1
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
2
|
Berber NK, Atlı S, Geçkil AA, Erdem M, Kıran TR, Otlu Ö, İn E. Diagnostic Value of Galectin-3 in Exacerbations of Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:529. [PMID: 38674175 PMCID: PMC11052179 DOI: 10.3390/medicina60040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by acute exacerbations. Systemic inflammation and oxidative stress play an important role in the pathogenesis of COPD. Exacerbations in COPD reduce the quality of life and are associated with rapid disease progression. Galectin-3 is a beta-galactoside-binding lectin of approximately 30 kDa with pro-inflammatory and pro-fibrotic properties. This study aims to analyze the efficacy of serum galectin-3 in predicting exacerbations in COPD patients. Materials and Methods: Baseline demographic and clinical characteristics of all patients were recorded and blood samples were collected. A total of 58 consecutive COPD patients, including 28 patients (19 male and 9 female) with stable COPD and 30 patients (23 male and 7 female) with acute exacerbation of COPD (AECOPD), were included in the study. Results: Serum galectin-3 levels were significantly higher in the AECOPD group compared to the stable COPD group. A logistic regression analysis revealed that increased galectin-3 levels and disease duration were independent predictors of COPD exacerbation (OR = 5.322, 95% CI: 1.178-24.052, p = 0.03; and OR = 1.297, 95% CI: 1.028-1.635, p = 0.028; respectively). Conclusions: The results of our study demonstrated that Galectin-3 was a strong and independent predictor of exacerbations in COPD patients.
Collapse
Affiliation(s)
- Nurcan Kırıcı Berber
- Department of Chest Diseases, Malatya Turgut Özal University, Malatya 44210, Turkey;
| | - Siahmet Atlı
- Department of Chest Diseases, Van Training and Research Hospital, Van 65100, Turkey;
| | | | - Mehmet Erdem
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Tuğba Raika Kıran
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Önder Otlu
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Erdal İn
- Department of Pulmonary Diseases, Faculty of Medicine, İzmir University of Economics, İzmir 35330, Turkey;
| |
Collapse
|
3
|
Chen J, Yin D, Wong HYH, Duan X, Yu KHO, Ho JWK. Vulture: cloud-enabled scalable mining of microbial reads in public scRNA-seq data. Gigascience 2024; 13:giad117. [PMID: 38195165 PMCID: PMC10776309 DOI: 10.1093/gigascience/giad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
The rapidly growing collection of public single-cell sequencing data has become a valuable resource for molecular, cellular, and microbial discovery. Previous studies mostly overlooked detecting pathogens in human single-cell sequencing data. Moreover, existing bioinformatics tools lack the scalability to deal with big public data. We introduce Vulture, a scalable cloud-based pipeline that performs microbial calling for single-cell RNA sequencing (scRNA-seq) data, enabling meta-analysis of host-microbial studies from the public domain. In our benchmarking experiments, Vulture is 66% to 88% faster than local tools (PathogenTrack and Venus) and 41% faster than the state-of-the-art cloud-based tool Cumulus, while achieving comparable microbial read identification. In terms of the cost on cloud computing systems, Vulture also shows a cost reduction of 83% ($12 vs. ${\$}$70). We applied Vulture to 2 coronavirus disease 2019, 3 hepatocellular carcinoma (HCC), and 2 gastric cancer human patient cohorts with public sequencing reads data from scRNA-seq experiments and discovered cell type-specific enrichment of severe acute respiratory syndrome coronavirus 2, hepatitis B virus (HBV), and Helicobacter pylori-positive cells, respectively. In the HCC analysis, all cohorts showed hepatocyte-only enrichment of HBV, with cell subtype-associated HBV enrichment based on inferred copy number variations. In summary, Vulture presents a scalable and economical framework to mine unknown host-microbial interactions from large-scale public scRNA-seq data. Vulture is available via an open-source license at https://github.com/holab-hku/Vulture.
Collapse
Affiliation(s)
- Junyi Chen
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Harris Y H Wong
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xin Duan
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Ken H O Yu
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joshua W K Ho
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
4
|
Karadogan ZN, Tanir Y, Karayagmurlu A, Kucukgergin C, Coskun M. Higher Levels of Galectin-1 and Galectin-3 in Young Subjects with Autism Spectrum Disorder Compared to Unaffected Siblings and Healthy Controls. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:749-757. [PMID: 37859448 PMCID: PMC10591161 DOI: 10.9758/cpn.23.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 10/21/2023]
Abstract
Objective : Despite being highly genetic, the etiology of autism spectrum disorder (ASD), has not yet been clarified. Recent research has focused on the role of neuroinflammation and immune system dysfunction in the pathophysiology of neurodevelopmental disorders including ASD. Galectin-1 and galactin-3 are considered among the biomarkers of neuroinflammation and there has been recent reports on the potential role of galectins in the etiology of neurodevelopmental disorders. However, there has been no study examining the relationship between ASD and galectin levels. Methods : Current study aimed to investigate galectin-1 and galectin-3 serum levels in young subjects with ASD comparing with their unaffected siblings and healthy controls. Results : We found significantly higher levels of galectin-1 in case group compared to both unaffected siblings and healthy controls, and higher levels of galectin-3 in case group compared to healthy controls. However, there was no significant association between galectin-1 and galectin-3 levels with the severity of ASD. Conclusion : Findings of our study may support neuroinflammation hypothesis in the etiology of ASD and the potential role of galectin-1 and galectin-3 as biomarkers.
Collapse
Affiliation(s)
| | - Yasar Tanir
- Departments of Child and Adolescent Psychiatry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ali Karayagmurlu
- Departments of Child and Adolescent Psychiatry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Canan Kucukgergin
- Departments of Medical Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Murat Coskun
- Departments of Child and Adolescent Psychiatry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Aderinto N, Abdulbasit MO, Olatunji D, Edun M. Unveiling the potential of galectin-3 as a diagnostic biomarker for pancreatic cancer: a review. Ann Med Surg (Lond) 2023; 85:5557-5567. [PMID: 37915694 PMCID: PMC10617888 DOI: 10.1097/ms9.0000000000001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/17/2023] [Indexed: 11/03/2023] Open
Abstract
Early detection of pancreatic cancer is crucial for improving patient outcomes, and identifying reliable biomarkers is a critical research area in this field. Galectin-3 (Gal-3) is a promising candidate for utilisation as a diagnostic biomarker in early-stage pancreatic cancer. This review aims to explore the potential of Gal-3 in pancreatic cancer diagnosis and its implications for precision medicine. Rigorous validation studies are essential to establish the clinical utility of Gal-3, including large-scale investigations to assess its sensitivity, specificity, and predictive value. Combining Gal-3 with existing biomarkers and advanced imaging techniques may enhance the accuracy of early detection. Moreover, Gal-3 holds promise for risk stratification, enabling the identification of high-risk individuals who could benefit from intensified surveillance and early interventions. However, challenges in standardised testing protocols, establishing reference ranges, assay reliability, workflow integration, cost-effectiveness, and healthcare provider education must be addressed for successful implementation. Despite these challenges, Gal-3 presents significant implications for precision medicine in pancreatic cancer management. By unravelling its potential and overcoming the hurdles, Gal-3 could revolutionise early detection, risk stratification, and personalised approaches in pancreatic cancer care. Collaborative efforts and continued research will be crucial in harnessing the full potential of Gal-3 as a diagnostic biomarker for early-stage pancreatic cancer.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology. Ogbomoso, Oyo-State
| | - Muili O. Abdulbasit
- Department of Medicine and Surgery, Ladoke Akintola University of Technology. Ogbomoso, Oyo-State
| | - Deji Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Mariam Edun
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
6
|
Zhou Z, Feng Z, Sun X, Wang Y, Dou G. The Role of Galectin-3 in Retinal Degeneration and Other Ocular Diseases: A Potential Novel Biomarker and Therapeutic Target. Int J Mol Sci 2023; 24:15516. [PMID: 37958500 PMCID: PMC10649114 DOI: 10.3390/ijms242115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Galectin-3 is the most studied member of the Galectin family, with a large range of mediation in biological activities such as cell growth, proliferation, apoptosis, differentiation, cell adhesion, and tissue repair, as well as in pathological processes such as inflammation, tissue fibrosis, and angiogenesis. As is known to all, inflammation, aberrant cell apoptosis, and neovascularization are the main pathophysiological processes in retinal degeneration and many ocular diseases. Therefore, the review aims to conclude the role of Gal3 in the retinal degeneration of various diseases as well as the occurrence and development of the diseases and discuss its molecular mechanisms according to research in systemic diseases. At the same time, we summarized the predictive role of Gal3 as a biomarker and the clinical application of its inhibitors to discuss the possibility of Gal3 as a novel target for the treatment of ocular diseases.
Collapse
Affiliation(s)
| | | | | | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| |
Collapse
|
7
|
Mohtasham Kia Y, Cannavo A, Bahiraie P, Alilou S, Saeedian B, Babajani N, Ghondaghsaz E, Khalaji A, Behnoush AH. Insights into the Role of Galectin-3 as a Diagnostic and Prognostic Biomarker of Atrial Fibrillation. DISEASE MARKERS 2023; 2023:2097012. [PMID: 37849915 PMCID: PMC10578984 DOI: 10.1155/2023/2097012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is an irregular atrial activity and the most prevalent type of arrhythmia. Although AF is easily diagnosed with an electrocardiogram, there is a keen interest in identifying an easy-to-dose biomarker that can predict the prognosis of AF and its recurrence. Galectin-3 (Gal-3) is a beta-galactoside binding protein from the lectin family with pro-fibrotic and -inflammatory effects and a pivotal role in a variety of biological processes, cell proliferation, and differentiation; therefore, it is implicated in the pathogenesis of many cardiovascular (e.g., heart failure (HF)) and noncardiovascular diseases. However, its specificity and sensitivity as a potential marker in AF patients remain debated and controversial. This article comprehensively reviewed the evidence regarding the interplay between Gal-3 and patients with AF. Clinical implications of measuring Gal-3 in AF patients for diagnosis and prognosis are mentioned. Moreover, the role of Gal-3 as a potential biomarker for the management of AF recurrence is investigated. The association of Gal-3 and AF in special populations (coronary artery disease, HF, metabolic syndrome, chronic kidney disease, and diabetes mellitus) has been explored in this review. Overall, although further studies are needed to enlighten the role of Gal-3 in the diagnosis and treatment of AF, our study demonstrated the high potential of this molecule to be used and focused on by researchers and clinicians.
Collapse
Affiliation(s)
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Pegah Bahiraie
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrad Saeedian
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Nastaran Babajani
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Elina Ghondaghsaz
- Undergraduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| |
Collapse
|
8
|
Wang Y, Yang C, Wang Z, Wang Y, Yan Q, Feng Y, Liu Y, Huang J, Zhou J. Epithelial Galectin-3 Induced the Mitochondrial Complex Inhibition and Cell Cycle Arrest of CD8 + T Cells in Severe/Critical COVID-19. Int J Mol Sci 2023; 24:12780. [PMID: 37628961 PMCID: PMC10454470 DOI: 10.3390/ijms241612780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Previous research suggested that the dramatical decrease in CD8+ T cells is a contributing factor in the poor prognosis and disease progression of COVID-19 patients. However, the underlying mechanisms are not fully understood. In this study, we conducted Single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq) analysis, which revealed a proliferative-exhausted MCM+FASLGlow CD8+ T cell phenotype in severe/critical COVID-19 patients. These CD8+ T cells were characterized by G2/M cell cycle arrest, downregulation of respiratory chain complex genes, and inhibition of mitochondrial biogenesis. CellChat analysis of infected lung epithelial cells and CD8+ T cells found that the galectin signaling pathway played a crucial role in CD8+ T cell reduction and dysfunction. To further elucidate the mechanisms, we established SARS-CoV-2 ORF3a-transfected A549 cells, and co-cultured them with CD8+ T cells for ex vivo experiments. Our results showed that epithelial galectin-3 inhibited the transcription of the mitochondrial respiratory chain complex III/IV genes of CD8+ T cells by suppressing the nuclear translocation of nuclear respiratory factor 1 (NRF1). Further findings showed that the suppression of NRF1 translocation was associated with ERK-related and Akt-related signaling pathways. Importantly, the galectin-3 inhibitor, TD-139, promoted nuclear translocation of NRF1, thus enhancing the expression of the mitochondrial respiratory chain complex III/IV genes and the mitochondrial biogenesis of CD8+ T cells. Our study provided new insights into the immunopathogenesis of COVID-19 and identified potential therapeutic targets for the prevention and treatment of severe/critical COVID-19 patients.
Collapse
Affiliation(s)
- Yudie Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Yang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhongyi Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yi Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qing Yan
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Feng
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanping Liu
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Huang
- Department of Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jingjiao Zhou
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
9
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
10
|
Bouffette S, Botez I, De Ceuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol Sci 2023; 44:519-531. [PMID: 37391294 DOI: 10.1016/j.tips.2023.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Galectin (Gal)-3 is a β-galactoside-binding lectin emerging as a key player in cardiac, hepatic, renal, and pulmonary fibrosis and inflammation, respiratory infections caused by COVID-19, and neuroinflammatory disorders. Here, we review recent information highlighting Gal-3 as a relevant therapeutic target in these specific disease conditions. While a causal link was difficult to establish until now, we discuss how recent strategic breakthroughs allowed us to identify new-generation Gal-3 inhibitors with improved potency, selectivity, and bioavailability, and report their usefulness as valuable tools for proof-of-concept studies in various preclinical models of the aforementioned diseases, with emphasis on those actually in clinical stages. We also address critical views and suggestions intended to expand the therapeutic opportunities provided by this complex target.
Collapse
Affiliation(s)
- Selena Bouffette
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France; Université Paris-Saclay, Inserm, Inflammation Microbiome and Immunosurveillance, Orsay, France
| | - Iuliana Botez
- Servier, Drug Design Small Molecules Unit, Servier R&D Center, Gif-sur-Yvette, France
| | - Frédéric De Ceuninck
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
12
|
Ahmed R, Anam K, Ahmed H. Development of Galectin-3 Targeting Drugs for Therapeutic Applications in Various Diseases. Int J Mol Sci 2023; 24:8116. [PMID: 37175823 PMCID: PMC10179732 DOI: 10.3390/ijms24098116] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 (Gal3) is one of the most studied members of the galectin family that mediate various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Since Gal3 is pro-inflammatory, it is involved in many diseases that are associated with chronic inflammation such as cancer, organ fibrosis, and type 2 diabetes. As a multifunctional protein involved in multiple pathways of many diseases, Gal3 has generated significant interest in pharmaceutical industries. As a result, several Gal3-targeting therapeutic drugs are being developed to address unmet medical needs. Based on the PubMed search of Gal3 to date (1987-2023), here, we briefly describe its structure, carbohydrate-binding properties, endogenous ligands, and roles in various diseases. We also discuss its potential antagonists that are currently being investigated clinically or pre-clinically by the public and private companies. The updated knowledge on Gal3 function in various diseases could initiate new clinical or pre-clinical investigations to test therapeutic strategies, and some of these strategies could be successful and recognized as novel therapeutics for unmet medical needs.
Collapse
Affiliation(s)
| | | | - Hafiz Ahmed
- GlycoMantra Inc., Biotechnology Center, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
13
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Berber NK, Geçkil AA, Altan NÖ, Kıran TR, Otlu Ö, Erdem M, İn E. Efficacy of serum apelin and galectin-3 as potential predictors of mortality in severe COVID-19 patients. J Med Virol 2023; 95:e28494. [PMID: 36633201 DOI: 10.1002/jmv.28494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Apelin is a cardioprotective biomarker while galectin-3 is a pro-inflammatory and profibrotic biomarker. Endothelial dysfunction, hyperinflammation, and pulmonary fibrosis are key mechanisms that contribute to the development of adverse outcomes in Coronavirus disease 2019 (COVID-19) infection. This study aims to analyze the prognostic value of serum apelin and galectin-3 levels to early predict patients at high risk of mortality in patients hospitalized for severe COVID-19 pneumonia. The study included 78 severe COVID-19 patients and 40 healthy controls. The COVID-19 patients were divided into two groups, survivors and nonsurvivors, according to their in-hospital mortality status. Basic demographic and clinical data of all patients were collected, and blood samples were taken before treatment. In our study, serum apelin levels were determined to be significantly lower in both nonsurvivor and survivor COVID-19 patients compared to the control subjects (for both groups, p < 0.001). However, serum apelin levels were similar in survivor and nonsurvivor COVID-19 patients (p > 0.05). Serum galectin-3 levels were determined to be higher in a statistically significant way in nonsurvivors compared to survivors and controls (for both groups; p < 0.001). Additionally, serum galectin-3 levels were significantly higher in the survivor patients compared to the control subjects (p < 0.001). Positive correlations were observed between galectin-3 and age, ferritin, CK-MB and NT-proBNP variables (r = 0.32, p = 0.004; r = 0.24, p = 0.04; r = 0.24, p = 0.03; and r = 0.33, p = 0.003, respectively) while a negative correlation was observed between galectin-3 and albumin (r = -0.31, p = 0.006). Multiple logistic regression analysis revealed that galectin-3 was an independent predictor of mortality in COVID-19 patients (odds ratio [OR] = 2.272, 95% confidence interval [CI] = 1.106-4.667; p = 0.025). When the threshold value for galectin-3 was regarded as 2.8 ng/ml, it was discovered to predict mortality with 80% sensitivity and 57% specificity (area under the curve = 0.738, 95% CI = 0.611-0.866, p = 0.002). Galectin-3 might be a simple, useful, and prognostic biomarker that can be utilized to predict patients who are at high risk of mortality in severe COVID-19 patients.
Collapse
Affiliation(s)
- Nurcan Kırıcı Berber
- Department of Chest Diseases, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Ayşegül Altıntop Geçkil
- Department of Chest Diseases, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Nazife Özge Altan
- Department of Chest Diseases, Tunceli State Hospital, Tunceli, Turkey
| | - Tuğba Raika Kıran
- Department of Biochemistry, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Önder Otlu
- Department of Biochemistry, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Mehmet Erdem
- Department of Biochemistry, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Erdal İn
- Department of Chest Diseases, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
15
|
Abstract
The galectin family consists of carbohydrate (glycan) binding proteins that are expressed by a wide variety of cells and bind to galactose-containing glycans. Galectins can be located in the nucleus or the cytoplasm, or can be secreted into the extracellular space. They can modulate innate and adaptive immune cells by binding to glycans on the surface of immune cells or intracellularly via carbohydrate-dependent or carbohydrate-independent interactions. Galectins expressed by immune cells can also participate in host responses to infection by directly binding to microorganisms or by modulating antimicrobial functions such as autophagy. Here we explore the diverse ways in which galectins have been shown to impact immunity and discuss the opportunities and challenges in the field.
Collapse
|
16
|
Gaughan EE, Quinn TM, Mills A, Bruce AM, Antonelli J, MacKinnon AC, Aslanis V, Li F, O’Connor R, Boz C, Mills R, Emanuel P, Burgess M, Rinaldi G, Valanciute A, Mills B, Scholefield E, Hardisty G, Findlay EG, Parker RA, Norrie J, Dear JW, Akram AR, Koch O, Templeton K, Dockrell DH, Walsh TS, Partridge S, Humphries D, Wang-Jairaj J, Slack RJ, Schambye H, Phung D, Gravelle L, Lindmark B, Shankar-Hari M, Hirani N, Sethi T, Dhaliwal K. An Inhaled Galectin-3 Inhibitor in COVID-19 Pneumonitis: A Phase Ib/IIa Randomized Controlled Clinical Trial (DEFINE). Am J Respir Crit Care Med 2023; 207:138-149. [PMID: 35972987 PMCID: PMC9893334 DOI: 10.1164/rccm.202203-0477oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: High circulating galectin-3 is associated with poor outcomes in patients with coronavirus disease (COVID-19). We hypothesized that GB0139, a potent inhaled thiodigalactoside galectin-3 inhibitor with antiinflammatory and antifibrotic actions, would be safely and effectively delivered in COVID-19 pneumonitis. Objectives: Primary outcomes were safety and tolerability of inhaled GB0139 as an add-on therapy for patients hospitalized with COVID-19 pneumonitis. Methods: We present the findings of two arms of a phase Ib/IIa randomized controlled platform trial in hospitalized patients with confirmed COVID-19 pneumonitis. Patients received standard of care (SoC) or SoC plus 10 mg inhaled GB0139 twice daily for 48 hours, then once daily for up to 14 days or discharge. Measurements and Main Results: Data are reported from 41 patients, 20 of which were assigned randomly to receive GB0139. Primary outcomes: the GB0139 group experienced no treatment-related serious adverse events. Incidences of adverse events were similar between treatment arms (40 with GB0139 + SoC vs. 35 with SoC). Secondary outcomes: plasma GB0139 was measurable in all patients after inhaled exposure and demonstrated target engagement with decreased circulating galectin (overall treatment effect post-hoc analysis of covariance [ANCOVA] over days 2-7; P = 0.0099 vs. SoC). Plasma biomarkers associated with inflammation, fibrosis, coagulopathy, and major organ function were evaluated. Conclusions: In COVID-19 pneumonitis, inhaled GB0139 was well-tolerated and achieved clinically relevant plasma concentrations with target engagement. The data support larger clinical trials to determine clinical efficacy. Clinical trial registered with ClinicalTrials.gov (NCT04473053) and EudraCT (2020-002230-32).
Collapse
Affiliation(s)
- Erin E. Gaughan
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | - Tom M. Quinn
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | | | | | | | | | | | - Feng Li
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | - Cecilia Boz
- Centre for Inflammation Research, Edinburgh BioQuarter
| | - Ross Mills
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | | | | | | | - Bethany Mills
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | | | | | | | - John Norrie
- Edinburgh Clinical Trials Unit, Usher Institute, and
| | - James W. Dear
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | - Oliver Koch
- Centre for Inflammation Research, Edinburgh BioQuarter
- Infectious Diseases Department, Western General Hospital, Edinburgh, United Kingdom
| | | | - David H. Dockrell
- Centre for Inflammation Research, Edinburgh BioQuarter
- Infectious Diseases Department, Western General Hospital, Edinburgh, United Kingdom
| | - Timothy S. Walsh
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Critical Care, New Royal Infirmary of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | | | | | | | | | | | - De Phung
- Galecto Inc., Copenhagen, Denmark; and
| | | | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Critical Care, New Royal Infirmary of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Nikhil Hirani
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | | | - Kevin Dhaliwal
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| |
Collapse
|
17
|
Zhan K, Wang L, Lin H, Fang X, Jia H, Ma X. Novel inflammatory biomarkers in the prognosis of COVID-19. Ther Adv Respir Dis 2023; 17:17534666231199679. [PMID: 37727063 PMCID: PMC10515606 DOI: 10.1177/17534666231199679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The central role of inflammatory progression in the development of Coronavirus disease 2019 (COVID-19), especially in severe cases, is indisputable. However, the role of some novel inflammatory biomarkers in the prognosis of COVID-19 remains controversial. OBJECTIVE To assess the effect of some novel inflammatory biomarkers in the occurrence and prognosis of COVID-19. METHODS We systematically retrieved the studies related to COVID-19 and the inflammatory biomarkers of interest. The data of each biomarker in different groups were extracted, then were categorized and pooled. The standardized mean difference was chosen as an effect size measure to compare the difference between groups. RESULTS A total of 90 studies with 12,059 participants were included in this study. We found higher levels of endocan, PTX3, suPAR, sRAGE, galectin-3, and monocyte distribution width (MDW) in the COVID-19 positive groups compared to the COVID-19 negative groups. No significant differences for suPAR and galectin-3 were detected between the severe group and mild/moderate group of COVID-19. In addition, the deaths usually had higher levels of PTX3, sCD14-ST, suPAR, and MDW at admission compared to the survivors. Furthermore, patients with higher levels of endocan, galectin-3, sCD14-ST, suPAR, and MDW usually developed poorer comprehensive clinical prognoses. CONCLUSIONS In summary, this meta-analysis provides the most up-to-date and comprehensive evidence for the role of the mentioned novel inflammatory biomarkers in the prognosis of COVID-19, especially in evaluating death and other poor prognoses, with most biomarkers showing a better discriminatory ability.
Collapse
Affiliation(s)
- Kegang Zhan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
- College of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhan Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Lin
- West China School of Clinical Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Fang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Jia
- College of Public Health, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
18
|
Behnoush AH, Khalaji A, Alemohammad SY, Kalantari A, Cannavo A, Dimitroff CJ. Galectins can serve as biomarkers in COVID-19: A comprehensive systematic review and meta-analysis. Front Immunol 2023; 14:1127247. [PMID: 36923399 PMCID: PMC10009778 DOI: 10.3389/fimmu.2023.1127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Background Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Yasaman Alemohammad
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at Florida International University, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
19
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|
20
|
Lam SD, Waman VP, Fraternali F, Orengo C, Lees J. Structural and energetic analyses of SARS-CoV-2 N-terminal domain characterise sugar binding pockets and suggest putative impacts of variants on COVID-19 transmission. Comput Struct Biotechnol J 2022; 20:6302-6316. [PMID: 36408455 PMCID: PMC9639386 DOI: 10.1016/j.csbj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing pandemic that causes significant health/socioeconomic burden. Variants of concern (VOCs) have emerged affecting transmissibility, disease severity and re-infection risk. Studies suggest that the - N-terminal domain (NTD) of the spike protein may have a role in facilitating virus entry via sialic-acid receptor binding. Furthermore, most VOCs include novel NTD variants. Despite global sequence and structure similarity, most sialic-acid binding pockets in NTD vary across coronaviruses. Our work suggests ongoing evolutionary tuning of the sugar-binding pockets and recent analyses have shown that NTD insertions in VOCs tend to lie close to loops. We extended the structural characterisation of these sugar-binding pockets and explored whether variants could enhance sialic acid-binding. We found that recent NTD insertions in VOCs (i.e., Gamma, Delta and Omicron variants) and emerging variants of interest (VOIs) (i.e., Iota, Lambda and Theta variants) frequently lie close to sugar-binding pockets. For some variants, including the recent Omicron VOC, we find increases in predicted sialic acid-binding energy, compared to the original SARS-CoV-2, which may contribute to increased transmission. These binding observations are supported by molecular dynamics simulations (MD). We examined the similarity of NTD across Betacoronaviruses to determine whether the sugar-binding pockets are sufficiently similar to be exploited in drug design. Whilst most pockets are too structurally variable, we detected a previously unknown highly structurally conserved pocket which can be investigated in pursuit of a generic pan-Betacoronavirus drug. Our structure-based analyses help rationalise the effects of VOCs and provide hypotheses for experiments. Our findings suggest a strong need for experimental monitoring of changes in NTD of VOCs.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Vaishali P. Waman
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Christine Orengo
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jonathan Lees
- Translational Health Sciences, Bristol Medical University, University of Bristol, Bristol, United Kingdom
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
21
|
Özcan S, Dönmez E, Yavuz ST, Ziyrek M, İnce O, Küçük H, Taşdemir ZA, Yılmaz İ, Varol S, Şahin İ, Okuyan E. Prognostic significance of serum galectin-3 in hospitalized patients with COVID-19. Cytokine 2022; 158:155970. [PMID: 35917725 PMCID: PMC9329148 DOI: 10.1016/j.cyto.2022.155970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
Background Methods Results Conclusion
Collapse
|
22
|
Muthyala A, Sasidharan S, John KJ, Lal A, Mishra AK. Utility of cardiac bioenzymes in predicting cardiovascular outcomes in SARS-CoV-2. World J Virol 2022; 11:375-390. [PMID: 36188743 PMCID: PMC9523328 DOI: 10.5501/wjv.v11.i5.375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/12/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cardiovascular complications have been increasingly recognized in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated coronavirus disease 2019 (COVID-19). Cardiac biomarkers are released because of this ongoing cardiovascular injury and can act as surrogate markers to assess the disease severity. AIM To review the variation and utility of these biomarkers in COVID-19 to ascertain their role in diagnosis, prognosis and clinical outcomes of the disease. METHODS We performed a literature search in PubMed, Medline and the Reference Citation Analysis (RCA), using the search terms "COVID-19" and "cardiac bioenzymes" or "cardiac biomarkers". Additionally, we also used the latest reference citation analysis tool to identify more articles. RESULTS Cardiac troponin has been consistently elevated in patients with COVID-19 associated myocarditis, and strongly correlated with adverse prognosis. Natri-uretic peptides including brain natriuretic peptide (BNP) and pro-BNP is elevated in patients with COVID-19 associated cardiac injury, irrespective of their prior heart failure status, and independently correlated with worst outcomes. Alongside these traditional biomarkers, novel cardiac bioenzymes including presepsin, soluble ST2 and copeptin, are also increasingly recognized as markers of cardiovascular injury in COVID-19 and can be associated with poor outcomes. CONCLUSION Assessment of cardiac bioenzymes at admission and their serial monitoring can help assess the severity of disease and predict mortality in patients with SARS-CoV-2 infection. Future studies are needed to elude the critical importance of novel biomarkers.
Collapse
Affiliation(s)
- Anjani Muthyala
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Sandeep Sasidharan
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Kevin John John
- Department of Critical Care, Belivers Church Medical College Hospital, Thiruvalla 689103, Kerela, India
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Ajay K Mishra
- Department of Cardiology, Saint Vincent Hospital, Worcester, MA 01608, United States
| |
Collapse
|
23
|
COVID-19 Salivary Protein Profile: Unravelling Molecular Aspects of SARS-CoV-2 Infection. J Clin Med 2022; 11:jcm11195571. [PMID: 36233441 PMCID: PMC9570692 DOI: 10.3390/jcm11195571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 is the most impacting global pandemic of all time, with over 600 million infected and 6.5 million deaths worldwide, in addition to an unprecedented economic impact. Despite the many advances in scientific knowledge about the disease, much remains to be clarified about the molecular alterations induced by SARS-CoV-2 infection. In this work, we present a hybrid proteomics and in silico interactomics strategy to establish a COVID-19 salivary protein profile. Data are available via ProteomeXchange with identifier PXD036571. The differential proteome was narrowed down by the Partial Least-Squares Discriminant Analysis and enrichment analysis was performed with FunRich. In parallel, OralInt was used to determine interspecies Protein-Protein Interactions between humans and SARS-CoV-2. Five dysregulated biological processes were identified in the COVID-19 proteome profile: Apoptosis, Energy Pathways, Immune Response, Protein Metabolism and Transport. We identified 10 proteins (KLK 11, IMPA2, ANXA7, PLP2, IGLV2-11, IGHV3-43D, IGKV2-24, TMEM165, VSIG10 and PHB2) that had never been associated with SARS-CoV-2 infection, representing new evidence of the impact of COVID-19. Interactomics analysis showed viral influence on the host immune response, mainly through interaction with the degranulation of neutrophils. The virus alters the host’s energy metabolism and interferes with apoptosis mechanisms.
Collapse
|
24
|
Adesse D, Gladulich L, Alvarez-Rosa L, Siqueira M, Marcos AC, Heider M, Motta CS, Torices S, Toborek M, Stipursky J. Role of aging in Blood-Brain Barrier dysfunction and susceptibility to SARS-CoV-2 infection: impacts on neurological symptoms of COVID-19. Fluids Barriers CNS 2022; 19:63. [PMID: 35982454 PMCID: PMC9386676 DOI: 10.1186/s12987-022-00357-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
COVID-19, which is caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), has resulted in devastating morbidity and mortality worldwide due to lethal pneumonia and respiratory distress. In addition, the central nervous system (CNS) is well documented to be a target of SARS-CoV-2, and studies detected SARS-CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients. The blood-brain barrier (BBB) was suggested to be the major route of SARS-CoV-2 infection of the brain. Functionally, the BBB is created by an interactome between endothelial cells, pericytes, astrocytes, microglia, and neurons, which form the neurovascular units (NVU). However, at present, the interactions of SARS-CoV-2 with the NVU and the outcomes of this process are largely unknown. Moreover, age was described as one of the most prominent risk factors for hospitalization and deaths, along with other comorbidities such as diabetes and co-infections. This review will discuss the impact of SARS-CoV-2 on the NVU, the expression profile of SARS-CoV-2 receptors in the different cell types of the CNS and the possible role of aging in the neurological outcomes of COVID-19. A special emphasis will be placed on mitochondrial functions because dysfunctional mitochondria are also a strong inducer of inflammatory reactions and the "cytokine storm" associated with SARS-CoV-2 infection. Finally, we will discuss possible drug therapies to treat neural endothelial function in aged patients, and, thus, alleviate the neurological symptoms associated with COVID-19.
Collapse
Affiliation(s)
- Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Luis Gladulich
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Siqueira
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anne Caroline Marcos
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marialice Heider
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Caroline Soares Motta
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Joice Stipursky
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Oatis D, Simon-Repolski E, Balta C, Mihu A, Pieretti G, Alfano R, Peluso L, Trotta MC, D’Amico M, Hermenean A. Cellular and Molecular Mechanism of Pulmonary Fibrosis Post-COVID-19: Focus on Galectin-1, -3, -8, -9. Int J Mol Sci 2022; 23:8210. [PMID: 35897786 PMCID: PMC9332679 DOI: 10.3390/ijms23158210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular matrix (ECM), which finally leads to lung scarring. Although the pulmonary fibrogenesis is almost known, the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be explored. Many questions remain about how pulmonary fibrotic changes occur within the lungs of COVID-19 patients, and whether the changes will persist long term or are capable of resolving. This review brings together existing knowledge on both COVID-19 and pulmonary fibrosis, starting with the main key players in promoting pulmonary fibrosis, such as alveolar and endothelial cells, fibroblasts, lipofibroblasts, and macrophages. Further, we provide an overview of the main molecular mechanisms driving the fibrotic process in connection with Galactin-1, -3, -8, and -9, together with the currently approved and newly proposed clinical therapeutic solutions given for the treatment of fibrosis, based on their inhibition. The work underlines the particular pathways and processes that may be implicated in pulmonary fibrosis pathogenesis post-SARS-CoV-2 viral infection. The recent data suggest that galectin-1, -3, -8, and -9 could become valuable biomarkers for the diagnosis and prognosis of lung fibrosis post-COVID-19 and promising molecular targets for the development of new and original therapeutic tools to treat the disease.
Collapse
Affiliation(s)
- Daniela Oatis
- Department of Infectious Disease, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Doctoral School of Biology, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Erika Simon-Repolski
- Doctoral School of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Department of Pneumology, Arad Clinical Emergency Hospital, 310031 Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Alin Mihu
- Department of Microbiology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Gorizio Pieretti
- Department of Plastic Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luisa Peluso
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| |
Collapse
|
26
|
Gómez-Carballa A, Rivero-Calle I, Pardo-Seco J, Gómez-Rial J, Rivero-Velasco C, Rodríguez-Núñez N, Barbeito-Castiñeiras G, Pérez-Freixo H, Cebey-López M, Barral-Arca R, Rodriguez-Tenreiro C, Dacosta-Urbieta A, Bello X, Pischedda S, Currás-Tuala MJ, Viz-Lasheras S, Martinón-Torres F, Salas A. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. ENVIRONMENTAL RESEARCH 2022; 210:112890. [PMID: 35202626 PMCID: PMC8861187 DOI: 10.1016/j.envres.2022.112890] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Coronavirus Disease-19 (COVID-19) symptoms range from mild to severe illness; the cause for this differential response to infection remains unknown. Unravelling the immune mechanisms acting at different levels of the colonization process might be key to understand these differences. We carried out a multi-tissue (nasal, buccal and blood; n = 156) gene expression analysis of immune-related genes from patients affected by different COVID-19 severities, and healthy controls through the nCounter technology. Mild and asymptomatic cases showed a powerful innate antiviral response in nasal epithelium, characterized by activation of interferon (IFN) pathway and downstream cascades, successfully controlling the infection at local level. In contrast, weak macrophage/monocyte driven innate antiviral response and lack of IFN signalling activity were present in severe cases. Consequently, oral mucosa from severe patients showed signals of viral activity, cell arresting and viral dissemination to the lower respiratory tract, which ultimately could explain the exacerbated innate immune response and impaired adaptative immune responses observed at systemic level. Results from saliva transcriptome suggest that the buccal cavity might play a key role in SARS-CoV-2 infection and dissemination in patients with worse prognosis. Co-expression network analysis adds further support to these findings, by detecting modules specifically correlated with severity involved in the abovementioned biological routes; this analysis also provides new candidate genes that might be tested as biomarkers in future studies. We also found tissue specific severity-related signatures mainly represented by genes involved in the innate immune system and cytokine/chemokine signalling. Local immune response could be key to determine the course of the systemic response and thus COVID-19 severity. Our findings provide a framework to investigate severity host gene biomarkers and pathways that might be relevant to diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Laboratorio de Inmunología. Servicio de Análisis Clínicos. Hospital Clínico Universitario (SERGAS), Galicia, Spain
| | - Carmen Rivero-Velasco
- Intensive Medicine Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Nuria Rodríguez-Núñez
- Pneumology Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Gema Barbeito-Castiñeiras
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Hugo Pérez-Freixo
- Preventive Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - Miriam Cebey-López
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ruth Barral-Arca
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dacosta-Urbieta
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María José Currás-Tuala
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
27
|
Gal-3BP in Viral Infections: An Emerging Role in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2022; 23:ijms23137314. [PMID: 35806317 PMCID: PMC9266551 DOI: 10.3390/ijms23137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell–cell and cell–matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP’s complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-β signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP’s role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.
Collapse
|
28
|
Schroeder JT, Bieneman AP. The S1 Subunit of the SARS-CoV-2 Spike Protein Activates Human Monocytes to Produce Cytokines Linked to COVID-19: Relevance to Galectin-3. Front Immunol 2022; 13:831763. [PMID: 35392091 PMCID: PMC8982143 DOI: 10.3389/fimmu.2022.831763] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly evolved into a pandemic –the likes of which has not been experienced in 100 years. While novel vaccines show great efficacy, and therapeutics continue to be developed, the persistence of disease, with the concomitant threat of emergent variants, continues to impose massive health and socioeconomic issues worldwide. Studies show that in susceptible individuals, SARS-CoV-2 infection can rapidly progress toward lung injury and acute respiratory distress syndrome (ARDS), with evidence for an underlying dysregulated innate immune response or cytokine release syndrome (CRS). The mechanisms responsible for this CRS remain poorly understood, yet hyper-inflammatory features were also evident with predecessor viruses within the β-coronaviridae family, namely SARS-CoV-1 and the Middle East Respiratory Syndrome (MERS)-CoV. It is further known that the spike protein (S) of SARS-CoV-2 (as first reported for other β-coronaviruses) possesses a so-called galectin-fold within the N-terminal domain of the S1 subunit (S1-NTD). This fold (or pocket) shows structural homology nearly identical to that of human galectin-3 (Gal-3). In this respect, we have recently shown that Gal-3, when associated with epithelial cells or anchored to a solid phase matrix, facilitates the activation of innate immune cells, including basophils, DC, and monocytes. A synthesis of these findings prompted us to test whether segments of the SARS-CoV-2 spike protein might also activate innate immune cells in a manner similar to that observed in our Gal-3 studies. Indeed, by immobilizing S components onto microtiter wells, we show that only the S1 subunit (with the NTD) activates human monocytes to produce a near identical pattern of cytokines as those reported in COVID-19-related CRS. In contrast, both the S1-CTD/RBD, which binds ACE2, and the S2 subunit (stalk), failed to mediate the same effect. Overall, these findings provide evidence that the SARS-CoV-2 spike protein can activate monocytes for cytokines central to COVID-19, thus providing insight into the innate immune mechanisms underlying the CRS and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- John T Schroeder
- The Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Anja P Bieneman
- The Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
29
|
Al-Mterin MA, Alsalman A, Elkord E. Inhibitory Immune Checkpoint Receptors and Ligands as Prognostic Biomarkers in COVID-19 Patients. Front Immunol 2022; 13:870283. [PMID: 35432324 PMCID: PMC9008255 DOI: 10.3389/fimmu.2022.870283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. During T-cell activation, the immune system uses different checkpoint pathways to maintain co-inhibitory and co-stimulatory signals. In COVID-19, expression of immune checkpoints (ICs) is one of the most important manifestations, in addition to lymphopenia and inflammatory cytokines, contributing to worse clinical outcomes. There is a controversy whether upregulation of ICs in COVID-19 patients might lead to T-cell exhaustion or activation. This review summarizes the available studies that investigated IC receptors and ligands in COVID-19 patients, as well as their effect on T-cell function. Several IC receptors and ligands, including CTLA-4, BTLA, TIM-3, VISTA, LAG-3, TIGIT, PD-1, CD160, 2B4, NKG2A, Galectin-9, Galectin-3, PD-L1, PD-L2, LSECtin, and CD112, were upregulated in COVID-19 patients. Based on the available studies, there is a possible relationship between disease severity and increased expression of IC receptors and ligands. Overall, the upregulation of some ICs could be used as a prognostic biomarker for disease severity.
Collapse
Affiliation(s)
| | - Alhasan Alsalman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
30
|
Cannavo A, Liccardo D, Gelzo M, Amato F, Gentile I, Pinchera B, Femminella GD, Parrella R, DE Rosa A, Gambino G, Marzano F, Ferrara N, Paolocci N, Rengo G, Castaldo G. Serum Galectin-3 and Aldosterone: potential biomarkers of cardiac complications in patients with COVID-19. Minerva Endocrinol (Torino) 2022; 47:270-278. [PMID: 35266671 DOI: 10.23736/s2724-6507.22.03789-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Despite severe acute respiratory syndrome (SARS)-Coronavirus (CoV2) primarily targeting the lungs, the heart represents another critical virus target. Thus, the identification of SARS-CoV-2 disease of 2019 (COVID-19)-associated biomarkers would be beneficial to stratify prognosis and the risk of developing cardiac complications. Aldosterone and galectin-3 promote fibrosis and inflammation and are considered a prognostic biomarker of lung and adverse cardiac remodeling. Here, we tested whether galectin-3 and aldosterone levels can predict adverse cardiac outcomes in COVID-19 patients. METHODS To this aim, we assessed galectin-3 and aldosterone serum levels in 51 patients diagnosed with COVID-19, using a population of 19 healthy subjects as controls. In in vitro studies, we employed 3T3 fibroblasts to assess the potential roles of aldosterone and galectin-3 in fibroblast activation. RESULTS Serum galectin-3 levels were more elevated in COVID-19 patients than healthy controls and correlated with COVID-19 severity classification and cardiac Troponin-I (cTnI) serum levels. Furthermore, we observed an augmented secretion of aldosterone in COVID-19 patients. This adrenal hormone is a direct stimulator of galectin-3 secretion; therefore, we surmised that this axis could perpetrate fibrosis and adverse remodeling in these subjects. Thus, we stimulated fibroblasts with 10% of serum from COVID-19 patients. This challenge markedly rose the expression of smooth muscle alpha (α)-2 actin (ACTA2), a myofibroblast marker. CONCLUSIONS Our study suggests that COVID-19 can affect cardiac structure and function by triggering aldosterone and galectin-3 release that may serve as prognostic and therapeutic biomarkers while monitoring the course of cardiac complications in patients suffering from COVID-19.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Daniela Liccardo
- Center for Translational Medicine, Temple University, Philadelphia, PA, USA
| | - Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberto Parrella
- Respiratory Infectious Diseases Unit, Cotugno Hospital- A.O.R.N. Dei Colli, Naples, Italy
| | - Annunziata DE Rosa
- Respiratory Infectious Diseases Unit, Cotugno Hospital- A.O.R.N. Dei Colli, Naples, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri -S.p.A. - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese Terme, Benevento, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, USA.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy - .,Istituti Clinici Scientifici ICS Maugeri -S.p.A. - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese Terme, Benevento, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| |
Collapse
|
31
|
Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complexity of coronavirus disease 2019 (COVID-19)’s pathophysiology is such that microbial dysbiosis in the lung and gastrointestinal (GI) microbiota may be involved in its pathogenic process. GI microbiota dysbiosis has been associated with respiratory disorders, including COVID-19, as well as sporadic colorectal cancer (CRC) through imbalanced microbiota and compromised immune response. It is pertinent to understand the possible role of probiotics in stabilizing the microbial environment and maintaining the integrity of the respiratory and GI tracts in SARS-CoV-2 induced dysbiosis and colorectal carcinogenesis. The long-term implication of SARS-CoV-2 in GI dysbiosis via microbiota-gut-lung cross-talk could increase the risk of new CRC diagnosis or worsen the condition of previously diagnosed individuals. Recent knowledge shows that the immune-modulatory response to probiotics is shifting the beneficial use of probiotics towards the treatment of various diseases. In this review, we highlight the potential impact of probiotics on SARS-CoV-2 infection associated with CRC through microbiota imbalance in COVID-19 patients.
Collapse
|
32
|
Cervantes-Alvarez E, la Rosa NLD, la Mora MSD, Valdez-Sandoval P, Palacios-Jimenez M, Rodriguez-Alvarez F, Vera-Maldonado BI, Aguirre-Aguilar E, Escobar-Valderrama JM, Alanis-Mendizabal J, Méndez-Guerrero O, Tejeda-Dominguez F, Torres-Ruíz J, Gómez-Martín D, Colborn KL, Kershenobich D, Huang CA, Navarro-Alvarez N. Galectin-3 as a potential prognostic biomarker of severe COVID-19 in SARS-CoV-2 infected patients. Sci Rep 2022; 12:1856. [PMID: 35115644 PMCID: PMC8813958 DOI: 10.1038/s41598-022-05968-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022] Open
Abstract
Severe COVID-19 is associated with a systemic hyperinflammatory response leading to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Galectin-3 is a ß-galactoside binding lectin known to drive neutrophil infiltration and the release of pro-inflammatory cytokines contributing to airway inflammation. Thus, we aimed to investigate the potential of galectin-3 as a biomarker of severe COVID-19 outcomes. We prospectively included 156 patients with RT-PCR confirmed COVID-19. A severe outcome was defined as the requirement of invasive mechanical ventilation (IMV) and/or in-hospital death. A non-severe outcome was defined as discharge without IMV requirement. We used receiver operating characteristic (ROC) and multivariable logistic regression analysis to determine the prognostic ability of serum galectin-3 for a severe outcome. Galectin-3 levels discriminated well between severe and non-severe outcomes and correlated with markers of COVID-19 severity, (CRP, NLR, D-dimer, and neutrophil count). Using a forward-stepwise logistic regression analysis we identified galectin-3 [odds ratio (OR) 3.68 (95% CI 1.47-9.20), p < 0.01] to be an independent predictor of severe outcome. Furthermore, galectin-3 in combination with CRP, albumin and CT pulmonary affection > 50%, had significantly improved ability to predict severe outcomes [AUC 0.85 (95% CI 0.79-0.91, p < 0.0001)]. Based on the evidence presented here, we recommend clinicians measure galectin-3 levels upon admission to facilitate allocation of appropriate resources in a timely manner to COVID-19 patients at highest risk of severe outcome.
Collapse
Affiliation(s)
- Eduardo Cervantes-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nathaly Limon-de la Rosa
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico
| | - Moises Salgado-de la Mora
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paola Valdez-Sandoval
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Mildred Palacios-Jimenez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico.,Universidad Veracruzana, Veracruz, Mexico
| | - Fatima Rodriguez-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico.,Universidad Veracruzana, Veracruz, Mexico
| | - Brenda I Vera-Maldonado
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico.,Universidad Veracruzana, Veracruz, Mexico
| | - Eduardo Aguirre-Aguilar
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Manuel Escobar-Valderrama
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jorge Alanis-Mendizabal
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Osvely Méndez-Guerrero
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico
| | | | - Jiram Torres-Ruíz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Kathryn L Colborn
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - David Kershenobich
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico
| | - Christene A Huang
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO, USA.
| | - Nalu Navarro-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Mexico City, Mexico. .,Universidad Panamericana School of Medicine, Campus México, Mexico City, Mexico. .,Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO, USA.
| |
Collapse
|
33
|
Markovic SS, Gajovic N, Jurisevic M, Jovanovic M, Jovicic BP, Arsenijevic N, Mijailovic Z, Jovanovic M, Dolicanin Z, Jovanovic I. Galectin-1 as the new player in staging and prognosis of COVID-19. Sci Rep 2022; 12:1272. [PMID: 35075140 PMCID: PMC8786829 DOI: 10.1038/s41598-021-04602-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
A new virus from the group of coronaviruses was identified as the cause of atypical pneumonia and called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and disease called Corona Virus Disease (COVID-19). During the cytokine storm, the main cause of the death, proinflammatory cytokines are released which stimulate further tissue destruction. Galectin-1 (Gal-1) is a pleiotropic cytokine involved in many immune and inflammatory processes and its role in COVID-19 is still unknown. The aim of this study was to determine systemic values of Gal-1 and correlations between Gal-1 and proinflammatory cytokines and clinical parameters during COVID-19 progression. This is observational and cross-sectional study. 210 COVID-19 patients were included and divided into mild, severe or critical group according to COVID-19 severity. Serum levels of IL-1β, IL-6, IL-10, IL-23, IL-33 and Gal-1 were measured using sensitive enzyme-linked immunosorbent assay (ELISA) kits. Systemic levels of IL-1β, IL-6, IL-10, IL-23, IL-33 and Gal-1 were significantly higher in stage III of COVID-19 patients compared to stage I and II. There were no significant differences in the ratio between Gal-1 and IL-10 with proinflammatory cytokines. Positive correlation was detected between Gal-1 and IL-1β, IL6, IL-10, IL-23 and IL-33. Gal-1 positively correlated with chest radiographic finding, dry cough and headache and negatively correlated with normal breathing sound. Linear regression model and ROC curve analysis point on Gal-1 as significant predictor for COVID-19 severity. Presented results implicate on Gal-1 and IL-10 dependent immunomodulation. The precise mechanism of Gal-1 effect in COVID-19 and its potential as a stage marker of disease severity is still to be clarified.
Collapse
Grants
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
- 175069 the Science Fund of the Republic of Serbia (CIBIRDS), Serbian Ministry of Education, Science and Technological Development, project with PR China (06/2018).
Collapse
Affiliation(s)
- Sofija Sekulic Markovic
- Department of Infectious Disease, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Nevena Gajovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Milena Jurisevic
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000, Kragujevac, Serbia.
| | - Biljana Popovska Jovicic
- Department of Infectious Disease, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, 34000, Kragujevac, Serbia
- Public Health Institute Kragujevac, 34000, Kragujevac, Serbia
| | - Zeljko Mijailovic
- Department of Infectious Disease, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Otorinolaringology, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Zana Dolicanin
- Department of Biomedical Sciences, State University of Novi Pazar, 36300, Novi Pazar, Serbia
| | - Ivan Jovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, 34000, Kragujevac, Serbia
| |
Collapse
|
34
|
Galectin-8, cytokines, and the storm. Biochem Soc Trans 2022; 50:135-149. [PMID: 35015084 PMCID: PMC9022973 DOI: 10.1042/bst20200677] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Galectin-8 (Gal-8) belongs to a family of animal lectins that modulate cell adhesion, cell proliferation, apoptosis, and immune responses. Recent studies have shown that mammalian Gal-8 induces in an autocrine and paracrine manner, the expression and secretion of cytokines and chemokines such as RANKL, IL-6, IL-1β, SDF-1, and MCP-1. This involves Gal-8 binding to receptor complexes that include MRC2/uPAR/LRP1, integrins, and CD44. Receptors ligation triggers FAK, ERK, Akt, and the JNK signaling pathways, leading to induction of NF-κB that promotes cytokine expression. Indeed, immune-competent Gal-8 knockout (KO) mice express systemic lower levels of cytokines and chemokines while the opposite is true for Gal-8 transgenic animals. Cytokine and chemokine secretion, induced by Gal-8, promotes the migration of cancer cells toward cells expressing this lectin. Accordingly, Gal-8 KO mice experience reduced tumor size and smaller and fewer metastatic lesions when injected with cancer cells. These observations suggest the existence of a ‘vicious cycle’ whereby Gal-8 expression and secretion promotes the secretion of cytokines and chemokines that further promote Gal-8 expression. This ‘vicious cycle’ could enhance the development of a ‘cytokine storm’ which is a key contributor to the poor prognosis of COVID-19 patients.
Collapse
|
35
|
Potential Roles of Modified Pectin Targeting Galectin-3 against Severe Acute Respiratory Syndrome Coronavirus-2. J 2021. [DOI: 10.3390/j4040056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Modified pectin (MP) is a bioactive complex polysaccharide that is broken down into smaller fragments of units and used as an oral dietary supplement for cell proliferation. MP is safe and non-toxic with promising therapeutic properties with regard to targeting galectin-3 (GAL-3) toward the prevention and inhibition of viral infections through the modulation of the immune response and anti-inflammatory cytokine effects. This effect of MP as a GAL-3 antagonism, which has shown benefits in preclinical and clinical models, may be of relevance to the progression of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in coronavirus disease 2019 patients. The outbreak of emerging infectious diseases continues to pose a threat to human health. Further to the circulation of multiple variants of SARS-CoV-2, an effective and alternative therapeutic approach to combat it has become pertinent. The use of MP as a GAL-3 inhibitor could serve as an antiviral agent blocking against the SARS-CoV-2-binding spike protein. This review highlights the potential effects of MP in viral infections, its proposed role as a GAL-3 inhibitor, and the associated function concerning a SARS-CoV-2 infection.
Collapse
|
36
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
37
|
Brandini DA, Takamiya AS, Thakkar P, Schaller S, Rahat R, Naqvi AR. Covid-19 and oral diseases: Crosstalk, synergy or association? Rev Med Virol 2021; 31:e2226. [PMID: 33646645 PMCID: PMC8014590 DOI: 10.1002/rmv.2226] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (Covid-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that clinically affects multiple organs of the human body. Cells in the oral cavity express viral entry receptor angiotensin-converting enzyme 2 that allows viral replication and may cause tissue inflammation and destruction. Recent studies have reported that Covid-19 patients present oral manifestations with multiple clinical aspects. In this review, we aim to summarise main signs and symptoms of Covid-19 in the oral cavity, its possible association with oral diseases, and the plausible underlying mechanisms of hyperinflammation reflecting crosstalk between Covid-19 and oral diseases. Ulcers, blisters, necrotising gingivitis, opportunistic coinfections, salivary gland alterations, white and erythematous plaques and gustatory dysfunction were the most reported clinical oral manifestations in patients with Covid-19. In general, the lesions appear concomitant with the loss of smell and taste. Multiple reports show evidences of necrotic/ulcerative gingiva, oral blisters and hypergrowth of opportunistic oral pathogens. SARS-CoV-2 exhibits tropism for endothelial cells and Covid-19-mediated endotheliitis can not only promote inflammation in oral tissues but can also facilitate virus spread. In addition, elevated levels of proinflammatory mediators in patients with Covid-19 and oral infectious disease can impair tissue homeostasis and cause delayed disease resolution. This suggests potential crosstalk of immune-mediated pathways underlying pathogenesis. Interestingly, few reports suggest recurrent herpetic lesions and higher bacterial growth in Covid-19 subjects, indicating SARS-CoV-2 and oral virus/bacteria interaction. Larger cohort studies comparing SARS-CoV-2 negative and positive subjects will reveal oral manifestation of the virus on oral health and its role in exacerbating oral infection.
Collapse
Affiliation(s)
- Daniela A. Brandini
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Aline S. Takamiya
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Pari Thakkar
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samantha Schaller
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Rani Rahat
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
38
|
Naqvi AR, Schwartz J, Brandini DA, Schaller S, Hussein H, Valverde A, Naqvi RA, Shukla D. COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. Int Rev Immunol 2021; 41:423-437. [PMID: 34525891 DOI: 10.1080/08830185.2021.1967949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a recently identified virus responsible for life-threatening coronavirus disease 19 (COVID-19). The SARS-CoV-2 infected subjects can be asymptomatic or symptomatic; the later may present a wide spectrum of clinical manifestations. However, the impact of SARS-CoV-2 on oral diseases remain poorly studied. Detection of SARS-CoV-2 in saliva indicates existence of virus in the oral cavity. Recent studies demonstrating the expression of ACE-2, a SARS-CoV-2 entry receptor, in oral tissues further strengthens this observation. Cytokine storm in severe COVID-19 patients and copious secretion of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) in multiple symptomatic oral pathologies including periodontitis and periapical periodontitis suggests that inflammatory microenvironment is a hallmark of both COVID-19 and oral diseases. Hyperinflammation may provide conducive microenvironment for the growth of local oral pathogens or opportunistic microbes and exert detrimental impact on the oral tissue integrity. Multiple case reports have indicated uncharacterized oral lesions, symptomatic irreversible pulpitis, higher plaque index, necrotizing/desquamative gingivitis in COVID-19 patients suggesting that SARS-CoV-2 may worsen the manifestations of oral infections. However, the underlying factors and pathways remain elusive. Here we summarize current literature and suggest mechanisms for viral pathogenesis of oral dental pathology derived from oral microbiome and oral mucosa-dental tissue interactions. Longitudinal studies will reveal how the virus impairs disease progression and resolution post-therapy. Some relationships we suggest provide the basis for novel monitoring and treatment of oral viral disease in the era of SARS-CoV-2 pandemic, promoting evidence-based dentistry guidelines to diagnose virus-infected patients to improve oral health.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniela Atili Brandini
- Department of Diagnosis and Surgery, Araçatuba Dental School, Universidade Estadual Paulista/UNESP, Araçatuba, São Paulo, Brazil
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Heba Hussein
- Department of Oral Medicine, Oral Diagnosis, and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raza Ali Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, Illinois, USA
| |
Collapse
|
39
|
Tsurutani M, Horie H, Ogawa K. Cell Properties of Lung Tissue-Resident Macrophages Propagated by Co-Culture with Lung Fibroblastic Cells from C57BL/6 and BALB/c Mice. Biomedicines 2021; 9:1241. [PMID: 34572425 PMCID: PMC8468995 DOI: 10.3390/biomedicines9091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages (Mø) originating from foetal precursors are maintained by self-renewal under tissue/organ-specific microenvironments (niches). We recently developed a simple propagation method applicable to tissue-resident Mø by co-culturing. Here, we examined the properties of lung tissue-resident Mø propagated by co-culturing with lung interstitial cells. The intracardially and intratracheally perfused lung from BALB/c and C57BL/6 mice could minimise the contamination of alveolar Mø and lung monocytes. Lung tissue-resident Mø could be largely propagated under standard culture media along with the propagation of lung interstitial cells demonstrating a fibroblastic morphology. Propagated lung Mø showed characteristic expression properties for Mø/monocyte markers: high expressions of CD11b, CD64 and CD206; substantial expressions of Mertk; and negative expressions of Ly6C, MHC II and Siglec-F. These properties fit with those of lung interstitial Mø of a certain population that can undergo self-renewal. Propagated fibroblastic cells by co-culturing with lung Mø possessed niche properties such as Csf1 and Tgfb1 expression. Propagated lung Mø from both the mouse types were polarised to an M2 phenotype highly expressing arginase 1 without M2 inducer treatment, whereas the M1 inducers significantly increased the iNOS-positive cell percentages in C57BL/6 mice relative to those in BALB/c mice. This is the first study to demonstrate fundamental properties of lung tissue-resident Mø propagated by co-culturing. Propagated lung Mø showing features of lung interstitial Mø can serve as an indispensable tool for investigating SARS-CoV-2 diseases, although lung interstitial Mø have gained little attention in terms of their involvement in SARS-CoV-2 disease pathology, in contrast to alveolar and recruited Mø.
Collapse
Affiliation(s)
- Mayu Tsurutani
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Haruka Horie
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| |
Collapse
|
40
|
Aminpour M, Cannariato M, Zucco A, Di Gregorio E, Israel S, Perioli A, Tucci D, Rossi F, Pionato S, Marino S, Deriu MA, Velpula KK, Tuszynski JA. Computational Study of Potential Galectin-3 Inhibitors in the Treatment of COVID-19. Biomedicines 2021; 9:1208. [PMID: 34572394 PMCID: PMC8466820 DOI: 10.3390/biomedicines9091208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Galectin-3 is a carbohydrate-binding protein and the most studied member of the galectin family. It regulates several functions throughout the body, among which are inflammation and post-injury remodelling. Recent studies have highlighted the similarity between Galectin-3's carbohydrate recognition domain and the so-called "galectin fold" present on the N-terminal domain of the S1 sub-unit of the SARS-CoV-2 spike protein. Sialic acids binding to the N-terminal domain of the Spike protein are known to be crucial for viral entry into humans, and the role of Galectin-3 as a mediator of lung fibrosis has long been the object of study since its levels have been found to be abnormally high in alveolar macrophages following lung injury. In this context, the discovery of a double inhibitor may both prevent viral entry and reduce post-infection pulmonary fibrosis. In this study, we use a database of 56 compounds, among which 37 have known experimental affinity with Galectin-3. We carry out virtual screening of this database with respect to Galectin-3 and Spike protein. Several ligands are found to exhibit promising binding affinity and interaction with the Spike protein's N-terminal domain as well as with Galectin-3. This finding strongly suggests that existing Galectin-3 inhibitors possess dual-binding capabilities to disrupt Spike-ACE2 interactions. Herein we identify the most promising inhibitors of Galectin-3 and Spike proteins, of which five emerge as potential dual effective inhibitors. Our preliminary results warrant further in vitro and in vivo testing of these putative inhibitors against SARS-CoV-2 with the hope of being able to halt the spread of the virus in the future.
Collapse
Affiliation(s)
- Maral Aminpour
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Marco Cannariato
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Angelica Zucco
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Elisabetta Di Gregorio
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Simone Israel
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Annalisa Perioli
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Davide Tucci
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Francesca Rossi
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Sara Pionato
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Silvia Marino
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Marco A. Deriu
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, Pediatrics and Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
41
|
Soccio RE. Galectin-3 in NAFLD: Therapeutic Target or Noncausal Biomarker? J Clin Endocrinol Metab 2021; 106:e3773-e3774. [PMID: 34019644 PMCID: PMC8372627 DOI: 10.1210/clinem/dgab363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 02/02/2023]
Affiliation(s)
- Raymond E Soccio
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism; Institute for Diabetes, Obesity and Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: Raymond E Soccio, MD, PhD, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Xu WD, Wu Q, He YW, Huang AF, Lan YY, Fu L, Zhou J, Liu XY. Gene polymorphisms of LGALS2, LGALS3 and LGALS9 in patients with rheumatoid arthritis. Cell Immunol 2021; 368:104419. [PMID: 34371260 DOI: 10.1016/j.cellimm.2021.104419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/11/2021] [Accepted: 07/31/2021] [Indexed: 01/05/2023]
Abstract
Rheumatoid arthritis (RA) is a complicated rheumatic autoimmune disease. Lectin, galactoside-binding soluble, 2 (LGALS2), LGALS3 and LGALS9, three members of the galectin family, play potential roles in autoimmune diseases, including RA. However, association of genetic polymorphisms of LGALS2, LGALS3 and LGALS9 with RA risk in a Southern Chinese Han population has not been elucidated. A case-control study was conducted herein, including 500 RA patients and 650 healthy individuals of Southern Chinese Han origin. Twelve single nucleotide polymorphisms (SNPs), including rs7291467 for the LGALS2 gene, rs4644, rs4652, rs1009977, rs2274273 and rs17128183 for the LGALS3 gene, and rs4795835, rs3763959, rs4239242, rs3751093, rs732222 and rs4794976 for the LGALS9 gene, were genotyped. Polymorphisms were genotyped using the KASP method. Frequencies of rs1009977 genotype TG and rs3751093 genotype GA of LGALS3 gene were significantly different between RA patients and healthy controls (P = 0.049, P = 0.033). Allele T and genotypes TT and TT + TG of rs4794976 for LGALS9 gene were significantly correlated with RA risk (P = 0.017, P = 0.012, P = 0.041). Subgroup analysis revealed that rs1009977, rs2274273 and rs17128183 polymorphisms of LGALS3 gene and rs4795835 polymorphism of LGALS9 gene were correlated with several RA clinical manifestations (all P < 0.05). In addition, haplotype GCGTT showed an increased risk for RA (OR = 1.216, 95% CI: 1.028-1.438, P = 0.023), whereas haplotype GCGTG showed a reduced risk for RA susceptibility (OR = 0.779, 95% CI: 0.625-0.971, P = 0.026). In conclusion, LGALS3 and LGALS9 gene polymorphisms may associate with RA predisposition in a Southern Chinese Han population.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qian Wu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan-Wei He
- Department of Orthopaedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - You-Yu Lan
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
43
|
Diagnostic Significance of Serum Galectin-3 in Hospitalized Patients with COVID-19-A Preliminary Study. Biomolecules 2021; 11:biom11081136. [PMID: 34439802 PMCID: PMC8393726 DOI: 10.3390/biom11081136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 12/26/2022] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is associated with hyperinflammation leading to organ injury, including respiratory failure. Galectin-3 was implicated in innate immunological response to infections and in chronic fibrosis. The aim of our preliminary study was the assessment of the diagnostic utility of serum galectin-3 in patients with COVID-19. The prospective observational study included adult patients admitted with active COVID-19 and treated in tertiary hospital between June and July 2020. The diagnosis was confirmed by the quantitative detection of nucleic acid of severe acute respiratory syndrome coronavirus 2 in nasopharyngeal swabs. Galectin-3 was measured by enzyme immunoassay in serum samples obtained during the first five days of hospital stay. We included 70 patients aged 25 to 73 years; 90% had at least one comorbidity. During the hospital stay, 32.9% were diagnosed with COVID-19 pneumonia and 12.9% required treatment in the intensive care unit (ICU). Serum galectin-3 was significantly increased in patients who developed pneumonia, particularly those who required ICU admission. Positive correlations were found between galectin-3 and inflammatory markers (interleukin-6, C-reactive protein, ferritin, pentraxin-3), a marker of endothelial injury (soluble fms-like tyrosine kinase-1), and a range of tissue injury markers. Serum galectin-3 enabled the diagnosis of pneumonia with moderate diagnostic accuracy and the need for ICU treatment with high diagnostic accuracy. Our findings strengthen the hypothesis that galectin-3 may be involved in severe COVID-19. Further studies are planned to confirm the preliminary results and to verify possible associations of galectin-3 with long-term consequences of COVID-19, including pulmonary fibrosis.
Collapse
|
44
|
Chen PK, Lan JL, Huang PH, Hsu JL, Chang CK, Tien N, Lin HJ, Chen DY. Interleukin-18 Is a Potential Biomarker to Discriminate Active Adult-Onset Still's Disease From COVID-19. Front Immunol 2021; 12:719544. [PMID: 34367188 PMCID: PMC8343229 DOI: 10.3389/fimmu.2021.719544] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Hyperinflammation with dysregulated production of galectins and cytokines may develop in COVID-19 or adult-onset Still's disease (AOSD). Given the similar clinical features in both diseases, it is necessary to identify biomarkers that can differentiate COVID-19 from AOSD. However, the related data remain scarce currently. Methods In this cross-sectional study, plasma levels of galectin-3, galectin-9, and soluble TIM-3 (sTIM-3) were determined by ELISA in 55 COVID-19 patients (31 non-severe and 24 severe), 23 active AOSD patients, and 31 healthy controls (HC). The seropositivity for SARS-CoV-2 was examined using an immunochromatographic assay, and cytokine profiles were determined with the MULTIPLEX platform. Results Significantly higher levels of galectin-3, galectin-9, IL-1β, IL-1Ra, IL-10, IFN-α2, IL-6, IL-18, and TNF-α were observed in severe COVID-19 and active AOSD patients compared with HC (all p<0.001). AOSD, but not COVID-19, showed significantly higher IFN-γ and IL-17A compared with HC (both p<0.01). Moreover, active AOSD patients had 68-fold higher IL-18 levels and 5-fold higher ferritin levels than severe COVID-19 patients (both p<0.001). IL-18 levels at the cut-off value 190.5pg/mL had the highest discriminative power for active AOSD and severe COVID-19, with AUC 0.948, sensitivity 91.3%, specificity 95.8%, and accuracy of 91.5% (p<0.005). Multivariate regression analysis revealed IL-18 as a significant predictor of active AOSD (p<0.05). Conclusion Active AOSD patients share features of hyperinflammation and cytokine storm with severe COVID-19 patients but possess a distinct cytokine profile, including elevated IL-18, IL-6, IFN-γ, and IL-17A. IL-18 is a potential discriminator between AOSD and COVID-19 and may significantly predict active AOSD.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Joung-Liang Lan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Rheumatic Diseases Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Po-Hao Huang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Jye-Lin Hsu
- College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ching-Kun Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ju Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
45
|
Tang H, Zhang P, Zeng L, Zhao Y, Xie L, Chen B. Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat. Stem Cell Res Ther 2021; 12:409. [PMID: 34271976 PMCID: PMC8283866 DOI: 10.1186/s13287-021-02429-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tubulointerstitial fibrosis (TIF) is one of the main pathological features of various progressive renal damages and chronic kidney diseases. Mesenchymal stromal cells (MSCs) have been verified with significant improvement in the therapy of fibrosis diseases, but the mechanism is still unclear. We attempted to explore the new mechanism and therapeutic target of MSCs against renal fibrosis based on renal proteomics. METHODS TIF model was induced by adenine gavage. Bone marrow-derived MSCs was injected by tail vein after modeling. Renal function and fibrosis related parameters were assessed by Masson, Sirius red, immunohistochemistry, and western blot. Renal proteomics was analyzed using iTRAQ-based mass spectrometry. Further possible mechanism was explored by transfected galectin-3 gene for knockdown (Gal-3 KD) and overexpression (Gal-3 OE) in HK-2 cells with lentiviral vector. RESULTS MSCs treatment clearly decreased the expression of α-SMA, collagen type I, II, III, TGF-β1, Kim-1, p-Smad2/3, IL-6, IL-1β, and TNFα compared with model rats, while p38 MAPK increased. Proteomics showed that only 40 proteins exhibited significant differences (30 upregulated, 10 downregulated) compared MSCs group with the model group. Galectin-3 was downregulated significantly in renal tissues and TGF-β1-induced rat tubular epithelial cells and interstitial fibroblasts, consistent with the iTRAQ results. Gal-3 KD notably inhibited the expression of p-Akt, p-GSK3β and snail in TGF-β1-induced HK-2 cells fibrosis. On the contrary, Gal-3 OE obviously increased the expression of p-Akt, p-GSK3β and snail. CONCLUSION The mechanism of MSCs anti-renal fibrosis was probably mediated by galectin-3/Akt/GSK3β/Snail signaling pathway. Galectin-3 may be a valuable target for treating renal fibrosis.
Collapse
Affiliation(s)
- Huajun Tang
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Peiyue Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Lianlin Zeng
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Yu Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Libo Xie
- Department of Urology, Sichuan Clinical Research Center for Nephropathy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Bo Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000.
| |
Collapse
|
46
|
Rodríguez-Tomàs E, Iftimie S, Castañé H, Baiges-Gaya G, Hernández-Aguilera A, González-Viñas M, Castro A, Camps J, Joven J. Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach. Antioxidants (Basel) 2021; 10:antiox10060991. [PMID: 34205807 PMCID: PMC8234277 DOI: 10.3390/antiox10060991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection produces a response of the innate immune system causing oxidative stress and a strong inflammatory reaction termed ‘cytokine storm’ that is one of the leading causes of death. Paraoxonase-1 (PON1) protects against oxidative stress by hydrolyzing lipoperoxides. Alterations in PON1 activity have been associated with pro-inflammatory mediators such as the chemokine (C-C motif) ligand 2 (CCL2), and the glycoprotein galectin-3. We aimed to investigate the alterations in the circulating levels of PON1, CCL2, and galectin-3 in 126 patients with COVID-19 and their interactions with clinical variables and analytical parameters. A machine learning approach was used to identify predictive markers of the disease. For comparisons, we recruited 45 COVID-19 negative patients and 50 healthy individuals. Our approach identified a synergy between oxidative stress, inflammation, and fibrogenesis in positive patients that is not observed in negative patients. PON1 activity was the parameter with the greatest power to discriminate between patients who were either positive or negative for COVID-19, while their levels of CCL2 and galectin-3 were similar. We suggest that the measurement of serum PON1 activity may be a useful marker for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - María González-Viñas
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
- Correspondence: ; Tel.: +34-977-310-300
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| |
Collapse
|
47
|
Di Gaetano S, Capasso D, Delre P, Pirone L, Saviano M, Pedone E, Mangiatordi GF. More Is Always Better Than One: The N-Terminal Domain of the Spike Protein as Another Emerging Target for Hampering the SARS-CoV-2 Attachment to Host Cells. Int J Mol Sci 2021; 22:6462. [PMID: 34208755 PMCID: PMC8235207 DOI: 10.3390/ijms22126462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
Although the approved vaccines are proving to be of utmost importance in containing the Coronavirus disease 2019 (COVID-19) threat, they will hardly be resolutive as new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, a single-stranded RNA virus) variants might be insensitive to the immune response they induce. In this scenario, developing an effective therapy is still a dire need. Different targets for therapeutic antibodies and diagnostics have been identified, among which the SARS-CoV-2 spike (S) glycoprotein, particularly its receptor-binding domain, has been defined as crucial. In this context, we aim to focus attention also on the role played by the S N-terminal domain (S1-NTD) in the virus attachment, already recognized as a valuable target for neutralizing antibodies, in particular, building on a cavity mapping indicating the presence of two druggable pockets and on the recent literature hypothesizing the presence of a ganglioside-binding domain. In this perspective, we aim at proposing S1-NTD as a putative target for designing small molecules hopefully able to hamper the SARS-CoV-2 attachment to host cells.
Collapse
Affiliation(s)
- Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, 80134 Naples, Italy; (S.D.G.); (L.P.)
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
| | - Domenica Capasso
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
- CESTEV, University of Naples “Federico II”, 80145 Naples, Italy
| | - Pietro Delre
- Institute of Crystallography, CNR, 70126 Bari, Italy; (P.D.); (G.F.M.)
- Chemistry Department, University of Bari, 70121 Bari, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, 80134 Naples, Italy; (S.D.G.); (L.P.)
| | - Michele Saviano
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
- Institute of Crystallography, CNR, 70126 Bari, Italy; (P.D.); (G.F.M.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, CNR, 80134 Naples, Italy; (S.D.G.); (L.P.)
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
| | | |
Collapse
|
48
|
Gutmann C, Takov K, Burnap SA, Singh B, Ali H, Theofilatos K, Reed E, Hasman M, Nabeebaccus A, Fish M, McPhail MJ, O'Gallagher K, Schmidt LE, Cassel C, Rienks M, Yin X, Auzinger G, Napoli S, Mujib SF, Trovato F, Sanderson B, Merrick B, Niazi U, Saqi M, Dimitrakopoulou K, Fernández-Leiro R, Braun S, Kronstein-Wiedemann R, Doores KJ, Edgeworth JD, Shah AM, Bornstein SR, Tonn T, Hayday AC, Giacca M, Shankar-Hari M, Mayr M. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nat Commun 2021; 12:3406. [PMID: 34099652 PMCID: PMC8184784 DOI: 10.1038/s41467-021-23494-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia is associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22-2.77] adjusted for age and sex). RNAemia is comparable in performance to the best protein predictors. Mannose binding lectin 2 and pentraxin-3 (PTX3), two activators of the complement pathway of the innate immune system, are positively associated with mortality. Machine learning identified 'Age, RNAemia' and 'Age, PTX3' as the best binary signatures associated with 28-day ICU mortality. In longitudinal comparisons, COVID-19 ICU patients have a distinct proteomic trajectory associated with mortality, with recovery of many liver-derived proteins indicating survival. Finally, proteins of the complement system and galectin-3-binding protein (LGALS3BP) are identified as interaction partners of SARS-CoV-2 spike glycoprotein. LGALS3BP overexpression inhibits spike-pseudoparticle uptake and spike-induced cell-cell fusion in vitro.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Bhawana Singh
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Hashim Ali
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Ella Reed
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Maria Hasman
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Adam Nabeebaccus
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Matthew Fish
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mark Jw McPhail
- King's College Hospital NHS Foundation Trust, London, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Lukas E Schmidt
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Christian Cassel
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Marieke Rienks
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Xiaoke Yin
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Georg Auzinger
- King's College Hospital NHS Foundation Trust, London, UK
| | - Salvatore Napoli
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Salma F Mujib
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Francesca Trovato
- King's College Hospital NHS Foundation Trust, London, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Barnaby Sanderson
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Blair Merrick
- Clinical Infection and Diagnostics Research group, Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Umar Niazi
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Mansoor Saqi
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Konstantina Dimitrakopoulou
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Rafael Fernández-Leiro
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Silke Braun
- Medical Clinic I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Katie J Doores
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jonathan D Edgeworth
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Clinical Infection and Diagnostics Research group, Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North East, Dresden, Germany
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Manu Shankar-Hari
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
49
|
Jover E, Matilla L, Garaikoetxea M, Fernández-Celis A, Muntendam P, Jaisser F, Rossignol P, López-Andrés N. Beneficial Effects of Mineralocorticoid Receptor Pathway Blockade against Endothelial Inflammation Induced by SARS-CoV-2 Spike Protein. Biomedicines 2021; 9:biomedicines9060639. [PMID: 34204890 PMCID: PMC8228852 DOI: 10.3390/biomedicines9060639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Vascular endothelial cells activation and dysfunction mediate inflammation and abnormal coagulation in COVID-19 patients. Mineralocorticoid receptor (MR) signaling and its downstream target Galectin-3 (Gal-3) are known to mediate cardiovascular inflammation and might be involved in the pathogenesis of COVID-19 complications. Accordingly, we aimed to investigate the potential beneficial effects of MR antagonism and Gal-3 inhibition on the inflammatory response induced by SARS-CoV-2 Spike protein in human aortic endothelial cells (HAECs). Methods: HAECs were treated with recombinant SARS-COV2 Spike (S) protein. MR antagonists (namely spironolactone and eplerenone) or the Gal-3 inhibitor G3P-01 were supplemented before and after S protein challenge. HAECs supernatants were assessed by ELISA or Western blotting. Results: HAECs treated with recombinant S protein resulted in enhanced secretion of inflammatory molecules (interleukin-6, monocyte chemoattractant protein-1, interleukin-18, interleukin-27, and interferon-γ) as well as in the thrombosis marker plasminogen activator inhibitor (PAI)-1. This was prevented and reversed by both MR antagonists and G3P-01. Conclusions: These findings indicate that MR/Gal-3 pathway blockade could be a promising option to reduce endothelial inflammation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eva Jover
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.J.); (L.M.); (M.G.); (A.F.-C.)
| | - Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.J.); (L.M.); (M.G.); (A.F.-C.)
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.J.); (L.M.); (M.G.); (A.F.-C.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.J.); (L.M.); (M.G.); (A.F.-C.)
| | | | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, 75006 Paris, France;
- Centre d’Investigations Cliniques-Plurithématique (INSERM CIC-PT 1433), UMR 1116, CHRU, Université de Lorraine, 54500 Vandoeuvre-Les-Nancy, France;
- French-Clinical Research Infrastructure Network (F-CRIN) Cardiovascular and Renal Clinical Trialists (INI-CRCT), 54500 Nancy, France
| | - Patrick Rossignol
- Centre d’Investigations Cliniques-Plurithématique (INSERM CIC-PT 1433), UMR 1116, CHRU, Université de Lorraine, 54500 Vandoeuvre-Les-Nancy, France;
- French-Clinical Research Infrastructure Network (F-CRIN) Cardiovascular and Renal Clinical Trialists (INI-CRCT), 54500 Nancy, France
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.J.); (L.M.); (M.G.); (A.F.-C.)
- Correspondence:
| |
Collapse
|
50
|
Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio 2021; 12:mBio.00384-21. [PMID: 33947753 PMCID: PMC8262904 DOI: 10.1128/mbio.00384-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. In this study, we observed massive elevation of plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls (HCs). By using the receiver operating characteristic (ROC) curve, we found that a baseline of 2,042 pg/ml plasma Gal-9 can differentiate SARS-CoV-2-infected from noninfected individuals with high specificity/sensitivity (95%). Analysis of 30 cytokines and chemokines detected a positive correlation of the plasma Gal-9 with C-reactive protein (CRP) and proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10, MIP-1α, and MCP-1 but an inverse correlation with transforming growth factor β (TGF-β) in COVID-19 patients. In agreement, we found enhanced production of IL-6 and TNF-α by monocytes and NK cells of COVID-19 patients once treated with the recombinant human Gal-9 in vitro. Also, we observed that although the cell-membrane expression of Gal-9 on monocytes does not change in COVID-19 patients, those with higher Gal-9 expression exhibit an activated phenotype. Furthermore, we noted significant downregulation of surface Gal-9 in neutrophils from COVID-19 patients compared to HCs. Our further investigations indicated that immune activation following SARS-CoV-2 infection results in Gal-9 shedding from neutrophils. The strong correlation of Gal-9 with proinflammatory mediators suggests that inhibition of Gal-9 may severe as a therapeutic approach in COVID-19 infection. Besides, the plasma Gal-9 measurement may be used as a surrogate diagnostic biomarker in COVID-19 patients.
Collapse
|