Dionysios J Papachristou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Athanasios Papakyriakou
- Laboratory of Chemical Biology, National Centre for Scientific Research 'Demokritos', 15341 Athens, Greece
| | | |
Collapse
|
24
|
Liu L, Chen X. RNA Quality Control as a Key to Suppressing RNA Silencing of Endogenous Genes in Plants. MOLECULAR PLANT 2016; 9:826-36. [PMID: 27045817 PMCID: PMC5123867 DOI: 10.1016/j.molp.2016.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
RNA quality control of endogenous RNAs is an integral part of eukaryotic gene expression and often relies on exonucleolytic degradation to eliminate dysfunctional transcripts. In parallel, exogenous and selected endogenous RNAs are degraded through RNA silencing, which is a genome defense mechanism used by many eukaryotes. In plants, RNA silencing is triggered by the production of double-stranded RNAs (dsRNAs) by RNA-DEPENDENT RNA POLYMERASEs (RDRs) and proceeds through small interfering (si) RNA-directed, ARGONAUTE (AGO)-mediated cleavage of homologous transcripts. Many studies revealed that plants avert inappropriate posttranscriptional gene silencing of endogenous coding genes by using RNA surveillance mechanisms as a safeguard to protect their transcriptome profiles. The tug of war between RNA surveillance and RNA silencing ensures the appropriate partitioning of endogenous RNA substrates among these degradation pathways. Here we review recent advances on RNA quality control and its role in the suppression of RNA silencing at endogenous genes and discuss the mechanisms underlying the crosstalk among these pathways.
Collapse
Affiliation(s)
- Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
25
|
Chen XJ, Zhang XH, Hu LD, Zhang JQ, Jiang Y, Yang Y, Yan YB. DsCaf1 is involved in environmental stress response of Dunaliella salina. Int J Biol Macromol 2015; 82:369-74. [PMID: 26454106 DOI: 10.1016/j.ijbiomac.2015.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Regulation of mRNA fates can alter the gene-expression profile promptly and specifically. Deadenylation is a process of which the poly(A) tail is degraded by deadenylases. By regulating mRNA turnover, deadenylases are involved in various vital cellular processes including stress responses. However, it is unclear whether deadenylases play a role in the adaption/tolerance of extremophiles. In this research, we cloned the deadenylase caf1 from Dunaliella salina (dscaf1), a unicellular green alga with exceptional halotolerance. In silicon analysis indicated that compared with the mesophilic alga Chlamydomonas reinhardtii caf1, dscaf1 promoter contained more elements responsive to abiotic stresses. Dscaf1 had an extremely high expression level under hypersaline conditions. When the D. salina cells were subject to stress shock, a two-stage response was observed for dscaf1 expression. The mRNA level of dscaf1 had an immediate 2-4 fold increase and followed by an ∼10 fold increase after hyperosmotic, heat or UV treatment, while had an about 3 fold increase quickly followed by an abrupt decrease after hypoosmotic or cold shock. The dissimilarity in dscaf1 expression patterns suggested that DsCaf1 is a stress-responsive deadenylase with the ability to regulate fates of a specific group of mRNAs for a certain type of stress.
Collapse
Affiliation(s)
- Xiang-Jun Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xin-Hang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Quan Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China.
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
27
|
Ma J, Fukuda Y, Schultz RM. Mobilization of Dormant Cnot7 mRNA Promotes Deadenylation of Maternal Transcripts During Mouse Oocyte Maturation. Biol Reprod 2015; 93:48. [PMID: 26134871 DOI: 10.1095/biolreprod.115.130344] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 11/01/2022] Open
Abstract
Maternal mRNAs in oocytes are remarkably stable. In mouse, oocyte maturation triggers a transition from mRNA stability to instability. This transition is a critical event in the oocyte-to-embryo transition in which a differentiated oocyte loses its identity as it is transformed into totipotent blastomeres. We previously demonstrated that phosphorylation of MSY2, an RNA-binding protein, and mobilization of mRNAs encoding the DCP1A-DCP2 decapping complex contribute to maternal mRNA destruction during meiotic maturation. We report here that Cnot7, Cnot6l, and Pan2, key components of deadenylation machinery, are also dormant maternal mRNAs that are recruited during oocyte maturation. Inhibiting the maturation-associated increase in CNOT7 (or CNOT6L) using a small interference RNA approach inhibits mRNA deadenylation, whereas inhibiting the increase in PAN2 has little effect. Reciprocally, expressing CNOT7 (or CNOT6L) in oocytes prevented from resuming meiosis initiates deadenylation of mRNAs. These effects on deadenylation are also observed when the total amount of poly (A) is quantified. Last, inhibiting the increase in CNOT7 protein results in an ~70% decrease in transcription in 2-cell embryos.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yusuke Fukuda
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Suzuki Y, Arae T, Green PJ, Yamaguchi J, Chiba Y. AtCCR4a and AtCCR4b are Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:863-74. [PMID: 25630334 DOI: 10.1093/pcp/pcv012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/21/2015] [Indexed: 05/11/2023]
Abstract
Removing the poly(A) tail is the first and rate-limiting step of mRNA degradation and apparently an effective step not only for modulating mRNA stability but also for translation of many eukaryotic transcripts. Carbon catabolite repressor 4 (CCR4) has been identified as a major cytoplasmic deadenylase in Saccharomyces cerevisiae. The Arabidopsis thaliana homologs of the yeast CCR4, AtCCR4a and AtCCR4b, were identified by sequence-based analysis; however, their role and physiological significance in plants remain to be elucidated. In this study, we revealed that AtCCR4a and AtCCR4b are localized to cytoplasmic mRNA processing bodies, which are specific granules consisting of many enzymes involved in mRNA turnover. Double mutants of AtCCR4a and AtCCR4b exhibited tolerance to sucrose application but not to glucose. The levels of sucrose in the seedlings of the atccr4a/4b double mutants were reduced, whereas no difference was observed in glucose levels. Further, amylose levels were slightly but significantly increased in the atccr4a/4b double mutants. Consistent with this observation, we found that the transcript encoding granule-bound starch synthase 1 (GBSS1), which is responsible for amylose synthesis, is accumulated to a higher level in the atccr4a/4b double mutant plants than in the control plants. Moreover, we revealed that GBSS1 has a longer poly(A) tail in the double mutant than in the control plant, suggesting that AtCCR4a and AtCCR4b can influence the poly(A) length of transcripts related to starch metabolism. Our results collectively suggested that AtCCR4a and AtCCR4b are involved in sucrose and starch metabolism in A. thaliana.
Collapse
Affiliation(s)
- Yuya Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Toshihiro Arae
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Junji Yamaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan JST PRESTO, Kawaguchi, 332-0012 Japan
| |
Collapse
|
29
|
Zhang LN, Yan YB. Depletion of poly(A)-specific ribonuclease (PARN) inhibits proliferation of human gastric cancer cells by blocking cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:522-34. [PMID: 25499764 DOI: 10.1016/j.bbamcr.2014.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
Regulation of mRNA decay plays a crucial role in the post-transcriptional control of cell growth, survival, differentiation, death and senescence. Deadenylation is a rate-limiting step in the silence and degradation of the bulk of highly regulated mRNAs. However, the physiological functions of various deadenylases have not been fully deciphered. In this research, we found that poly(A)-specific ribonuclease (PARN) was upregulated in gastric tumor tissues and gastric cancer cell lines MKN28 and AGS. The cellular function of PARN was investigated by stably knocking down the endogenous PARN in the MKN28 and AGS cells. Our results showed that PARN-depletion significantly inhibited the proliferation of the two types of gastric cancer cells and promoted cell death, but did not significantly affect cell motility and invasion. The depletion of PARN arrested the gastric cancer cells at the G0/G1 phase by upregulating the expression levels of p53 and p21 but not p27. The mRNA stability of p53 was unaffected by PARN-knockdown in both types of cells. A significant stabilizing effect of PARN-depletion on p21 mRNA was observed in the AGS cells but not in the MKN28 cells. We further showed that the p21 3'-UTR triggered the action of PARN in the AGS cells. The dissimilar observations between the MKN28 and AGS cells as well as various stress conditions suggested that the action of PARN strongly relied on protein expression profiles of the cells, which led to heterogeneity in the stability of PARN-targeted mRNAs.
Collapse
Affiliation(s)
- Li-Na Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
He GJ, Yan YB. Self-association of poly(A)-specific ribonuclease (PARN) triggered by the R3H domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2077-85. [PMID: 25239613 DOI: 10.1016/j.bbapap.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Poly(A)-specific ribonuclease (PARN) is a deadenylase with three RNA-binding domains (the nuclease, R3H and RRM domains) and a C-terminal domain. PARN participates in diverse physiological processes by regulating mRNA fates through deadenylation. PARN mainly exists as a dimer in dilute solutions. In this research, we found that PARN could self-associate into tetramer and high-order oligomers both in vitro and in living cells. Mutational and spectroscopic analysis indicated that PARN oligomerization was triggered by the R3H domain, which led to the solvent-exposed Trp219 fluorophore to become buried in a solvent-inaccessible microenvironment. The RRM and C-terminal domains also played a role in modulating the dissociation rate of the tetrameric PARN. Enzymatic analysis indicated that tetramerization did not affect the catalytic behavior of the full-length PARN and truncated enzymes containing the RRM domain, which might be caused by the high propensity of the dimeric proteins to self-associate into oligomers. Tetramerization significantly enhanced the catalytic activity and processivity of the truncated form with the removal of the RRM and C-terminal domains. The results herein suggested that self-association might be one of the regulation methods for PARN to achieve a highly regulated deadenylase activity. We propose that self-association may facilitate PARN to concentrate around the target mRNAs by restricted diffusion.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
A poly(A)-specific ribonuclease directly regulates the poly(A) status of mitochondrial mRNA in Arabidopsis. Nat Commun 2014; 4:2247. [PMID: 23912222 DOI: 10.1038/ncomms3247] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 07/05/2013] [Indexed: 01/17/2023] Open
Abstract
Coordination of gene expression in the organelles and the nucleus is important for eukaryotic cell function. Transcriptional and post-transcriptional gene regulation in mitochondria remains incompletely understood in most eukaryotes, including plants. Here we show that poly(A)-specific ribonuclease, which influences the poly(A) status of cytoplasmic mRNA in many eukaryotes, directly regulates the poly(A) tract of mitochondrial mRNA in conjunction with a bacterial-type poly(A) polymerase, AGS1, in Arabidopsis. An Arabidopsis poly(A)-specific ribonuclease-deficient mutant, ahg2-1, accumulates polyadenylated mitochondrial mRNA and shows defects in mitochondrial protein complex levels. Mutations of AGS1 suppress the ahg2-1 phenotype. Mitochondrial localizations of AHG2 and AGS1 are required for their functions in the regulation of the poly(A) tract of mitochondrial mRNA. Our findings suggest that AHG2 and AGS1 constitute a regulatory system that controls mitochondrial mRNA poly(A) status in Arabidopsis.
Collapse
|
32
|
Hirayama T. A unique system for regulating mitochondrial mRNA poly(A) status and stability in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e973809. [PMID: 25482772 PMCID: PMC4623099 DOI: 10.4161/15592324.2014.973809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 06/04/2023]
Abstract
Poly(A) status is the major determinant of mRNA stability, even in endosymbiotic organelles. Poly(A) specific ribonuclease (PARN) is distributed widely among eukaryotes and has been shown to regulate the poly(A) status of cytoplasmic mRNA in various organisms. Surprisingly, our recent study revealed that PARN also directly regulates poly(A) status of mitochondrial mRNA in Arabidopsis. In this addendum, we discuss whether this mitochondrial function of PARN is common in plants and why PARN has been assigned such a unique function.
Collapse
|
33
|
Nousch M, Techritz N, Hampel D, Millonigg S, Eckmann CR. The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. J Cell Sci 2013; 126:4274-85. [PMID: 23843623 DOI: 10.1242/jcs.132936] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Post-transcriptional regulatory mechanisms are widely used to control gene expression programs of tissue development and physiology. Controlled 3' poly(A) tail-length changes of mRNAs provide a mechanistic basis of such regulation, affecting mRNA stability and translational competence. Deadenylases are a conserved class of enzymes that facilitate poly(A) tail removal, and their biochemical activities have been mainly studied in the context of single-cell systems. Little is known about the different deadenylases and their biological role in multicellular organisms. In this study, we identify and characterize all known deadenylases of Caenorhabditis elegans, and identify the germ line as tissue that depends strongly on deadenylase activity. Most deadenylases are required for hermaphrodite fertility, albeit to different degrees. Whereas ccr-4 and ccf-1 deadenylases promote germline function under physiological conditions, panl-2 and parn-1 deadenylases are only required under heat-stress conditions. We also show that the Ccr4-Not core complex in nematodes is composed of the two catalytic subunits CCR-4 and CCF-1 and the structural subunit NTL-1, which we find to regulate the stability of CCF-1. Using bulk poly(A) tail measurements with nucleotide resolution, we detect strong deadenylation defects of mRNAs at the global level only in the absence of ccr-4, ccf-1 and ntl-1, but not of panl-2, parn-1 and parn-2. Taken together, this study suggests that the Ccr4-Not complex is the main deadenylase complex in C. elegans germ cells. On the basis of this and as a result of evidence in flies, we propose that the conserved Ccr4-Not complex is an essential component in post-transcriptional regulatory networks promoting animal reproduction.
Collapse
Affiliation(s)
- Marco Nousch
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
34
|
Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48:192-209. [PMID: 23496118 DOI: 10.3109/10409238.2013.771132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m(7)G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3'-5' exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.
Collapse
Affiliation(s)
- Anders Virtanen
- Department of Cell and Molecular Biology, Program of Chemical Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
35
|
Moreno AB, Martínez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A, Mallory AC. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res 2013; 41:4699-708. [PMID: 23482394 PMCID: PMC3632135 DOI: 10.1093/nar/gkt152] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Institut des Sciences du Végétal, CNRS UPR 2355, SPS Saclay Plant Sciences, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
36
|
He GJ, Zhang A, Liu WF, Yan YB. Distinct roles of the R3H and RRM domains in poly(A)-specific ribonuclease structural integrity and catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1089-98. [PMID: 23388391 DOI: 10.1016/j.bbapap.2013.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Deadenylases specifically catalyze the degradation of eukaryotic mRNA poly(A) tail in the 3'- to 5'-end direction with the release of 5'-AMP as the product. Among the deadenylase family, poly(A)-specific ribonuclease (PARN) is unique in its domain composition, which contains three potential RNA-binding domains: the catalytic nuclease domain, the R3H domain and the RRM domain. In this research, we investigated the roles of these RNA-binding domains by comparing the structural features and enzymatic properties of mutants lacking either one or two of the three RNA-binding domains. The results showed that the R3H domain had the ability to bind various oligonucleotides at the micromolar level with no oligo(A) specificity. The removal of the R3H domain dissociated PARN into monomers, which still possessed the RNA-binding ability and catalytic functions. Unlike the critical role of the RRM domain in PARN processivity, the removal of the R3H domain did not affect the catalytic pattern of PARN. Our results suggested that both R3H and RRM domains were essential for the high affinity of long poly(A) substrate, but the R3H domain did not contribute to the substrate recognition of PARN. Compared to the RRM domain, the R3H domain played a more important role in the structural integrity of the dimeric PARN. The multiple RNA-binding domain architecture endows PARN the property of highly efficient catalysis in a highly processive mode.
Collapse
Affiliation(s)
- Guang-Jun He
- School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
37
|
Godwin AR, Kojima S, Green CB, Wilusz J. Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:571-9. [PMID: 23274303 DOI: 10.1016/j.bbagrm.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/12/2012] [Accepted: 12/16/2012] [Indexed: 01/06/2023]
Abstract
PARN, Nocturnin and Angel are three of the multiple deadenylases that have been described in eukaryotic cells. While each of these enzymes appear to target poly(A) tails for shortening and influence RNA gene expression levels and quality control, the enzymes differ in terms of enzymatic mechanisms, regulation and biological impact. The goal of this review is to provide an in depth biochemical and biological perspective of the PARN, Nocturnin and Angel deadenylases. Understanding the shared and unique roles of these enzymes in cell biology will provide important insights into numerous aspects of the post-transcriptional control of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Alan R Godwin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Shortening of the poly(A) tail is the first and often rate-limiting step in mRNA degradation. Three poly(A)-specific 3' exonucleases have been described that can carry out this reaction: PAN, composed of two subunits; PARN, a homodimer; and the CCR4-NOT complex, a heterooligomer that contains two catalytic subunits and may have additional functions in the cell. Current evidence indicates that all three enzymes use a two-metal ion mechanism to release nucleoside monophosphates in a hydrolytic reaction. The CCR4-NOT is the main deadenylase in all organisms examined, and mutations affecting the complex can be lethal. The contribution of PAN, apparently an initial deadenylation preceding the activity of CCR4-NOT, is less important, whereas the activity of PARN seems to be restricted to specific substrates or circumstances, for example, stress conditions. Rapid deadenylation and decay of specific mRNAs can be caused by recruitment of both PAN and the CCR4-NOT complex. This function can be carried out by RNA-binding proteins, for example, members of the PUF family. Alternatively, miRNAs can recruit the deadenylase complexes with the help of their associated GW182 proteins.
Collapse
Affiliation(s)
- Christiane Harnisch
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Bodo Moritz
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Christiane Rammelt
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Claudia Temme
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Elmar Wahle
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany.
| |
Collapse
|
39
|
Abstract
The shortening of the 3′-end poly(A) tail, also called deadenylation, is crucial to the regulation of mRNA processing, transportation, translation and degradation. The deadenylation process is achieved by deadenylases, which specifically catalyze the removal of the poly(A) tail at the 3′-end of eukaryotic mRNAs and release 5′-AMP as the product. To achieve their physiological functions, all deadenylases have numerous binding partners that may regulate their catalytic properties or recruit them into various protein complexes. To study the effects of various partners, it is important to develop new deadenylase assay that can be applied either in vivo or in vitro. In this research, we developed the deadenylase assay by the size-exclusion chromatography (SEC) method. The SEC analysis indicated that the poly(A) or oligo(A) substrate and the product AMP could be successfully separated and quantified. The enzymatic parameters of deadenylase could be obtained by quantifying the AMP generation. When using the commercial poly(A) as the substrate, a biphasic catalytic process was observed, which might correlate to the two distinct states of poly(A) in the commercial samples. Different lots of commercial poly(A) had dissimilar size distributions and were dissimilar in response to the degradation of deadenylase. The deadenylation pattern, processive or distributive, could also be investigated using the SEC assay by monitoring the status of the substrate and the generation kinetics of AMP and A2. The SEC assay was applicable to both simple samples using the purified enzyme and complex enzyme reaction conditions such as using protein mixtures or crude cell extracts as samples. The influence of solutes with absorption at 254 nm could be successfully eliminated by constructing the different SEC profiles.
Collapse
|
40
|
Salvini M, Sani E, Fambrini M, Pistelli L, Pucciariello C, Pugliesi C. Molecular analysis of a sunflower gene encoding an homologous of the B subunit of a CAAT binding factor. Mol Biol Rep 2012; 39:6449-65. [PMID: 22359114 DOI: 10.1007/s11033-012-1463-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
A genomic DNA fragment containing the complete LEAFY COTYLEDON1-LIKE (HaL1L) gene was retrieved by chromosome walking. Its sequence was confirmed and elongated by screening a sunflower genomic DNA BAC Library. HaL1L, whose cDNA had already been sequenced and characterized, encodes a NF-YB subunit of a CCAAT box-binding factor (NF-Y) involved in the early stages of zygotic and somatic embryogenesis in the Helianthus genus. In the HaL1L 5'-flanking region, elements specific to a putative TATA-box promoter and two "CG isles" were identified. An investigation of the methylation status of these CG rich DNA regions showed that differentially methylated cytosines were recognizable in the DNA of embryos on the fifth day after pollination in comparison to leaf DNA suggesting that during plant development epigenetic regulation of HaL1L transcription was achieved by methylating cytosine residues. We also searched the HaL1L nucleotide sequence for cis-regulatory elements able to interact with other transcription factors (TFs) involved in the HaL1L regulation. Of the elements identified, one of the most intriguing is WUSATA, the target sequence for the WUSCHEL (WUS) TF, which may be part of a complex regulation network controlling embryo development. In this article, we show that the WUSATA target site, located in the intron of HaL1L, is able to bind the TF WUS. Interestingly, we found auxin and abscisic acid responsive motifs in the HaL1L promoter region suggesting that this gene may additionally by under hormonal control. Finally, the presence of a cytoplasmic polyadenylation signal downstream to the coding region indicates that this gene may also be controlled at the translation level by a temporarily making the pre-synthesized HaL1L mRNA unavailable for protein synthesis.
Collapse
|
41
|
Niedzwiecka A, Lekka M, Nilsson P, Virtanen A. Global architecture of human poly(A)-specific ribonuclease by atomic force microscopy in liquid and dynamic light scattering. Biophys Chem 2011; 158:141-9. [DOI: 10.1016/j.bpc.2011.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/26/2022]
|
42
|
PolyA-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:1230-40. [PMID: 21743004 DOI: 10.1128/ec.05097-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.
Collapse
|
43
|
Abstract
The poly(A) tail of mRNA has an important influence on the dynamics of gene expression. On one hand, it promotes enhanced mRNA stability to allow production of the protein, even after inactivation of transcription. On the other hand, shortening of the poly(A) tail (deadenylation) slows down translation of the mRNA, or prevents it entirely, by inducing mRNA decay. Thus deadenylation plays a crucial role in the post-transcriptional regulation of gene expression, deciding the fate of individual mRNAs. It acts both in basal mRNA turnover, as well as in temporally and spatially regulated translation and decay of specific mRNAs. In the present paper, we discuss mRNA deadenylation in eukaryotes, focusing on the main deadenylase, the Ccr4-Not complex, including its composition, regulation and functional roles.
Collapse
|
44
|
Walley JW, Kelley DR, Savchenko T, Dehesh K. Investigating the function of CAF1 deadenylases during plant stress responses. PLANT SIGNALING & BEHAVIOR 2010; 5:802-805. [PMID: 20421740 PMCID: PMC3115028 DOI: 10.4161/psb.5.7.11578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 05/29/2023]
Abstract
Alteration of gene expression plays a central role in the transmission of developmental and environmental signals. The steady-state transcript level within a cell is determined by the combination of the rate synthesis and the rate of degradation. While altering the rate of mRNA turnover is known to provide a rapid mechanism to reprogram transcript levels, research has largely focused on changes in transcriptional regulation as a mechanism to control mRNA levels. However, recent studies have begun to explore the role of mRNA decay in reprogramming the transcriptome.
Collapse
Affiliation(s)
- Justin W Walley
- Division of Biological Sciences; University of California at San Diego; La Jolla, CA USA
| | - Dior R Kelley
- Plant Molecular and Cellular Biology Laboratory; Salk Institute for Biological Sciences; La Jolla, CA USA
| | - Tatyana Savchenko
- Department of Plant Biology; University of California at Davis; Davis, CA USA
| | - Katayoon Dehesh
- Department of Plant Biology; University of California at Davis; Davis, CA USA
| |
Collapse
|
45
|
Walley JW, Dehesh K. Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:354-9. [PMID: 20377697 DOI: 10.1111/j.1744-7909.2010.00940.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As sessile organisms plants must cope with ever changing environmental conditions. To survive plants have evolved elaborate mechanisms to perceive and rapidly respond to a diverse range of abiotic and biotic stresses. Central to this response is the ability to modulate gene expression at both the transcriptional and post-transcriptional levels. This review will focus on recent progress that has been made towards understanding the rapid reprogramming of the transcriptome that occurs in response to stress as well as emerging mechanisms underpinning the reprogramming of gene expression in response to stress.
Collapse
Affiliation(s)
- Justin W Walley
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
46
|
Walley JW, Kelley DR, Nestorova G, Hirschberg DL, Dehesh K. Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. PLANT PHYSIOLOGY 2010; 152:866-75. [PMID: 19955262 PMCID: PMC2815882 DOI: 10.1104/pp.109.149005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/25/2009] [Indexed: 05/19/2023]
Abstract
To maintain homeostasis in an ever-changing environment organisms have evolved mechanisms to reprogram gene expression. One central mechanism regulating gene expression is messenger RNA (mRNA) degradation, which is initiated by poly(A) tail shortening (deadenylation). The carbon catabolite repressor 4-CCR4 associated factor1 (CCR4-CAF1) complex is the major enzyme complex that catalyzes mRNA deadenylation and is conserved among eukaryotes. However, the components and functions of this global regulatory complex have not been well characterized in plants. Here we investigate the CAF1 family in Arabidopsis (Arabidopsis thaliana). We identify 11 AtCAF1 homologs and show that a subset of these genes are responsive to mechanical wounding, among them are AtCAF1a and AtCAF1b whose expression levels are rapidly and transiently induced by wounding. The differential expression profiles of the various AtCAF1s suggest that not all AtCAF1 genes are involved in stress-responsive regulation of transcript levels. Comparison of misexpressed genes identified via transcript profiling of Atcaf1a and Atcaf1b mutants at different time points before and after wounding suggests that AtCAF1a and AtCAF1b target shared and unique transcripts for deadenylation with temporal specificity. Consistent with the AtPI4Kgamma3 transcript exhibiting the largest increase in abundance in Atcaf1b, AtCAF1b targets AtPI4Kgamma3 mRNA for deadenylation. Stress-tolerance assays demonstrate that AtCAF1a and AtCAF1b are involved in mediating abiotic stress responses. However, AtCAF1a and AtCAF1b are not functionally redundant in all cases, nor are they essential for all environmental stresses. These findings demonstrate that these closely related proteins exhibit overlapping and distinct roles with respect to mRNA deadenylation and mediation of stress responses.
Collapse
|
47
|
Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton C. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 2009; 37:5511-28. [PMID: 19596809 PMCID: PMC2760810 DOI: 10.1093/nar/gkp571] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Removal of the poly(A) tail is the first step in the degradation of many eukaryotic mRNAs. In metazoans and yeast, the Ccr4/Caf1/Not complex has the predominant deadenylase activity, while the Pan2/Pan3 complex may trim poly(A) tails to the correct size, or initiate deadenylation. In trypanosomes, turnover of several constitutively-expressed or long-lived mRNAs is not affected by depletion of the 5′–3′ exoribonuclease XRNA, but is almost completely inhibited by depletion of the deadenylase CAF1. In contrast, two highly unstable mRNAs, encoding EP procyclin and a phosphoglycerate kinase, PGKB, accumulate when XRNA levels are reduced. We here show that degradation of EP mRNA was partially inhibited after CAF1 depletion. RNAi-targeting trypanosome PAN2 had a mild effect on global deadenylation, and on degradation of a few mRNAs including EP. By amplifying and sequencing degradation intermediates, we demonstrated that a reduction in XRNA had no effect on degradation of a stable mRNA encoding a ribosomal protein, but caused accumulation of EP mRNA fragments that had lost substantial portions of the 5′ and 3′ ends. The results support a model in which trypanosome mRNAs can be degraded by at least two different, partially independent, cytoplasmic degradation pathways attacking both ends of the mRNA.
Collapse
Affiliation(s)
- Angela Schwede
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
He GJ, Zhang A, Liu WF, Cheng Y, Yan YB. Conformational stability and multistate unfolding of poly(A)-specific ribonuclease. FEBS J 2009; 276:2849-60. [PMID: 19459940 DOI: 10.1111/j.1742-4658.2009.07008.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Poly(A)-specific ribonuclease (PARN) specifically catalyzes the degradation of the poly(A) tails of single-stranded mRNAs in a highly processive mode. PARN participates in diverse and important intracellular processes by acting as a regulator of mRNA stability and translational efficiency. In this article, the equilibrium unfolding of PARN was studied using both guanidine hydrochloride and urea as chemical denaturants. The unfolding of PARN was characterized as a multistate process, but involving dissimilar equilibrium intermediates when denatured by the two denaturants. A comparison of the spectral characteristics of these intermediates indicated that the conformational changes at low concentrations of the chemical denaturants were more likely to be rearrangements of the tertiary and quaternary structures. In particular, an inactive molten globule-like intermediate was identified to exist as soluble non-native oligomers, and the formation of the oligomers was modulated by electrostatic interactions. An active dimeric intermediate unique to urea-induced unfolding was characterized to have increased regular secondary structures and modified tertiary structures, implying that additional regular structures could be induced by environmental stresses. The dissimilarity in the unfolding pathways induced by guanidine hydrochloride and urea suggest that electrostatic interactions play an important role in PARN stability and regulation. The appearance of multiple intermediates with distinct properties provides the structural basis for the multilevel regulation of PARN by conformational changes.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X, Li C. The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res 2009; 19:307-16. [PMID: 19065152 DOI: 10.1038/cr.2008.317] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Messenger RNA (mRNA) turnover in eukaryotic cells begins with shortening of the poly (A) tail at the 3' end, a process called deadenylation. In yeast, the deadenylation reaction is predominantly mediated by CCR4 and CCR4-associated factor 1 (CAF1), two components of the well-characterised protein complex named CCR4-NOT. We report here that AtCAF1a and AtCAF1b, putative Arabidopsis homologs of the yeast CAF1 gene, partially complement the growth defect of the yeast caf1 mutant in the presence of caffeine or at high temperatures. The expression of AtCAF1a and AtCAF1b is induced by multiple stress-related hormones and stimuli. Both AtCAF1a and AtCAF1b show deadenylation activity in vitro and point mutations in the predicted active sites disrupt this activity. T-DNA insertion mutants disrupting the expression of AtCAF1a and/or AtCAF1b are defective in deadenylation of stress-related mRNAs, indicating that the two AtCAF1 proteins are involved in regulated mRNA deadenylation in vivo. Interestingly, the single and double mutants of AtCAF1a and AtCAF1b show reduced expression of pathogenesis-related (PR) genes PR1 and PR2 and are more susceptible to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection, whereas transgenic plants over-expressing AtCAF1a show elevated expression of PR1 and PR2 and increased resistance to the same pathogen. Our results suggest roles of the AtCAF1 proteins in regulated mRNA deadenylation and defence responses to pathogen infections.
Collapse
Affiliation(s)
- Wenxing Liang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Belostotsky DA, Sieburth LE. Kill the messenger: mRNA decay and plant development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:96-102. [PMID: 18990607 DOI: 10.1016/j.pbi.2008.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 09/02/2008] [Indexed: 05/13/2023]
Abstract
A pervasive theme in development is that dynamic changes in gene expression drive developmental progression; yet in studies of gene expression, the general RNA decay pathways have historically played second fiddle to transcription. However, recent advances in this field have revealed a surprising degree of mRNA specificity for particular branches of these RNA decay pathways. General cytoplasmic mRNA decay typically initiates with deadenylation, following which the deadenylated mRNA can continue decay from the 3'-end through the action of the exosome, or it can undergo 5'-to-3' decay. Functional characterization of exosome subunits using inducible knock-outs uncovered a surprising complexity of molecular phenotypes and RNA substrates. Decay in the 5'-to-3' direction requires decapping, which is carried out by the decapping complex in Processing bodies (PBs). Recent analyses of decapping mutants have also revealed substrate specificity and roles in translational regulation. In addition, recent studies of specialized pathways such as nonsense-mediated decay and silencing reveal interactions with the general RNA decay pathways.
Collapse
Affiliation(s)
- Dmitry A Belostotsky
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | |
Collapse
|