1
|
Hassan R, Bhat GR, Mir FA, Ganie HA, Mushtaq I, Bhat MA, Asimi RP, Afroze D. Concomitant telomere attrition is associated with spinal muscular atrophy in highly inbred region of North India: unraveling the thread in Kashmir region. BMC Med Genomics 2024; 17:275. [PMID: 39587573 PMCID: PMC11587541 DOI: 10.1186/s12920-024-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/01/2024] [Indexed: 11/27/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a rare genetic disorder that unequivocally results in the degeneration of motor neurons, leading to muscle weakness and atrophy. This condition is caused by a mutation in the survival motor neuron 1 (SMN1) gene, which inevitably results in a deficiency of the SMN protein. In present study, we investigated the potential role of telomere attrition in SMA patients. Relative telomere length in peripheral blood lymphocytes was measured by Monochrome Multiplex Quantitative Polymerase Chain Reaction (MMQPCR) in 98 subjects and we conclusively found that SMA cases exhibit telomere attrition compared to healthy controls (P = 4 × 10- 2). Moreover, significant attrition was also observed in severe form of SMA, i.e. SMA type 0 (P = 0.04) as well.Although, the exact mechanism through which telomere shortening contributes to the pathogenesis of SMA is not fully understood and is yet to be delineated. However, one possibility is that telomere shortening leads to genomic instability and DNA damage, which can contribute to motor neuron degeneration. Another possibility is that telomere shortening leads to cellular senescence, which can impair the ability of motor neurons to regenerate and repair themselves. Recent studies have suggested that telomere shortening may be a potential therapeutic target in SMA. Thus, understanding the role of SMN1 gene in disease pathogenesis & its effect on telomere length will aid in estimating the risk & prognosis of SMA in genetically less explored & highly inbred region of Kashmir, Northern India.
Collapse
Affiliation(s)
- Rukhsana Hassan
- Advanced Centre for Human Genetics, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India
| | - Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India
| | - Feroze Ahmad Mir
- Department of Neurology, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India
| | - Hilal Ahmad Ganie
- Department of Neurology, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India
| | - Ifra Mushtaq
- Advanced Centre for Human Genetics, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India
| | - Mushtaq Ahmad Bhat
- Department of Pediatrics, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India
| | - Ravouf Parvez Asimi
- Department of Neurology, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher.i. Kashmir Institute of Medical Sciences, Soura, Jammu, Kashmir, India.
| |
Collapse
|
2
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Muvvala SB, Prajapati J, Rawal RM, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure significantly impacts placental protein kinase C (PKC) and drug transporters, leading to drug resistance and neonatal opioid withdrawal syndrome. Front Neurosci 2024; 18:1442915. [PMID: 39238930 PMCID: PMC11376091 DOI: 10.3389/fnins.2024.1442915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Background Neonatal Opioid Withdrawal Syndrome (NOWS) is a consequence of in-utero exposure to prenatal maternal opioids, resulting in the manifestation of symptoms like irritability, feeding problems, tremors, and withdrawal signs. Opioid use disorder (OUD) during pregnancy can profoundly impact both mother and fetus, disrupting fetal brain neurotransmission and potentially leading to long-term neurological, behavioral, and vision issues, and increased infant mortality. Drug resistance complicates OUD and NOWS treatment, with protein kinase regulation of drug transporters not fully understood. Methods DNA methylation levels of ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, along with protein kinase C (PKC) genes, were assessed in 96 placental samples using the Illumina Infinium MethylationEPIC array (850K). Samples were collected from three distinct groups: 32 mothers with infants prenatally exposed to opioids who needed pharmacological intervention for NOWS, 32 mothers with prenatally opioid-exposed infants who did not necessitate NOWS treatment, and 32 mothers who were not exposed to opioids during pregnancy. Results We identified 69 significantly differentially methylated SLCs, with 24 hypermethylated and 34 hypomethylated, and 11 exhibiting both types of methylation changes including SLC13A3, SLC15A2, SLC16A11, SLC16A3, SLC19A2, and SLC26A1. We identified methylation changes in 11 ABC drug transporters (ABCA1, ABCA12, ABCA2, ABCB10, ABCB5, ABCC12, ABCC2, ABCC9, ABCE1, ABCC7, ABCB3): 3 showed hypermethylation, 3 hypomethylation, and 5 exhibited both. Additionally, 7 PKC family genes (PRKCQ, PRKAA1, PRKCA, PRKCB, PRKCH, PRKCI, and PRKCZ) showed methylation changes. These genes are associated with 13 pathways involved in NOWS, including ABC transporters, bile secretion, pancreatic secretion, insulin resistance, glutamatergic synapse, and gastric acid secretion. Conclusion We report epigenetic changes in PKC-related regulation of drug transporters, which could improve our understanding of clinical outcomes like drug resistance, pharmacokinetics, drug-drug interactions, and drug toxicity, leading to maternal relapse and severe NOWS. Novel drugs targeting PKC pathways and transporters may improve treatment outcomes for OUD in pregnancy and NOWS.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V Uppala
- College of Information Science & Technology, the University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, United States
| | - Srinivas B Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Virseda-Berdices A, Behar-Lagares R, Martínez-González O, Blancas R, Bueno-Bustos S, Brochado-Kith O, Manteiga E, Mallol Poyato MJ, López Matamala B, Martín Parra C, Resino S, Jiménez-Sousa MÁ, Fernández-Rodríguez A. Longer ICU stay and invasive mechanical ventilation accelerate telomere shortening in COVID-19 patients 1 year after recovery. Crit Care 2024; 28:267. [PMID: 39113075 PMCID: PMC11308640 DOI: 10.1186/s13054-024-05051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes virus-induced-senescence. There is an association between shorter telomere length (TL) in coronavirus disease 2019 (COVID-19) patients and hospitalization, severity, or even death. However, it remains unknown whether virus-induced-senescence is reversible. We aim to evaluate the dynamics of TL in COVID-19 patients 1 year after recovery from intensive care units (ICU). Longitudinal study enrolling 49 patients admitted to ICU due to COVID-19 (August 2020 to April 2021). Relative telomere length (RTL) quantification was carried out in whole blood by monochromatic multiplex real-time quantitative PCR (MMqPCR) assay at hospitalization (baseline) and 1 year after discharge (1-year visit). The association between RTL and ICU length of stay (LOS), invasive mechanical ventilation (IMV), prone position, and pulmonary fibrosis development at 1-year visit was evaluated. The median age was 60 years, 71.4% were males, median ICU-LOS was 12 days, 73.5% required IMV, and 38.8% required a prone position. Patients with longer ICU-LOS or who required IMV showed greater RTL shortening during follow-up. Patients who required pronation had a greater RTL shortening during follow-up. IMV patients who developed pulmonary fibrosis showed greater RTL reduction and shorter RTL at the 1-year visit. Patients with longer ICU-LOS and those who required IMV had a shorter RTL in peripheral blood, as observed 1 year after hospital discharge. Additionally, patients who required IMV and developed pulmonary fibrosis had greater telomere shortening, showing shorter telomeres at the 1-year visit. These patients may be more prone to develop cellular senescence and lung-related complications; therefore, closer monitoring may be needed.
Collapse
Affiliation(s)
- Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Behar-Lagares
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain.
- Department of Medicine, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain.
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Department of Medicine, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain
| | - Soraya Bueno-Bustos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Manteiga
- Critical Care Department, Hospital Universitario Infanta Cristina, Parla, Madrid, Spain
| | | | | | | | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Á Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Boccardi V, Marano L. Aging, Cancer, and Inflammation: The Telomerase Connection. Int J Mol Sci 2024; 25:8542. [PMID: 39126110 PMCID: PMC11313618 DOI: 10.3390/ijms25158542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
Understanding the complex dynamics of telomere biology is important in the strong link between aging and cancer. Telomeres, the protective caps at the end of chromosomes, are central players in this connection. While their gradual shortening due to replication limits tumors expansion by triggering DNA repair mechanisms, it also promotes oncogenic changes within chromosomes, thus sustaining tumorigenesis. The enzyme telomerase, responsible for maintaining telomere length, emerges as a central player in this context. Its expression in cancer cells facilitates the preservation of telomeres, allowing them to circumvent the growth-limiting effects of short telomeres. Interestingly, the influence of telomerase extends beyond telomere maintenance, as evidenced by its involvement in promoting cell growth through alternative pathways. In this context, inflammation accelerates telomere shortening, resulting in telomere dysfunction, while telomere elements also play a role in modulating the inflammatory response. The recognition of this interplay has promoted the development of novel therapeutic approaches centered around telomerase inhibition. This review provides a comprehensive overview of the field, emphasizing recent progress in knowledge and the implications in understanding of cancer biology.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Luigi Marano
- Department of Medicine, Academy of Applied Medical and Social Sciences—AMiSNS: Akademia Medycznych I Spolecznych Nauk Stosowanych, 82-300 Elbląg, Poland;
- Department of General Surgery and Surgical Oncology, “Saint Wojciech” Hospital, “Nicolaus Copernicus” Health Center, 80-462 Gdańsk, Poland
| |
Collapse
|
5
|
Klinaki E, Ogrodnik M. In the land of not-unhappiness: On the state-of-the-art of targeting aging and age-related diseases by biomedical research. Mech Ageing Dev 2024; 219:111929. [PMID: 38561164 DOI: 10.1016/j.mad.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.
Collapse
Affiliation(s)
- Eirini Klinaki
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
6
|
Yu W, Zhao Y, Ilyas I, Wang L, Little PJ, Xu S. The natural polyphenol fisetin in atherosclerosis prevention: a mechanistic review. J Pharm Pharmacol 2024:rgae053. [PMID: 38733634 DOI: 10.1093/jpp/rgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The incidence and mortality rate of atherosclerotic cardiovascular disease (ASCVD) is increasing yearly worldwide. Recently, a growing body of evidence has unveiled the anti-atherosclerotic properties of fisetin, a natural polyphenol compound. In this article, we reviewed the pharmacologic actions of fisetin on experimental atherosclerosis and its protective effects on disease-relevant cell types such as endothelial cells, macrophages, vascular smooth muscle cells, and platelets. Based on its profound cardiovascular actions, fisetin holds potential for clinical translation and could be developed as a potential therapeutic option for atherosclerosis and its related complications. Large-scale randomized clinical trials are warranted to ascertain the safety and efficacy of fisetin in patients with or high risk for ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Anhui Renovo Pharmaceutical Co., Ltd, Hefei, Anhui, 230001, China
- Anhui Guozheng Pharmaceutical Co., Ltd, Hefei, Anhui, 230041, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peter J Little
- Department of Pharmacy, Guangzhou Xinhua University, No. 721, Guangshan Road 1, Tianhe District, Guangzhou, 510520, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
7
|
Chatterjee S, Leach-Mehrwald M, Huang CK, Xiao K, Fuchs M, Otto M, Lu D, Dang V, Winkler T, Dunbar CE, Thum T, Bär C. Telomerase is essential for cardiac differentiation and sustained metabolism of human cardiomyocytes. Cell Mol Life Sci 2024; 81:196. [PMID: 38658440 PMCID: PMC11043037 DOI: 10.1007/s00018-024-05239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.
Collapse
Affiliation(s)
- Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Megan Leach-Mehrwald
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Vinh Dang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Winkler
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
8
|
Dubey SK, Dubey R, Kleinman ME. Unraveling Histone Loss in Aging and Senescence. Cells 2024; 13:320. [PMID: 38391933 PMCID: PMC10886805 DOI: 10.3390/cells13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
As the global population experiences a notable surge in aging demographics, the need to understand the intricate molecular pathways exacerbated by age-related stresses, including epigenetic dysregulation, becomes a priority. Epigenetic mechanisms play a critical role in driving age-related diseases through altered gene expression, genomic instability, and irregular chromatin remodeling. In this review, we focus on histones, a central component of the epigenome, and consolidate the key findings of histone loss and genome-wide redistribution as fundamental processes contributing to aging and senescence. The review provides insights into novel histone expression profiles, nucleosome occupancy, disruptions in higher-order chromatin architecture, and the emergence of noncanonical histone variants in the aging cellular landscape. Furthermore, we explore the current state of our understanding of the molecular mechanisms of histone deficiency in aging cells. Specific emphasis is placed on highlighting histone degradation pathways in the cell and studies that have explored potential strategies to mitigate histone loss or restore histone levels in aging cells. Finally, in addressing future perspectives, the insights gained from this review hold profound implications for advancing strategies that actively intervene in modulating histone expression profiles in the context of cellular aging and identifying potential therapeutic targets for alleviating a multitude of age-related diseases.
Collapse
Affiliation(s)
| | | | - Mark Ellsworth Kleinman
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.D.); (R.D.)
| |
Collapse
|
9
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
10
|
Jalan-Sakrikar N, Anwar A, Yaqoob U, Gan C, Lagnado AB, Wixom AQ, Jurk D, Huebert RC. Telomere dysfunction promotes cholangiocyte senescence and biliary fibrosis in primary sclerosing cholangitis. JCI Insight 2023; 8:e170320. [PMID: 37707950 PMCID: PMC10619490 DOI: 10.1172/jci.insight.170320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Cellular senescence and biliary fibrosis are prototypical features of obliterative cholangiopathies, such as primary sclerosing cholangitis (PSC). Telomere dysfunction can lead to senescence either through telomere erosion or damaged telomeres. Our goal was to investigate a mechanistic relationship between telomere damage and biliary fibrosis in PSC. Telomere attrition was observed in the bile ducts of patients with PSC along with a reduction in telomerase reverse transcriptase (TERT) expression, compared with that in normal livers. Similarly, liver tissue from mouse models of biliary fibrosis showed telomere attrition with increased damage at telomeres measured as telomere-associated foci (TAF). Cellular models of senescence induction increased the TAF in cholangiocytes. This coincided with decreased TERT expression and increased senescence, which was rescued by modulating TERT levels. Epigenetic analysis revealed increased acquisition of repressive histone methylation at the TERT promoter, which correlated with decreased TERT transcription. Cholangiocyte-selective deletion of TERT in mice exacerbated fibrosis, whereas androgen therapy toward telomerase rescued liver fibrosis and liver function in a genetic mouse model of PSC. Our results demonstrate a mechanistic role for telomere dysfunction in cellular senescence and fibrosis that characterize PSC. This suggests that PSC may be, in part, a telomere biology disorder, and identifies TERT as a potential therapeutic target.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
- Center for Cell Signaling in Gastroenterology, and
| | - Abid Anwar
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
| | - Can Gan
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
| | - Anthony B. Lagnado
- Physiology and Biomedical Engineering, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | | - Diana Jurk
- Center for Cell Signaling in Gastroenterology, and
- Physiology and Biomedical Engineering, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
- Center for Cell Signaling in Gastroenterology, and
| |
Collapse
|
11
|
Wu C, Feng Y. Exploring the potential of mindfulness-based therapy in the prevention and treatment of neurodegenerative diseases based on molecular mechanism studies. Front Neurosci 2023; 17:1097067. [PMID: 37383106 PMCID: PMC10293639 DOI: 10.3389/fnins.2023.1097067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
Neurodegenerative diseases (ND) have received increasing attention due to their irreversibility, but there is still no means to completely cure ND in clinical practice. Mindfulness therapy (MT), including Qigong, Tai Chi, meditation, and yoga, etc., has become an effective complementary treatment modality in solving clinical and subclinical problems due to its advantages of low side effects, less pain, and easy acceptance by patients. MT is primarily used to treat mental and emotional disorders. In recent years, evidence has shown that MT has a certain therapeutic effect on ND with a potential molecular basis. In this review, we summarize the pathogenesis and risk factors of Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), relating to telomerase activity, epigenetics, stress, and the pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) mediated inflammatory response, and analyze the molecular mechanism basis of MT to prevent and treat ND, to provide possible explanations for the potential of MT treatments for ND.
Collapse
|
12
|
Kim SG, Sung JY, Kang YJ, Choi HC. Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells. Arch Gerontol Geriatr 2023; 108:104927. [PMID: 36645971 DOI: 10.1016/j.archger.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) are a key risk factor of cellular senescence and age-related diseases, and protein kinase C (PKC) has been shown to activate NADPH oxidases (NOXs), which generate ROS. Although PKC activation induces oxidative stress, leading to the cellular dysfunction in various cell types, the correlation between PKC and senescence has not been reported in vascular smooth muscle cell (VSMC). Several studies have indicated cellular senescence is accompanied by phosphatase and tensin homolog (PTEN) loss and that an interaction exists between PTEN and PKC. Therefore, we aimed to determine whether PTEN and PKC are associated with VSMC senescence and to investigate the mechanism involved. We found hydrogen peroxide (H2O2) decreased PTEN expression and increased PKCδ phosphorylation. Moreover, H2O2 upregulated the NOX1 subunits, p22phox and p47phox, and induced VSMC senescence via p53-p21 signaling pathway. We identified PKCδ activation contributed to VSMC senescence through activation of NOX1 and ROS production. However, fisetin inhibited cellular senescence induced by the PTEN-PKCδ-NOX1-ROS signaling pathway, and this anti-aging effect was attributed to reduced ROS production caused by suppressing NOX1 activation. These results suggest that the PTEN-PCKδ signaling pathway is directly related to senescence via NOX1 activation and that the downregulation of PKCδ by flavonoids provides a potential means of treating age-associated diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
13
|
Porter N, Jason LA. Mindfulness Meditation Interventions for Long COVID: Biobehavioral Gene Expression and Neuroimmune Functioning. Neuropsychiatr Dis Treat 2022; 18:2599-2626. [PMID: 36387947 PMCID: PMC9653042 DOI: 10.2147/ndt.s379653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Some individuals infected with SARS CoV-2 have developed Post-Acute Sequelae of SARS CoV-2 infection (PASC) or what has been referred to as Long COVID. Efforts are underway to find effective treatment strategies for those with Long COVID. One possible approach involves alternative medical interventions, which have been widely used to treat and manage symptoms of a variety of medical problems including post-viral infections. Meditation has been found to reduce fatigue and unrefreshing sleep, and for those with post-viral infections, it has enhanced immunity, and reduced inflammatory-driven pathogenesis. Our article summarizes the literature on what is known about mindfulness meditation interventions, and reviews evidence on how it may apply to those with Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Evidence is reviewed suggesting effective and sustainable outcomes may be achieved for symptomatology and underlying pathology of post-viral fatigue (PASC and ME/CFS).
Collapse
Affiliation(s)
- Nicole Porter
- Center for Community Research, DePaul University, Chicago, IL, USA
| | - Leonard A Jason
- Center for Community Research, DePaul University, Chicago, IL, USA
| |
Collapse
|
14
|
Lauriola A, Davalli P, Marverti G, Caporali A, Mai S, D’Arca D. Telomere Dysfunction Is Associated with Altered DNA Organization in Trichoplein/Tchp/Mitostatin (TpMs) Depleted Cells. Biomedicines 2022; 10:biomedicines10071602. [PMID: 35884905 PMCID: PMC9312488 DOI: 10.3390/biomedicines10071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate. Here, the effect of TpMs depletion was investigated in different TpMs-depleted cell lines by means of 3D imaging and 3D Structured illumination Microscopy. We show that TpMs depletion causes alterations in the 3D architecture of telomeres in colon cancer HCT116 cells. These findings are consistent with chromosome alterations that lead to genomic instability. Furthermore, TpMs depletion changes the spatial arrangement of chromosomes and other nuclear components. Modified nuclear architecture and organization potentially induce variations that precede the onset of genomic instability and are considered as markers of malignant transformation. Our present observations connect the tumor suppression ability of TpMs with its novel functions in maintaining the proper chromosomal segregation as well as the proper telomere and nuclear architecture. Further investigations will investigate the connection between alterations in telomeres and nuclear architecture with the progression of human tumors with the aim of developing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
| | - Andrea Caporali
- The Queen’s Medical Research Institute, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH10 4AH, UK;
| | - Sabine Mai
- CancerCare Manitoba Research Institute, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: (S.M.); (D.D.); Tel.: +1-204-272-3174 (S.M.); +39-059-205-5610 (D.D.)
| | - Domenico D’Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
- Correspondence: (S.M.); (D.D.); Tel.: +1-204-272-3174 (S.M.); +39-059-205-5610 (D.D.)
| |
Collapse
|
15
|
Schürhoff F, Corfdir C, Pignon B, Lajnef M, Richard JR, Marcos E, Leboyer M, Adnot S, Jamain S, Szöke A. Shortening telomere is associated with psychotic dimensions in the general population. Schizophr Res 2022; 243:470-471. [PMID: 35246364 DOI: 10.1016/j.schres.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Franck Schürhoff
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| | - Cécile Corfdir
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| | - Baptiste Pignon
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| | - Mohamed Lajnef
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| | - Jean-Romain Richard
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie - Explorations fonctionnelles, Hôpital Henri Mondor, AP-HP, FHU SENEC, Créteil 94000, France
| | - Marion Leboyer
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| | - Serge Adnot
- INSERM U955, Département de Physiologie - Explorations fonctionnelles, Hôpital Henri Mondor, AP-HP, FHU SENEC, Créteil 94000, France
| | - Stéphane Jamain
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| | - Andreï Szöke
- Univ Paris Est Creteil, INSERM, IMRB, AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Fondation FondaMental, F-94010 Créteil, France
| |
Collapse
|
16
|
Abstract
Telomeres are non-coding nucleoprotein structures consisting of a highly conserved tandem repeat DNA sequence that caps the ends of chromosomes in eukaryotes. Telomeres confer chromosomal stability, protect the genome from nucleolytic degradation, avoid aberrant recombination and improper repair, and prevent random fusion of chromosomes. The end-replication problem results in telomere shortening with every cell division, eventually leading to cellular senescence and aging. Telomere length (TL) is thereby an ideal candidate for "biological aging." Telomeres possess guanine-rich repeats, which are highly susceptible to oxidative stress. Epidemiological studies have indicated the association of telomere attrition with mortality and various age-related diseases. Micronutrients comprising vitamins and minerals act as potential modulators of stress and can influence TL. Research has indicated that vitamin B12 (B12) regulates oxidative stress and maintains genomic stability, thereby influencing telomere integrity and cellular aging. The deficiency of B12 leads to elevated levels of homocysteine, which reduces the methylation potential and increases oxidative stress, thereby compromising the TL. Telomere shortening and mitochondrial dysfunction are independently linked to aging. However, they are connected through telomerase reverse transcriptase activity, which regulates mitochondrial biogenesis. Further, experimental evidence indicated the positive association of B12 with relative TL and mitochondrial DNA copy number, an indirect index of mitochondrial biogenesis. The present chapter provides some insights into the role of B12 in influencing TL. Exploring their association might open new avenues to understand the pathophysiology of aging and age-related diseases.
Collapse
|
17
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Costa A, Cushman S, Haubner BJ, Derda AA, Thum T, Bär C. Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration. Basic Res Cardiol 2022; 117:26. [PMID: 35503383 PMCID: PMC9064850 DOI: 10.1007/s00395-022-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023]
Abstract
Myocardial injury often leads to heart failure due to the loss and insufficient regeneration of resident cardiomyocytes. The low regenerative potential of the mammalian heart is one of the main drivers of heart failure progression, especially after myocardial infarction accompanied by large contractile muscle loss. Preclinical therapies for cardiac regeneration are promising, but clinically still missing. Mammalian models represent an excellent translational in vivo platform to test drugs and treatments for the promotion of cardiac regeneration. Particularly, short-lived mice offer the possibility to monitor the outcome of such treatments throughout the life span. Importantly, there is a short period of time in newborn mice in which the heart retains full regenerative capacity after cardiac injury, which potentially also holds true for the neonatal human heart. Thus, in vivo neonatal mouse models of cardiac injury are crucial to gain insights into the molecular mechanisms underlying the cardiac regenerative processes and to devise novel therapeutic strategies for the treatment of diseased adult hearts. Here, we provide an overview of the established injury models to study cardiac regeneration. We summarize pioneering studies that demonstrate the potential of using neonatal cardiac injury models to identify factors that may stimulate heart regeneration by inducing endogenous cardiomyocyte proliferation in the adult heart. To conclude, we briefly summarize studies in large animal models and the insights gained in humans, which may pave the way toward the development of novel approaches in regenerative medicine.
Collapse
Affiliation(s)
- Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Bernhard J. Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria ,Department of Cardiology, University Heart Center, University Hospital Zurich, Zürich, Switzerland
| | - Anselm A. Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
19
|
Aiello A, Accardi G, Alì S, Caruso C, Chen M, De Vivo I, Ligotti ME, Scapagnini G, Davinelli S, Candore G. Possible Association of Telomere Length With Sleep Duration. A Preliminary Pilot Study in a Sicilian Cohort with Centenarians. Transl Med UniSa 2021; 24:24-29. [PMID: 36447745 PMCID: PMC9673914 DOI: 10.37825/2239-9754.1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/16/2023] Open
Abstract
Telomere length (TL) is considered a biomarker of ageing although this topic is still debated. Also, sleep pattern changes are physiological part of the normal ageing process. In fact, it is widely recognized that sleep duration declines with age, leading to dysregulation of circadian rhythms. The aim of our study was to analyse the possible association of sleep duration with TL in a sample of 135 subjects with ages ranging from 20 to 111 years, recruited from Palermo and neighbouring municipalities in Sicily (Italy). Preliminary data suggest that relative TL (RTL) decreases with age in both men and women. However, at older ages, the difference between men and women tends to narrow. Nonagenarian and centenarian women do not show RTL values significantly different from those observed in adult and old women (40-89 years aged). Moreover, to analyse the relationship between TL and sleep, we stratified sleep duration into greater or lesser than 8-h periods. We found that centenarians, who daily sleep 8 hours or more, have longer RTL than centenarians who sleep fewer than 8 hours. Although the relatively small sample size of centenarians, we provide preliminary evidence that sleep duration may affect the RTL of centenarians. To the best of our knowledge, this is the first study to examine the relationship between centenarians, RTL and sleep duration. Further studies with greater sample size of centenarians are required to replicate and extend these data.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo,
Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo,
Italy
| | - Sawan Alì
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso,
Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo,
Italy
| | - Maxine Chen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,
USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,
USA
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo,
Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso,
Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso,
Italy
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,
USA
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo,
Italy
| |
Collapse
|
20
|
Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci 2021; 22:ijms222313173. [PMID: 34884978 PMCID: PMC8658264 DOI: 10.3390/ijms222313173] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence entails a state of an essentially irreversible proliferative arrest in which cells remain metabolically active and secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype. There are different types of senescent cells, and senescence can be induced in response to many DNA damage signals. Senescent cells accumulate in different tissues and organs where they have distinct physiological and pathological functions. Despite this diversity, all senescent cells must be able to survive in a nondividing state while protecting themselves from positive feedback loops linked to the constant activation of the DNA damage response. This capacity requires changes in core cellular programs. Understanding how different cell types can undergo extensive changes in their transcriptional programs, metabolism, heterochromatin patterns, and cellular structures to induce a common cellular state is crucial to preventing cancer development/progression and to improving health during aging. In this review, we discuss how senescent cells continuously evolve after their initial proliferative arrest and highlight the unifying features that define the senescent state.
Collapse
Affiliation(s)
- Lauréline Roger
- Structure and Instability of Genomes Laboratory, Muséum National d’Histoire Naturelle (MNHN), CNRS-UMR 7196/INSERM U1154, 43 Rue Cuvier, 75005 Paris, France;
| | - Fanny Tomas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
| | - Véronique Gire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
- Correspondence: ; Tel.: +33-(0)-434359513; Fax: +33-(0)-434359410
| |
Collapse
|
21
|
Yamaguchi E, Akutsu T, Nacher JC. Probabilistic Critical Controllability Analysis of Protein Interaction Networks Integrating Normal Brain Ageing Gene Expression Profiles. Int J Mol Sci 2021; 22:ijms22189891. [PMID: 34576052 PMCID: PMC8465977 DOI: 10.3390/ijms22189891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, network controllability studies have proposed several frameworks for the control of large complex biological networks using a small number of life molecules. However, age-related changes in the brain have not been investigated from a controllability perspective. In this study, we compiled the gene expression profiles of four normal brain regions from individuals aged 20–99 years and generated dynamic probabilistic protein networks across their lifespan. We developed a new algorithm that efficiently identified critical proteins in probabilistic complex networks, in the context of a minimum dominating set controllability model. The results showed that the identified critical proteins were significantly enriched with well-known ageing genes collected from the GenAge database. In particular, the enrichment observed in replicative and premature senescence biological processes with critical proteins for male samples in the hippocampal region led to the identification of possible new ageing gene candidates.
Collapse
Affiliation(s)
- Eimi Yamaguchi
- Department of Information Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan;
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
| | - Jose C. Nacher
- Department of Information Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan;
- Correspondence:
| |
Collapse
|
22
|
Bhoumik S, Rizvi SI. Anti‐aging effects of intermittent fasting: a potential alternative to calorie restriction? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Blasiak J, Szczepanska J, Fila M, Pawlowska E, Kaarniranta K. Potential of Telomerase in Age-Related Macular Degeneration-Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int J Mol Sci 2021; 22:ijms22137194. [PMID: 34281248 PMCID: PMC8268995 DOI: 10.3390/ijms22137194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD), the main cause of vision loss in the elderly, is associated with oxidation in the retina cells promoting telomere attrition. Activation of telomerase was reported to improve macular functions in AMD patients. The catalytic subunit of human telomerase (hTERT) may directly interact with proteins important for senescence, DNA damage response, and autophagy, which are impaired in AMD. hTERT interaction with mTORC1 (mTOR (mechanistic target of rapamycin) complex 1) and PINK1 (PTEN-induced kinase 1) activates macroautophagy and mitophagy, respectively, and removes cellular debris accumulated over AMD progression. Ectopic expression of telomerase in retinal pigment epithelium (RPE) cells lengthened telomeres, reduced senescence, and extended their lifespan. These effects provide evidence for the potential of telomerase in AMD therapy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be involved in AMD pathogenesis through decreasing oxidative stress and senescence, regulation of vascular endothelial growth factor (VEGF), and improving autophagy. PGC-1α and TERT form an inhibitory positive feedback loop. In conclusion, telomerase activation and its ectopic expression in RPE cells, as well as controlled clinical trials on the effects of telomerase activation in AMD patients, are justified and should be assisted by PGC-1α modulators to increase the therapeutic potential of telomerase in AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: (J.B.); (K.K.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: (J.B.); (K.K.)
| |
Collapse
|
24
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
25
|
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:6. [PMID: 34118939 PMCID: PMC8199306 DOI: 10.1186/s12993-021-00179-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Aging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), 9717853577 Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
26
|
Wang S, Gao Y, Zhao L, Hu R, Yang X, Liu Y. Shortened leukocyte telomere length as a potential biomarker for predicting the progression of atrial fibrillation from paroxysm to persistence in the short-term. Medicine (Baltimore) 2021; 100:e26020. [PMID: 34114988 PMCID: PMC8202666 DOI: 10.1097/md.0000000000026020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to assess the role of leukocyte telomere length (LTL) in the development of atrial fibrillation (AF) among Chinese patients.This is a cross-sectional study. A total of 350 patients from June 2016 to December 2017 were retrospectively analyzed. These included 219 AF patients and 131 with sinus rhythm in the control group. Quantitative real-time PCR was used to measure relative LTL.The relative LTLs of all subjects (n = 350) ranged from 0.4 to 2.41 (0.98 ± 0.29), showing a significant negative correlation (P < .001) with age. The AF-group had significantly shorter LTLs (0.93 ± 0.26 vs 1.07 ± 0.33, P < .001) and were older (61.50 ± 6.49 vs 59.95 ± 6.17, P = .028) than controls. LTLs among patients with persistent AF (PsAF), paroxysmal AF (PAF), and controls were significantly different (P < .001), with LTLs of PsAF patients being the shortest and controls being the longest. After adjusting for possible confounding factors, the PsAF group still showed significantly shorter LTLs than the PAF and control groups (P = .013 and P = .001, respectively). After an 18-month follow-up, 20 out of 119 PAF patients had progressed into PsAF and a relative LTL of ≤0.73 was an independent predictor for progression of PAF into PsAF.LTL was found to be shorter in patients with AF than in age-matched individuals with sinus rhythm and positively correlated with severity of AF. LTL shortening could be an independent risk factor for progression from paroxysmal AF to persistent AF in the short term.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Yuanfeng Gao
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Lei Zhao
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Roumu Hu
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xinchun Yang
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Ye Liu
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| |
Collapse
|
27
|
Pathak GA, Wendt FR, Levey DF, Mecca AP, van Dyck CH, Gelernter J, Polimanti R. Pleiotropic effects of telomere length loci with brain morphology and brain tissue expression. Hum Mol Genet 2021; 30:1360-1370. [PMID: 33831179 PMCID: PMC8255129 DOI: 10.1093/hmg/ddab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have reported association between leukocyte telomere length (LTL) and neuropsychiatric disorders. Although telomere length is affected by environmental factors, genetic variants in certain loci are strongly associated with LTL. Thus, we aimed to identify the genomic relationship between genetic variants of LTL with brain-based regulatory changes and brain volume. We tested genetic colocalization of seven and nine LTL loci in two ancestry groups, European (EUR) and East-Asian (EAS), respectively, with brain morphology measures for 101 T1-magnetic resonance imaging-based region of interests (n = 21 821). The posterior probability (>90%) was observed for 'fourth ventricle', 'gray matter' and 'cerebellar vermal lobules I-IV' volumes. We then tested causal relationship using LTL loci for gene and methylation expression. We found causal pleiotropy for gene (EAS = four genes; EUR = five genes) and methylation expression (EUR = 17 probes; EAS = 4 probes) of brain tissues (P ≤ 2.47 × 10-6). Integrating chromatin profiles with LTL-single nucleotide polymorphisms identified 45 genes (EUR) and 79 genes (EAS) (P ≤ 9.78×10-7). We found additional 38 LTL-genes using chromatin-based gene mapping for EUR ancestry population. Gene variants in three LTL-genes-GPR37, OBFC1 and RTEL1/RTEL1-TNFRSF6B-show convergent evidence of pleiotropy with brain morphology, gene and methylation expression and chromatin association. Mapping gene functions to drug-gene interactions, we identified process 'transmission across chemical synapses' (P < 2.78 × 10-4). This study provides evidence that genetic variants of LTL have pleiotropic roles with brain-based effects that could explain the phenotypic association of LTL with several neuropsychiatric traits.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Renato Polimanti
- To whom correspondence should be addressed at: VA CT 116A2, 950 Campbell Avenue, West Haven, CT 06516, USA. Tel: +1 2039375711 ext. 5745; Fax: +1 2039373897;
| |
Collapse
|
28
|
Wirth A, Wolf B, Huang CK, Glage S, Hofer SJ, Bankstahl M, Bär C, Thum T, Kahl KG, Sigrist SJ, Madeo F, Bankstahl JP, Ponimaskin E. Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length. GeroScience 2021; 43:673-690. [PMID: 33517527 PMCID: PMC8110654 DOI: 10.1007/s11357-020-00310-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.
Collapse
Affiliation(s)
- Alexander Wirth
- Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Bettina Wolf
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, Karl-Franzens-Universität Graz, Humboldtstraße 50/EG, 8010, Graz, Austria
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Kai G Kahl
- Dept. of Psychiatry; Social Psychiatry and Psychotherapy, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Stephan J Sigrist
- Freie University Berlin, Institute of Biology, Takusstraße 6, 14195, Berlin, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, Karl-Franzens-Universität Graz, Humboldtstraße 50/EG, 8010, Graz, Austria
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Gagarin ave. 23, Nizhny Novgorod, Russian Federation, 603950.
| |
Collapse
|
29
|
Sławińska N, Krupa R. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin. Int J Mol Sci 2021; 22:ijms22020590. [PMID: 33435578 PMCID: PMC7827783 DOI: 10.3390/ijms22020590] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cells can become senescent in response to stress. Senescence is a process characterised by a stable proliferative arrest. Sometimes it can be beneficial—for example, it can suppress tumour development or take part in tissue repair. On the other hand, studies show that it is also involved in the ageing process. DNA damage response (DDR) is triggered by DNA damage or telomere shortening during cell division. When left unresolved, it may lead to the activation of senescence. Senescent cells secrete certain proteins in larger quantities. This phenomenon is referred to as senescence-associated secretory phenotype (SASP). SASP can induce senescence in other cells; evidence suggests that overabundance of senescent cells contributes to ageing. SASP proteins include proinflammatory cytokines and metalloproteinases, which degrade the extracellular matrix. Shortening of telomeres is another feature associated with organismal ageing. Older organisms have shorter telomeres. Restoring telomerase activity in mice not only slowed but also partially reversed the symptoms of ageing. Changes in chromatin structure during senescence include heterochromatin formation or decondensation and loss of H1 histones. During organismal ageing, cells can experience heterochromatin loss, DNA demethylation and global histone loss. Cellular and organismal ageing are both complex processes with many aspects that are often related. The purpose of this review is to bring some of these aspects forward and provide details regarding them.
Collapse
|
30
|
Abstract
PURPOSE One of the most important serious malignancies is gastric cancer (GC) with a high mortality globally. In this way, beside the environmental factors, genetic parameter has a remarkable effective fluctuation in GC. Correspondingly, telomeres are nucleoprotein structures measuring the length of telomeres and they have special potential in diagnosis of various types of cancers. Defect protection of the telomeric length initiates the instability of the genome during cancer, including gastric cancer. The most common way of maintaining telomere length is the function of the telomerase enzyme that replicates the TTAGGG to the end of the 3' chromosome. METHODS In this review, we want to discuss the alterations of hTERT repression on the modification of TERRA gene expression in conjunction with the importance of telomere and telomerase in GC. RESULTS The telomerase enzyme contains two essential components called telomerase reverse transcriptase (hTERT) and RNA telomerase (hTR, hTERC). Deregulation of hTERT plays a key role in the multistage process of tumorigenicity and anticancer drug resistance. The direct relationship between telomerase activity and hTERT has led to hTERT to be considered a key target for cancer treatment. Recent results show that telomeres are transcribed into telomeric repeat-containing RNA (TERRA) in mammalian cells and are long noncoding RNAs (lncRNAs) identified in different tissues. In addition, most chemotherapy methods have a lot of side effects on normal cells. CONCLUSION Telomere and telomerase are useful therapeutic goal. According to the main roles of hTERT in tumorigenesis, growth, migration, and cancer invasion, hTERT and regulatory mechanisms that control the expression of hTERT are attractive therapeutic targets for cancer treatment.
Collapse
|
31
|
Telomerase therapy attenuates cardiotoxic effects of doxorubicin. Mol Ther 2021; 29:1395-1410. [PMID: 33388418 PMCID: PMC8058493 DOI: 10.1016/j.ymthe.2020.12.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin is one of the most potent chemotherapeutic agents. However, its clinical use is restricted due to the severe risk of cardiotoxicity, partially attributed to elevated production of reactive oxygen species (ROS). Telomerase canonically maintains telomeres during cell division but is silenced in adult hearts. In non-dividing cells such as cardiomyocytes, telomerase confers pro-survival traits, likely owing to the detoxification of ROS. Therefore, we hypothesized that pharmacological overexpression of telomerase may be used as a therapeutic strategy for the prevention of doxorubicin-induced cardiotoxicity. We used adeno-associated virus (AAV)-mediated gene therapy for long-term expression of telomerase in in vitro and in vivo models of doxorubicin-induced cardiotoxicity. Overexpression of telomerase protected the heart from doxorubicin-mediated apoptosis and rescued cardiac function, which was accompanied by preserved cardiomyocyte size. At the mechanistic level, we observed altered mitochondrial morphology and dynamics in response to telomerase expression. Complementary in vitro experiments confirmed the anti-apoptotic effects of telomerase overexpression in human induced pluripotent stem cell-derived cardiomyocytes after doxorubicin treatment. Strikingly, elevated levels of telomerase translocated to the mitochondria upon doxorubicin treatment, which helped to maintain mitochondrial function. Thus, telomerase gene therapy could be a novel preventive strategy for cardiotoxicity by chemotherapy agents such as the anthracyclines.
Collapse
|
32
|
da Silva GG, Morais KS, Arcanjo DS, de Oliveira DM. Clinical Relevance of Alternative Lengthening of Telomeres in Cancer. Curr Top Med Chem 2020; 20:485-497. [PMID: 31924155 DOI: 10.2174/1568026620666200110112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
The alternative lengthening of telomere (ALT) is a pathway responsible for cell immortalization in some kinds of tumors. Since the first description of ALT is relatively recent in the oncology field, its mechanism remains elusive, but recent works address ALT-related proteins or cellular structures as potential druggable targets for more specific and efficient antitumor therapies. Moreover, some new generation compounds for antitelomerase therapy in cancer were able to provoke acquisition of ALT phenotype in treated tumors, enhancing the importance of studies on this alternative lengthening of the telomere. However, ALT has been implicated in different - sometimes opposite - outcomes, according to the tumor type studied. Then, in order to design and develop new drugs for ALT+ cancer in an effective way, it is crucial to understand its clinical implications. In this review, we gathered works published in the last two decades to highlight the clinical relevance of ALT on oncology.
Collapse
Affiliation(s)
- Guilherme G da Silva
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Karollyne S Morais
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| | - Daniel S Arcanjo
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Diêgo M de Oliveira
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil.,Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| |
Collapse
|
33
|
Arabadjiev B, Pankov R, Vassileva I, Petrov LS, Buchvarov I. Photobiomodulation with 590 nm Wavelength Delays the Telomere Shortening and Replicative Senescence of Human Dermal Fibroblasts In Vitro. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:656-660. [PMID: 33090930 DOI: 10.1089/photob.2020.4822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Cellular senescence is one of the major factors contributing to the aging process. Photobiomodulation (PBM) is known to trigger an array of cellular responses, but there are no data on how it affects the process of cellular senescence. In this study, we analyze the effect of PBM on the cellular senescence and telomere dynamics. Methods: Human dermal fibroblasts were irradiated by a panel of light-emitting diodes with 590 nm and dose 30 J/cm2 accumulated over 1200 sec repeated in 4-day cycle within 40 days. After the last cycle of PBM treatment, the difference in number of senescent cells between PBM treated groups end nontreated control groups was measured by senescent sensitive β-galactosidase assay, and the difference in average telomere length between the experimental end control groups was analyzed using relative human telomere length quantitative Polymerase Chain Reaction (qPCR) assay. Results: After 10 cycles of irradiation, the percentage of senescent cells in PBM-treated cultures was 19.7% ± 4.5%, p < 0.05 smaller than the percentage of senescent cells in the control group, and their relative telomere length was 1.19 ± 0.09-fold, p < 0.05 greater than nontreated controls. Conclusions: Our study demonstrates for the first time that PBM with appropriate parameters can delay the attrition of the telomeres and the entry of cells into senescence, suggesting a potential involvement of telomerase reactivation. A hypothetical mechanism for this light-induced antiaging effect is discussed.
Collapse
Affiliation(s)
- Borislav Arabadjiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria.,Physics Department, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria
| | - Roumen Pankov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria
| | - Ivelina Vassileva
- Institute of Molecular Biology "Acad.Roumen Tsanev," Sofia, Bulgaria
| | | | - Ivan Buchvarov
- Physics Department, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria
| |
Collapse
|
34
|
Herrmann W, Herrmann M. The Importance of Telomere Shortening for Atherosclerosis and Mortality. J Cardiovasc Dev Dis 2020; 7:jcdd7030029. [PMID: 32781553 PMCID: PMC7570376 DOI: 10.3390/jcdd7030029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Telomeres are the protective end caps of chromosomes and shorten with every cell division. Short telomeres are associated with older age and adverse lifestyle factors. Leucocyte telomere length (LTL) has been proposed as a biomarker of biological age. The shortening of LTL with age is the result of the end-replication problem, environmental, and lifestyle-related factors. Epidemiologic studies have shown that LTL predicts cardiovascular disease, all-cause mortality, and death from vascular causes. Age appears to be an important co-variate that explains a substantial fraction of this effect. Although it has been proposed that short telomeres promote atherosclerosis and impair the repair of vascular lesions, existing results are inconsistent. Oxidative stress and chronic inflammation can both accelerate telomere shortening. Multiple factors, including homocysteine (HCY), vitamin B6, and vitamin B12 modulate oxidative stress and inflammation through direct and indirect mechanisms. This review provides a compact overview of telomere physiology and the utility of LTL measurements in atherosclerosis and cardiovascular disease. In addition, it summarizes existing knowledge regarding the impact of oxidative stress, inflammation, HCY, and B-vitamins on telomere function.
Collapse
Affiliation(s)
- Wolfgang Herrmann
- Department of Clinical Chemistry, Medical School of the Saarland University, 66421 Homburg, Saar, Germany;
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
- Correspondence: or ; Tel.: +43-316-385-13145; Fax: +43-316-385-13430
| |
Collapse
|
35
|
Lili M, Yuxiang F, Zhongcheng H, Ying S, Ru C, Rong X, Jiang L. Genetic variations associated with telomere length affect the risk of gastric carcinoma. Medicine (Baltimore) 2020; 99:e20551. [PMID: 32502020 PMCID: PMC7306382 DOI: 10.1097/md.0000000000020551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/13/2020] [Accepted: 05/03/2020] [Indexed: 11/26/2022] Open
Abstract
This study aimed to further understand the role of relative telomere length (RTL) in susceptibility to gastric carcinoma (GC) and investigate the association between genetic polymorphisms in the telomere length related genes and GC risk.RTL was measured using the real-time quantitative polymerase chain reaction from 1000 patients and 1100 healthy controls. Genotyping was performed using the Agena MassARRAY platform. The statistical analysis was performed using the chi-square/ Welch T tests, Mann-Whitney U test, and logistic regression analysis.The association analysis of telomere length and GC showed that the RTL in the case group was shorter than in the controls, and the shorter RTL was associated with an increased risk of GC. The association analysis between telomere length related genes polymorphisms and genetic susceptibility to GC indicated that: In the allele models and genetic models, TERT (rs10069690, rs2242652 and rs2853676) and TN1F1 (rs7708392 and rs10036748) were significantly associated with an increased risk of GC. In addition, the haplotype 'Grs10069690Crs2242652" of TERT and the haplotype 'Grs7708392Trs10036748" of TNIP1 were associated with an increased risk of GCOur results suggested that shorter RTL was associated with an increased risk of GC; The association analysis have identified that the TERT (rs10069690, rs2242652 and rs2853676) and TN1P1 (rs7708392 and rs10036748) were associated with GC risk.
Collapse
Affiliation(s)
- Ma Lili
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Fan Yuxiang
- The Second Department of Oncology, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region (The Fourth Affiliated Hospital of Xinjiang Medical University), Urumqi, Xinjiang, China
| | - Han Zhongcheng
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Su Ying
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Chen Ru
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Xu Rong
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Liu Jiang
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| |
Collapse
|
36
|
Vecoli C, Borghini A, Andreassi MG. The molecular biomarkers of vascular aging and atherosclerosis: telomere length and mitochondrial DNA 4977 common deletion. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108309. [PMID: 32430098 DOI: 10.1016/j.mrrev.2020.108309] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Age is the dominant risk factor for the most prevalent atherosclerotic vascular diseases, including coronary artery disease, myocardial infarction, cerebrovascular disease and stroke. In human, telomere erosion and mitochondrial DNA (mtDNA) damage play a central role in the mechanisms leading to cellular aging decline. This review summarizes the most relevant findings on the role of telomere shortening and the common mtDNA4977 deletion in the progression and evolution of atherosclerosis by combining insight from experimental models and human clinical studies. The current evidence shows a link between telomere erosion and compromised mitochondrial function and provides a new perspective regarding their potential role as clinical biomarkers and therapeutic targets.
Collapse
|
37
|
Mendioroz M, Puebla-Guedea M, Montero-Marín J, Urdánoz-Casado A, Blanco-Luquin I, Roldán M, Labarga A, García-Campayo J. Telomere length correlates with subtelomeric DNA methylation in long-term mindfulness practitioners. Sci Rep 2020; 10:4564. [PMID: 32165663 PMCID: PMC7067861 DOI: 10.1038/s41598-020-61241-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Mindfulness and meditation techniques have proven successful for the reduction of stress and improvement in general health. In addition, meditation is linked to longevity and longer telomere length, a proposed biomarker of human aging. Interestingly, DNA methylation changes have been described at specific subtelomeric regions in long-term meditators compared to controls. However, the molecular basis underlying these beneficial effects of meditation on human health still remains unclear. Here we show that DNA methylation levels, measured by the Infinium HumanMethylation450 BeadChip (Illumina) array, at specific subtelomeric regions containing GPR31 and SERPINB9 genes were associated with telomere length in long-term meditators with a strong statistical trend when correcting for multiple testing. Notably, age showed no association with telomere length in the group of long-term meditators. These results may suggest that long-term meditation could be related to epigenetic mechanisms, in particular gene-specific DNA methylation changes at distinct subtelomeric regions.
Collapse
Affiliation(s)
- Maite Mendioroz
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain. .,Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra, 31008, Spain.
| | - Marta Puebla-Guedea
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain
| | - Jesús Montero-Marín
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain.,Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed Biomedical Research Center - UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Javier García-Campayo
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain.,Miguel Servet University Hospital, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
38
|
Ekmekcioglu C. Nutrition and longevity – From mechanisms to uncertainties. Crit Rev Food Sci Nutr 2019; 60:3063-3082. [DOI: 10.1080/10408398.2019.1676698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Nutrition Risk is Associated with Leukocyte Telomere Length in Middle-Aged Men and Women with at Least One Risk Factor for Cardiovascular Disease. Nutrients 2019; 11:nu11030508. [PMID: 30818839 PMCID: PMC6471290 DOI: 10.3390/nu11030508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Poor diet quality has been associated with several age-related chronic conditions, but its relationship to telomere length, a biological marker of cellular aging, is unclear. The purpose of this cross-sectional study was to determine whether overall diet quality was associated with relative leukocyte telomere length (rLTL) in a sample (n = 96) of nonsmoking middle-aged adults in Appalachia with at least one risk factor for cardiovascular disease. Diet quality was assessed using the Healthy Eating Index (HEI-2015), the alternate Mediterranean diet score (aMed), and the Dietary Screening Tool (DST). Peripheral rLTL was measured by quantitative real-time polymerase chain reaction. The associations between potentially confounding sociodemographic, lifestyle and health-related factors and the first and fourth rLTL quartile groups were examined using Chi-square or Fisher’s Exact tests or logistic regression. The relationships between diet quality index scores and rLTL as a continuous variable were analyzed using simple linear regression and multivariate linear models, analogous to linear covariance analyses. The rLTL ranged from 0.46 to 1.49 (mean ± SEM was 1.02 ± 0.18). Smoking history, income level, and cardiovascular health (Life’s Simple 7) were associated with the lowest and highest quartiles of rLTL and were used as covariates. In adjusted and unadjusted models, participants considered “at nutrition risk” by the DST were more likely to have shorter rLTL than those “not at risk or at potential risk” (p = 0.004). However, there was no evidence that adherence to the 2015–2020 Dietary Guidelines for Americans or to a Mediterranean diet was associated with rLTL in this sample. Intervention studies are needed to determine if improving the diet quality of those at nutrition risk results in reduced telomere attrition over time.
Collapse
|
40
|
Solana C, Pereira D, Tarazona R. Early Senescence and Leukocyte Telomere Shortening in SCHIZOPHRENIA: A Role for Cytomegalovirus Infection? Brain Sci 2018; 8:brainsci8100188. [PMID: 30340343 PMCID: PMC6210638 DOI: 10.3390/brainsci8100188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a severe, chronic mental disorder characterized by delusions and hallucinations. Several evidences support the link of schizophrenia with accelerated telomeres shortening and accelerated aging. Thus, schizophrenia patients show higher mortality compared to age-matched healthy donors. The etiology of schizophrenia is multifactorial, involving genetic and environmental factors. Telomere erosion has been shown to be accelerated by different factors including environmental factors such as cigarette smoking and chronic alcohol consumption or by psychosocial stress such as childhood maltreatment. In humans, telomere studies have mainly relied on measurements of leukocyte telomere length and it is generally accepted that individuals with short leukocyte telomere length are considered biologically older than those with longer ones. A dysregulation of both innate and adaptive immune systems has been described in schizophrenia patients and other mental diseases supporting the contribution of the immune system to disease symptoms. Thus, it has been suggested that abnormal immune activation with high pro-inflammatory cytokine production in response to still undefined environmental agents such as herpesviruses infections can be involved in the pathogenesis and pathophysiology of schizophrenia. It has been proposed that chronic inflammation and oxidative stress are involved in the course of schizophrenia illness, early onset of cardiovascular disease, accelerated aging, and premature mortality in schizophrenia. Prenatal or neonatal exposures to neurotropic pathogens such as Cytomegalovirus or Toxoplasma gondii have been proposed as environmental risk factors for schizophrenia in individuals with a risk genetic background. Thus, pro-inflammatory cytokines and microglia activation, together with genetic vulnerability, are considered etiological factors for schizophrenia, and support that inflammation status is involved in the course of illness in schizophrenia.
Collapse
Affiliation(s)
- Corona Solana
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Diana Pereira
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Raquel Tarazona
- Immunology Unit, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
41
|
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2018; 20:1-16. [PMID: 30229407 DOI: 10.1007/s10522-018-9769-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
42
|
Chatterjee S, de Gonzalo-Calvo D, Derda AA, Schimmel K, Sonnenschein K, Bavendiek U, Bauersachs J, Bär C, Thum T. Leukocyte telomere length correlates with hypertrophic cardiomyopathy severity. Sci Rep 2018; 8:11227. [PMID: 30046139 PMCID: PMC6060137 DOI: 10.1038/s41598-018-29072-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/04/2018] [Indexed: 01/28/2023] Open
Abstract
Telomere length is a marker of biological aging. Short leukocyte telomere length has been associated with various conditions including cardiovascular disorders. Here, we evaluated if patients with hypertrophic cardiomyopathy have altered leukocyte telomere length and whether this is associated with disease severity. A quantitative polymerase chain reaction-based method was used to measure peripheral blood leukocyte telomere length in 59 healthy control subjects and a well-characterized cohort of 88 patients diagnosed with hypertrophic cardiomyopathy: 32 patients with non-obstructive cardiomyopathy (HNCM) and 56 patients with obstructive cardiomyopathy (HOCM). We observed shorter leukocyte telomeres in both HNCM and HOCM patients compared to healthy controls. Furthermore, leukocyte telomere length was inversely associated with HCM even after adjusting for age and sex. Telomere length of HOCM patients was also inversely correlated with left ventricular outflow tract obstruction. Therefore, HOCM patients were categorized by tertiles of telomere length. Patients in the first tertile (shortest telomeres) had a significantly increased left ventricular posterior wall thickness at end-diastole and higher left ventricular outflow tract gradients, whereas the left ventricular end-diastolic diameter was lower compared with patients in the second and third tertile. In summary, telomere length is associated with the severity of the disease in the HOCM subtype.
Collapse
Affiliation(s)
- Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - David de Gonzalo-Calvo
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Anselm A Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Katharina Schimmel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Kristina Sonnenschein
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Udo Bavendiek
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany. .,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany. .,National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
43
|
Mangaonkar AA, Patnaik MM. Short Telomere Syndromes in Clinical Practice: Bridging Bench and Bedside. Mayo Clin Proc 2018; 93:904-916. [PMID: 29804726 PMCID: PMC6035054 DOI: 10.1016/j.mayocp.2018.03.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 10/16/2022]
Abstract
Short telomere syndromes (STSs) are accelerated aging syndromes often caused by inheritable gene mutations resulting in decreased telomere lengths. Consequently, organ systems with increased cell turnover, such as the skin, bone marrow, lungs, and gastrointestinal tract, are commonly affected. Owing to diverse clinical presentations, STSs pose a diagnostic challenge, with bone marrow failure and idiopathic pulmonary fibrosis being frequent manifestations, occurring in association with gene mutations involving DKC1 (for expansion of gene symbols, use search tool at www.genenames.org), TERT, TERC, and others. Inherited STSs demonstrate genetic anticipation, occurring at an earlier age with more severe manifestations in the affected progeny. Telomere lengths can be assessed in peripheral blood granulocytes and lymphocytes using a sensitive technique called flow cytometry-fluorescence in situ hybridization, and mutational analysis can be performed using next-generation sequencing assays. In approximately 40% of patients with shortened telomere lengths, gene mutations cannot be identified due to the fact that all STS-associated genes have not yet been defined or due to alternative mechanisms of telomere shortening. Danazol, an anabolic steroid, has been associated with hematologic responses in patients with STSs and associated bone marrow failure; however, its reported ability to increase telomerase activity and reduce telomere attrition needs further elucidation. Organ transplant is reserved for patients with end-organ failure and is associated with substantial morbidity and mortality. Herein, we summarize the clinical and laboratory characteristics of STSs and offer a stepwise approach to diagnose and manage complications in affected patients.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
44
|
Roy S, Roy S, Rana A, Akhter Y, Hande MP, Banerjee B. The role of p38 MAPK pathway in p53 compromised state and telomere mediated DNA damage response. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:89-97. [PMID: 30389168 DOI: 10.1016/j.mrgentox.2018.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/17/2018] [Accepted: 05/26/2018] [Indexed: 12/19/2022]
Abstract
There is an intricate balance of DNA damage response and repair which determines the homeostasis of human genome function. p53 protein is widely known for its role in cell cycle regulation and tumor suppressor activity. In case of several cancers where function of p53 gene gets compromised either by mutation or partial inactivation, the role of p53 in response to DNA damage needs to be supplemented by another molecule or pathway. Due to sedentary lifestyle and exposure to genotoxic agents, genome is predisposed to chronic stress, which ultimately leads to unrepaired or background DNA damage. p38 MAPK signaling pathway is strongly activated in response to various environmental and cellular stresses. DNA damage response and the repair options have crucial links with chromosomal integrity. Telomere that regulates integrity of genome is protected by a six member shielding unit called shelterin complex which communicates with other pathways for functionality of telomeres. There are evidences that p38 gets activated through ATM in response to DNA damage. Dysfunctional telomere leads to activation of ATM which subsequently activates p38 suggesting a crosstalk between p38, ATM and shelterin complex. This review focuses on activation of p38 in response to genotoxic stress induced DNA damage in p53 mutated or compromised state and its possible cross talk with telomere shelterin proteins. Thus p38 may act as an important target to treat various diseases and in majority of cancers in p53 mutated state.
Collapse
Affiliation(s)
- Shomereeta Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha-751024, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha-751024, India
| | - Aarti Rana
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh-176206, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha-751024, India.
| |
Collapse
|
45
|
Liu MY, Nemes A, Zhou QG. The Emerging Roles for Telomerase in the Central Nervous System. Front Mol Neurosci 2018; 11:160. [PMID: 29867352 PMCID: PMC5964194 DOI: 10.3389/fnmol.2018.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Telomerase, a specialized ribonucleoprotein enzyme complex, maintains telomere length at the 3′ end of chromosomes, and functions importantly in stem cells, cancer and aging. Telomerase exists in neural stem cells (NSCs) and neural progenitor cells (NPCs), at a high level in the developing and adult brains of humans and rodents. Increasing studies have demonstrated that telomerase in NSCs/NPCs plays important roles in cell proliferation, neuronal differentiation, neuronal survival and neuritogenesis. In addition, recent works have shown that telomerase reverse transcriptase (TERT) can protect newborn neurons from apoptosis and excitotoxicity. However, to date, the link between telomerase and diseases in the central nervous system (CNS) is not well reviewed. Here, we analyze the evidence and summarize the important roles of telomerase in the CNS. Understanding the roles of telomerase in the nervous system is not only important to gain further insight into the process of the neural cell life cycle but would also provide novel therapeutic applications in CNS diseases such as neurodegenerative condition, mood disorders, aging and other ailments.
Collapse
Affiliation(s)
- Meng-Ying Liu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China.,The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, China
| | - Ashley Nemes
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China.,Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
46
|
Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Front Med (Lausanne) 2018; 5:104. [PMID: 29719834 PMCID: PMC5913290 DOI: 10.3389/fmed.2018.00104] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism’s health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic “senescence” stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the “hallmarks” of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.
Collapse
Affiliation(s)
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
47
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|
48
|
Long-term exposure to MST-312 leads to telomerase reverse transcriptase overexpression in MCF-7 breast cancer cells. Anticancer Drugs 2017; 28:750-756. [PMID: 28520570 DOI: 10.1097/cad.0000000000000508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Telomerase is an enzyme responsible for telomere maintenance in almost all human cancer cells, but generally not expressed in somatic ones. Therefore, antitelomerase therapy is a potentially revolutionary therapeutic strategy, and the antitumor activity of telomerase inhibitors (TI) has been studied extensively recently, mainly for breast cancer. However, the effects expected from treatment with TI will appear only after many cell divisions, but the effects of this long-term approach are unknown. In this work, the consequences of 3120 h exposure of human breast cancer cells to TI MST-312 were investigated. MCF-7 cells were treated with MST-312 at a subtoxic concentration for a long time, and then cell morphology, viability, senescence, and proliferation were analyzed by phase-contrast microscopy, MTT assay, β-galactosidase test, and the trypan blue exclusion assay, respectively. Also, chromosomal stability was evaluated by classical cytogenetic analysis. The average length of telomeres and telomerase reverse transcriptase expression were accessed by real-time PCR and real-time RT-PCR, respectively. The MST-312 showed cytotoxic action and promoted telomere erosion, senescence, and chromosome aberrations, as expected, but in a small proportion. Nevertheless, the proliferation rate of the culture was not affected. As the main effect, the chronic exposure led to cell adaptation by overexpression of telomerase in response to the inhibitor, which is a potential cause of therapeutic failure and may be associated with a poor prognosis. In conclusion, despite the high therapeutic potential of TIs such as MST-312, the molecular outcomes of long-term exposure of tumors on these drugs have to be evaluated when considering their clinical application, especially for breast cancer treatment.
Collapse
|
49
|
Sharifi-Sanjani M, Oyster NM, Tichy ED, Bedi KC, Harel O, Margulies KB, Mourkioti F. Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans. J Am Heart Assoc 2017; 6:JAHA.116.005086. [PMID: 28882819 PMCID: PMC5634248 DOI: 10.1161/jaha.116.005086] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Telomere defects are thought to play a role in cardiomyopathies, but the specific cell type affected by the disease in human hearts is not yet identified. The aim of this study was to systematically evaluate the cell type specificity of telomere shortening in patients with heart failure in relation to their cardiac disease, age, and sex. Methods and Results We studied cardiac tissues from patients with heart failure by utilizing telomere quantitative fluorescence in situ hybridization, a highly sensitive method with single‐cell resolution. In this study, total of 63 human left ventricular samples, including 37 diseased and 26 nonfailing donor hearts, were stained for telomeres in combination with cardiomyocyte‐ or α‐smooth muscle cell‐specific markers, cardiac troponin T, and smooth muscle actin, respectively, and assessed for telomere length. Patients with heart failure demonstrate shorter cardiomyocyte telomeres compared with nonfailing donors, which is specific only to cardiomyocytes within diseased human hearts and is associated with cardiomyocyte DNA damage. Our data further reveal that hypertrophic hearts with reduced ejection fraction exhibit the shortest telomeres. In contrast to other reported cell types, no difference in cardiomyocyte telomere length is evident with age. However, under the disease state, telomere attrition manifests in both young and older patients with cardiac hypertrophy. Finally, we demonstrate that cardiomyocyte‐telomere length is better sustained in women than men under diseased conditions. Conclusions This study provides the first evidence of cardiomyocyte‐specific telomere shortening in heart failure.
Collapse
Affiliation(s)
| | - Nicholas M Oyster
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT
| | - Elisia D Tichy
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT
| | - Kenneth C Bedi
- Cardiovascular Institute, University of Connecticut, Storrs, CT
| | - Ofer Harel
- College of Liberal Arts and Sciences, Department of Statistics, University of Connecticut, Storrs, CT
| | | | - Foteini Mourkioti
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT .,Cardiovascular Institute, University of Connecticut, Storrs, CT.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
50
|
Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC. Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series. J Am Coll Cardiol 2017; 70:196-211. [PMID: 28683968 DOI: 10.1016/j.jacc.2017.05.034] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
Abstract
The generation of reactive oxygen species (ROS) is a fundamental aspect of normal human biology. However, when ROS generation exceeds endogenous antioxidant capacity, oxidative stress arises. If unchecked, ROS production and oxidative stress mediate tissue and cell damage that can spiral in a cycle of inflammation and more oxidative stress. This article is part 1 of a 3-part series covering the role of oxidative stress in cardiovascular disease. The broad theme of this first paper is the mechanisms and biology of oxidative stress. Specifically, the authors review the basic biology of oxidative stress, relevant aspects of mitochondrial function, and stress-related cell death pathways (apoptosis and necrosis) as they relate to the heart and cardiovascular system. They then explore telomere biology and cell senescence. As important regulators and sensors of oxidative stress, telomeres are segments of repetitive nucleotide sequence at each end of a chromosome that protect the chromosome ends from deterioration.
Collapse
Affiliation(s)
- Michael N Sack
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | | | | | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|