1
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Li X, Tang H, Xu T, Wang P, Ma F, Wei H, Fang Z, Wu X, Wang Y, Xue Y, Zhang B. N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth. THE NEW PHYTOLOGIST 2024; 243:1742-1757. [PMID: 38934055 DOI: 10.1111/nph.19928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (H2O2) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.
Collapse
Affiliation(s)
- Xueting Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huashan Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengfei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangfang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Biyao Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| |
Collapse
|
3
|
Ivanauskaite A, Rantala M, Laihonen L, Konert MM, Schwenner N, Mühlenbeck JS, Finkemeier I, Mulo P. Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:549-563. [PMID: 37026998 DOI: 10.1093/pcp/pcad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Acetylation is one of the most common chemical modifications found on a variety of molecules ranging from metabolites to proteins. Although numerous chloroplast proteins have been shown to be acetylated, the role of acetylation in the regulation of chloroplast functions has remained mainly enigmatic. The chloroplast acetylation machinery in Arabidopsis thaliana consists of eight General control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT)-family enzymes that catalyze both N-terminal and lysine acetylation of proteins. Additionally, two plastid GNATs have also been reported to be involved in the biosynthesis of melatonin. Here, we have characterized six plastid GNATs (GNAT1, GNAT2, GNAT4, GNAT6, GNAT7 and GNAT10) using a reverse genetics approach with an emphasis on the metabolomes and photosynthesis of the knock-out plants. Our results reveal the impact of GNAT enzymes on the accumulation of chloroplast-related compounds, such as oxylipins and ascorbate, and the GNAT enzymes also affect the accumulation of amino acids and their derivatives. Specifically, the amount of acetylated arginine and proline was significantly decreased in the gnat2 and gnat7 mutants, respectively, as compared to the wild-type Col-0 plants. Additionally, our results show that the loss of the GNAT enzymes results in increased accumulation of Rubisco and Rubisco activase (RCA) at the thylakoids. Nevertheless, the reallocation of Rubisco and RCA did not have consequent effects on carbon assimilation under the studied conditions. Taken together, our results show that chloroplast GNATs affect diverse aspects of plant metabolism and pave way for future research into the role of protein acetylation.
Collapse
Affiliation(s)
- Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Laura Laihonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Minna M Konert
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Naike Schwenner
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jens S Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
5
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
6
|
Oberleitner L, Perrar A, Macorano L, Huesgen PF, Nowack ECM. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. PLANT PHYSIOLOGY 2022; 189:152-164. [PMID: 35043947 PMCID: PMC9070848 DOI: 10.1093/plphys/kiac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, which evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded (NE) proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids (aa) carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide (crTP). Short imported proteins do not carry discernable targeting signals. To explore whether the import of proteins is accompanied by their N-terminal processing, here we identified N-termini of 208 chromatophore-localized proteins by a mass spectrometry-based approach. Our study revealed extensive N-terminal acetylation and proteolytic processing in both NE and chromatophore-encoded (CE) fractions of the chromatophore proteome. Mature N-termini of 37 crTP-carrying proteins were identified, of which 30 were cleaved in a common processing region. Surprisingly, only the N-terminal ∼50 aa (part 1) become cleaved upon import. This part contains a conserved adaptor protein-1 complex-binding motif known to mediate protein sorting at the trans-Golgi network followed by a predicted transmembrane helix, implying that part 1 anchors the protein co-translationally in the endoplasmic reticulum and mediates trafficking to the chromatophore via the Golgi. The C-terminal part 2 contains conserved secondary structural elements, remains attached to the mature proteins, and might mediate translocation across the chromatophore inner membrane. Short imported proteins remain largely unprocessed. Finally, this work illuminates N-terminal processing of proteins encoded in an evolutionary-early-stage organelle and suggests host-derived posttranslationally acting factors involved in regulation of the CE chromatophore proteome.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
7
|
Xu HF, Raanan H, Dai GZ, Oren N, Berkowicz S, Murik O, Kaplan A, Qiu BS. Reading and surviving the harsh conditions in desert biological soil crust: The cyanobacterial viewpoint. FEMS Microbiol Rev 2021; 45:6308820. [PMID: 34165541 DOI: 10.1093/femsre/fuab036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Biological soil crusts (BSCs) are found in drylands, cover ∼12% of the Earth's surface in arid and semi-arid lands and their destruction is considered an important promoter of desertification. These crusts are formed by the adhesion of soil particles to polysaccharides excreted mostly by filamentous cyanobacteria, which are the pioneers and main primary producers in BSCs. Desert BSCs survive in one of the harshest environments on Earth, and are exposed to daily fluctuations of extreme conditions. The cyanobacteria inhabiting these habitats must precisely read the changing conditions and predict, for example, the forthcoming desiccation. Moreover, they evolved a comprehensive regulation of multiple adaptation strategies to enhance their stress tolerance. Here we focus on what distinguishes cyanobacteria able to revive after dehydration from those that cannot. While important progress has been made in our understanding of physiological, biochemical and omics aspects, clarification of the sensing, signal transduction and responses enabling desiccation tolerance are just emerging. We plot the trajectory of current research and open questions ranging from general strategies and regulatory adaptations in the hydration/desiccation cycle, to recent advances in our understanding of photosynthetic adaptation. The acquired knowledge provides new insights to mitigate desertification and improve plant productivity under drought conditions.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Hagai Raanan
- Department of Plant Pathology and Weed Research, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 2, 8531100 Israel
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Nadav Oren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Simon Berkowicz
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel.,Interuniversity Institute for Marine Sciences in Eilat, P.O.B 469, Eilat, 8810302 Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| |
Collapse
|
8
|
Giglione C, Meinnel T. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs. TRENDS IN PLANT SCIENCE 2021; 26:375-391. [PMID: 33384262 DOI: 10.1016/j.tplants.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
N terminal protein α-acetylation (NTA) is a pervasive protein modification that has recently attracted renewed interest. Early studies on NTA were mostly conducted in yeast and metazoans, providing a detailed portrait of the modification, which was indirectly applied to all eukaryotes. However, new findings originating from photosynthetic organisms have expanded our knowledge of this modification, revealing strong similarities as well as idiosyncratic features. Here, we review the most recent advances on NTA and its dedicated machinery in photosynthetic organisms. We discuss the cytosolic and unique plastid NTA machineries and their critical biological roles in development, stress responses, protein translocation, and stability. These new findings suggest that the multitasking plastid and cytosolic machineries evolved to support the specific needs of photoautotrophs.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Westrich LD, Gotsmann VL, Herkt C, Ries F, Kazek T, Trösch R, Armbruster L, Mühlenbeck JS, Ramundo S, Nickelsen J, Finkemeier I, Wirtz M, Storchová Z, Räschle M, Willmund F. The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry. Nucleic Acids Res 2021; 49:400-415. [PMID: 33330923 PMCID: PMC7797057 DOI: 10.1093/nar/gkaa1192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.
Collapse
Affiliation(s)
- Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Vincent Leon Gotsmann
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Tanja Kazek
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jens Stephan Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, 600 16th St, N316, San Francisco, CA 94143, USA
| | - Jörg Nickelsen
- Department of Molecular Plant Science, University of Munich, Grosshaderner-Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Bienvenut WV, Brünje A, Boyer J, Mühlenbeck JS, Bernal G, Lassowskat I, Dian C, Linster E, Dinh TV, Koskela MM, Jung V, Seidel J, Schyrba LK, Ivanauskaite A, Eirich J, Hell R, Schwarzer D, Mulo P, Wirtz M, Meinnel T, Giglione C, Finkemeier I. Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation. Mol Syst Biol 2020; 16:e9464. [PMID: 32633465 PMCID: PMC7339202 DOI: 10.15252/msb.20209464] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Collapse
Affiliation(s)
- Willy V Bienvenut
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Génétique Quantitative et ÉvolutionGif‐sur‐YvetteFrance
| | - Annika Brünje
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Jean‐Baptiste Boyer
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jens S Mühlenbeck
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Gautier Bernal
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute of Plant Sciences Paris‐SaclayGif‐sur‐YvetteFrance
| | - Ines Lassowskat
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Cyril Dian
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Eric Linster
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Trinh V Dinh
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Minna M Koskela
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Institute of MicrobiologyTřeboňCzech Republic
| | - Vincent Jung
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute IMAGINEParisFrance
| | - Julian Seidel
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Laura K Schyrba
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Aiste Ivanauskaite
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Jürgen Eirich
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Rüdiger Hell
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Dirk Schwarzer
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Paula Mulo
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Markus Wirtz
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Thierry Meinnel
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Carmela Giglione
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Iris Finkemeier
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| |
Collapse
|
11
|
Vanlerberghe GC, Dahal K, Chadee A. Does the stromal concentration of P i control chloroplast ATP synthase protein amount in contrasting growth environments? PLANT SIGNALING & BEHAVIOR 2019; 14:1675473. [PMID: 31583956 PMCID: PMC6866698 DOI: 10.1080/15592324.2019.1675473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 05/16/2023]
Abstract
Changes in the growth environment can generate imbalances in chloroplast photosynthetic metabolism. Under water deficit, stomatal closure limits CO2 availability such that the production of ATP and NADPH by the thylakoid membrane-localized electron transport chain may not match the consumption of these energy intermediates by the stroma-localized Calvin-Benson cycle, thus challenging energy balance. Alternatively, in an elevated CO2 atmosphere, carbon fixation by the Calvin-Benson cycle may outpace the activity of downstream carbohydrate-utilizing processes, thus challenging carbon balance. Our previous studies have shown that, in both of the above scenarios, a mitochondrial alternative oxidase contributes to maintaining energy or carbon balance, highlighting the importance of photosynthesis-respiration interactions in optimizing photosynthesis in different growth environments. In these previous studies, we observed aberrant amounts of chloroplast ATP synthase protein across the different transgenic plant lines and growth conditions, compared to wild-type. Based on these observations, we develop here the hypothesis that an important determinant of chloroplast ATP synthase protein amount is the stromal concentration of inorganic phosphate. ATP synthase is a master regulator of photosynthesis. Coarse control of ATP synthase protein amount by the stromal inorganic phosphate status could provide a means to coordinate the electron transport and carbon fixation reactions of photosynthesis.
Collapse
Affiliation(s)
- Greg C. Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Avesh Chadee
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
12
|
Bouchnak I, van Wijk KJ. N-Degron Pathways in Plastids. TRENDS IN PLANT SCIENCE 2019; 24:917-926. [PMID: 31300194 DOI: 10.1016/j.tplants.2019.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Protein amino (N) termini are major determinants of protein stability in the cytosol of eukaryotes and prokaryotes, conceptualized in the N-end rule pathway, lately referred to as N-degron pathways. Here we argue for the existence of N-degron pathways in plastids of apicomplexa, algae, and plants. The prokaryotic N-degron pathway depends on a caseinolytic protease (CLP) S recognin (adaptor) for the recognition and delivery of N-degron-bearing substrates to CLP chaperone-protease systems. Diversified CLP systems are found in chloroplasts and nonphotosynthetic plastids, including CLPS homologs that specifically interact with a subset of N-terminal residues and stromal proteins. Chloroplast N-terminome data show enrichment of classic stabilizing residues [Ala (A), Ser (S), Val (V), Thr (T)] and avoidance of charged and large hydrophobic residues. We outline experimental test strategies for plastid N-degron pathways.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14850, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
13
|
Cao J, Wang Q, Liu T, Peng N, Huang L. Insights into the post-translational modifications of archaeal Sis10b (Alba): lysine-16 is methylated, not acetylated, and this does not regulate transcription or growth. Mol Microbiol 2018; 109:192-208. [PMID: 29679495 DOI: 10.1111/mmi.13973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
Nucleic acid-binding proteins of the Sac10b family, also referred to as Alba (for acetylation lowers binding affinity), are highly conserved in Archaea. It was reported that Sso10b, a Sac10b homologue from Sulfolobus solfataricus, was acetylated at the ɛ-amino group of K16 and the α-amino group of the N-terminal residue. Notably, acetylation of K16 reduced the affinity of Sso10b for DNA and de-repressed transcription in vitro. Here, we show that Sis10b, a Sac10b homologue from Sulfolobus islandicus, underwent a range of post-translational modifications (PTMs). K16 in Sis10b as well as Sso10b was not acetylated. Substitution of K16 for R16, which resulted in the loss of the PTMs at the site, showed little effect on the growth of the cell and resulted in only a slight change in the expression of a very small fraction of the genes. The N-terminus of Sis10b was nearly completely Nα -acetylated. The reduction or loss of the terminal acetylation led to a significant increase in the cellular concentration of Sis10b, suggesting the involvement of the modification in the control of the turnover of the protein. These results have clarified the PTMs of Sac10b homologues and shed light on the proposed roles of acetylation of the protein.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qian Wang
- Core Facility of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
14
|
Dahal K, Vanlerberghe GC. Improved chloroplast energy balance during water deficit enhances plant growth: more crop per drop. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1183-1197. [PMID: 29281082 PMCID: PMC6018952 DOI: 10.1093/jxb/erx474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 05/02/2023]
Abstract
The non-energy-conserving alternative oxidase (AOX) respiration of plant mitochondria is known to interact with chloroplast photosynthesis. This may have consequences for growth, particularly under sub-optimal conditions when energy imbalances can impede photosynthesis. This hypothesis was tested by comparing the metabolism and growth of wild-type Nicotiana tabacum with that of AOX knockdown and overexpression lines during a prolonged steady-state mild to moderate water deficit. Under moderate water deficit, the AOX amount was an important determinant of the rate of both mitochondrial respiration in the light and net photosynthetic CO2 assimilation (A) at the growth irradiance. In particular, AOX respiration was necessary to maintain optimal proton and electron fluxes at the chloroplast thylakoid membrane, which in turn prevented a water-deficit-induced biochemical limitation of photosynthesis. As a result of differences in A, AOX overexpressors gained more biomass and knockdowns gained less biomass than wild-type during moderate water deficit. Biomass partitioning also differed, with the overexpressors having a higher percentage, and the knockdowns having a lower percentage, of total above-ground biomass in reproductive tissue than wild-type. The results establish that improving chloroplast energy balance by using a non-energy-conserving respiratory electron sink can increase photosynthesis and growth during prolonged water deficit.
Collapse
Affiliation(s)
- Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. ISME JOURNAL 2017; 12:508-519. [PMID: 29053148 PMCID: PMC5776466 DOI: 10.1038/ismej.2017.186] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022]
Abstract
High representation by ammonia-oxidizing archaea (AOA) in marine systems is consistent with their high affinity for ammonia, efficient carbon fixation, and copper (Cu)-centric respiratory system. However, little is known about their response to nutrient stress. We therefore used global transcriptional and proteomic analyses to characterize the response of a model AOA, Nitrosopumilus maritimus SCM1, to ammonia starvation, Cu limitation and Cu excess. Most predicted protein-coding genes were transcribed in exponentially growing cells, and of ~74% detected in the proteome, ~6% were modified by N-terminal acetylation. The general response to ammonia starvation and Cu stress was downregulation of genes for energy generation and biosynthesis. Cells rapidly depleted transcripts for the A and B subunits of ammonia monooxygenase (AMO) in response to ammonia starvation, yet retained relatively high levels of transcripts for the C subunit. Thus, similar to ammonia-oxidizing bacteria, selective retention of amoC transcripts during starvation appears important for subsequent recovery, and also suggests that AMO subunit transcript ratios could be used to assess the physiological status of marine populations. Unexpectedly, cobalamin biosynthesis was upregulated in response to both ammonia starvation and Cu stress, indicating the importance of this cofactor in retaining functional integrity during times of stress.
Collapse
|
16
|
Schmidt C, Beilsten-Edmands V, Mohammed S, Robinson CV. Acetylation and phosphorylation control both local and global stability of the chloroplast F 1 ATP synthase. Sci Rep 2017; 7:44068. [PMID: 28276484 PMCID: PMC5343439 DOI: 10.1038/srep44068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
ATP synthases (ATPases) are enzymes that produce ATP and control the pH in the cell or cellular compartments. While highly conserved over different species, ATPases are structurally well-characterised but the existence and functional significance of many post-translational modifications (PTMs) is not well understood. We combined a range of mass spectrometric techniques to unravel the location and extent of PTMs in the chloroplast ATP synthase (cATPase) purified from spinach leaves. We identified multiple phosphorylation and acetylation sites and found that both modifications stabilise binding of ε and δ subunits. Comparing cross-linking of naturally modified cATPase with the in vitro deacetylated enzyme revealed a major conformational change in the ε subunit in accord with extended and folded forms of the subunit. Locating modified residues within the catalytic head we found that phosphorylated and acetylated residues are primarily on α/β and β/α interfaces respectively. By aligning along different interfaces the higher abundance acetylated residues are proximal to the regulatory sites while the lower abundance phosphorylation sites are more densely populated at the catalytic sites. We propose that modifications in the catalytic head, together with the conformational change in subunit ε, work in synergy to fine-tune the enzyme during adverse conditions.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational Modifications in Regulation of Chloroplast Function: Recent Advances. FRONTIERS IN PLANT SCIENCE 2017; 8:240. [PMID: 28280500 PMCID: PMC5322211 DOI: 10.3389/fpls.2017.00240] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation.
Collapse
Affiliation(s)
| | | | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
18
|
Akashi K, Mifune Y, Morita K, Ishitsuka S, Tsujimoto H, Ishihara T. Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:479-487. [PMID: 27060681 DOI: 10.1002/jsfa.7749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Watermelon (Citrullus lanatus L.) originates from arid regions of southern Africa, and its fruit contains a large amount of the amino acid citrulline, an efficient hydroxyl radical scavenger. Citrulline is implicated in the production of nitric oxide in human endothelium, and potential health benefits including vasodilatation and antioxidant functions have been suggested. However, citrulline metabolism in watermelon fruits is poorly understood. RESULTS This study examined the accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. In mature fruits, highest citrulline concentration was observed in the outer peel, followed by the central portion of the flesh and inner rinds, whereas the level was lower in the peripheral portion of the flesh. Citrulline content was generally low in immature fruits. Spatial and developmental patterns of citrulline accumulation were largely different from those of the antioxidant lycopene, total proteins, and soluble sugars such as glucose, fructose, and sucrose. Principal component analysis suggested a clear distinction of the central flesh and outer peels in mature fruits from other tissues in terms of the levels of major nutrients. CONCLUSION These observations suggested that citrulline accumulation may be regulated in a distinct manner from other nutrients during watermelon fruit maturation. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kinya Akashi
- School of Agricultural, Biological and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Yuki Mifune
- School of Agricultural, Biological and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Kaori Morita
- Tottori Prefectural Horticultural Research Center, 2048 Yurashuku, Hokuei, Tottori 689-2221, Japan
| | - Souichi Ishitsuka
- Tottori Prefectural Horticultural Research Center, 2048 Yurashuku, Hokuei, Tottori 689-2221, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Toshiyuki Ishihara
- Tottori Prefectural Horticultural Research Center, 2048 Yurashuku, Hokuei, Tottori 689-2221, Japan
| |
Collapse
|
19
|
Dahal K, Martyn GD, Alber NA, Vanlerberghe GC. Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:657-671. [PMID: 28011719 PMCID: PMC5441918 DOI: 10.1093/jxb/erw469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitochondria have a non-energy-conserving alternative oxidase (AOX) proposed to support photosynthesis, perhaps by promoting energy balance under varying growth conditions. To investigate this, wild-type (WT) Nicotiana tabacum were compared with AOX knockdown and overexpression lines. In addition, the amount of AOX protein in WT plants was compared with that of chloroplast light-harvesting complex II (LHCB2), whose amount is known to respond to chloroplast energy status. With increased growth irradiance, WT leaves maintained higher rates of respiration in the light (RL), but no differences in RL or photosynthesis were seen between the WT and transgenic lines, suggesting that, under non-stress conditions, AOX was not critical for leaf metabolism, regardless of growth irradiance. However, under drought, the AOX amount became an important determinant of RL, which in turn was an important determinant of chloroplast energy balance (measured as photosystem II excitation pressure, EP), and photosynthetic performance. In the WT, the AOX amount increased and the LHCB2 amount decreased with increased growth irradiance or drought severity. These changes in protein amounts correlated strongly, in opposing ways, with growth EP. This suggests that a signal deriving from the photosynthetic electron transport chain status coordinately controls the amounts of AOX and LHCB2, which then both contribute to maintaining chloroplast energy balance, particularly under stress conditions.
Collapse
Affiliation(s)
- Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| | - Greg D Martyn
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| | - Nicole A Alber
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| |
Collapse
|
20
|
Akashi K, Yoshimura K, Kajikawa M, Hanada K, Kosaka R, Kato A, Katoh A, Nanasato Y, Tsujimoto H, Yokota A. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon. Biosci Biotechnol Biochem 2016; 80:1907-16. [DOI: 10.1080/09168451.2016.1191328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.
Collapse
Affiliation(s)
- Kinya Akashi
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | - Kazuya Yoshimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Masataka Kajikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Kouhei Hanada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Rina Kosaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Atsushi Kato
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | - Akira Katoh
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Yoshihiko Nanasato
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | | | - Akiho Yokota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
21
|
Vanlerberghe GC, Martyn GD, Dahal K. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. PHYSIOLOGIA PLANTARUM 2016; 157:322-37. [PMID: 27080742 DOI: 10.1111/ppl.12451] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/11/2016] [Indexed: 05/19/2023]
Abstract
Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Greg D Martyn
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Keshav Dahal
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
22
|
Rathore OS, Faustino A, Prudêncio P, Van Damme P, Cox CJ, Martinho RG. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms. Sci Rep 2016; 6:21304. [PMID: 26861501 PMCID: PMC4748286 DOI: 10.1038/srep21304] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022] Open
Abstract
Protein N-terminal acetylation is an ancient and ubiquitous co-translational modification catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). Prokaryotes have at least 3 NATs, whereas humans have six distinct but highly conserved NATs, suggesting an increase in regulatory complexity of this modification during eukaryotic evolution. Despite this, and against our initial expectations, we determined that NAT diversification did not occur in the eukaryotes, as all six major human NATs were most likely present in the Last Eukaryotic Common Ancestor (LECA). Furthermore, we also observed that some NATs were actually secondarily lost during evolution of major eukaryotic lineages; therefore, the increased complexity of the higher eukaryotic proteome occurred without a concomitant diversification of NAT complexes.
Collapse
Affiliation(s)
- Om Singh Rathore
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal.,ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, Faro, Portugal
| | - Alexandra Faustino
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal
| | - Pedro Prudêncio
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| | - Petra Van Damme
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Cymon J Cox
- Center of Marine Sciences, University of Algarve, Faro, Portugal
| | - Rui Gonçalo Martinho
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| |
Collapse
|
23
|
Dahal K, Martyn GD, Vanlerberghe GC. Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink. THE NEW PHYTOLOGIST 2015; 208:382-95. [PMID: 26032897 DOI: 10.1111/nph.13479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/23/2015] [Indexed: 05/02/2023]
Abstract
Chloroplasts have means to manage excess reducing power but these mechanisms may become restricted by rates of ATP turnover. Alternative oxidase (AOX) is a mitochondrial terminal oxidase that uncouples the consumption of reducing power from ATP synthesis. Physiological and biochemical analyses were used to compare respiration and photosynthesis of Nicotiana tabacum wild-type (WT) plants with that of transgenic lines overexpressing AOX, under both well-watered and drought stress conditions. With increasing drought severity, AOX overexpression acted to increase respiration in the light (RL ) relative to WT. CO2 and light response curves indicated that overexpression also improved photosynthetic performance relative to WT, as drought severity increased. This was not due to an effect of AOX amount on leaf water status or the development of the diffusive limitations that occur due to drought. Rather, AOX overexpression dampened photosystem stoichiometry adjustments and losses of key photosynthetic components that occurred in WT. The results indicate that AOX amount influences RL , particularly during severe drought, when cytochrome pathway respiration may become increasingly restricted. This impacts the chloroplast redox state, influencing how the photosynthetic apparatus responds to increasing drought severity. In particular, the development of biochemical limitations to photosynthesis are dampened in plants with increased nonenergy conserving RL .
Collapse
Affiliation(s)
- Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg D Martyn
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
24
|
Linster E, Stephan I, Bienvenut WV, Maple-Grødem J, Myklebust LM, Huber M, Reichelt M, Sticht C, Geir Møller S, Meinnel T, Arnesen T, Giglione C, Hell R, Wirtz M. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat Commun 2015; 6:7640. [PMID: 26184543 PMCID: PMC4530475 DOI: 10.1038/ncomms8640] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/27/2015] [Indexed: 11/08/2022] Open
Abstract
N-terminal acetylation (NTA) catalysed by N-terminal acetyltransferases (Nats) is among the most common protein modifications in eukaryotes, but its significance is still enigmatic. Here we characterize the plant NatA complex and reveal evolutionary conservation of NatA biochemical properties in higher eukaryotes and uncover specific and essential functions of NatA for development, biosynthetic pathways and stress responses in plants. We show that NTA decreases significantly after drought stress, and NatA abundance is rapidly downregulated by the phytohormone abscisic acid. Accordingly, transgenic downregulation of NatA induces the drought stress response and results in strikingly drought resistant plants. Thus, we propose that NTA by the NatA complex acts as a cellular surveillance mechanism during stress and that imprinting of the proteome by NatA is an important switch for the control of metabolism, development and cellular stress responses downstream of abscisic acid.
Collapse
Affiliation(s)
- Eric Linster
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
- Hartmut Hoffmann-Berling International Graduate School, University of Heidelberg, Heidelberg 69120, Germany
| | - Iwona Stephan
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Willy V. Bienvenut
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 21, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198, France
| | - Jodi Maple-Grødem
- Center for Organelle Research, University of Stavanger, Stavanger N-4036, Norway
| | - Line M. Myklebust
- Department of Molecular Biology, University of Bergen, Bergen N-5020, Norway
| | - Monika Huber
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
- Hartmut Hoffmann-Berling International Graduate School, University of Heidelberg, Heidelberg 69120, Germany
| | | | | | - Simon Geir Møller
- Center for Organelle Research, University of Stavanger, Stavanger N-4036, Norway
- Department of Biological Sciences, St John's University, New York, New York 11439, USA
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger 4068, Norway
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 21, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198, France
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen N-5020, Norway
- Department of Surgery, Haukeland University Hospital, Bergen N-5021, Norway
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 21, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198, France
| | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
25
|
Giglione C, Fieulaine S, Meinnel T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie 2015; 114:134-46. [PMID: 25450248 DOI: 10.1016/j.biochi.2014.11.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
N-terminal protein modifications correspond to the first modifications which in principle any protein may undergo, before translation is completed by the ribosome. This class of essential modifications can have different nature or function and be catalyzed by a variety of dedicated enzymes. Here, we review the current state of the major N-terminal co-translational modifications, with a particular emphasis to their catalysts, which belong to metalloprotease and acyltransferase clans. The earliest of these modifications corresponds to the N-terminal methionine excision, an ubiquitous and essential process leading to the removal of the first methionine. N-alpha acetylation occurs also in all Kingdoms although its extent appears to be significantly increased in higher eukaryotes. Finally, N-myristoylation is a crucial pathway existing only in eukaryotes. Recent studies dealing on how some of these co-translational modifiers might work in close vicinity of the ribosome is starting to provide new information on when these modifications exactly take place on the elongating nascent chain and the interplay with other ribosome biogenesis factors taking in charge the nascent chains. Here a comprehensive overview of the recent advances in the field of N-terminal protein modifications is given.
Collapse
Affiliation(s)
- Carmela Giglione
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | - Sonia Fieulaine
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
26
|
Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA, Meinnel T, Hell R, Giglione C, Wirtz M. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling. Proteomics 2015; 15:2426-35. [PMID: 25951519 PMCID: PMC4692087 DOI: 10.1002/pmic.201500025] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/20/2015] [Accepted: 04/30/2015] [Indexed: 11/07/2022]
Abstract
Protein N(α) -terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six N(α) -acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein N(α) -termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays N(ε) -acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947).
Collapse
Affiliation(s)
- Trinh V Dinh
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Willy V Bienvenut
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Eric Linster
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Hartmut Hoffmann-Berling International Graduate School, University of HeidelbergHeidelberg, Germany
| | - Anna Feldman-Salit
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies gGbmHHeidelberg, Germany
| | - Vincent A Jung
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Rüdiger Hell
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Markus Wirtz
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
27
|
Silva RD, Martinho RG. Developmental roles of protein N-terminal acetylation. Proteomics 2015; 15:2402-9. [PMID: 25920796 DOI: 10.1002/pmic.201400631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/26/2015] [Accepted: 04/24/2015] [Indexed: 12/30/2022]
Abstract
Discovered more than 50 years ago, N-terminal acetylation (N-Ac) is one of the most common protein modifications. Catalyzed by different N-terminal acetyltransferases (NATs), N-Ac was originally believed to mostly promote protein stability. However, several functional consequences at substrate level were recently described that yielded important new insights about the distinct molecular functions for this modification. The ubiquitous and apparent irreversible nature of this protein modification leads to the assumption that N-Ac mostly executes constitutive functions. In spite of the large number of substrates for each NAT, recent studies in multicellular organisms have nevertheless indicated very specific phenotypes after NAT loss. This raises the hypothesis that in vivo N-Ac is only functionally rate limiting for a small subset of substrates. In this review, we will discuss the function of N-Ac in the context of a developing organism. We will propose that some rate limiting NAT substrates may be tissue-specific leading to differential functions of N-Ac during development of multicellular organisms. Moreover, we will also propose the existence of tissue and developmental-specific mechanisms that differentially regulate N-Ac.
Collapse
Affiliation(s)
- Rui D Silva
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Rui G Martinho
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
28
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
29
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
30
|
van Wijk KJ. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:75-111. [PMID: 25580835 DOI: 10.1146/annurev-arplant-043014-115547] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastids, mitochondria, and peroxisomes are key organelles with dynamic proteomes in photosynthetic eukaryotes. Their biogenesis and activity must be coordinated and require intraorganellar protein maturation, degradation, and recycling. The three organelles together are predicted to contain ∼200 presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar proteins, such as N-end degrons and tagging systems, have not been identified, but the substrate recognition mechanisms likely share similarities between organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome. This review summarizes (putative) plant organellar protease functions and substrate-protease relationships. Examples illustrate key proteolytic events.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
31
|
Lehtimäki N, Koskela MM, Dahlström KM, Pakula E, Lintala M, Scholz M, Hippler M, Hanke GT, Rokka A, Battchikova N, Salminen TA, Mulo P. Posttranslational modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis chloroplasts. PLANT PHYSIOLOGY 2014; 166:1764-76. [PMID: 25301888 PMCID: PMC4256869 DOI: 10.1104/pp.114.249094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rapid responses of chloroplast metabolism and adjustments to photosynthetic machinery are of utmost importance for plants' survival in a fluctuating environment. These changes may be achieved through posttranslational modifications of proteins, which are known to affect the activity, interactions, and localization of proteins. Recent studies have accumulated evidence about the crucial role of a multitude of modifications, including acetylation, methylation, and glycosylation, in the regulation of chloroplast proteins. Both of the Arabidopsis (Arabidopsis thaliana) leaf-type FERREDOXIN-NADP(+) OXIDOREDUCTASE (FNR) isoforms, the key enzymes linking the light reactions of photosynthesis to carbon assimilation, exist as two distinct forms with different isoelectric points. We show that both AtFNR isoforms contain multiple alternative amino termini and undergo light-responsive addition of an acetyl group to the α-amino group of the amino-terminal amino acid of proteins, which causes the change in isoelectric point. Both isoforms were also found to contain acetylation of a conserved lysine residue near the active site, while no evidence for in vivo phosphorylation or glycosylation was detected. The dynamic, multilayer regulation of AtFNR exemplifies the complex regulatory network systems controlling chloroplast proteins by a range of posttranslational modifications, which continues to emerge as a novel area within photosynthesis research.
Collapse
Affiliation(s)
- Nina Lehtimäki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Minna M Koskela
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Käthe M Dahlström
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Eveliina Pakula
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Minna Lintala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Martin Scholz
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Michael Hippler
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Guy T Hanke
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Anne Rokka
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Natalia Battchikova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Tiina A Salminen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| |
Collapse
|
32
|
Holmes WM, Mannakee BK, Gutenkunst RN, Serio TR. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat Commun 2014; 5:4383. [PMID: 25023910 PMCID: PMC4140192 DOI: 10.1038/ncomms5383] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
N-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. While loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI+], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype.
Collapse
Affiliation(s)
- William M Holmes
- 1] Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA [2]
| | - Brian K Mannakee
- Graduate Interdisciplinary Program in Statistics, University of Arizona, 1548 East Drachman Street, Tucson, Arizona 85721, USA
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona 85721, USA
| | - Tricia R Serio
- 1] Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA [2]
| |
Collapse
|