1
|
Li W, Chen L, Mohammad Sajadi S, Baghaei S, Salahshour S. The impact of acute and chronic aerobic and resistance exercise on stem cell mobilization: A review of effects in healthy and diseased individuals across different age groups. Regen Ther 2024; 27:464-481. [PMID: 38745840 PMCID: PMC11091462 DOI: 10.1016/j.reth.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Stem cells (SCs) play a crucial role in tissue repair, regeneration, and maintaining physiological homeostasis. Exercise mobilizes and enhances the function of SCs. This review examines the effects of acute and chronic aerobic and resistance exercise on the population of SCs in healthy and diseased individuals across different age groups. Both acute intense exercise and moderate regular training increase circulating precursor cells CD34+ and, in particular, the subset of angiogenic progenitor cells (APCs) CD34+/KDR+. Conversely, chronic exercise training has conflicting effects on circulating CD34+ cells and their function, which are likely influenced by exercise dosage, the health status of the participants, and the methodologies employed. While acute activity promotes transient mobilization, regular exercise often leads to an increased number of progenitors and more sustainable functionality. Short interventions lasting 10-21 days mobilize CD34+/KDR + APCs in sedentary elderly individuals, indicating the inherent capacity of the body to rapidly activate tissue-reparative SCs during activity. However, further investigation is needed to determine the optimal exercise regimens for enhancing SC mobilization, elucidating the underlying mechanisms, and establishing functional benefits for health and disease prevention. Current evidence supports the integration of intense exercise with chronic training in exercise protocols aimed at activating the inherent regenerative potential through SC mobilization. The physical activity promotes endogenous repair processes, and research on exercise protocols that effectively mobilize SCs can provide innovative guidelines designed for lifelong tissue regeneration. An artificial neural network (ANN) was developed to estimate the effects of modifying elderly individuals and implementing chronic resistance exercise on stem cell mobilization and its impact on individuals and exercise. The network's predictions were validated using linear regression and found to be acceptable compared to experimental results.
Collapse
Affiliation(s)
- Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Lingzhen Chen
- Department of Sports and Arts, Zhejiang Gongshang University HangZhou College of Commerce, No. 66, South Huancheng Road, Tonglu, Hangzhou, China
| | | | - Sh. Baghaei
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Iran
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
2
|
Nobuhisa I, Melig G, Taga T. Sox17 and Other SoxF-Family Proteins Play Key Roles in the Hematopoiesis of Mouse Embryos. Cells 2024; 13:1840. [PMID: 39594589 PMCID: PMC11593047 DOI: 10.3390/cells13221840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These IAHCs emerge from the hemogenic endothelium, which is the common progenitor of hematopoietic cells and endothelial cells. HSCs expand in the fetal liver, and finally migrate to the bone marrow (BM) during the peripartum period. IAHCs are absent in the dorsal aorta in mice deficient in transcription factors such as Runx-1, GATA2, and c-Myb that are essential for definitive hematopoiesis. In this review, we focus on the transcription factor Sry-related high mobility group (HMG)-box (Sox) F family of proteins that is known to regulate hematopoiesis in the hemogenic endothelium and IAHCs. The SoxF family is composed of Sox7, Sox17, and Sox18, and they all have the HMG box, which has a DNA-binding ability, and a transcriptional activation domain. Here, we describe the functional and phenotypic properties of SoxF family members, with a particular emphasis on Sox17, which is the most involved in hematopoiesis in the fetal stages considering that enhanced expression of Sox17 in hemogenic endothelial cells and IAHCs leads to the production and maintenance of HSCs. We also discuss SoxF-inducing signaling pathways.
Collapse
Affiliation(s)
- Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Gerel Melig
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
3
|
Jin X, Pirenne J, Vos R, Hooft C, Kaes J, Van Slambrouck J, Kortleven P, Vandervelde C, Beeckmans H, Kerckhof P, Carlon MS, Van Raemdonck D, Looney MR, Vanaudenaerde BM, Ceulemans LJ. Donor-Specific Blood Transfusion in Lung Transplantation. Transpl Int 2024; 37:12822. [PMID: 39553536 PMCID: PMC11565953 DOI: 10.3389/ti.2024.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Lung transplantation is still hindered by a high rate of chronic rejection necessitating profound immunosuppression with its associated complications. Donor-specific blood transfusion is a pre-transplant strategy aimed at improving graft acceptance. In contrast with standard stored blood or donor-specific regulatory T cells transfusions, this approach utilizes fresh whole blood from the donor prior to allograft transplantation, encompassing all cell types and plasma. The precise mechanisms underlying donor-specific blood transfusion-induced tolerance remain incompletely understood. Associations with regulatory/helper T cells, modulation of mononuclear phagocytic cells or microchimerism have been suggested. While numerous (pre-)clinical studies have explored its application in solid organ transplants like liver, kidney, and intestine, limited attention has been given to the setting of lung transplantation. This comprehensive review summarizes existing knowledge on the mechanisms and outcomes of donor-specific blood transfusion in solid organ transplants both in preclinical and clinical settings. We also address the potential benefits and risks associated with donor-specific blood transfusion in the field of lung transplantation, offering insights into future research directions.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism (VIB-KU Leuven), KU Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Phéline Kortleven
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Christelle Vandervelde
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Pieterjan Kerckhof
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Marianne S. Carlon
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Bart M. Vanaudenaerde
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurens J. Ceulemans
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Lavalleye T, Saussoy P, Lambert C. Method comparison between hematopoietic progenitor cell and CD34+ cell counts in hematopoietic stem cell collection. Transfusion 2024; 64:1743-1751. [PMID: 38966912 DOI: 10.1111/trf.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The reference method for hematopoietic stem cell enumeration is flow cytometric CD34+ cell analysis. We evaluated using the hematopoietic progenitor cell (HPC) count on the Sysmex hematology analyzer to safely replace some flow cytometric measurements performed in peripheral blood samples to guide apheresis timing. STUDY DESIGN AND METHODS We compared HPC and CD34+ cell counts in 133 preharvest peripheral blood samples and 124 apheresis products. RESULTS Pre-apheresis HPC counts ≥24 × 106/L in healthy donors and ≥36 × 106/L in lymphoma patients predicted adequate mobilization with 100% specificity and positive predictive value, saving 79% and 63% of flow cytometry analyses, respectively. Due to a positive bias (mean bias 50.26; 95% CI 36.24-64.29), a higher threshold was needed in multiple myeloma patients (HPC ≥ 132 × 106/L), saving only 24% of flow cytometry analyses. CONCLUSION When the HPC count is above the corresponding threshold, apheresis could be safely initiated without waiting for the flow cytometry result, thereby reducing time-to-decision. Lower HPC values, however, require confirmation by flow cytometry.
Collapse
Affiliation(s)
- Thibault Lavalleye
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Pascale Saussoy
- Hematology Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Catherine Lambert
- Hemostasis and Thrombosis Unit, Division of Hematology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| |
Collapse
|
5
|
Ellison S, Buckland K, Learmonth Y, Day V, Kalra S, Howe L, Roman-Rodriguez FJ, Bonafont J, Booth L, Holley R, Smythe J, Jones S, Thrasher A, Booth C, Bigger BW. Design and validation of a GMP stem cell manufacturing protocol for MPSII hematopoietic stem cell gene therapy. Mol Ther Methods Clin Dev 2024; 32:101271. [PMID: 38946936 PMCID: PMC11214401 DOI: 10.1016/j.omtm.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024]
Abstract
Hematopoietic stem cell gene therapy (HSCGT) is a promising therapeutic strategy for the treatment of neurodegenerative, metabolic disorders. The approach involves the ex vivo introduction of a missing gene into patients' own stem cells via lentiviral-mediated transduction (TD). Once transplanted back into a fully conditioned patient, these genetically modified HSCs can repopulate the blood system and produce the functional protein, previously absent or non-functional in the patient, which can then cross-correct other affected cells in somatic organs and the central nervous system. We previously developed an HSCGT approach for the treatment of Mucopolysaccharidosis type II (MPSII) (Hunter syndrome), a debilitating pediatric lysosomal disorder caused by mutations in the iduronate-2-sulphatase (IDS) gene, leading to the accumulation of heparan and dermatan sulfate, which causes severe neurodegeneration, skeletal abnormalities, and cardiorespiratory disease. In HSCGT proof-of-concept studies using lentiviral IDS fused to a brain-targeting peptide ApoEII (IDS.ApoEII), we were able to normalize brain pathology and behavior of MPSII mice. Here we present an optimized and validated good manufacturing practice hematopoietic stem cell TD protocol for MPSII in preparation for first-in-man studies. Inclusion of TEs LentiBOOST and protamine sulfate significantly improved TD efficiency by at least 3-fold without causing adverse toxicity, thereby reducing vector quantity required.
Collapse
Affiliation(s)
- Stuart Ellison
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Karen Buckland
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Yuko Learmonth
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Victoria Day
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Spandan Kalra
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Lauren Howe
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Francisco José Roman-Rodriguez
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jose Bonafont
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Laura Booth
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Rebecca Holley
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Jon Smythe
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Simon Jones
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Adrian Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Brian W. Bigger
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Cid J, Guinetti-Ortiz K, Charry P, Carbassé G, de Pablo-Miró M, Rubia L, Garcia M, Alcaraz-Quiles J, Cascos E, Martínez-Cibrian N, Salas MQ, Suárez-Lledó M, Rosiñol L, Fernández-Avilés F, Martínez C, Rovira M, Lozano M. Increased Serum Levels of N-terminal pro-B-type Natriuretic Peptide (NT-proBNP) in Mobilized Healthy Donors with G-CSF: A Cohort Study. Transfus Med Rev 2024; 38:150824. [PMID: 38569349 DOI: 10.1016/j.tmrv.2024.150824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Limited data regarding elevation of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in mobilized donors with G-CSF is available. We extended these findings by examining serum NT-proBNP in a cohort study including 35 healthy donors and 69 patients who received G-CSF for CD34+ mobilization as well as 54 patients who did not receive G-CSF but who underwent collection of CD3+ cells for chimeric antigen receptor (CAR) T-cell manufacturing. No donor in the three cohorts experienced significant cardiac adverse events. NT-proBNP levels were measured before and after G-CSF administration and after finishing apheresis procedure. NT-proBNP increase was observed in mobilized healthy donors after G-CSF administration, but was not observed in mobilized or non-mobilized patients. Only in the cohort of healthy donors, pairwise comparisons using Wilcoxon signed ranks test showed a significant increase between the mean serum NT-proBNP level after G-CSF administration and the mean serum NT-proBNP level measured before G-CSF administration (231.09 ± 156.15 pg/mL vs. 58.88 ± 26.84 pg/mL; P < .01). No correlation was observed between NT-proBNP increase and G-CSF dose (rs = 0.09; n = 32; P = .6) and no other variables contributing to predict serum NT-proBNP increase were detected. In conclusion, we observed a statistically, although not clinically, significant increase of NT-proBNP in healthy donors who received G-CSF as CD34+ cell mobilization.
Collapse
Affiliation(s)
- Joan Cid
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain.
| | - Katia Guinetti-Ortiz
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Paola Charry
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Gloria Carbassé
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Mar de Pablo-Miró
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Laura Rubia
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Marta Garcia
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Jose Alcaraz-Quiles
- CORE Laboratory, Department of Biochemistry and Molecular Genetics, Biomedical Diagnostic Centre, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Enric Cascos
- Department of Cardiology, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Nuria Martínez-Cibrian
- BMT Unit, Department of Hematology, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - María Queralt Salas
- BMT Unit, Department of Hematology, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Maria Suárez-Lledó
- BMT Unit, Department of Hematology, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Laura Rosiñol
- BMT Unit, Department of Hematology, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | | | - Carmen Martínez
- BMT Unit, Department of Hematology, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Montserrat Rovira
- BMT Unit, Department of Hematology, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| | - Miquel Lozano
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICAMS, Hospital Clínic, IDIBAPS, Barcelona, UB, Spain
| |
Collapse
|
7
|
Cancilla D, Rettig MP, Karpova D, Thakellapalli H, Singh M, Meyers MJ, Ruminski PG, Christ S, Chendamarai E, Gao F, Gehrs L, Ritchey JK, Prinsen M, DiPersio JF. Targeting CXCR4, VLA-4, and CXCR2 for hematopoietic stem cell mobilization. Blood Adv 2024; 8:1379-1383. [PMID: 38190608 PMCID: PMC10945136 DOI: 10.1182/bloodadvances.2023011653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Daniel Cancilla
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Saint Louis University School of Medicine, St. Louis, MO
| | - Michael P. Rettig
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Darja Karpova
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Haresh Thakellapalli
- Department of Chemistry, Saint Louis University School of Science and Engineering, St. Louis, MO
| | - Megh Singh
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Saint Louis University School of Medicine, St. Louis, MO
| | - Marvin J. Meyers
- Saint Louis University School of Medicine, St. Louis, MO
- Department of Chemistry, Saint Louis University School of Science and Engineering, St. Louis, MO
| | - Peter G. Ruminski
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Saint Louis University School of Medicine, St. Louis, MO
| | - Stephanie Christ
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ezhilarasi Chendamarai
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Feng Gao
- Division of Public Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Leah Gehrs
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Julie K. Ritchey
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - John F. DiPersio
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Salhotra A, Yuan S, Ali H. Fifty years of BMT: risk stratification, donor matching, and stem cell collection for transplantation. Front Oncol 2023; 13:1196564. [PMID: 37700828 PMCID: PMC10493308 DOI: 10.3389/fonc.2023.1196564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 09/14/2023] Open
Abstract
In this review, we discuss recipient risk assessment for allo-HCT regarding comorbidities present at baseline to predict non relapse mortality. We further reviewed the incorporation of remission status and cytogenetic risk prior to allograft transplantation to predict relapse rates for hematologic malignancies. HCT-CI and DRI are tools available to physicians to assess the risk-benefit of allo-HCT in patients referred for transplantation. Next, we discuss our algorithm for donor selection and criteria for donor selection in case matched donors are not available. Finally, we discuss our approach for stem cell mobilization, especially in donors failing G-CSF, and our approach for the use of plerixafor and data supporting its use.
Collapse
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation (HCT), City of Hope National Medical Center, Duarte, CA, United States
| | - Shan Yuan
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation (HCT), City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
9
|
Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy 2023; 25:261-269. [PMID: 36123234 DOI: 10.1016/j.jcyt.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
10
|
Suszynska M, Adamiak M, Thapa A, Cymer M, Ratajczak J, Kucia M, Ratajczak MZ. Purinergic Signaling and Its Role in Mobilization of Bone Marrow Stem Cells. Methods Mol Biol 2023; 2567:263-280. [PMID: 36255707 DOI: 10.1007/978-1-0716-2679-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mobilization or egress of stem cells from bone marrow (BM) into peripheral blood (PB) is an evolutionary preserved and important mechanism in an organism for self-defense and regeneration. BM-derived stem cells circulate always at steady-state conditions in PB, and their number increases during stress situations related to (a) infections, (b) tissue organ injury, (c) stress, and (d) strenuous exercise. Stem cells also show a circadian pattern of their PB circulating level with peak in early morning hours and nadir late at night. The number of circulating in PB stem cells could be pharmacologically increased after administration of some drugs such as cytokine granulocyte colony-stimulating factor (G-CSF) or small molecular antagonist of CXCR4 receptor AMD3100 (Plerixafor) that promote their egress from BM into PB and lymphatic vessels. Circulating can be isolated from PB for transplantation purposes by leukapheresis. This important homeostatic mechanism is governed by several intrinsic complementary pathways. In this chapter, we will discuss the role of purinergic signaling and extracellular nucleotides in regulating this process and review experimental strategies to study their involvement in mobilization of various types of stem cells that reside in murine BM.
Collapse
Affiliation(s)
- Malwina Suszynska
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Arjun Thapa
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Monika Cymer
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magdalena Kucia
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
| | - Mariusz Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
11
|
Impact of Mobilization Strategies on Peripheral Blood Stem Cell Collection Efficiency and Product Quality: A Retrospective Single-Center Study. Cancers (Basel) 2022; 14:cancers14246259. [PMID: 36551743 PMCID: PMC9777066 DOI: 10.3390/cancers14246259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Autologous stem cell transplantation is routinely used in the management of several hematological diseases, solid tumors, and immune disorders. Peripheral blood stem cell (PBSC) collection performed by apheresis is the preferred source of stem cells. In this study, the potential impact of mobilization regimens on the performance of the Spectra Optia® continuous mononuclear cell collection system was evaluated. We performed a retrospective data analysis for patients undergoing autologous PBSC collection at the Medical University Vienna, Vienna General Hospital between September 2016 and June 2018. Collections were divided into two main groups according to the mobilization regimen received: without (210 collections) or with (99 collections) plerixafor. Assessed variables included product characteristics and collection efficiency (CE). Overall, product characteristics were similar between the groups. Median CD34+ CE2 was 50.1% versus 53.0%, and CE1 was 66.9% versus 69.9% following mobilization without and with plerixafor, respectively; the difference was not statistically significant. Simple linear regression showed a very weak positive correlation between the mobilization method and CE1 or CE2 (mobilization with plerixafor increased CE2 by 4.106%). In conclusion, the Spectra Optia® apheresis system led to high CE and a good quality of PBSC products when mobilization regimens with or without plerixafor were used.
Collapse
|
12
|
Ratajczak MZ, Adamiak M, Deptała A, Domagała-Kulawik J, Ratajczak J, Kucia M. Myeloablative Conditioning for Transplantation Induces State of Sterile Inflammation in the Bone Marrow: Implications for Optimizing Homing and Engraftment of Hematopoietic Stem Cells. Antioxid Redox Signal 2022; 37:1254-1265. [PMID: 35383477 PMCID: PMC9805853 DOI: 10.1089/ars.2022.0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023]
Abstract
Significance: The success rate of hematopoietic stem cell transplantation depends mainly on the number of transplanted hematopoietic stem/progenitor cells (HSPCs) followed by the speed of their engraftment in the myeloablated transplant recipient. Therefore, clinical outcomes will significantly benefit from accelerating the homing and engraftment of these cells. This is, in particular, important when the number of cells available for the transplantation of HSPCs is limited. Recent Advances: We postulated that myeloablative conditioning for hematopoietic transplantation by radio- or chemotherapy induces a state of sterile inflammation in transplant recipient peripheral blood (PB) and bone marrow (BM). This state is mediated by activation of the BM stromal and innate immunity cells that survive myeloablative conditioning and respond to danger-associated molecular patterns released from the cells damaged by myeloablative conditioning. As a result of this, several factors are released that promote proper navigation of HSPCs infused into PB of transplant recipient and prime recipient BM to receive transplanted cells. Critical Issues: We will present data that cellular innate immunity arm and soluble arm comprised complement cascade proteins, promoting the induction of the BM sterile inflammation state that facilitates the navigation, homing, and engraftment of HSPCs. Future Directions: Deciphering these mechanisms would allow us to better understand the mechanisms that govern hematopoietic recovery after transplantation and, in parallel, provide important information on how to optimize this process in the clinic by employing small molecular modifiers of innate immunity and purinergic signaling. Antioxid. Redox Signal. 37, 1254-1265.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Department of Medicine, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Regenerative Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Faculty of Health Sciences, and Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Janina Ratajczak
- Department of Medicine, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
| | - Magdalena Kucia
- Department of Medicine, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Regenerative Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
13
|
Ruzanova V, Proskurina A, Efremov Y, Kirikovich S, Ritter G, Levites E, Dolgova E, Potter E, Babaeva O, Sidorov S, Taranov O, Ostanin A, Chernykh E, Bogachev S. Chronometric Administration of Cyclophosphamide and a Double-Stranded DNA-Mix at Interstrand Crosslinks Repair Timing, Called "Karanahan" Therapy, Is Highly Efficient in a Weakly Immunogenic Lewis Carcinoma Model. Pathol Oncol Res 2022; 28:1610180. [PMID: 35693632 PMCID: PMC9185167 DOI: 10.3389/pore.2022.1610180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Background and Aims: A new technology based on the chronometric administration of cyclophosphamide and complex composite double-stranded DNA-based compound, which is scheduled in strict dependence on interstrand crosslinks repair timing, and named “Karanahan”, has been developed. Being applied, this technology results in the eradication of tumor-initiating stem cells and full-scale apoptosis of committed tumor cells. In the present study, the efficacy of this novel approach has been estimated in the model of Lewis carcinoma. Methods: To determine the basic indicative parameters for the approach, the duration of DNA repair in tumor cells, as well as their distribution along the cell cycle, have been assessed. Injections were done into one or both tumors in femoral region of the engrafted mice in accordance with the developed regimen. Four series of experiments were carried out at different periods of time. The content of poorly differentiated CD34+/TAMRA+ cells in the bone marrow and peripheral blood has been determined. Immunostaining followed by the flow cytometry was used to analyze the subpopulations of immune cells. Results: The high antitumor efficacy of the new technology against the developed experimental Lewis carcinoma was shown. It was found that the therapy efficacy depended on the number of tumor growth sites, seasonal and annual peculiarities. In some experiments, a long-term remission has been reached in 70% of animals with a single tumor and in 60% with two tumors. In mice with two developed grafts, mobilization capabilities of both poorly differentiated hematopoietic cells of the host and tumor stem-like cells decrease significantly. Being applied, this new technology was shown to activate a specific immune response. There is an increase in the number of NK cell populations in the blood, tumor, and spleen, killer T cells and T helper cells in the tumor and spleen, CD11b+Ly-6C+ and CD11b+Ly-6G+ cells in the tumor. A population of mature dendritic cells is found in the tumor. Conclusion: The performed experiments indicate the efficacy of the Karanahan approach against incurable Lewis carcinoma. Thus, the discussed therapy is a new approach for treating experimental neoplasms, which has a potential as a personalized anti-tumor therapeutic approach in humans.
Collapse
Affiliation(s)
- Vera Ruzanova
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia
| | - Anastasia Proskurina
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav Efremov
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia.,Common Use Center for Microscopic Analysis of Biological Objects SB RAS, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana Kirikovich
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Genrikh Ritter
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenii Levites
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia Dolgova
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Potter
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana Babaeva
- Oncology Department, Municipal Hospital No. 1, Novosibirsk, Russia
| | - Sergey Sidorov
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia.,Oncology Department, Municipal Hospital No. 1, Novosibirsk, Russia
| | - Oleg Taranov
- Laboratory of Microscopic Research, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Alexandr Ostanin
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena Chernykh
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey Bogachev
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
15
|
Hematopoiesis and innate immunity: an inseparable couple for good and bad times, bound together by an hormetic relationship. Leukemia 2022; 36:23-32. [PMID: 34853440 PMCID: PMC8727304 DOI: 10.1038/s41375-021-01482-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic and immune cells originate from a common hematopoietic/lymphopoietic stem cell what explains that these different cell types often share the same receptors and respond to similar factors. Moreover, the common goal of both lineages is to ensure tissue homeostasis under steady-state conditions, fight invading pathogens, and promote tissue repair. We will highlight accumulating evidence that innate and adaptive immunity modulate several aspects of hematopoiesis within the hormetic zone in which the biological response to low exposure to potential stressors generally is favorable and benefits hematopoietic stem/progenitor cells (HSPCs). Innate immunity impact on hematopoiesis is pleiotropic and involves both the cellular arm, comprised of innate immunity cells, and the soluble arm, whose major component is the complement cascade (ComC). In addition, several mediators released by innate immunity cells, including inflammatory cytokines and small antimicrobial cationic peptides, affect hematopoiesis. There are intriguing observations that HSPCs and immune cells share several cell-surface pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs) and cytosol-expressed NOD, NOD-like, and RIG-I-like receptors and thus can be considered "pathogen sensors". In addition, not only lymphocytes but also HSPCs express functional intracellular complement proteins, defined as complosome which poses challenging questions for further investigation of the intracellular ComC-mediated intracrine regulation of hematopoiesis.
Collapse
|
16
|
Rindler K, Jonak C, Alkon N, Thaler FM, Kurz H, Shaw LE, Stingl G, Weninger W, Halbritter F, Bauer WM, Farlik M, Brunner PM. Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma. Mol Cancer 2021; 20:124. [PMID: 34583709 PMCID: PMC8477535 DOI: 10.1186/s12943-021-01419-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background In early-stage mycosis fungoides (MF), the most common primary cutaneous T-cell lymphoma, limited skin involvement with patches and plaques is associated with a favorable prognosis. Nevertheless, approximately 20–30% of cases progress to tumors or erythroderma, resulting in poor outcome. At present, factors contributing to this switch from indolent to aggressive disease are only insufficiently understood. Methods In patients with advanced-stage MF, we compared patches with longstanding history to newly developed plaques and tumors by using single-cell RNA sequencing, and compared results with early-stage MF as well as nonlesional MF and healthy control skin. Results Despite considerable inter-individual variability, lesion progression was uniformly associated with downregulation of the tissue residency markers CXCR4 and CD69, the heat shock protein HSPA1A, the tumor suppressors and immunoregulatory mediators ZFP36 and TXNIP, and the interleukin 7 receptor (IL7R) within the malignant clone, but not in benign T cells. This phenomenon was not only found in conventional TCR-αβ MF, but also in a case of TCR-γδ MF, suggesting a common mechanism across MF subtypes. Conversely, malignant cells in clinically unaffected skin from MF patients showed upregulation of these markers. Conclusions Our data reveal a specific panel of biomarkers that might be used for monitoring MF disease progression. Altered expression of these genes may underlie the switch in clinical phenotype observed in advanced-stage MF. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01419-2.
Collapse
Affiliation(s)
- Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Felix M Thaler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Harald Kurz
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Florian Halbritter
- St. Anna Children's Cancer Research Institute (CCRI), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Thapa A, Adamiak M, Bujko K, Ratajczak J, Abdel-Latif AK, Kucia M, Ratajczak MZ. Danger-associated molecular pattern molecules take unexpectedly a central stage in Nlrp3 inflammasome-caspase-1-mediated trafficking of hematopoietic stem/progenitor cells. Leukemia 2021; 35:2658-2671. [PMID: 33623143 PMCID: PMC8410600 DOI: 10.1038/s41375-021-01158-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Like their homing after transplantation to bone marrow (BM), the mobilization of hematopoietic stem/progenitor cells (HSPCs) is still not fully understood, and several overlapping pathways are involved. Several years ago our group proposed that sterile inflammation in the BM microenvironment induced by pro-mobilizing agents is a driving force in this process. In favor of our proposal, both complement cascade (ComC)-deficient and Nlrp3 inflammasome-deficient mice are poor G-CSF and AMD3100 mobilizers. It is also known that the Nlrp3 inflammasome mediates its effects by activating caspase-1, which is responsible for proteolytic activation of interleukin-1β (IL-1β) and interleukin-18 (IL-18) and their release from cells along with several danger-associated molecular pattern molecules (DAMPs). We observed in the past that IL-1β and IL-18 independently promote mobilization of HSPCs. In the current work we demonstrated that caspase-1-KO mice are poor mobilizers, and, to our surprise, administration of IL-1β or IL-18, as in the case of Nlrp3-KO animals, does not correct this defect. Moreover, neither Caspase-1-KO nor Nlrp3-KO mice properly activated the ComC to execute the mobilization process. Interestingly, mobilization in these animals and activation of the ComC were both restored after injection of the DAMP cocktail eATP+HGMB1+S100A9, the components of which are normally released from cells in an Nlrp3 inflammasome-caspase-1-dependent manner. In addition, we report that caspase-1-deficient HSPCs show a decrease in migration in response to BM homing factors and engraft more poorly after transplantation. These results for the first time identify caspase-1 as an orchestrator of HSPC trafficking.
Collapse
Affiliation(s)
- Arjun Thapa
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mateusz Adamiak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Ahmed K Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
18
|
Albakri M, Tashkandi H, Zhou L. A Review of Advances in Hematopoietic Stem Cell Mobilization and the Potential Role of Notch2 Blockade. Cell Transplant 2021; 29:963689720947146. [PMID: 32749152 PMCID: PMC7563033 DOI: 10.1177/0963689720947146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for
hematological malignancies and some nonhematologic diseases. Hematopoietic stem
and progenitor cells (HSPCs) collected from peripheral blood after mobilization
are the primary source to provide HSC transplantation. In most of the cases,
mobilization by the cytokine granulocyte colony-stimulating factor with
chemotherapy, and in some settings, with the CXC chemokine receptor type 4
antagonist plerixafor, can achieve high yield of hematopoietic progenitor cells
(HPCs). However, adequate mobilization is not always successful in a significant
portion of donors. Research is going on to find new agents or strategies to
increase HSC mobilization. Here, we briefly review the history of HSC
transplantation, current mobilization regimens, some of the novel agents that
are under investigation for clinical practice, and our recent findings from
animal studies regarding Notch and ligand interaction as potential targets for
HSPC mobilization.
Collapse
Affiliation(s)
- Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hammad Tashkandi
- Department of Pathology, University of Pittsburgh Medical Center, PA, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Ratajczak MZ, Kucia M. The Nlrp3 inflammasome - the evolving story of its positive and negative effects on hematopoiesis. Curr Opin Hematol 2021; 28:251-261. [PMID: 33901136 PMCID: PMC8169640 DOI: 10.1097/moh.0000000000000658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Hematopoiesis is co-regulated by innate immunity, which is an ancient evolutionary defense mechanism also involved in the development and regeneration of damaged tissues. This review seeks to shed more light on the workings of the Nlrp3 inflammasome, which is an intracellular innate immunity pattern recognition receptor and sensor of changes in the hematopoietic microenvironment, and focus on its role in hematopoieisis. RECENT FINDINGS Hematopoietic stem progenitor cells (HSPCs) are exposed to several external mediators of innate immunity. Moreover, since hemato/lymphopoietic cells develop from a common stem cell, their behavior and fate are coregulated by intracellular innate immunity pathways. Therefore, the Nlrp3 inflammasome is functional both in immune cells and in HSPCs and affects hematopoiesis in either a positive or negative way, depending on its activity level. Specifically, while a physiological level of activation regulates the trafficking of HSPCs and most likely maintains their pool in the bone marrow, hyperactivation may lead to irreversible cell damage by pyroptosis and HSPC senescence and contribute to the origination of myelodysplasia and hematopoietic malignancies. SUMMARY Modulation of the level of Nrp3 inflammasome activation will enable improvements in HSPC mobilization, homing, and engraftment strategies. It may also control pathological activation of this protein complex during HSPC senescence, graft-versus-host disease, the induction of cytokine storms, and the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| |
Collapse
|
20
|
Ratajczak MZ, Adamiak M, Ratajczak J, Kucia M. Heme Oxygenase 1 (HO-1) as an Inhibitor of Trafficking of Normal and Malignant Hematopoietic Stem Cells - Clinical and Translational Implications. Stem Cell Rev Rep 2021; 17:821-828. [PMID: 33196976 PMCID: PMC8166705 DOI: 10.1007/s12015-020-10083-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Abstract
Evidence indicates that bone marrow (BM)-residing hematopoietic stem/progenitor cells (HSPCs) are released into peripheral blood (PB) after administration of pro-mobilizing drugs, which induce a state of sterile inflammation in the BM microenvironment. In the reverse process, as seen after hematopoietic transplantation, intravenously injected HSPCs home and engraft into BM niches. Here again, conditioning for transplantation by myeloablative chemo- or radiotherapy induces a state of sterile inflammation that promotes HSPC seeding to BM stem cell niches. Therefore, the trafficking of HSPCs and their progeny, including granulocytes and monocytes/macrophages, is regulated by a response to pro-inflammatory stimuli. This responsiveness to inflammatory cues is also preserved after malignant transformation of hematopoietic cells. Results from our laboratory indicate that the responsiveness of hematopoietic cells to pro-inflammatory stimuli is orchestrated by Nlrp3 inflammasome. As reported, HO-1 effectively attenuates intracellular activation of Nlrp3 inflammasome as well as the pro-inflammatory effects of several humoral mediators, including complement cascade (ComC) cleavage fragments that promote migration of hematopoietic cells. Based on this finding, inhibition of HO-1 activity may become a practical strategy to enhance the mobilization and homing of normal HSPCs, and, alternatively, its activation may prevent unwanted spread and in vivo expansion of leukemic cells. Graphical Abstract.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Li C, Goncalves KA, Raskó T, Pande A, Gil S, Liu Z, Izsvák Z, Papayannopoulou T, Davis JC, Kiem HP, Lieber A. Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice. Blood Adv 2021; 5:1239-1249. [PMID: 33646305 PMCID: PMC7948287 DOI: 10.1182/bloodadvances.2020003714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
We have developed an in vivo hemopoietic stem cell (HSC) gene therapy approach without the need for myelosuppressive conditioning and autologous HSC transplantation. It involves HSC mobilization and IV injection of a helper-dependent adenovirus HDAd5/35++ vector system. The current mobilization regimen consists of granulocyte colony-stimulating factor (G-CSF) injections over a 4-day period, followed by the administration of plerixafor/AMD3100. We tested a simpler, 2-hour, G-CSF-free mobilization regimen using truncated GRO-β (MGTA-145; a CXCR2 agonist) and plerixafor in the context of in vivo HSC transduction in mice. The MGTA-145+plerixafor combination resulted in robust mobilization of HSCs. Importantly, compared with G-CSF+plerixafor, MGTA-145+plerixafor led to significantly less leukocytosis and no elevation of serum interleukin-6 levels and was thus likely to be less toxic. With both mobilization regimens, after in vivo selection with O6-benzylguanine (O6BG)/BCNU, stable GFP marking was achieved in >90% of peripheral blood mononuclear cells. Genome-wide analysis showed random, multiclonal vector integration. In vivo HSC transduction after mobilization with MGTA-145+plerixafor in a mouse model for thalassemia resulted in >95% human γ-globin+ erythrocytes at a level of 36% of mouse β-globin. Phenotypic analyses showed a complete correction of thalassemia. The γ-globin marking percentage and level were maintained in secondary recipients, further demonstrating that MGTA145+plerixafor mobilizes long-term repopulating HSCs. Our study indicates that brief exposure to MGTA-145+plerixafor may be advantageous as a mobilization regimen for in vivo HSC gene therapy applications across diseases, including thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | | | - Tamás Raskó
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Amit Pande
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Zhinan Liu
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Zsuzsanna Izsvák
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, and
- Department of Pathology, University of Washington, Seattle, WA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
22
|
Panch SR, Logan B, Sees JA, Bo-Subait S, Savani B, Shah NN, Hsu JW, Switzer G, Lazarus HM, Anderlini P, Hematti P, Confer D, Pulsipher MA, Shaw BE, Stroncek DF. Shorter Interdonation Interval Contributes to Lower Cell Counts in Subsequent Stem Cell Donations. Transplant Cell Ther 2021; 27:503.e1-503.e8. [PMID: 33823169 DOI: 10.1016/j.jtct.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Approximately 7% of unrelated hematopoietic stem cell donors are asked to donate stem cells a subsequent time to the same or a different recipient. Recent studies have shown that donation-related symptoms for second donations are similar to those for the first donation. Little is known about differences in stem cell mobilization and yields for subsequent peripheral blood stem cell (PBSC) and bone marrow (BM) collections. We hypothesized that CD34+ cell yields and total nucleated cell (TNC) concentrations for subsequent PBSC or BM donations are lower than those at the first donation. We also evaluated the factors influencing stem cell yields in healthy unrelated second-time donors. Data were gathered from the Center for International Blood and Marrow Transplant Research database on 513 PBSC and 43 BM donors who donated a second time between 2006 and 2017 through the National Marrow Donor Program. Among the second-time PBSC donors, we found significantly lower preapheresis peripheral blood CD34+ cell counts (68.6 × 106/L versus 73.9 × 106/L; P = .03), and collection yields (556 × 106 versus 608 × 106; P = .02) at the second donation compared to the first. This decrease at the subsequent donation was associated with a shorter interdonation interval, lower body mass index (BMI), and a lower total G-CSF dose. In most instances, suboptimal mobilizers at their first donation donated suboptimal numbers of stem cells at their subsequent donations. Among repeat BM donors, the TNC concentration was lower at the second donation. The small size of this group precluded additional analysis. Overall, when considering repeat donations, increasing the interdonation intervals and evaluating for BMI changes should be considered to optimize stem cell yields. Some of these parameters may be improved by increasing G-CSF dose in PBSC donors within permissible limits.
Collapse
Affiliation(s)
- Sandhya R Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| | - Brent Logan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Sees
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephanie Bo-Subait
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Bipin Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jack W Hsu
- Division of Hematology & Oncology, Department of Medicine, Shands HealthCare & University of Florida, Gainesville, Florida
| | - Galen Switzer
- Department of Medicine, University of Pittsburgh Medical Center-Cancer Center, Pittsburgh, Pennsylvania
| | - Hillard M Lazarus
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Paolo Anderlini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peiman Hematti
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Dennis Confer
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Michael A Pulsipher
- Section of Transplantation and Cellular Therapy, Children's Hospital Los Angeles Cancer and Blood Disease Institute, USC Keck School of Medicine, Los Angeles, California
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| |
Collapse
|
23
|
Justus DG, Manis JP. Parameters affecting successful stem cell collections for genetic therapies in sickle cell disease. Transfus Apher Sci 2021; 60:103059. [PMID: 33541761 DOI: 10.1016/j.transci.2021.103059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emerging cellular therapies require the collection of peripheral blood hematopoietic stem cells (HSC) by apheresis for in vitro manipulation to accomplish gene addition or gene editing. These therapies require relatively large numbers of HSCs within a short time frame to generate an efficacious therapeutic product. This review focuses on the principal factors that affect collection outcomes, especially relevant to gene therapy for sickle cell disease.
Collapse
Affiliation(s)
- David G Justus
- Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
24
|
Kaur S, Sehgal A, Wu AC, Millard SM, Batoon L, Sandrock CJ, Ferrari-Cestari M, Levesque JP, Hume DA, Raggatt LJ, Pettit AR. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol 2021; 14:3. [PMID: 33402221 PMCID: PMC7786999 DOI: 10.1186/s13045-020-00997-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. Methods We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. Results CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48−CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48−CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. Conclusion These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Cheyenne J Sandrock
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia.
| |
Collapse
|
25
|
Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol 2020; 10:1672. [PMID: 33014834 PMCID: PMC7499473 DOI: 10.3389/fonc.2020.01672] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts with the bone marrow microenvironment regulates self-renewal, growth signaling, as well as chemotherapy resistance. The chemokine receptor, CXC receptor 4 (CXCR4), with its ligand chemokine ligand 12 (CXCL12), plays a key role in the survival and migration of normal and malignant stem cells to the bone marrow. High expression of CXCR4 on AML and ALL blasts has been shown to be a predictor of poor prognosis for these diseases. Several small molecule inhibitors, short peptides, antibodies, and antibody drug conjugates have been developed for the purposes of more effective targeting and killing of malignant cells expressing CXCR4. In this review we will discuss recent results and strategies in targeting CXCR4 with these agents in patients with AML or ALL.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
26
|
Adamiak M, Cymer M, Anusz K, Tracz M, Ratajczak MZ. A Novel Evidence That Mannan Binding Lectin (MBL) Pathway of Complement Cascade Activation is Involved in Homing and Engraftment of Hematopoietic Stem Progenitor Cells (HSPCs). Stem Cell Rev Rep 2020; 16:693-701. [PMID: 32406006 PMCID: PMC7392939 DOI: 10.1007/s12015-020-09983-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Delayed homing and engraftment of hematopoietic stem progenitor cells (HSPCs) or even failure to engraft at all is significant clinical problem after hematopoietic transplant. Therefore, in order to develop more efficient homing and engraftment facilitating strategies it is important to learn more about this process. Our team has postulated that myeloablative conditioning for transplantation induces in bone marrow (BM) microenvironment a state of sterile inflammation in which elements of innate immunity activated by radio- or chemotherapy conditioning for transplant play an important role. In frame with this claim we reported that a significant role in this process plays activation of complement cascade (ComC). Accordingly, mice that that lack a fifth component (C5) of ComC turned out to engraft poorly with normal syngeneic BM cells as compared to normal control animals. In extension of our previous studies we provide for first time evidence that mannan binding lectin (MBL) pathway is involved in activation of ComC in myeloablated transplant recipient BM and thus plays an important role in homing and engraftment of HSPCs. To support this MBL-KO mice show significant defect in hematopoietic reconstitution after hematopoietic transplantation. This correlates with a decrease in expression of stromal derived factor-1 (SDF-1) and impaired activation of Nlrp3 inflammasome in irradiated BM of these mice.
Collapse
Affiliation(s)
- Mateusz Adamiak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Monika Cymer
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Anusz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Michał Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Mariusz Z. Ratajczak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, KY 40202 Louisville, USA
| |
Collapse
|
27
|
The Lysine Methyltransferase SMYD2 Is Required for Definite Hematopoietic Stem Cell Production in the Mouse Embryo. Vet Sci 2020; 7:vetsci7030100. [PMID: 32722433 PMCID: PMC7560092 DOI: 10.3390/vetsci7030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
The five-membered SET and MYND domain-containing lysine methyltransferase (SMYD) family plays pivotal roles in development and differentiation. Initially characterized within the cardiovascular system, one such member, SMYD2, has been implicated in transcriptional and apoptotic regulation of hematopoiesis. Deletion of Smyd2 in adult mouse Hemaopoietic Stem Cells (HSC) using an interferon-inducible mx1-Cre-mediated conditional knockout (CKO) led to HSC reduction via both apoptosis and transcriptional deficiencies. Since HSC are specified from hemogenic endothelial (HE) cells in the dorsal aorta (DA), we sought to determine whether the flaw in HSC originated embryologically from this site. Toward this end, we performed deletion with vav-Cre mice, which is active in all hematopoietic and endothelial tissues from E10.5 embryonic life onward. Unexpectedly, we observed no defects in the embryo, other than apoptotic loss of definite HSC, whereas adult hematopoietic populations downstream were unaffected. These results further establish the importance of SMYD2 in antiapoptotic gene control of gene expression from the embryo to the adult.
Collapse
|
28
|
Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling-an update. Purinergic Signal 2020; 16:153-166. [PMID: 32415576 DOI: 10.1007/s11302-020-09698-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bone marrow (BM) as an active hematopoietic organ is highly sensitive to changes in body microenvironments and responds to external physical stimuli from the surrounding environment. In particular, BM tissue responds to several cues related to infections, strenuous exercise, tissue/organ damage, circadian rhythms, and physical challenges such as irradiation. These multiple stimuli affect BM cells to a large degree through a coordinated response of the innate immunity network as an important guardian for maintaining homeostasis of the body. In this review, we will foc++us on the role of purinergic signaling and innate immunity in the trafficking of hematopoietic stem/progenitor cells (HSPCs) during their egression from the BM into peripheral blood (PB), as seen along pharmacological mobilization, and in the process of homing and subsequent engraftment into BM after hematopoietic transplantation. Innate immunity mediates these processes by engaging, in addition to certain peptide-based factors, other important non-peptide mediators, including bioactive phosphosphingolipids and extracellular nucleotides, as the main topic of this review. Elucidation of these mechanisms will allow development of more efficient stem cell mobilization protocols to harvest the required number of HSPCs for transplantation and to accelerate hematopoietic reconstitution in transplanted patients.
Collapse
|