1
|
Yu D, Stothard P, Neumann NF. Emergence of potentially disinfection-resistant, naturalized Escherichia coli populations across food- and water-associated engineered environments. Sci Rep 2024; 14:13478. [PMID: 38866876 PMCID: PMC11169474 DOI: 10.1038/s41598-024-64241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The Escherichia coli species is comprised of several 'ecotypes' inhabiting a wide range of host and natural environmental niches. Recent studies have suggested that novel naturalized ecotypes have emerged across wastewater treatment plants and meat processing facilities. Phylogenetic and multilocus sequence typing analyses clustered naturalized wastewater and meat plant E. coli strains into two main monophyletic clusters corresponding to the ST635 and ST399 sequence types, with several serotypes identified by serotyping, potentially representing distinct lineages that have naturalized across wastewater treatment plants and meat processing facilities. This evidence, taken alongside ecotype prediction analyses that distinguished the naturalized strains from their host-associated counterparts, suggests these strains may collectively represent a novel ecotype that has recently emerged across food- and water-associated engineered environments. Interestingly, pan-genomic analyses revealed that the naturalized strains exhibited an abundance of biofilm formation, defense, and disinfection-related stress resistance genes, but lacked various virulence and colonization genes, indicating that their naturalization has come at the cost of fitness in the original host environment.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB, Canada.
- Antimicrobial Resistance-One Health Consortium, Calgary, AB, Canada.
| | - Paul Stothard
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance-One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
2
|
Javed MQ, Kovalchuk I, Yevtushenko D, Yang X, Stanford K. Relationship between Desiccation Tolerance and Biofilm Formation in Shiga Toxin-Producing Escherichia coli. Microorganisms 2024; 12:243. [PMID: 38399647 PMCID: PMC10891874 DOI: 10.3390/microorganisms12020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities.
Collapse
Affiliation(s)
- Muhammad Qasim Javed
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Dmytro Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, AB T4L 1V7, Canada;
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| |
Collapse
|
3
|
Caetano S, Correia C, Vidal AFT, Matos A, Ferreira C, Cravo A. Fate of microbial contamination in a South European Coastal Lagoon (Ria Formosa) under the influence of treated effluents dispersal. J Appl Microbiol 2023; 134:lxad166. [PMID: 37516448 DOI: 10.1093/jambio/lxad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
AIM Assessment of the fate of microbial contamination driven from treated wastewater disposal at a highly productive zone on a South European coastal lagoon (Ria Formosa). METHODS AND RESULTS Microbial indicators of contamination (Total coliforms, Escherichia coli, and Enterococci) were evaluated monthly during September 2018-September 2020 at three study areas (Faro, Olhão, and Tavira) under different wastewater discharge flows and hydrodynamic conditions. Additional data on E. coli monitoring in bivalves, available from the national institution responsible for their surveillance was also considered. The maximum microbial contamination was found at Faro, the highest-load and less-flushed study area, contrasting the lowest contamination at Olhão, a lower-load and strongly flushed area. The wastewater impact decreased along the spatial dispersal gradients and during high water, particularly at Faro and Tavira study areas, due to a considerable dilution effect. Microbial contamination at Olhão increased during the summer, while at the other study areas seasonal evidence was not clear. Data also indicate that E. coli in bivalves from bivalve production zones next to the three study areas reflected the differentiated impact of the wastewater treatment plants effluents on the water quality of those areas. CONCLUSIONS Effluent loads together with local hydrodynamics, water temperature, solar radiation, precipitation, and land runoff as well as seabirds populations and environmentally adapted faecal or renaturelized bacterial communities, contributed to microbial contamination of the study areas.
Collapse
Affiliation(s)
- Sandra Caetano
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
- School of Health (ESS), University of Algarve, Escola Superior de Saúde da Universidade do Algarve, Campus de Gambelas, Edifício 1, Piso 3, 8005-139 Faro, Portugal
| | - Cátia Correia
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Ana Flor Torres Vidal
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - André Matos
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Cristina Ferreira
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Alexandra Cravo
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
- Sciences and Technology Faculty (FCT), University of Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Tarek MH, Hubbart J, Garner E. Microbial source tracking to elucidate the impact of land-use and physiochemical water quality on fecal contamination in a mixed land-use watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162181. [PMID: 36775177 DOI: 10.1016/j.scitotenv.2023.162181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Escherichia coli has been widely used as a fecal indicator bacterium (FIB) for monitoring water quality in drinking water sources and recreational water. However, fecal contamination sources remain difficult to identify and mitigate, as millions of cases of infectious diseases are reported yearly due to swimming and bathing in recreational water. The objective of this study was to apply molecular techniques for microbial source tracking (MST) to identify sources of fecal contamination in a representative mixed land-use watershed located in the Appalachian Mountains of the United States of America (USA). Monthly samples were collected over one year at 11 sites, including the confluence of key first-order streams in the study watershed representing distinct land-use types and anticipated fecal sources. Results indicated that coupled monitoring of host-specific MST markers with the FIB E. coli effectively identified sources and quantified fecal contamination in the study watershed. Human-associated MST markers were abundant primarily at developed sites, suggesting septic or sewer failure is a key source of fecal input to the watershed. Across the dataset, samples positive for E. coli and human MST markers were associated with a higher pH than those samples from which each target was not detected, thereby suggesting that acid mine drainage in the watershed likely contributed to inactivation or loss of culturability in E. coli. In addition, this research provides the first evidence that the BacCan-UCD marker is present in fox feces and can influence MST results in areas where substantial wildlife activity is present. Identifying the sources of fecal contamination and better understanding the impact of in-stream physiochemistry throughout this study will help to develop sustainable and effective watershed management plans to control fecal contamination to protect drinking water sources and recreational water.
Collapse
Affiliation(s)
- Mehedi Hasan Tarek
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV 26506, United States
| | - Jason Hubbart
- Division of Forestry and Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, United States
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
5
|
Influence of Nutrients and the Native Community on E. coli Survival in the Beach Environment. Appl Environ Microbiol 2022; 88:e0104322. [PMID: 36218359 PMCID: PMC9642020 DOI: 10.1128/aem.01043-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous research has identified E. coli populations that persist in freshwater beach sand distinct from fecal pollution events. This work identifies factors that influence the survival of E. coli in sand using laboratory microcosms to replicate beach conditions. Microcosms were deployed to examine the effect of genetic background, competition with native microbial community, and increased nutrient concentrations on E. coli survival. Survival was comparable between the phylotypes B1 and B2, however, deficiency of stress response greatly reduced survival. In the absence of the native community under nutrient conditions comparable to those observed in sand, E. coli cell densities remained within an order of magnitude of initial concentrations after 5 weeks of incubation. Increased nitrogen was associated with decreased decay rates in the first 2 weeks, and increased carbon appeared to provide an advantage at later time points. However, the highest survival was found with the addition of both carbon and nitrogen. Native sand seeded with fresh Cladophora maintained higher concentrations of E. coli, compared to sand containing decayed Cladophora or no Cladophora. Our findings demonstrate persistent E. coli populations in sand can be affected by the availability of carbon and nitrogen, the ability to regulate stress, and the presence of algal mats (i.e., Cladophora). Further, this work suggests that the native microbial communities may modulate survival by outcompeting E. coli for nutrients. IMPORTANCE Current monitoring for fecal pollution does not account for persistent E. coli populations in freshwater sand, which can result in higher concentrations in water when no threat to human health is present. This work examined the drivers for persistent E. coli populations in sand to aid beach management techniques. We examined the influence of nutrients, including localized sources such as stranded Cladophora, on E. coli populations. We found the major determinant of E. coli survival in freshwater beach sand was the addition of nutrients, specifically carbon and nitrogen concentrations 10-fold higher than baseline concentrations on beaches. This work provides the framework for identifying pollution sources that can promote E. coli survival in sand through the characterization of carbon and nitrogen content, which can be incorporated into beach management techniques. Through this improved knowledge, we can begin to understand E. coli fluctuations in water due to resuspension from sand into water.
Collapse
|
6
|
Piveteau P, Druilhe C, Aissani L. What on earth? The impact of digestates and composts from farm effluent management on fluxes of foodborne pathogens in agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156693. [PMID: 35700775 DOI: 10.1016/j.scitotenv.2022.156693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The recycling of biomass is the cornerstone of sustainable development in the bioeconomy. In this context, digestates and composts from processed agricultural residues and biomasses are returned to the soil. Whether or not the presence of pathogenic microorganisms in these processed biomasses is a threat to the sustainability of the current on-farm practices is still the subject of debate. In this review, we describe the microbial pathogens that may be present in digestates and composts. We then provide an overview of the current European regulation designed to mitigate health hazards linked to the use of organic fertilisers and soil improvers produced from farm biomasses and residues. Finally, we discuss the many factors that underlie the fate of microbial pathogens in the field. We argue that incorporating land characteristics in the management of safety issues connected with the spreading of organic fertilisers and soil improvers can improve the sustainability of biomass recycling.
Collapse
|
7
|
Phylogeny and potential virulence of cryptic clade Escherichia coli species complex isolates derived from an arable field trial. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100093. [PMID: 35005658 PMCID: PMC8718834 DOI: 10.1016/j.crmicr.2021.100093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022] Open
Abstract
Analysis of Escherichia coli taxonomy has expanded into a species-complex with the identification of divergent cryptic clades. A key question is the evolutionary trajectory of these clades and their relationship to isolates of clinical or veterinary importance. Since they have some environmental association, we screened a collection of E. coli isolated from a long-term spring barley field trial for their presence. While most isolates clustered into the enteric-clade, four of them clustered into Clade-V, and one in Clade-IV. The Clade -V isolates shared >96% intra-clade average nucleotide sequence identity but <91% with other clades. Although pan-genomics analysis confirmed their taxonomy as Clade -V (E. marmotae), retrospective phylogroup PCR did not discriminate them correctly. Differences in metabolic and adherence gene alleles occurred in the Clade -V isolates compared to E. coli sensu scricto. They also encoded the bacteriophage phage-associated cyto-lethal distending toxin (CDT) and antimicrobial resistance (AMR) genes, including an ESBL, blaOXA-453. Thus, the isolate collection encompassed a genetic diversity, and included cryptic clade isolates that encode potential virulence factors. The analysis has determined the phylogenetic relationship of cryptic clade isolates with E. coli sensu scricto and indicates a potential for horizontal transfer of virulence factors.
Collapse
|
8
|
Diaz CI, Molina S, Smith MW, Rohla C, Ma LM. Prevalence of Shiga Toxin-Producing Escherichia coli and Salmonella in Native Pecan Orchards as Influenced by Waiting Periods between Grazing and Harvest. J Food Prot 2022; 85:36-43. [PMID: 34499730 DOI: 10.4315/jfp-21-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/07/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Animals (grazing, working, or intrusion) in produce production areas may present a potential contamination source of foodborne pathogens on produce. Cattle grazing on native pecan production orchards, a common practice in the southern United States, provides an opportunity to study the impact of grazing practice and waiting periods on contamination rates of foodborne pathogens of tree nuts. Therefore, the objective of this study was to determine the prevalence of Salmonella and Shiga toxin-producing Escherichia coli (STEC) in native pecan production orchards as influenced by waiting periods between grazing cattle and pecan harvest. Soil (10 g), cattle feces (10 g), and in-shell pecans (25 g) were sampled from five cattle-grazed orchards in areas with cattle removed 2 or 4 months before harvest and not removed. Five nongrazing orchards were sampled at harvest for comparison. Detection and isolation of the pathogens were performed by enrichment, selective isolation, and multiplex PCR. Statistical analyses were performed using contingency tables with Pearson's chi-square test. The prevalence of STEC (36%) and Salmonella (29%) in cattle-grazed orchards was significantly higher than in nongrazed orchards (13 and 7%, respectively). STEC prevalence in cattle-grazed orchards was higher (38%) in areas with cattle at harvest than in fenced areas where cattle were removed 2 (29%) and 4 (27%) months before harvest. Salmonella prevalence was similar in areas without fencing (31%) and areas with cattle removed at 2 (22%) and 4 (30%) months before harvest. However, there were no significant differences (P > 0.05) in contamination rates between waiting periods for either pathogen, suggesting a limited impact of waiting periods on reducing the risk of contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Claudia I Diaz
- Institute for Biosecurity and Microbial Forensics, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Santiago Molina
- Institute for Biosecurity and Microbial Forensics, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Michael W Smith
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Charles Rohla
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Li Maria Ma
- Institute for Biosecurity and Microbial Forensics, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
9
|
Saraceno M, Gómez Lugo S, Ortiz N, Gómez BM, Sabio Y García CA, Frankel N, Graziano M. Unraveling the ecological processes modulating the population structure of Escherichia coli in a highly polluted urban stream network. Sci Rep 2021; 11:14679. [PMID: 34282205 PMCID: PMC8289912 DOI: 10.1038/s41598-021-94198-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli dynamics in urban watersheds are affected by a complex balance among external inputs, niche modulation and genetic variability. To explore the ecological processes influencing E. coli spatial patterns, we analyzed its abundance and phylogenetic structure in water samples from a stream network with heterogeneous urban infrastructure and environmental conditions. Our results showed that environmental and infrastructure variables, such as macrophyte coverage, DIN and sewerage density, mostly explained E. coli abundance. Moreover, main generalist phylogroups A and B1 were found in high proportion, which, together with an observed negative relationship between E. coli abundance and phylogroup diversity, suggests that their dominance might be due to competitive exclusion. Lower frequency phylogroups were associated with sites of higher ecological disturbance, mainly involving simplified habitats, higher drainage infrastructure and septic tank density. In addition to the strong negative relationship between phylogroup diversity and dominance, the occurrence of these phylogroups would be associated with increased facilitated dispersal. Nutrients also contributed to explaining phylogroup distribution. Our study proposes the differential contribution of distinct ecological processes to the patterns of E. coli in an urban watershed, which is useful for the monitoring and management of fecal pollution.
Collapse
Affiliation(s)
- Martín Saraceno
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET - Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Sebastián Gómez Lugo
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Nicolás Ortiz
- Instituto Nacional del Agua, 1804, Ezeiza, Argentina
| | | | - Carmen A Sabio Y García
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Nicolás Frankel
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Martín Graziano
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET - Universidad de Buenos Aires, 1428, Buenos Aires, Argentina.
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Yu D, Banting G, Neumann NF. A review of the taxonomy, genetics, and biology of the genus Escherichia and the type species Escherichia coli. Can J Microbiol 2021; 67:553-571. [PMID: 33789061 DOI: 10.1139/cjm-2020-0508] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Historically, bacteriologists have relied heavily on biochemical and structural phenotypes for bacterial taxonomic classification. However, advances in comparative genomics have led to greater insights into the remarkable genetic diversity within the microbial world, and even within well-accepted species such as Escherichia coli. The extraordinary genetic diversity in E. coli recapitulates the evolutionary radiation of this species in exploiting a wide range of niches (i.e., ecotypes), including the gastrointestinal system of diverse vertebrate hosts as well as non-host natural environments (soil, natural waters, wastewater), which drives the adaptation, natural selection, and evolution of intragenotypic conspecific specialism as a strategy for survival. Over the last few years, there has been increasing evidence that many E. coli strains are very host (or niche)-specific. While biochemical and phylogenetic evidence support the classification of E. coli as a distinct species, the vast genomic (diverse pan-genome and intragenotypic variability), phenotypic (e.g., metabolic pathways), and ecotypic (host-/niche-specificity) diversity, comparable to the diversity observed in known species complexes, suggest that E. coli is better represented as a complex. Herein we review the taxonomic classification of the genus Escherichia and discuss how phenotype, genotype, and ecotype recapitulate our understanding of the biology of this remarkable bacterium.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| | - Graham Banting
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| |
Collapse
|
11
|
Selective survival of Escherichia coli phylotypes in freshwater beach sand. Appl Environ Microbiol 2021; 87:AEM.02473-20. [PMID: 33257315 PMCID: PMC7851694 DOI: 10.1128/aem.02473-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli is used as an indicator of fecal pollution at beaches despite evidence of long-term survival in sand. This work investigated the basis for survival of E. coli through field microcosm experiments and phylotypic characterization of more than >1400 E. coli isolated from sand, sewage, and gulls, enabling identification of long-surviving populations and environmental drivers of their persistence. Microcosms containing populations of E. coli from each source (n=176) were buried in the backshore of Lake Michigan for 45 & 96 days under several different nutrient treatments, including unaltered native sand, sterile autoclaved sand and baked nutrient depleted sand. Availability of carbon and nitrogen and competition with the indigenous community were major factors that influenced E. coli survival. E. coli Clermont phylotypes B1 and A were the most dominant phylotypes surviving seasonally (>6 weeks), regardless of source and nutrient treatment, whereas cryptic clade and D/E phylotypes survived over winter (>300 days). Autoclaved sand, presumably supplying nutrients through increased availability, promoted growth and the presence of the indigenous microbial community reduced this effect. Screening of 849 sand E. coli from four freshwater beaches demonstrated that B1, but also D/E, were the most common phylotypes recovered. Analysis by qPCR for the Gull2, Lachno3 and HB human markers demonstrated only 25% of the samples had evidence of gull waste and none of the samples had evidence of human waste. These findings suggest prevalence of E. coli in the sand could be attributed more to long term surviving populations than to new fecal pollution.IMPORTANCE Fecal pollution monitoring still relies upon the enumeration of E. coli, despite the fact that this organism can survive for prolonged periods and has been shown to be easily transported from sand into surrounding waters through waves and runoff, thus no longer represents recent fecal pollution events. Here, we experimentally demonstrate that regardless of host source, certain genetically distinct subgroups, or phylotypes, survive longer than others under conditions typical of Great Lakes beach sites. We found nutrients were a major driver of survival and could actually promote growth, and the presence of native microorganisms modulated these effects. These insights into the dynamics and drivers of survival will improve the interpretation of E. coli measurements at beaches and inform strategies that could focus on reducing nutrient inputs to beaches or maintaining a robust natural microbiome in beach sand.
Collapse
|
12
|
Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats. WATER 2020. [DOI: 10.3390/w12061796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Escherichia (E.) coli is a fecal microbe that inhabits the intestines of endotherms (primary habitat) and the natural environment (secondary habitats). Due to prevailing thinking regarding the limited capacity of E. coli to survive in the environment, relatively few published investigations exist regarding environmental factors influencing E. coli’s survival. To help guide future research in this area, an overview of factors known to impact the survival of E. coli in the environment is provided. Notably, the lack of historic field-based research holds two important implications: (1) large knowledge gaps regarding environmental factors influencing E. coli’s survival in the environment exist; and (2) the efficacy of implemented management strategies have rarely been assessed on larger field scales, thus leaving their actual impact(s) largely unknown. Moreover, the persistence of E. coli in the environment calls into question its widespread and frequent use as a fecal indicator microorganism. To address these shortcomings, future work should include more field-based studies, occurring in diverse physiographical regions and over larger spatial extents. This information will provide scientists and land-use managers with a new understanding regarding factors influencing E. coli concentrations in its secondary habitat, thereby providing insight to address problematic fecal contamination effectively.
Collapse
|
13
|
Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, Pajuelo MJ, Saito M, Tsukayama P, Njenga SM, Kiiru J, Swarthout J, Islam MA, Julian TR, Pickering AJ. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol 2020; 5:787-795. [PMID: 32467623 DOI: 10.1038/s41564-020-0722-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
Abstract
Antimicrobial resistance (AMR) is a growing public health challenge that is expected to disproportionately burden lower- and middle-income countries (LMICs) in the coming decades. Although the contributions of human and veterinary antibiotic misuse to this crisis are well-recognized, environmental transmission (via water, soil or food contaminated with human and animal faeces) has been given less attention as a global driver of AMR, especially in urban informal settlements in LMICs-commonly known as 'shanty towns' or 'slums'. These settlements may be unique hotspots for environmental AMR transmission given: (1) the high density of humans, livestock and vermin living in close proximity; (2) frequent antibiotic misuse; and (3) insufficient drinking water, drainage and sanitation infrastructure. Here, we highlight the need for strategies to disrupt environmental AMR transmission in urban informal settlements. We propose that water and waste infrastructure improvements tailored to these settings should be evaluated for their effectiveness in limiting environmental AMR dissemination, lowering the community-level burden of antimicrobial-resistant infections and preventing antibiotic misuse. We also suggest that additional research is directed towards developing economic and legal incentives for evaluating and implementing water and waste infrastructure in these settings. Given that almost 90% of urban population growth will occur in regions predicted to be most burdened by the AMR crisis, there is an urgent need to build effective, evidence-based policies that could influence massive investments in the built urban environment in LMICs over the next few decades.
Collapse
Affiliation(s)
- Maya L Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA.,Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
| | - Sara J Marks
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA.,Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Monica J Pajuelo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA.,Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Pablo Tsukayama
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical 'Alexander von Humboldt', Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - John Kiiru
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Jenna Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.,International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA. .,Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA.
| |
Collapse
|
14
|
Weller D, Brassill N, Rock C, Ivanek R, Mudrak E, Roof S, Ganda E, Wiedmann M. Complex Interactions Between Weather, and Microbial and Physicochemical Water Quality Impact the Likelihood of Detecting Foodborne Pathogens in Agricultural Water. Front Microbiol 2020; 11:134. [PMID: 32117154 PMCID: PMC7015975 DOI: 10.3389/fmicb.2020.00134] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Agricultural water is an important source of foodborne pathogens on produce farms. Managing water-associated risks does not lend itself to one-size-fits-all approaches due to the heterogeneous nature of freshwater environments. To improve our ability to develop location-specific risk management practices, a study was conducted in two produce-growing regions to (i) characterize the relationship between Escherichia coli levels and pathogen presence in agricultural water, and (ii) identify environmental factors associated with pathogen detection. Three AZ and six NY waterways were sampled longitudinally using 10-L grab samples (GS) and 24-h Moore swabs (MS). Regression showed that the likelihood of Salmonella detection (Odds Ratio [OR] = 2.18), and eaeA-stx codetection (OR = 6.49) was significantly greater for MS compared to GS, while the likelihood of detecting L. monocytogenes was not. Regression also showed that eaeA-stx codetection in AZ (OR = 50.2) and NY (OR = 18.4), and Salmonella detection in AZ (OR = 4.4) were significantly associated with E. coli levels, while Salmonella detection in NY was not. Random forest analysis indicated that interactions between environmental factors (e.g., rainfall, temperature, turbidity) (i) were associated with likelihood of pathogen detection and (ii) mediated the relationship between E. coli levels and likelihood of pathogen detection. Our findings suggest that (i) environmental heterogeneity, including interactions between factors, affects microbial water quality, and (ii) E. coli levels alone may not be a suitable indicator of food safety risks. Instead, targeted methods that utilize environmental and microbial data (e.g., models that use turbidity and E. coli levels to predict when there is a high or low risk of surface water being contaminated by pathogens) are needed to assess and mitigate the food safety risks associated with preharvest water use. By identifying environmental factors associated with an increased likelihood of detecting pathogens in agricultural water, this study provides information that (i) can be used to assess when pathogen contamination of agricultural water is likely to occur, and (ii) facilitate development of targeted interventions for individual water sources, providing an alternative to existing one-size-fits-all approaches.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science and Technology, Cornell University, Ithaca, NY, United States
| | - Natalie Brassill
- Department of Soil, Water and Environmental Science, University of Arizona, Maricopa, AZ, United States
| | - Channah Rock
- Department of Soil, Water and Environmental Science, University of Arizona, Maricopa, AZ, United States
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, United States
| | - Erika Mudrak
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, United States
| | - Sherry Roof
- Department of Food Science and Technology, Cornell University, Ithaca, NY, United States
| | - Erika Ganda
- Department of Food Science and Technology, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science and Technology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Weller D, Belias A, Green H, Roof S, Wiedmann M. Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 3:124. [PMID: 32440656 PMCID: PMC7241490 DOI: 10.3389/fsufs.2019.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need for science-based tools to (i) help manage microbial produce safety hazards associated with preharvest surface water use, and (ii) facilitate comanagement of agroecosystems for competing stakeholder aims. To develop these tools an improved understanding of foodborne pathogen ecology in freshwater systems is needed. The purpose of this study was to identify (i) sources of potential food safety hazards, and (ii) combinations of factors associated with an increased likelihood of pathogen contamination of agricultural water Sixty-eight streams were sampled between April and October 2018 (196 samples). At each sampling event separate 10-L grab samples (GS) were collected and tested for Listeria, Salmonella, and the stx and eaeA genes. A 1-L GS was also collected and used for Escherichia coli enumeration and detection of four host-associated fecal source-tracking markers (FST). Regression analysis was used to identify individual factors that were significantly associated with pathogen detection. We found that eaeA-stx codetection [Odds Ratio (OR) = 4.2; 95% Confidence Interval (CI) = 1.3, 13.4] and Salmonella isolation (OR = 1.8; CI = 0.9, 3.5) were strongly associated with detection of ruminant and human FST markers, respectively, while Listeria spp. (excluding Listeria monocytogenes) was negatively associated with log10 E. coli levels (OR = 0.50; CI = 0.26, 0.96). L. monocytogenes isolation was not associated with the detection of any fecal indicators. This observation supports the current understanding that, unlike enteric pathogens, Listeria is not fecally-associated and instead originates from other environmental sources. Separately, conditional inference trees were used to identify scenarios associated with an elevated or reduced risk of pathogen contamination. Interestingly, while the likelihood of isolating L. monocytogenes appears to be driven by complex interactions between environmental factors, the likelihood of Salmonella isolation and eaeA-stx codetection were driven by physicochemical water quality (e.g., dissolved oxygen) and temperature, respectively. Overall, these models identify environmental conditions associated with an enhanced risk of pathogen presence in agricultural water (e.g., rain events were associated with L. monocytogenes isolation from samples collected downstream of dairy farms; P = 0.002). The information presented here will enable growers to comanage their operations to mitigate the produce safety risks associated with preharvest surface water use.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Hyatt Green
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Sherry Roof
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Suzuki Y, Hashimoto R, Xie H, Nishimura E, Nishiyama M, Nukazawa K, Ishii S. Growth and antibiotic resistance acquisition of Escherichia coli in a river that receives treated sewage effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:696-704. [PMID: 31301509 DOI: 10.1016/j.scitotenv.2019.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 05/13/2023]
Abstract
Wastewater treatment plants could discharge Escherichia coli and antibiotic resistant bacteria to the environment adjacent to, or downstream of their discharge point. However, their discharge also contains nutrients which could promote growth of E. coli in water environments. This study was done to clarify the potential of growth and antibiotic resistance acquisition of E. coli in a river environment. Levels of E. coli were monitored in a river that receives treated sewage effluent for over four years. River water, periphyton and sediment samples were collected at sites upstream and downstream of treated sewage inflow. Concentrations of E. coli increased in river water and periphyton at the sites downstream of the treated sewage inflow, although levels of E. coli were very low or below detection limit in the treated sewage samples. Concentrations of Chlorophyll a increased at the downstream sites, likely due to nutrient input from the treated sewage. Based on pulsed field gel electrophoresis, identical genotype occurred at multiple sites both upstream and downstream of the treated sewage inflow. However, strains resistant to antibiotics such as ampicillin, cefazolin, ciprofloxacin, and chloramphenicol were more frequently obtained from the downstream sites than the upstream sites. Multidrug resistant E. coli strains were detected in periphyton and sediment samples collected at the downstream sites. Non-resistant strains with PDGE genotype identical to the multi-drug strains were also detected, indicating that E. coli might have become resistant to antibiotics by acquiring resistance genes via horizontal gene transfer. Laboratory incubation experiment showed the growth of E. coli in periphyton or sediment-fed river water samples. These results suggest that the wastewater treatment inflow did not directly provide E. coli to the river water, but could promote the growth of periphyton, which could lead to the elevated levels of E. coli and the emergence of antibiotic resistant E. coli.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| | - Reina Hashimoto
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Hui Xie
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Emi Nishimura
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Masateru Nishiyama
- Department of Food, Life and Environmetal Science, Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 977-8222, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, MN 55108-6028, USA; BioTechnology Institute, University of Minnesota, MN 55108-1095, USA
| |
Collapse
|
17
|
Schutzius G, Nguyen M, Navab-Daneshmand T. Antibiotic resistance in fecal sludge and soil in Ho Chi Minh City, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34521-34530. [PMID: 31643014 DOI: 10.1007/s11356-019-06537-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the prevalence of antibiotic-resistant bacteria and genes in fecal sludge and soil in Ho Chi Minh City, Vietnam, and identified the factors contributing to the survival of antibiotic-resistant bacteria in soil. Sludge and soil samples (n = 24 and 55, respectively) were collected from residential septic systems and environmental reservoirs (i.e., canals, rivers, and parks) in twelve districts of Ho Chi Minh City and tested against a library of 12 antibiotic-resistant genes and 1 integron gene. The susceptibility of isolated Escherichia coli from sludge and soil (n = 104 and 129, respectively) was tested against nine antibiotics. Over 60% of sludge and soil samples harbored sul1, ere(A), intI1, cmIA, and tet(A) genes. The three most common phenotypic resistances found in E. coli isolated from sludge and soil were to ampicillin, tetracycline, and sulfamethoxazole/trimethoprim. In a temporal microcosm study of antibiotic-susceptible and multi-drug-resistant E. coli inoculated in soil, temperature (21.4 vs. 30 °C), resistance phenotype, and soil background microbial community were associated with E. coli decay rates over 73 days. This is the first study that provides insights into the high prevalence of antibiotic resistance in septic systems and environmental reservoirs in Ho Chi Minh City, Vietnam. Findings highlight that the fecal sludge and soil environments in Vietnam are likely reservoirs for dissemination of and human exposure to antibiotic resistance.
Collapse
Affiliation(s)
- Genevieve Schutzius
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR, 97331, USA
| | - Mi Nguyen
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
18
|
Hwang HT, Frey SK, Park YJ, Pintar KDM, Lapen DR, Thomas JL, Spoelstra J, Schiff SL, Brown SJ, Sudicky EA. Estimating cumulative wastewater treatment plant discharge influences on acesulfame and Escherichia coli in a highly impacted watershed with a fully-integrated modelling approach. WATER RESEARCH 2019; 157:647-662. [PMID: 31004980 DOI: 10.1016/j.watres.2019.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Wastewater treatment plant (WWTP) discharge is often considered a principal source of surface water contamination. In this study, a three-dimensional fully-integrated groundwater-surface water model was used to simulate the transport characteristics and cumulative loading of an artificial sweetener (acesulfame) and fecal indicator bacteria (Escherichia coli) from WWTPs within a 6800 km2 mixed-use, highly impacted watershed in Ontario, Canada. The model, which employed 3.5 × 106 computational nodes and 15 layers, facilitated a comprehensive assessment of groundwater-surface water interactions under high and low flow conditions; processes typically not accounted for in WWTP cumulative effects models. Simulations demonstrate that the model had significant capacity in reproducing the average and transient multi-year groundwater and surface water flow conditions in the watershed. As a proxy human-specific conservative tracer, acesulfame was useful for model validation and to help inform the representation of watershed-scale transport processes. Using a uniform WWTP acesulfame loading rate of 7.14 mg person-1 day-1, the general spatial trends and magnitudes of the acesulfame concentration profile along the main river reach within the watershed were reproduced; however, model performance was improved by tuning individual WWTP loading rates. Although instream dilution and groundwater-surface water interactions were strongly dependent on flow conditions, the main reach primarily consisted of groundwater discharge zones. For this reason, hydrodynamic dispersion in the hyporheic zone is shown as the predominant mechanism driving acesulfame into near-stream shallow groundwater, while under high flow conditions, the simulations demonstrate the potential for advective flushing of the shallow groundwater. Regarding the cumulative impact of the WWTPs on E. coli concentrations in the surface flow system, simulated transient E. coli levels downstream of WWTPs in the watershed were significantly lower than observed values, thus highlighting the potential importance of other sources of E. coli in the watershed.
Collapse
Affiliation(s)
- Hyoun-Tae Hwang
- Aquanty Inc., Waterloo, Ontario, Canada; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - S K Frey
- Aquanty Inc., Waterloo, Ontario, Canada; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | - Young-Jin Park
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - K D M Pintar
- FoodNet Canada, Public Health Agency of Canada, Ottawa, ON, Canada
| | - D R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food, Ottawa, Ontario, Canada
| | - J L Thomas
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - J Spoelstra
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada; Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - S L Schiff
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - S J Brown
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - E A Sudicky
- Aquanty Inc., Waterloo, Ontario, Canada; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
19
|
Miranda CD, Cammack JA, Tomberlin JK. Life-History Traits of the Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), Reared on Three Manure Types. Animals (Basel) 2019; 9:ani9050281. [PMID: 31130651 PMCID: PMC6563101 DOI: 10.3390/ani9050281] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The growing global human population raises concern about future food security. Such growth may lead to an increase in animal production, which raises concern about waste management. Rearing insects on animal manure could be an efficient solution to manage animal waste; but a better understanding of bioconversion of different manure types by targeted insects is necessary in order to develop such systems. Black soldier fly larvae are voracious feeders that are capable of digesting a wide range of organic material, including manure. Previous research has demonstrated that black soldier flies can convert manure into valuable biomass (i.e., aquaculture and poultry feed) while reducing nutrients and dry matter by 50% or more, and odorous volatile compounds by up to 100%. The purpose of this study was to evaluate the performance of select life-history traits of black soldier fly larvae fed three types of manure (poultry, swine, and bovine). The results may supplement existing data or give new perspective on how this insect may be used for waste management while producing an alternative feed. Abstract Structural changes and growth of animal production systems have resulted in greater volumes of manure. Current manure storage methods pose a potential environmental threat. Lessening these issues is a key concern for the animal production industry. The primary aim of this research was to evaluate black soldier fly (BSF) performance when fed poultry, swine, or dairy manure at different rates (18 or 27 g/2 d until 40% prepupation). The results indicated that larvae fed with the control diet (Gainesville diet) were the heaviest (+31–70%); however, for other life-history traits, those fed the higher feed rate of poultry manure produced comparable results to the control. Larvae fed more resource, regardless of manure type, weighed more as larvae (+3–9%), pupae (+22–48%), and adults (+18–42%), developed faster (up to 3–4 d), had a higher percentage reach the prepupal stage (+2–16%), lived longer as adults (+1 d), and converted more resource to biomass (up to 1% more) than those fed at the lower rate. Yet, no difference was detected in dry matter (DM) reduction across feed rate for a given manure type. Based on these results, all three manure types can be digested by black soldier fly larvae, thus demonstrating their potential for waste management.
Collapse
Affiliation(s)
- Chelsea D Miranda
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77845, USA.
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77845, USA.
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77845, USA.
| |
Collapse
|
20
|
Porter KDH, Quilliam RS, Reaney SM, Oliver DM. High resolution characterisation of E. coli proliferation profiles in livestock faeces. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:537-545. [PMID: 31109554 DOI: 10.1016/j.wasman.2019.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/03/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Agricultural intensification can lead to high volumes of livestock faeces being applied to land, either as solid or liquid manures or via direct defecation, and can result in reservoirs of faecal indicator organisms (FIOs) persisting within farmland. Understanding the survival of FIOs, e.g. E. coli, in agricultural environments, and in particular within different livestock faeces, is key to developing catchment management practices for the protection of ecosystem services provided by clean water. Frequently, controlled laboratory studies, under constant temperature regimes, are used to determine the impact of environmental factors on E. coli persistence in livestock faeces; however, such studies oversimplify the diurnal variations and interactions of real world conditions. The aim of this study was to investigate the survival of E. coli using a controlled environment facility, which simulated diurnal variation of temperatures typically experienced during a British spring and summer. The approach provided a comparison of E. coli persistence profiles within faeces of sheep, beef cattle and dairy cattle to allow novel interpretations of E. coli regrowth patterns in contrasting livestock faeces in the period immediately post-defecation. Thus, the coupling of a tightly controlled environment facility with high resolution monitoring enabled the development of a new non-linear, asymptotic description of E. coli proliferation in livestock faeces, with increased potential for E. coli growth observed during warmer temperatures for all livestock types. While this study focused on temperatures typical of the UK, the occurrence of a phase of E. coli regrowth has implications for microbial water quality management worldwide.
Collapse
Affiliation(s)
- Kenneth D H Porter
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sim M Reaney
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - David M Oliver
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
21
|
Lai JYH, Zhang H, Chiang MHY, Lun CHI, Zhang R, Lau SCK. The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment. FEMS Microbiol Ecol 2019; 94:4780272. [PMID: 29293955 DOI: 10.1093/femsec/fix187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/25/2017] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli colonizes various body parts of animal hosts as a commensal and a pathogen. It can also persist in the external environment in the absence of fecal pollution. It remains unclear how this species has evolved to adapt to such contrasting habitats. Lysogeny plays pivotal roles in the diversification of the phenotypic and ecologic characters of E. coli as a symbiont. We hypothesized that lysogeny could also confer fitness to survival in the external environment. To test this hypothesis, we used the induced phages of an E. coli strain originating from marine sediment to infect a fecal E. coli strain to obtain an isogenic lysogen of the latter. The three strains were tested for survivorship in microcosms of seawater, marine sediment and sediment interstitial water as well as swimming motility, glycogen accumulation, biofilm formation, substrate utilization and stress resistance. The results indicate that lysogenic infection led to tractable changes in many of the ecophysiological attributes tested. Particularly, the lysogen had better survivorship in the microcosms and had a substrate utilization profile resembling the sediment strain more than the wild type fecal strain. Our findings provide new insights into the understanding of how E. coli survives in the natural environment.
Collapse
Affiliation(s)
- Jennifer Yuet Ha Lai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hao Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Miranda Hei Yin Chiang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Clare Hau In Lun
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Rui Zhang
- Institute of Marine Microbes and Ecospheres, and State Key Laboratory of Marine Environmental Science, Xiamen University, People's Republic of China
| | - Stanley Chun Kwan Lau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
22
|
Montealegre MC, Roy S, Böni F, Hossain MI, Navab-Daneshmand T, Caduff L, Faruque ASG, Islam MA, Julian TR. Risk Factors for Detection, Survival, and Growth of Antibiotic-Resistant and Pathogenic Escherichia coli in Household Soils in Rural Bangladesh. Appl Environ Microbiol 2018; 84:e01978-18. [PMID: 30315075 PMCID: PMC6275341 DOI: 10.1128/aem.01978-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Soils in household environments in low- and middle-income countries may play an important role in the persistence, proliferation, and transmission of Escherichia coli Our goal was to investigate the risk factors for detection, survival, and growth of E. coli in soils collected from household plots. E. coli was enumerated in soil and fecal samples from humans, chickens, and cattle from 52 households in rural Bangladesh. Associations between E. coli concentrations in soil, household-level risk factors, and soil physicochemical characteristics were investigated. Susceptibility to 16 antibiotics and the presence of intestinal pathotypes were evaluated for 175 E. coli isolates. The growth and survival of E. coli in microcosms using soil collected from the households were also assessed. E. coli was isolated from 44.2% of the soil samples, with an average of 1.95 log10 CFU/g dry soil. Soil moisture and clay content were associated with E. coli concentrations in soil, whereas no household-level risk factor was significantly correlated. Antibiotic resistance and pathogenicity were common among E. coli isolates, with 42.3% resistant to at least one antibiotic, 12.6% multidrug resistant (≥3 classes), and 10% potentially pathogenic. Soil microcosms demonstrate growth and/or survival of E. coli, including an enteropathogenic extended-spectrum beta-lactamase (ESBL)-producing isolate, in some, but not all, of the household soils tested. In rural Bangladesh, defined soil physicochemical characteristics appear more influential for E. coli detection in soils than household-level risk factors. Soils may act as reservoirs in the transmission of antibiotic-resistant and potentially pathogenic E. coli and therefore may impact the effectiveness of water, sanitation, and hygiene interventions.IMPORTANCE Soil may represent a direct source or act as an intermediary for the transmission of antibiotic-resistant and pathogenic Escherichia coli strains, particularly in low-income and rural settings. Thus, determining risk factors associated with detection, growth, and long-term survival of E. coli in soil environments is important for public health. Here, we demonstrate that household soils in rural Bangladesh are reservoirs for antibiotic-resistant and potentially pathogenic E. coli strains and can support E. coli growth and survival, and defined soil physicochemical characteristics are drivers of E. coli survival in this environment. In contrast, we found no evidence that household-level factors, including water, sanitation, and hygiene indicators, were associated with E. coli contamination of household soils.
Collapse
Affiliation(s)
| | - Subarna Roy
- Enteric and Food Microbiology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Franziska Böni
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Muhammed Iqbal Hossain
- Enteric and Food Microbiology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tala Navab-Daneshmand
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Lea Caduff
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A S G Faruque
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Aminul Islam
- Enteric and Food Microbiology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Julian TR, Vithanage HSK, Chua ML, Kuroda M, Pitol AK, Nguyen PHL, Canales RA, Fujii S, Harada H. High time-resolution simulation of E. coli on hands reveals large variation in microbial exposures amongst Vietnamese farmers using human excreta for agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:120-131. [PMID: 29660716 DOI: 10.1016/j.scitotenv.2018.04.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 05/16/2023]
Abstract
Infectious disease transmission is frequently mediated by the environment, where people's movements through and interactions with the environment dictate risks of infection and/or illness. Capturing these interactions, and quantifying their importance, offers important insights into effective interventions. In this study, we capture high time-resolution activity data for twenty-five Vietnamese farmers during collection and land application of human excreta for agriculture. Although human excreta use improves productivity, the use increases risks of enteric infections for both farmers and end users. In our study, the activity data are integrated with environmental microbial sampling data into a stochastic-mechanistic simulation of E. coli contamination on hands and E. coli ingested. Results from the study include frequent and variable contact rates for farmers' hands (from 34 to 1344 objects contacted per hour per hand), including highly variable hand-to-mouth contact rates (from 0 to 9 contacts per hour per hand). The frequency of hand-to-mouth contacts was substantially lower than the widely-used frequency previously reported for U.S. Office Workers. Environmental microbial contamination data highlighted ubiquitous E. coli contamination in the environment, including excreta, hands, toilet pit, handheld tools, soils, surfaces, and water. Results from the simulation suggest dynamic changes in E. coli contamination on hands, and wide variation in hand contamination and E. coli ingested amongst the farmers studied. Sensitivity analysis suggests that E. coli contamination on hands and ingested doses are most influenced by contamination of handheld tools, excreta, and the toilet pit as well as by frequency of hand-to-mouth contacts. The study findings are especially relevant given the context: no farmers reported adequate storage time of human excreta, and personal protective mask availability did not prevent hand-to-mouth contacts. Integrating high time-resolution activity data into exposure assessments highlights variation in exposures amongst farmers, and offers greater insight into effective interventions and their potential impacts.
Collapse
Affiliation(s)
- Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland.
| | - Hasitha S K Vithanage
- UNESCO-IHE Institute for Water Education, 2601 Delft, The Netherlands; Sri Lanka National Water Supply and Drainage Board, Dehiwala-Mount Lavinia, Sri Lanka
| | - Min Li Chua
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku 606-8501, Kyoto, Japan
| | - Matasaka Kuroda
- Graduate School of Engineering, Katsura Campus, Kyoto University, Nisikyo-ku, 615-8510, Kyoto, Japan
| | - Ana K Pitol
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; Laboratory of Environmental Chemistry, School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique FÉdÉrale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Pham Hong Lien Nguyen
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Viet Nam
| | - Robert A Canales
- Community, Environment & Policy Department, Mel and Enid Zuckerman College of Public Health, The University of Arizona, 1295 N. Martin Avenue, Campus PO Box 245210, Drachman Hall A229, Tucson, AZ 85724, USA
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku 606-8501, Kyoto, Japan
| | - Hidenori Harada
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku 606-8501, Kyoto, Japan; Research Institute for Humanity and Nature, 457-4 Kamigamo Motoyama, Kita-ku 603-8047, Kyoto, Japan.
| |
Collapse
|
24
|
Alegbeleye OO, Singleton I, Sant'Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol 2018; 73:177-208. [PMID: 29526204 PMCID: PMC7127387 DOI: 10.1016/j.fm.2018.01.003] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
Abstract
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences.
Collapse
Affiliation(s)
| | - Ian Singleton
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, UK
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
25
|
Evaluation of meteorological factors associated with pre-harvest contamination risk of generic Escherichia coli in a mixed produce and dairy farm. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
NandaKafle G, Seale T, Flint T, Nepal M, Venter SN, Brözel VS. Distribution of Diverse Escherichia coli between Cattle and Pasture. Microbes Environ 2017; 32:226-233. [PMID: 28747587 PMCID: PMC5606692 DOI: 10.1264/jsme2.me17030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli is widely considered to not survive for extended periods outside the intestines of warm-blooded animals; however, recent studies demonstrated that E. coli strains maintain populations in soil and water without any known fecal contamination. The objective of this study was to investigate whether the niche partitioning of E. coli occurs between cattle and their pasture. We attempted to clarify whether E. coli from bovine feces differs phenotypically and genotypically from isolates maintaining a population in pasture soil over winter. Soil, bovine fecal, and run-off samples were collected before and after the introduction of cattle to the pasture. Isolates (363) were genotyped by uidA and mutS sequences and phylogrouping, and evaluated for curli formation (Rough, Dry, And Red, or RDAR). Three types of clusters emerged, viz. bovine-associated, clusters devoid of cattle isolates and representing isolates endemic to the pasture environment, and clusters with both. All isolates clustered with strains of E. coli sensu stricto, distinct from the cryptic species Clades I, III, IV, and V. Pasture soil endemic and bovine fecal populations had very different phylogroup distributions, indicating niche partitioning. The soil endemic population was largely comprised of phylogroup B1 and had a higher average RDAR score than other isolates. These results indicate the existence of environmental E. coli strains that are phylogenetically distinct from bovine fecal isolates, and that have the ability to maintain populations in the soil environment.
Collapse
Affiliation(s)
| | - Tarren Seale
- Department of Microbiology and Plant Pathology, University of Pretoria
| | - Toby Flint
- Department of Mathematics and Statistics, South Dakota State University
| | - Madhav Nepal
- Department of Biology and Microbiology, South Dakota State University
| | | | - Volker S Brözel
- Department of Biology and Microbiology, South Dakota State University.,Department of Microbiology and Plant Pathology, University of Pretoria
| |
Collapse
|
27
|
Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol 2017; 123:570-581. [PMID: 28383815 DOI: 10.1111/jam.13468] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through faeces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent faecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extraintestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a faecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics revealed the diversity and complexity of E. coli strains in various environments, which are affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments with regard to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.
Collapse
Affiliation(s)
- J Jang
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - H-G Hur
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - M J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
| | - M N Byappanahalli
- Lake Michigan Ecological Research Station, Great Lakes Science Center, U.S. Geological Survey, Chesterton, IN, USA
| | - T Yan
- Department of Civil and Environmental Engineering, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - S Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
28
|
Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments. Sci Rep 2016; 6:32974. [PMID: 27604854 PMCID: PMC5015105 DOI: 10.1038/srep32974] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/18/2016] [Indexed: 11/09/2022] Open
Abstract
Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.
Collapse
|
29
|
Cha Y, Park MH, Lee SH, Kim JH, Cho KH. Modeling spatiotemporal bacterial variability with meteorological and watershed land-use characteristics. WATER RESEARCH 2016; 100:306-315. [PMID: 27208919 DOI: 10.1016/j.watres.2016.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Bacteria are a primary contaminant in natural surface water. The instream concentration of fecal coliform, a potential indicator of pathogens, is influenced by meteorological conditions and land-use characteristics. However, the relationships between these conditions and fecal coliforms are not fully understood. Furthermore, the sources of large variability in fecal coliform counts, e.g., temporal or spatial sources, remain unexplained, especially at large scales. This study proposes the use of Bayesian overdispersed Poisson models, whereby the combined effects of temperature, rainfall, and land-use characteristics on fecal coliform concentration are quantified with predictive uncertainty, and the sources of variability in fecal coliform concentration are assessed. The models were developed using 8-year weekly observations of fecal coliforms obtained from the Wachusett Reservoir watershed in Massachusetts, USA. The results highlight the importance of interactions among meteorological and land-use characteristics in controlling the instream fecal coliform concentration; the increase in fecal coliform concentration with temperature increase was more drastic when rainfall occurred. Also, the responses of fecal coliforms to temperature increases were more pronounced in forest-dominated than in urban-dominated areas. In contrast, the fecal coliform concentration increased more rapidly with rainfall increases in urban-dominated than in forest-dominated areas. The models also demonstrate that among the sources of variability, the monthly component made the most significant contribution to the variability in fecal coliform concentrations. Our results suggest that seasonally dependent processes, including surface runoff, are critical factors that regulate fecal coliform concentration in streams.
Collapse
Affiliation(s)
- YoonKyung Cha
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, 130-743, Republic of Korea
| | - Mi-Hyun Park
- Department of Civil and Environmental Engineering, University of Massachusetts, 130 Natural Resources Road, Amherst, MA, 01003, USA
| | - Sang-Hyup Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Joon Ha Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea.
| |
Collapse
|
30
|
Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, Jackson RW, Holden NJ. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Front Microbiol 2016; 7:1088. [PMID: 27462311 PMCID: PMC4940412 DOI: 10.3389/fmicb.2016.01088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai.
Collapse
Affiliation(s)
- Louise Crozier
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, The University of ReadingReading, UK
| | - Simon C. Andrews
- School of Biological Sciences, The University of ReadingReading, UK
| | - Ian Toth
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Nicola J. Holden
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
31
|
Morales I, Amador JA, Boving T. Bacteria Transport in a Soil-Based Wastewater Treatment System under Simulated Operational and Climate Change Conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1459-1472. [PMID: 26436263 DOI: 10.2134/jeq2014.12.0547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacteria removal efficiencies in a conventional soil-based wastewater treatment system (OWTS) have been modeled to elucidate the fate and transport of bacteria under environmental and operational conditions that might be expected under changing climatic conditions. The HYDRUS 2D/3D software was used to model the impact of changing precipitation patterns, bacteria concentrations, hydraulic loading rates (HLRs), and higher subsurface temperatures at different depths and soil textures. Modeled effects of bacteria concentration shows that greater depth of treatment was required in coarser soils than in fine-textured ones to remove . The initial removal percentage was higher when HLR was lower, but it was greater when HLR was higher. When a biomat layer was included in the transport model, the performance of the system improved by up to 12.0%. Lower bacteria removal (<5%) was observed at all depths under the influence of precipitation rates ranging from 5 to 35 cm, and 35-cm rainfall combined with a 70% increase in HLR. Increased subsurface temperature (23°C) increased bacteria removal relative to a lower temperature range (5-20°C). Our results show that the model is able to effectively simulate bacteria removal and the effect of precipitation and temperature in different soil textures. It appears that the performance of OWTS may be impacted by changing climate.
Collapse
|
32
|
Cook KL, Netthisinghe AMP, Gilfillen RA. Detection of pathogens, indicators, and antibiotic resistance genes after land application of poultry litter. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1546-58. [PMID: 25603240 DOI: 10.2134/jeq2013.10.0432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Poultry litter (PL) is a by-product of broiler production. Most PL is land applied. Land-applied PL is a valuable nutrient source for crop production but can also be a route of environmental contamination with manure-borne bacteria. The objective of this study was to characterize the fate of pathogens, fecal indicator bacteria (FIB), and bacteria containing antibiotic resistance genes (ARGs) after application of PL to soils under conventional till or no-till management. This 2-yr study was conducted in accordance with normal agricultural practices, and microbial populations were quantified using a combination of culture and quantitative, real-time polymerase chain reaction analysis. Initial concentrations of in PL were 5.4 ± 3.2 × 10 cells g PL; sp. was not detected in the PL but was enriched periodically from PL-amended soils. was detected in PL (1.5 ± 1.3 × 10 culturable or 1.5 ± 0.3 × 10 genes g) but was rarely detected in field soils, whereas enterococci (1.5 ± 0.5 × 10 cells g PL) were detected throughout the study. These results suggest that enterococci may be better FIB for field-applied PL. Concentrations of ARGs for sulfonamide, streptomycin, and tetracycline resistance increased up to 3.0 orders of magnitude after PL application and remained above background for up to 148 d. These data provide new knowledge about important microbial FIB, pathogens, and ARGs associated with PL application under realistic field-based conditions.
Collapse
|
33
|
Whitman R, Harwood VJ, Edge TA, Nevers M, Byappanahalli M, Vijayavel K, Brandão J, Sadowsky MJ, Alm EW, Crowe A, Ferguson D, Ge Z, Halliday E, Kinzelman J, Kleinheinz G, Przybyla-Kelly K, Staley C, Staley Z, Solo-Gabriele HM. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2014; 13:329-368. [PMID: 25383070 PMCID: PMC4219924 DOI: 10.1007/s11157-014-9340-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area.
Collapse
Affiliation(s)
- Richard Whitman
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, SCA 110, 4202 E. Fowler Ave. Tampa, FL 33620, USA
| | - Thomas A. Edge
- Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Meredith Nevers
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Muruleedhara Byappanahalli
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Kannappan Vijayavel
- Environmental Health Division, Ottawa County Health Department, 12251 James Street, Suite 200, Holland, MI, 49424, USA
- Remediation and Redevelopment Division, Department of Environmental Quality, State of Michigan, 525 W. Allegan St., Lansing, MI 48909. USA
| | - João Brandão
- Reference Unit for Systemic Infections and Zoonosis, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz 1649-016 Lisboa, Portugal
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Elizabeth Wheeler Alm
- Department of Biology & Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859
| | - Allan Crowe
- Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Donna Ferguson
- Environmental Health Sciences Department, Fielding School of Public Health, University of California Los Angeles, California 90024, USA
| | - Zhongfu Ge
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | | | - Julie Kinzelman
- Department of Public Health, City of Racine, 730 Washington Avenue, Room 109, Racine, WI 53403, USA
| | - Greg Kleinheinz
- Environmental Research and Innovation Centre, University of Wisconsin – Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - Kasia Przybyla-Kelly
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Christopher Staley
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Zachery Staley
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Helena M. Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Drive, McArthur Building Room 252, Coral Gables, FL 33146, USA and, Oceans and Human Health Center, University of Miami Rosenstiel, School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
34
|
Wang H, Ibekwe AM, Ma J, Wu L, Lou J, Wu Z, Liu R, Xu J, Yates SR. A glimpse of Escherichia coli O157:H7 survival in soils from eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:49-56. [PMID: 24463024 DOI: 10.1016/j.scitotenv.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is an important food-borne pathogen, which continues to be a major public health concern worldwide. It is known that E. coli O157:H7 survive in soil environment might result in the contamination of fresh produce or water source. To investigate how the soils and their properties affect E. coli O157:H7 survival, we studied E. coli O157:H7 survival dynamics in 14 soils collected in eastern China from the warm-temperate zone to subtropical zone. Results showed that E. coli O157:H7 survival as a function of time can be well described by the Weibull model. The calculated td values (survival time to reach the detection limit, 100 colony forming units per gram oven-dried weight of soil) for the test soils were between 1.4 and 25.8 days. A significantly longer survival time (td) was observed in neutral or alkaline soils from north-eastern China (the warm-temperate zone) than that in acidic soils from south-eastern China (the subtropical zone). Distinct E. coli O157:H7 survival dynamics was related to soil properties. Stepwise multiple regression analysis revealed that the td values were significantly enhanced by soil microbial biomass carbon and total nitrogen, but were significantly reduced by amorphous Al2O3 and relative abundance of Chloroflexi. It should pay more attention to E. coli O157:H7 long survival in soils and its potential environmental contamination risk.
Collapse
Affiliation(s)
- Haizhen Wang
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - A Mark Ibekwe
- USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA
| | - Jincai Ma
- USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Laosheng Wu
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jun Lou
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Wu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Scott R Yates
- USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA.
| |
Collapse
|
35
|
Piorkowski GS, Bezanson GS, Jamieson RC, Hansen LT, Yost CK. Effect of hillslope position and manure application rates on the persistence of fecal source tracking indicators in an agricultural soil. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:450-458. [PMID: 25602646 DOI: 10.2134/jeq2013.07.0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The influence of liquid dairy manure (LDM) application rates (12.5 and 25 kL ha) and soil type on the decay rates of library-independent fecal source tracking markers (host-associated and mitochondrial DNA) and persistent (>58 d) population structure was examined in a field study. The soils compared were an Aquic Haplorthod and a Typic Haplorthod in Nova Scotia, Canada, that differed according to landscape position and soil moisture regime. Soil type and LDM application rate did not influence decay rates (0.045-0.057 d). population structure, in terms of the occurrence of abundance of strain types, varied according to soil type ( = 0.012) but did not vary by LDM application rate ( = 0.121). Decay of ruminant-specific (BacR), bovine-specific (CowM2), and mitochondrial DNA (AcytB) markers was analyzed for 13 d after LDM application. The decay rates of BacR were greater under high-LDM application rates (0.281-0.358 d) versus low-LDM application rates (0.212-0.236 d) but were unaffected by soil type. No decay rates could be calculated for the CowM2 marker because it was undetectable within 6 d after manure application. Decay rates for AcytB were lower for the Aquic Haplorthod (0.088-0.100 d), with higher moisture status compared with the Typic Haplorthod (0.135 d). Further investigation into the decay of fecal source tracking indicators in agricultural field soils is warranted to assess the influence of soil type and agronomic practice on the differential decay of relevant markers and the likelihood of transport in runoff.
Collapse
|
36
|
Holden N, Wright F, MacKenzie K, Marshall J, Mitchell S, Mahajan A, Wheatley R, Daniell T. Prevalence and diversity of Escherichia coli
isolated from a barley trial supplemented with bulky organic soil amendments: green compost and bovine slurry. Lett Appl Microbiol 2013; 58:205-12. [DOI: 10.1111/lam.12180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- N.J. Holden
- The James Hutton Institute; Invergowrie Dundee UK
| | - F. Wright
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - K. MacKenzie
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - J. Marshall
- The James Hutton Institute; Invergowrie Dundee UK
| | - S. Mitchell
- The James Hutton Institute; Invergowrie Dundee UK
| | - A. Mahajan
- The Roslin Institute; R(D)SVS; University of Edinburgh; Easter Bush Midlothian UK
| | - R. Wheatley
- The James Hutton Institute; Invergowrie Dundee UK
| | - T.J. Daniell
- The James Hutton Institute; Invergowrie Dundee UK
| |
Collapse
|
37
|
Jasper JT, Nguyen MT, Jones ZL, Ismail NS, Sedlak DL, Sharp JO, Luthy RG, Horne AJ, Nelson KL. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents. ENVIRONMENTAL ENGINEERING SCIENCE 2013; 30:421-436. [PMID: 23983451 PMCID: PMC3746285 DOI: 10.1089/ees.2012.0239] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 01/22/2013] [Indexed: 05/05/2023]
Abstract
Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.
Collapse
Affiliation(s)
- Justin T. Jasper
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, University of California, Berkeley, California
| | - Mi T. Nguyen
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, University of California, Berkeley, California
| | - Zackary L. Jones
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Niveen S. Ismail
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California
| | - David L. Sedlak
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, University of California, Berkeley, California
| | - Jonathan O. Sharp
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Richard G. Luthy
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California
| | - Alex J. Horne
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, University of California, Berkeley, California
| | - Kara L. Nelson
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation, Stanford, California
- Department of Civil & Environmental Engineering, University of California, Berkeley, California
- Corresponding author: Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710. Phone: 510-643-5023; Fax: 510-642-7483. E-mail:
| |
Collapse
|
38
|
Netthisinghe AMP, Cook KL, Rice C, Gilfillen RA, Sistani KR. Soil Nutrients, Bacteria Populations, and Veterinary Pharmaceuticals across a Backgrounding Beef Feedlot. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:532-544. [PMID: 23673846 DOI: 10.2134/jeq2012.0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Beef cattle backgrounding operations that grow out weaned calves for feedlot finishing contain several environmentally significant constituents. A better understanding of these constituents and their environmental distribution will aid in the development of effective management guidelines for sustainable beef production. This research investigated soil nutrients, bacterial, and veterinary pharmaceutical concentrations across a small backgrounding beef feedlot on a karst landscape. Results indicated that all contaminants were highly concentrated in the feeder area (FD) and were lower in the other feedlot areas. The FD soils had a pH of 8.2, 59 mg kg soil organic matter (SOM), 2002 mg kg soil test phosphorus (STP), 99.7 mg kg NH-N, and 18.3 mg kg NO-N. The other locations were acidic (5.9-6.9 pH) and contained 39 mg kg SOM, 273 mg kg STP, 21.5 mg kg NH-N, and 2.0 NO-N mg kg. Bacteria populations in the FD averaged 2.7 × 10 total cells, 3.9 × 10 spp., 2.9 × 10 spp, and 4.5 × 10 cells per gram of soil. spp. and spp. concentrations were 1 to 4 orders of magnitude lower at the other locations. showed lower dynamic range and was generally uniformly distributed across the landscape. Antibiotic and parasiticide concentrations in the FD were 86.9 ng g monensin, 25.0 ng g lasalocid, and 10.3 ng g doramectin. Their concentrations were 6- to 27-fold lower in the other feedlot locations. Contaminant management plans for this small feedlot will therefore focus on the feeder and nearby grazing areas where soil nutrients, bacteria populations, and veterinary pharmaceuticals were most concentrated.
Collapse
|
39
|
Occurrence, genetic diversity, and persistence of enterococci in a Lake Superior watershed. Appl Environ Microbiol 2013; 79:3067-75. [PMID: 23455345 DOI: 10.1128/aem.03908-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2012, the U.S. EPA suggested that coastal and Great Lakes states adopt enterococci as an alternative indicator for the monitoring of recreational water quality. Limited information, however, is available about the presence and persistence of enterococci in Lake Superior. In this study, the density, species composition, and persistence of enterococci in sand, sediment, water, and soil samples were examined at two sites in a Lake Superior watershed from May to September over a 2-year period. The genetic diversity of Enterococcus faecalis isolates collected from environmental samples was also studied by using the horizontal, fluorophore-enhanced repetitive PCR DNA fingerprinting technique. Results obtained by most-probable-number analyses indicated that enterococci were present in 149 (94%) of 159 samples and their densities were generally higher in the summer than in the other months examined. The Enterococcus species composition displayed spatial and temporal changes, with the dominant species being E. hirae, E. faecalis, E. faecium, E. mundtii, and E. casseliflavus. DNA fingerprint analyses indicated that the E. faecalis population in the watershed was genetically diverse and changed spatially and temporally. Moreover, some DNA fingerprints reoccurred over multiple sampling events. Taken together, these results suggest that some enterococci are able to persist and grow in the Lake Superior watershed, especially in soil, for a prolonged time after being introduced.
Collapse
|
40
|
Oh S, Buddenborg S, Yoder-Himes DR, Tiedje JM, Konstantinidis KT. Genomic diversity of Escherichia isolates from diverse habitats. PLoS One 2012; 7:e47005. [PMID: 23056556 PMCID: PMC3466228 DOI: 10.1371/journal.pone.0047005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Our understanding of the Escherichia genus is heavily biased toward pathogenic or commensal isolates from human or animal hosts. Recent studies have recovered Escherichia isolates that persist, and even grow, outside these hosts. Although the environmental isolates are typically phylogenetically distinct, they are highly related to and phenotypically indistinguishable from their human counterparts, including for the coliform test. To gain insights into the genomic diversity of Escherichia isolates from diverse habitats, including freshwater, soil, animal, and human sources, we carried out comparative DNA-DNA hybridizations using a multi-genome E. coli DNA microarray. The microarray was validated based on hybridizations with selected strains whose genome sequences were available and used to assess the frequency of microarray false positive and negative signals. Our results showed that human fecal isolates share two sets of genes (n>90) that are rarely found among environmental isolates, including genes presumably important for evading host immune mechanisms (e.g., a multi-drug transporter for acids and antimicrobials) and adhering to epithelial cells (e.g., hemolysin E and fimbrial-like adhesin protein). These results imply that environmental isolates are characterized by decreased ability to colonize host cells relative to human isolates. Our study also provides gene markers that can distinguish human isolates from those of warm-blooded animal and environmental origins, and thus can be used to more reliably assess fecal contamination in natural ecosystems.
Collapse
Affiliation(s)
- Seungdae Oh
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sarah Buddenborg
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Deborah R. Yoder-Himes
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yoshida M, Ishii S, Fujii D, Otsuka S, Senoo K. Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes Environ 2012; 27:456-61. [PMID: 22972387 PMCID: PMC4103554 DOI: 10.1264/jsme2.me12076] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Denitrification occurs markedly in rice paddy fields; however, few microbes that are actively involved in denitrification in these environments have been identified. In this study, we used a laboratory soil microcosm system in which denitrification activity was enhanced. DNA and RNA were extracted from soil at six time points after enhancing denitrification activity, and quantitative PCR and clone library analyses were performed targeting the 16S rRNA gene and denitrification functional genes (nirS, nirK and nosZ) to clarify which microbes are actively involved in denitrification in rice paddy soil. Based on the quantitative PCR results, transcription levels of the functional genes agreed with the denitrification activity, although gene abundance did not change at the DNA level. Diverse denitrifiers were detected in clone library analysis, but comparative analysis suggested that only some of the putative denitrifiers, especially those belonging to the orders Neisseriales, Rhodocyclales and Burkholderiales, were actively involved in denitrification in rice paddy soil.
Collapse
Affiliation(s)
- Megumi Yoshida
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan.
| | | | | | | | | |
Collapse
|
42
|
Byappanahalli MN, Yan T, Hamilton MJ, Ishii S, Fujioka RS, Whitman RL, Sadowsky MJ. The population structure of Escherichia coli isolated from subtropical and temperate soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:273-9. [PMID: 22264918 DOI: 10.1016/j.scitotenv.2011.12.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 05/19/2023]
Abstract
While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora.
Collapse
|
43
|
Hansen DL, Ishii S, Sadowsky MJ, Hicks RE. Waterfowl abundance does not predict the dominant avian source of beach Escherichia coli. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1924-1931. [PMID: 22031576 DOI: 10.2134/jeq2011.0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The horizontal, fluorophore enhanced, rep-PCR (HFERP) DNA fingerprinting technique was used to identify potential sources of in water, nearshore sand, and sediment at two beaches in the Duluth-Superior Harbor, near Duluth, MN, and Superior, WI, during May, July, and September 2006. An animal or environmental source could be identified for 35, 29, and 30% of strains in water, sand, and sediments, respectively. Waterfowl, including Canada geese, ring-billed gulls, and mallard ducks, were the largest source of that could be identified in water (55-100%), sand (59-100%), and sediment (92-100%) at both beaches. Although ring-billed gulls were more abundant in this harbor, Canada geese were usually the dominant source of waterfowl found at these beaches. The percentage of identified from treated wastewater was always less than the percentage of originating from waterfowl. At both beaches, the percentage of in water contributed by treated wastewater was higher in May compared with July and September. The larger proportion of wastewater-derived seen in May probably reflected a smaller contribution of from geese when these birds were less abundant rather than an absolute increase in from treated wastewater. Microbial source analysis and bird census data both indicated that waterfowl were a major source of at beaches in the Duluth-Superior Harbor. These data also indicated it is risky to assume that the most abundant waterfowl species present in waterways will also be the largest source of avian-derived in water, nearshore sand, and sediments at beaches.
Collapse
Affiliation(s)
- Dennis L Hansen
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | | | | | | |
Collapse
|
44
|
Okabe S, Oshiki M, Kamagata Y, Yamaguchi N, Toyofuku M, Yawata Y, Tashiro Y, Nomura N, Ohta H, Ohkuma M, Hiraishi A, Minamisawa K. A great leap forward in microbial ecology. Microbes Environ 2011; 25:230-40. [PMID: 21576878 DOI: 10.1264/jsme2.me10178] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosomal RNA (rRNA) sequence-based molecular techniques emerged in the late 1980s, which completely changed our general view of microbial life. Coincidentally, the Japanese Society of Microbial Ecology (JSME) was founded, and its official journal "Microbes and Environments (M&E)" was launched, in 1985. Thus, the past 25 years have been an exciting and fruitful period for M&E readers and microbiologists as demonstrated by the numerous excellent papers published in M&E. In this minireview, recent progress made in microbial ecology and related fields is summarized, with a special emphasis on 8 landmark areas; the cultivation of uncultured microbes, in situ methods for the assessment of microorganisms and their activities, biofilms, plant microbiology, chemolithotrophic bacteria in early volcanic environments, symbionts of animals and their ecology, wastewater treatment microbiology, and the biodegradation of hazardous organic compounds.
Collapse
Affiliation(s)
- Satoshi Okabe
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|