1
|
Zhang H, Wang X, Chen A, Li S, Tao R, Chen K, Huang P, Li L, Huang J, Li C, Zhang S. Comparison of the full-length sequence and sub-regions of 16S rRNA gene for skin microbiome profiling. mSystems 2024; 9:e0039924. [PMID: 38934545 PMCID: PMC11264597 DOI: 10.1128/msystems.00399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The skin microbiome plays a pivotal role in human health by providing protective and functional benefits. Furthermore, its inherent stability and individual specificity present novel forensic applications. These aspects have sparked considerable research enthusiasm among scholars across various fields. However, the selection of specific 16S rRNA hypervariable regions for skin microbiome studies is not standardized and should be validated through extensive research tailored to different research objectives and targeted bacterial taxa. Notably, third-generation sequencing (TGS) technology leverages the full discriminatory power of the 16S gene and enables more detailed and accurate microbial community analyses. Here, we conducted full-length 16S sequencing of 141 skin microbiota samples from multiple human anatomical sites using the PacBio platform. Based on this data, we generated derived 16S sub-region data through an in silico experiment. Comparisons between the 16S full-length and the derived variable region data revealed that the former can provide superior taxonomic resolution. However, even with full 16S gene sequencing, limitations arise in achieving 100% taxonomic resolution at the species level for skin samples. Additionally, the capability to resolve high-abundance bacteria (TOP30) at the genus level remains generally consistent across different 16S variable regions. Furthermore, the V1-V3 region offers a resolution comparable with that of full-length 16S sequences, in comparison to other hypervariable regions studied. In summary, while acknowledging the benefits of full-length 16S gene analysis, we propose the targeting of specific sub-regions as a practical choice for skin microbial research, especially when balancing the accuracy of taxonomic classification with limited sequencing resources, such as the availability of only short-read sequencing or insufficient DNA.IMPORTANCESkin acts as the primary barrier to human health. Considering the different microenvironments, microbial research should be conducted separately for different skin regions. Third-generation sequencing (TGS) technology can make full use of the discriminatory power of the full-length 16S gene. However, 16S sub-regions are widely used, particularly when faced with limited sequencing resources including the availability of only short-read sequencing and insufficient DNA. Comparing the 16S full-length and the derived variable region data from five different human skin sites, we confirmed the superiority of the V1-V3 region in skin microbiota analysis. We propose the targeting of specific sub-regions as a practical choice for microbial research.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, Liaoning, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Shilin Li
- Institute of Forensic Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Science, Shanghai, China
| | - Kaiqin Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ping Huang
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiang Huang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li Y, Chen H, Xie X, Pang R, Huang S, Ying H, Chen M, Xue L, Zhang J, Ding Y, Wu Q. Skin microbiome profiling reveals the crucial role of microbial metabolites in anti-photoaging. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12987. [PMID: 38968385 DOI: 10.1111/phpp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Skin microbiota is essential for health maintenance. Photoaging is the primary environmental factor that affects skin homeostasis, but whether it influences the skin microbiota remains unclear. OBJECTIVE The objective of this study is to investigate the relationship between photoaging and skin microbiome. METHODS A cohort of senior bus drivers was considered as a long-term unilateral ultraviolet (UV) irradiated population. 16S rRNA amplicon sequencing was conducted to assess skin microbial composition variations on different sides of their faces. The microbiome characteristics of the photoaged population were further examined by photoaging guinea pig models, and the correlations between microbial metabolites and aging-related cytokines were analyzed by high-throughput sequencing and reverse transcription polymerase chain reaction. RESULTS Photoaging decreased the relative abundance of microorganisms including Georgenia and Thermobifida in human skin and downregulated the generation of skin microbe-derived antioxidative metabolites such as ectoin. In animal models, Lactobacillus and Streptobacillus abundance in both the epidermis and dermis dropped after UV irradiation, resulting in low levels of skin antioxidative molecules and leading to elevated expressions of the collagen degradation factors matrix metalloproteinase (MMP)-1 and MMP-2 and inflammatory factors such as interleukin (IL)-1β and IL-6. CONCLUSIONS Skin microbial characteristics have an impact in photoaging and the loss of microbe-derived antioxidative metabolites impairs skin cells and accelerates the aging process. Therefore, microbiome-based therapeutics may have potential in delaying skin aging.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shixuan Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hang Ying
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Maslova E, EisaianKhongi L, Rigole P, Coenye T, McCarthy RR. Carbon source competition within the wound microenvironment can significantly influence infection progression. NPJ Biofilms Microbiomes 2024; 10:52. [PMID: 38918415 PMCID: PMC11199515 DOI: 10.1038/s41522-024-00518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
It is becoming increasingly apparent that commensal skin bacteria have an important role in wound healing and infection progression. However, the precise mechanisms underpinning many of these probiotic interactions remain to be fully uncovered. In this work, we demonstrate that the common skin commensal Cutibacterium acnes can limit the pathogenicity of the prevalent wound pathogen Pseudomonas aeruginosa in vivo. We show that this impact on pathogenicity is independent of any effect on growth, but occurs through a significant downregulation of the Type Three Secretion System (T3SS), the primary toxin secretion system utilised by P. aeruginosa in eukaryotic infection. We also show a downregulation in glucose acquisition systems, a known regulator of the T3SS, suggesting that glucose availability in a wound can influence infection progression. C. acnes is well known as a glucose fermenting organism, and we demonstrate that topically supplementing a wound with glucose reverses the probiotic effects of C. acnes. This suggests that introducing carbon source competition within the wound microenvironment may be an effective way to prevent or limit wound infection.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Lara EisaianKhongi
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
| |
Collapse
|
4
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
5
|
Ho M, Nguyen HN, Van Hoang M, Bui TTT, Vu BQ, Dinh THT, Vo HTM, Blaydon DC, Eldirany SA, Bunick CG, Bui CB. Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients. Hum Genomics 2024; 18:38. [PMID: 38627868 PMCID: PMC11022333 DOI: 10.1186/s40246-024-00603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Congenital ichthyosis (CI) is a collective group of rare hereditary skin disorders. Patients present with epidermal scaling, fissuring, chronic inflammation, and increased susceptibility to infections. Recently, there is increased interest in the skin microbiome; therefore, we hypothesized that CI patients likely exhibit an abnormal profile of epidermal microbes because of their various underlying skin barrier defects. Among recruited individuals of Southeast Asian ethnicity, we performed skin meta-genomics (i.e., whole-exome sequencing to capture the entire multi-kingdom profile, including fungi, protists, archaea, bacteria, and viruses), comparing 36 CI patients (representing seven subtypes) with that of 15 CI age-and gender-matched controls who had no family history of CI. RESULTS This case-control study revealed 20 novel and 31 recurrent pathogenic variants. Microbiome meta-analysis showed distinct microbial populations, decreases in commensal microbiota, and higher colonization by pathogenic species associated with CI; these were correlated with increased production of inflammatory cytokines and Th17- and JAK/STAT-signaling pathways in peripheral blood mononuclear cells. In the wounds of CI patients, we identified specific changes in microbiota and alterations in inflammatory pathways, which are likely responsible for impaired wound healing. CONCLUSIONS Together, this research enhances our understanding of the microbiological, immunological, and molecular properties of CI and should provide critical information for improving therapeutic management of CI patients.
Collapse
Affiliation(s)
- Minh Ho
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA
| | - Huynh-Nga Nguyen
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam
- Department of Biology, Dalat University, Da Lat, Lam Dong, Vietnam
| | - Minh Van Hoang
- Vietnam Vascular Anomalies Center, University Medical Center 3, Ho Chi Minh, Vietnam
| | | | - Bao-Quoc Vu
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam
- Department of Biology, Dalat University, Da Lat, Lam Dong, Vietnam
| | - Truc Huong Thi Dinh
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Hoa Thi My Vo
- Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
| | - Diana C Blaydon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Sherif A Eldirany
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA
| | - Christopher G Bunick
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA.
| | - Chi-Bao Bui
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam.
- Department of Microbiology, City Children's Hospital, Ho Chi Minh, Vietnam.
- School of Medicine, Vietnam National University, Ho Chi Minh, Vietnam.
| |
Collapse
|
6
|
Zhang Q, Wang Y, Ran C, Zhou Y, Zhao Z, Xu T, Hou H, Lu Y. Characterization of distinct microbiota associated with androgenetic alopecia patients treated and untreated with platelet-rich plasma (PRP). Animal Model Exp Med 2024; 7:106-113. [PMID: 38720238 PMCID: PMC11079158 DOI: 10.1002/ame2.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Androgenic alopecia (AGA) is the most common type of hair loss in men, and there are many studies on the treatment of hair loss by platelet-rich plasma (PRP). The human scalp contains a huge microbiome, but its role in the process of hair loss remains unclear, and the relationship between PRP and the microbiome needs further study. Therefore, the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition. METHODS We performed PRP treatment on 14 patients with AGA, observed their clinical efficacy, and collected scalp swab samples before and after treatment. The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification. RESULTS The results showed that PRP was effective in the treatment of AGA patients, and the hair growth increased significantly. The results of relative abundance analysis of microbiota showed that after treatment, g_Cutibacterium increased and g_Staphylococcus decreased, which played a stable role in scalp microbiota. In addition, g_Lawsonella decreased, indicating that the scalp oil production decreased after treatment. CONCLUSIONS The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.
Collapse
Affiliation(s)
- Qian Zhang
- Beijing Life Science AcademyBeijingChina
| | - Yanan Wang
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Cheng Ran
- Department of OtolaryngologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Yingmei Zhou
- Department of DermatologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Zigang Zhao
- Department of DermatologyHainan Hospital of PLA General HospitalSanyaChina
| | - Tianhua Xu
- Department of OtolaryngologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Hongwei Hou
- Beijing Life Science AcademyBeijingChina
- Department of Chemical EngineeringTsinghua UniversityBeijingChina
| | - Yuan Lu
- Department of DermatologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| |
Collapse
|
7
|
Arya P, Kaur M, Chosyang S, Kushwaha N, Singh B. Decrypting Skin Microbiome in Psoriasis: Current Status. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2023; 8:166-178. [PMID: 39301472 PMCID: PMC11361554 DOI: 10.1177/24755303231194293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Psoriasis is an autoimmune, chronic, inflammatory skin condition of multifactorial etiology. Recent studies in human skin microbiome research have revealed the dysbiosis in lesional skin of psoriatic patients, as well as have established the association of dysbiosis in the elicitation of inflammatory response of psoriatic skin. Objective The present review aimed to recapitulate the insights of psoriasis lesional skin microbiome studies published in the last 2 decades, and to determine the most important bacterial genera that can be deployed as psoriatic skin microbial signature for therapeutic intervention. Methods To achieve the stated objectives, full-text analysis of literature selected through systematic search of digital literature databases has been carried out following PRISMA guidelines. Results Literature analysis suggests differential abundance of specific bacterial genera in the lesional psoriatic skin (LPS) compared to normal skin (NS) of psoriasis patients and skin from healthy subjects. These bacterial genera collectively can be utilized as potential biomarker for constructing lesional psoriatic skin specific microbial signature, and to explore the role of bacterial species in maintaining the skin homeostasis. The analysis further revealed that multiple bacterial species instead of a single bacterial species is important for understanding the psoriasis etiogenesis. Furthermore, decreased microbiome stability and increased diversity might have role in the exacerbation of lesions on skin of psoriatic patients. Conclusion Considering the importance of human skin microbiome dysbiosis in psoriasis, research efforts should be carried out to develop new therapeutic measures in addition to current therapies by exploiting the human and host-skin-associated microbial genomic and metabolomic knowledge.
Collapse
Affiliation(s)
- Preeti Arya
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Manpreet Kaur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Stanzin Chosyang
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neelam Kushwaha
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Balvinder Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Sato T, Nikolovski J, Gould R, Lboukili I, Roux P, Al‐Ghalith G, Orie J, Insel R, Stamatas GN. Skin surface biomarkers are associated with future development of atopic dermatitis in children with family history of allergic disease. Skin Res Technol 2023; 29:e13470. [PMID: 37881058 PMCID: PMC10582603 DOI: 10.1111/srt.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common childhood chronic inflammatory skin disorder that can significantly impact quality of life and has been linked to the subsequent development of food allergy, asthma, and allergic rhinitis, an association known as the "atopic march." OBJECTIVE The aim of this study was to identify biomarkers collected non-invasively from the skin surface in order to predict AD before diagnosis across a broad age range of children. METHODS Non-invasive skin surface measures and biomarkers were collected from 160 children (3-48 months of age) of three groups: (A) healthy with no family history of allergic disease, (B) healthy with family history of allergic disease, and (C) diagnosed AD. RESULTS Eleven of 101 children in group B reported AD diagnosis in the subsequent 12 months following the measurements. The children who developed AD had increased skin immune markers before disease onset, compared to those who did not develop AD in the same group and to the control group. In those enrolled with AD, lesional skin was characterized by increased concentrations of certain immune markers and transepidermal water loss, and decreased skin surface hydration. CONCLUSIONS Defining risk susceptibility before onset of AD through non-invasive methods may help identify children who may benefit from early preventative interventions.
Collapse
Affiliation(s)
- Takahiro Sato
- Janssen Research & Development, LLCRaritanNew JerseyUSA
| | | | - Russell Gould
- Janssen Research & Development, LLCRaritanNew JerseyUSA
| | - Imane Lboukili
- Essential Health Translational ScienceJohnson & Johnson Santé Beauté FranceIssy‐les‐MoulineauxFrance
| | - Pierre‐Francois Roux
- Essential Health Translational ScienceJohnson & Johnson Santé Beauté FranceIssy‐les‐MoulineauxFrance
| | | | - Jeremy Orie
- Janssen Research & Development, LLCRaritanNew JerseyUSA
| | - Richard Insel
- Janssen Research & Development, LLCRaritanNew JerseyUSA
| | - Georgios N. Stamatas
- Essential Health Translational ScienceJohnson & Johnson Santé Beauté FranceIssy‐les‐MoulineauxFrance
| |
Collapse
|
9
|
Ghosh A, Panda S. Cutaneous Dysbiosis and Dermatophytosis: The Unexplored Link. Indian J Dermatol 2023; 68:508-514. [PMID: 38099124 PMCID: PMC10718259 DOI: 10.4103/ijd.ijd_828_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The skin, besides being the largest interface between the body and the external environment, also forms an ecological niche which is populated by almost a trillion microorganisms. These, collectively known as the cutaneous microbiome, form a dynamic yet well-controlled system that resists invasion by pathogenic microorganisms, functioning as the so-called 'microbiological barrier', modulating the body's immune response, indirectly playing a crucial role in the pathogenesis of several inflammatory diseases. The composition and complexity of the microbiome are yet to be fully understood. The term 'dysbiosis' originally was coined in 1908 for a change in the gut microbiome. The potential role of 'cutaneous dysbiosis' in human dermatophytic infections, especially in the backdrop of the current epidemic of chronic, recurrent and treatment-resistant dermatophytosis, is understandably a topic of interest. The purpose of this review was to assess all studies using culture-independent methods for analysing the skin microbiome in various dermatophyte infections. The PubMed and Google Scholar databases were searched using the terms 'microbiome', 'dysbiosis', 'dermatophytes', 'dermatophytosis' and 'tinea'. All studies involving the use of standard sequencing methods for the study of the microbiome in various dermatophytoses were included. A total of four studies assessing the local skin microbiome associated with dermatophytic infections were found-one for tinea capitis, one for onychomycosis (in both psoriatic and nonpsoriatic nails) and two studying patients of tinea pedis. The studies determined the microbiological patterns in patients and compared them with healthy individuals using sequencing methods. Significant differences in the species diversity and counts of the various microorganisms between patient and control groups were demonstrated in all. However, cross-sectional design and the absence of pre- and post-treatment data along with a limited sample size were the major limitations in all of them. No data regarding other forms of tinea, most importantly, tinea cruris, corporis, faciei, etc. were found. The existing studies demonstrate a change in the microbiome or dysbiosis associated with cases of dermatophytosis, but are inadequate to determine a causal association. The changes may also be wholly or partly attributed to the effect of the infection. Further longitudinal studies from different regions of the world, also involving other forms of dermatophytosis, are required to provide a clearer insight and a more representative picture.
Collapse
Affiliation(s)
- Aparajita Ghosh
- From the Department of Dermatology, K.P.C Medical College and Hospital, Kolkata, West Bengal, India
| | - Saumya Panda
- Department of Dermatology, JIMS Hospital and Medical College, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Santiago-Rodriguez TM, Le François B, Macklaim JM, Doukhanine E, Hollister EB. The Skin Microbiome: Current Techniques, Challenges, and Future Directions. Microorganisms 2023; 11:1222. [PMID: 37317196 PMCID: PMC10223452 DOI: 10.3390/microorganisms11051222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
Skin acts as a barrier that promotes the colonization of bacteria, fungi, archaea, and viruses whose membership and function may differ depending on the various specialized niches or micro-environments of the skin. The group of microorganisms inhabiting the skin, also known as the skin microbiome, offers protection against pathogens while actively interacting with the host's immune system. Some members of the skin microbiome can also act as opportunistic pathogens. The skin microbiome is influenced by factors such as skin site, birth mode, genetics, environment, skin products, and skin conditions. The association(s) of the skin microbiome with health and disease has (have) been identified and characterized via culture-dependent and culture-independent methods. Culture-independent methods (such as high-throughput sequencing), in particular, have expanded our understanding of the skin microbiome's role in maintaining health or promoting disease. However, the intrinsic challenges associated with the low microbial biomass and high host content of skin microbiome samples have hindered advancements in the field. In addition, the limitations of current collection and extraction methods and biases derived from sample preparation and analysis have significantly influenced the results and conclusions of many skin microbiome studies. Therefore, the present review discusses the technical challenges associated with the collection and processing of skin microbiome samples, the advantages and disadvantages of current sequencing approaches, and potential future areas of focus for the field.
Collapse
|
11
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
12
|
Richter K, Wohlrab J. [Impact of preservatives in topicals on the cutaneous microbiota]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:171-181. [PMID: 36729161 PMCID: PMC9981539 DOI: 10.1007/s00105-023-05112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/03/2023]
Abstract
Preservatives are used to stabilize topical preparations and protect the user from the influence of pathogenic microbes. After the application of a topical preparation, the matrix undergoes a metamorphosis, and by proportional evaporation of the hydrophilic phase the preservative may accumulate on the skin surface. This is believed to lead to antiseptic effects and may influence the diversity of the cutaneous microbiota. The regulation of the cutaneous microbiome and the associated influencing factors is a complex system that results in highly individualized conditions. Therefore, investigations on the influence of defined interventions are methodologically difficult. In the present proof-of-concept study, potential antiseptic effects of preservatives were investigated in a combination of in vitro and in vivo methods using microbiological culture tests. In addition, the investigations served to develop a clinical study design to answer further questions and use of an extended range of methods. The results support the hypothesis of an antiseptic effect of the tested preservatives (methyl-4-hydroxybenzoate and propyl-4-hydroxybenzoate, potassium sorbate and propylene glycol) on prominent reference bacteria, which could also be observed in clinical settings.
Collapse
Affiliation(s)
- Kathrin Richter
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06114 Halle (Saale), Deutschland
| | - Johannes Wohlrab
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06114, Halle (Saale), Deutschland. .,An-Institut für angewandte Dermatopharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Deutschland.
| |
Collapse
|
13
|
Albanova VI, Kalinina OV, Petrova SY. The use of urea for skin barrier correction. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The review summarizes information about the main causes and pathogenesis of xerosis cutis as one of the conditions indicating a violation of the epidermal barrier. Xerosis cutis is a clinical sign of a decrease in the amount and/or quality of lipids and/or hydrophilic substances in the stratum corneum of the epidermis. The modern approach to the treatment of dermatoses accompanied by violations of the epidermal barrier includes basic moisturizers. Urea not only moisturizes the skin. It is involved in the regulation of barrier function and antimicrobial protection. It is a low-molecular regulator of protein synthesis in keratinocytes, such as filaggrin, loricrin, involucrin and transglutaminase 1, cathelicidin, beta-defensin-2, water and urea carrier proteins into the cell, as well as proteins that promote the synthesis of intercellular matrix lipids. The main dermatotropic pharmacological effects of urea (hydration of the epidermis, strengthening of the barrier function of the skin, keratolytic effect, increased penetration of drugs into the skin) have been used in dermatological practice for many years. External agents with urea are used to treat skin diseases accompanied by dryness and excessive keratinization, to correct the deformation of nail plates of various genesis, to facilitate the local penetration of medicines. The use of topical UrocrEM5, UrocrEM10, Uroderm ointments containing 5%, 10% and 30% urea, respectively, is effective and safe.
Collapse
|
14
|
Fabbrocini G, Ferrillo M, Donnarumma M, Papale A, Pinto D, Rinaldi F. A Randomized, Double-Blind, Placebo-Controlled, Multicentric Study to Evaluate the Efficacy and the Tolerability of a Class II Medical Device in the Treatment of Mild and Moderate Acne. Dermatol Ther (Heidelb) 2022; 12:1835-1845. [PMID: 35861908 PMCID: PMC9357589 DOI: 10.1007/s13555-022-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Several options are available to treat acne lesions, including topical benzoyl peroxide, topical retinoids, topical antibiotics, oral antibiotics, hormonal therapy, isotretinoin, and procedural therapies, such as light and laser therapies, although these cause side effects. This study aimed to establish the efficacy and tolerability of a class IIa medical device containing lactic acid, azelaic acid/polyglyceryl-3 copolymer, azelamidopropyl dimethyl amine, and bifida ferment lysate for the treatment of mild and moderate acne lesions. METHODS A randomized, double-blind, placebo-controlled, multicentric study was carried out in which 60 persons of both genders aged ≥ 16 years affected by mild or moderate acne were enrolled. Each person used the product twice daily for 2 months. The clinical score (classified as absent, mild, moderate, and severe) of lesions such as blackheads, whiteheads, papules and pustules, erythema, desquamation, sebum secretion, and porphyrins production by a wood lamp was evaluated on the basis of a dermatologist's visual assessment at baseline (t0) and after 2 months of treatment (t1), and the results were compared between groups. Digital photographic images were also taken. RESULTS Sixty subjects concluded the trial. It was observed that subjects treated with the medical device (group I) showed overall improvement in the analyzed acne lesions compared with placebo (group II) after 2 months of treatment. The efficacy of the treatment was also expressed as partial and total clearance. The medical device produced higher percentages of both partial and total clearance in all analyzed parameters, compared with the placebo group. The study was safe and well tolerated. CONCLUSIONS It was observed that the participants showed an overall improvement of the analyzed lesions in comparison with the placebo group, without adverse events during the trial. Hence, the medical device was found to be safe and effective in the treatment of mild or moderate acne.
Collapse
Affiliation(s)
- Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, Section of Dermatology, University Hospital Federico II of Naples, Naples, Italy
| | - Maria Ferrillo
- Department of Clinical Medicine and Surgery, Section of Dermatology, University Hospital Federico II of Naples, Naples, Italy
| | - Marianna Donnarumma
- Department of Clinical Medicine and Surgery, Section of Dermatology, University Hospital Federico II of Naples, Naples, Italy
| | - Angela Papale
- HMAP, Human Microbiome Advanced Project, Via Pelagio Palagi, 2, 20129, Milan, Italy
| | - Daniela Pinto
- HMAP, Human Microbiome Advanced Project, Via Pelagio Palagi, 2, 20129, Milan, Italy
| | - Fabio Rinaldi
- HMAP, Human Microbiome Advanced Project, Via Pelagio Palagi, 2, 20129, Milan, Italy.
| |
Collapse
|
15
|
Shao L, Jiang S, Li Y, Shi Y, Wang M, Liu T, Yang S, Ma L. Regular Late Bedtime Significantly Affects the Skin Physiological Characteristics and Skin Bacterial Microbiome. Clin Cosmet Investig Dermatol 2022; 15:1051-1063. [PMID: 35698548 PMCID: PMC9188400 DOI: 10.2147/ccid.s364542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Background Late bedtime is a common form of unhealthy sleep pattern in adulthood, which influences circadian rhythm, and negatively affects health. However, little is known about the effect of regular late bedtime on skin characteristics, particularly on skin microbiome. Objective To investigate the changes and effects of the regular late bedtime on skin physiological parameters and facial bacterial microbiome of 219 cases of Chinese women aged 18-38 years living in Shanghai. Methods Based on the Self-Evaluation Questionnaire, bedtime was categorized as 11:00 PM; thus, the volunteers were divided into early bedtime group (S0) and late bedtime group (S1). The physiological parameters of facial skin were measured by non-invasive instrumental methods, and the skin microbiome was analyzed by 16S rRNA high-throughput sequencing. Results The skin physiological parameters of the late bedtime group exhibited significant decrease in skin hydration content, skin firmness (F4) and elasticity (R2), while TEWL, sebum and wrinkle significantly increased. The result indicated that late bedtime significantly impaired the integrity of skin barrier, damaged skin structure, and disrupted water-oil balance. Furthermore, the analysis of α-diversity, Sobs, Ace and Chao index were found to significantly decrease (P < 0.05) in the late bedtime group, suggesting that late bedtime reduced both the abundance and the diversity of facial bacterial microbiota. Moreover, the abundance of Pseudomonas increased significantly, while Streptococcus, Stenotrophomonas, Acinetobacter, Haemophilus, Actinomyces and Neisseria decreased significantly. In addition, Spearman correlation analysis revealed strong correlations between the microbiota and the physiological parameters. Notably, the abundance of Pseudomonas significantly positively correlated with skin firmness and elasticity, but significantly negatively correlated with skin hemoglobin content, melanin content and skin hydration. Conclusion Bedtime is an important factor in maintaining skin health. Regular late bedtime not only damages the skin barrier and skin structure but also reduces the diversity and composition of facial bacterial microbiome.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Sujing Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, People's Republic of China
| | - Yanqin Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, People's Republic of China
| | - Ting Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, People's Republic of China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Whole-Genome Sequencing Reveals Age-Specific Changes in the Human Blood Microbiota. J Pers Med 2022; 12:jpm12060939. [PMID: 35743724 PMCID: PMC9225573 DOI: 10.3390/jpm12060939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Based on several reports that indicate the presence of blood microbiota in patients with diseases, we became interested in identifying the presence of bacteria in the blood of healthy individuals. Using 37 samples from 5 families, we extracted sequences that were not mapped to the human reference genome and mapped them to the bacterial reference genome for characterization. Proteobacteria account for more than 95% of the blood microbiota. The results of clustering by means of principal component analysis showed similar patterns for each age group. We observed that the class Gammaproteobacteria was significantly higher in the elderly group (over 60 years old), whereas the arcsine square root-transformed relative abundance of the classes Alphaproteobacteria, Deltaproteobacteria, and Clostridia was significantly lower (p < 0.05). In addition, the diversity among the groups showed a significant difference (p < 0.05) in the elderly group. This result provides meaningful evidence of a consistent phenomenon that chronic diseases associated with aging are accompanied by metabolic endotoxemia and chronic inflammation.
Collapse
|
17
|
Alexeev V, Huitema L, Phillips T, Cepeda R, Cobos DDL, Perez RIM, Salas-Garza M, Fajardo-Ramirez OR, Ringpfeil F, Uitto J, Salas-Alanis JC, Igoucheva O. T cell activation and bacterial infection in skin wounds of recessive dystrophic epidermolysis bullosa patients. Exp Dermatol 2022; 31:1431-1442. [PMID: 35620886 PMCID: PMC9541540 DOI: 10.1111/exd.14615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) patients develop poorly healing skin wounds that are frequently colonized with microbiota. Because T cells play an important role in clearing such pathogens, we aimed to define the status of adaptive T cell‐mediated immunity in RDEB wounds. Using a non‐invasive approach for sampling of wound‐associated constituents, we evaluated microbial contaminants in cellular fraction and exudates obtained from RDED wounds. Infectivity and intracellular trafficking of inactivated Staphylococcus aureus was accessed in RDEB keratinocytes. S. aureus and microbial antigen‐specific activation of RDEB wound‐derived T cells were investigated by fluorescence‐activated cell sorting‐based immune‐phenotyping and T‐cell functional assays. We found that RDEB wounds and epithelial cells are most frequently infected with Staphylococcus sp. and Pseudomonas sp. and that S. aureus essentially infects more RDEB keratinocytes and RDEB‐derived squamous cell carcinoma cells than keratinocytes from healthy donors. The RDEB wound‐associated T cells contain populations of CD4+ and CD8+ peripheral memory T cells that respond to soluble microbial antigens by proliferating and secreting interferon gamma (IFNγ). Moreover, CD8+ cytotoxic T lymphocytes recognize S. aureus‐infected RDEB keratinocytes and respond by producing interleukin‐2 (IL‐2) and IFNγ and degranulating and cytotoxically killing infected cells. Prolonged exposure of RDEB‐derived T cells to microbial antigens in vitro does not trigger PD‐1‐mediated T‐cell exhaustion but induces differentiation of the CD4high population into CD4highCD25+FoxP3+ regulatory T cells. Our data demonstrated that adaptive T cell‐mediated immunity could clear infected cells from wound sites, but these effects might be inhibited by PD‐1/Treg‐mediated immuno‐suppression in RDEB.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | - Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | - Rodrigo Cepeda
- DEBRA MEXICO, Guadalupe, NL, Mexico.,Julio Salas Dermatology, Guadalupe, NL, Mexico
| | | | | | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | | | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| |
Collapse
|
18
|
Hussain MS, Vashist A, Kumar M, Taneja NK, Gautam US, Dwivedi S, Tyagi JS, Gupta RK. Anti-mycobacterial activity of heat and pH stable high molecular weight protein(s) secreted by a bacterial laboratory contaminant. Microb Cell Fact 2022; 21:15. [PMID: 35093096 PMCID: PMC8799974 DOI: 10.1186/s12934-022-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tuberculosis currently stands as the second leading cause of deaths worldwide due to single infectious agent after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The current challenges of drug resistance in tuberculosis highlight an urgent need to develop newer anti-mycobacterial compounds. In the present study, we report the serendipitous discovery of a bacterial laboratory contaminant (LC-1) exhibiting a zone of growth inhibition on an agar plate seeded with Mycobacterium tuberculosis. RESULTS We utilized microbiological, biochemical and biophysical approaches to characterize LC-1 and anti-mycobacterial compound(s) in its secretome. Based on 16S rRNA sequencing and BIOLOG analysis, LC-1 was identified as Staphylococcus hominis, a human bacterial commensal. Anti-mycobacterial activity was initially found in 30 kDa retentate that was obtained by ultrafiltration of culture filtrate (CF). SDS-PAGE analysis of peak fractions obtained by size exclusion chromatography of 30 kDa retentate confirmed the presence of high molecular weight (≥ 30 kDa) proteins. Peak fraction-1 (F-1) exhibited inhibitory activity against M. bovis BCG, but not against M. smegmatis, E. coli and S. aureus. The active fraction F-1 was inactivated by treatment with Proteinase K and α-chymotrypsin. However, it retained its anti-mycobacterial activity over a wide range of heat and pH treatment. The anti-mycobacterial activity of F-1 was found to be maintained even after a long storage (~12 months) at - 20 °C. Mass spectrometry analysis revealed that the identified peptide masses do not match with any previously known bacteriocins. CONCLUSIONS The present study highlights the anti-mycobacterial activity of high molecular weight protein(s) present in culture filtrate of LC-1, which may be tested further to target M. tuberculosis. The heat and pH stability of these proteins add to their characteristics as therapeutic proteins and may contribute to their long shelf life. LC-1 being a human commensal can be tested in future for its potential as a probiotic to treat tuberculosis.
Collapse
Affiliation(s)
- Md Sajid Hussain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Infection & Immunology, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
| | - Mahadevan Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Microbiology, Bharati Vidyapeeth University, Medical College, Pune, 411043, India
| | - Neetu Kumra Taneja
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana, 131028, India
| | - Uma Shankar Gautam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajesh Kumar Gupta
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India.
| |
Collapse
|
19
|
Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022; 11:pathogens11020121. [PMID: 35215065 PMCID: PMC8879973 DOI: 10.3390/pathogens11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.
Collapse
|
20
|
Licht P, Mailänder V. Transcriptional Heterogeneity and the Microbiome of Cutaneous T-Cell Lymphoma. Cells 2022; 11:cells11030328. [PMID: 35159138 PMCID: PMC8834405 DOI: 10.3390/cells11030328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous T-Cell Lymphomas (CTCL) presents with substantial clinical variability and transcriptional heterogeneity. In the recent years, several studies paved the way to elucidate aetiology and pathogenesis of CTCL using sequencing methods. Several T-cell subtypes were suggested as the source of disease thereby explaining clinical and transcriptional heterogeneity of CTCL entities. Several differentially expressed pathways could explain disease progression. However, exogenous triggers in the skin microenvironment also seem to affect CTCL status. Especially Staphylococcus aureus was shown to contribute to disease progression. Only little is known about the complex microbiome patterns involved in CTCL and how microbial shifts might impact this malignancy. Nevertheless, first hints indicate that the microbiome might at least in part explain transcriptional heterogeneity and that microbial approaches could serve in diagnosis and prognosis. Shaping the microbiome could be a treatment option to maintain stable disease. Here, we review current knowledge of transcriptional heterogeneity of and microbial influences on CTCL. We discuss potential benefits of microbial applications and microbial directed therapies to aid patients with CTCL burden.
Collapse
Affiliation(s)
- Philipp Licht
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence:
| |
Collapse
|
21
|
Šuler Baglama Š, Trčko K. Skin and gut microbiota dysbiosis in autoimmune and inflammatory skin diseases. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2022. [DOI: 10.15570/actaapa.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Mining for encrypted peptide antibiotics in the human proteome. Nat Biomed Eng 2021; 6:67-75. [PMID: 34737399 DOI: 10.1038/s41551-021-00801-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The emergence of drug-resistant bacteria calls for the discovery of new antibiotics. Yet, for decades, traditional discovery strategies have not yielded new classes of antimicrobial. Here, by mining the human proteome via an algorithm that relies on the sequence length, net charge, average hydrophobicity and other physicochemical properties of antimicrobial peptides, we report the identification of 2,603 encrypted peptide antibiotics that are encoded in proteins with biological function unrelated to the immune system. We show that the encrypted peptides kill pathogenic bacteria by targeting their membrane, modulate gut and skin commensals, do not readily select for bacterial resistance, and possess anti-infective activity in skin abscess and thigh infection mouse models. We also show, in vitro and in the two mouse models of infection, that encrypted antibiotic peptides from the same biogeographical area display synergistic antimicrobial activity. Our algorithmic strategy allows for the rapid mining of proteomic data and opens up new routes for the discovery of candidate antibiotics.
Collapse
|
23
|
Schalka S, Silva MS, Lopes LF, de Freitas LM, Baptista MS. The skin redoxome. J Eur Acad Dermatol Venereol 2021; 36:181-195. [PMID: 34719068 DOI: 10.1111/jdv.17780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Redoxome is the network of redox reactions and redox active species (ReAS) that affect the homeostasis of cells and tissues. Due to the intense and constant interaction with external agents, the human skin has a robust redox signalling framework with specific pathways and magnitudes. The establishment of the skin redoxome concept is key to expanding knowledge of skin disorders and establishing better strategies for their prevention and treatment. This review starts with its definition and progress to propose how the master redox regulators are maintained and activated in the different conditions experienced by the skin and how the lack of redox regulation is involved in the accumulation of several oxidation end products that are correlated with various skin disorders.
Collapse
Affiliation(s)
- S Schalka
- Medcin Skin Research Center, Osasco, Brazil
| | - M S Silva
- Medcin Skin Research Center, Osasco, Brazil
| | - L F Lopes
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| | - L M de Freitas
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| | - M S Baptista
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Park H, Arellano K, Lee Y, Yeo S, Ji Y, Ko J, Holzapfel W. Pilot Study on the Forehead Skin Microbiome and Short Chain Fatty Acids Depending on the SC Functional Index in Korean Cohorts. Microorganisms 2021; 9:microorganisms9112216. [PMID: 34835341 PMCID: PMC8617931 DOI: 10.3390/microorganisms9112216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023] Open
Abstract
Dry skin is one of the indicators of a compromised skin barrier. An intact skin barrier is not only important to reserve the hydration within the epidermal tissue but also to protect our skin from environmental stressors and inhibit pathogen invasion; damage to the skin barrier may lead to inflammatory skin diseases. Some microbial metabolites such as short chain fatty acids may inhibit or destroy harmful bacteria and regulate the host immune system. The impact of the skin microbiome and short chain fatty acids on skin barrier function was studied in two groups of 75 participants each. The cohort was equally divided in dry and moist skin types, based on stratum corneum (SC) functionality index (SCFI), reflecting the ratio of transepidermal water loss (TEWL). A dry group represents a low SCFI and a moist group a high SCFI. Compared with the dry skin group, propionate and Cutibacterium levels (previously known as Propionibacterium acnes) were significantly higher (p < 0.001) in the moist group. Levels of Cutibacterium were negatively correlated with those of Staphylococcus (p < 0.0001) in both dry and moist groups. The moist group also had a significantly higher propionate concentration (p < 0.001). This study showed that the microbial community and short chain fatty acid concentration may be considered as significant determinants of the SCFI of the skin.
Collapse
Affiliation(s)
- Haryung Park
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea; (H.P.); (K.A.); (Y.L.); (Y.J.)
- HEM Pharma Inc., Start-Up Incubator, Handong Global University, Pohang 37554, Korea;
| | - Karina Arellano
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea; (H.P.); (K.A.); (Y.L.); (Y.J.)
| | - Yuri Lee
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea; (H.P.); (K.A.); (Y.L.); (Y.J.)
| | - Subin Yeo
- HEM Pharma Inc., Start-Up Incubator, Handong Global University, Pohang 37554, Korea;
| | - Yosep Ji
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea; (H.P.); (K.A.); (Y.L.); (Y.J.)
- HEM Pharma Inc., Start-Up Incubator, Handong Global University, Pohang 37554, Korea;
| | - Joontae Ko
- Boaz Medical Hospital, Handong Global University, Pohang 37554, Korea;
| | - Wilhelm Holzapfel
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea; (H.P.); (K.A.); (Y.L.); (Y.J.)
- HEM Pharma Inc., Start-Up Incubator, Handong Global University, Pohang 37554, Korea;
- Correspondence:
| |
Collapse
|
25
|
Features of the Skin Microbiota in Common Inflammatory Skin Diseases. Life (Basel) 2021; 11:life11090962. [PMID: 34575111 PMCID: PMC8468136 DOI: 10.3390/life11090962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Many relatively common chronic inflammatory skin diseases manifest on the face (seborrheic dermatitis, rosacea, acne, perioral/periorificial dermatitis, periocular dermatitis, etc.), thereby significantly impairing patient appearance and quality of life. Given the yet unexplained pathogenesis and numerous factors involved, these diseases often present therapeutic challenges. The term “microbiome” comprises the totality of microorganisms (microbiota), their genomes, and environmental factors in a particular environment. Changes in human skin microbiota composition and/or functionality are believed to trigger immune dysregulation, and consequently an inflammatory response, thereby playing a potentially significant role in the clinical manifestations and treatment of these diseases. Although cultivation methods have traditionally been used in studies of bacterial microbiome species, a large number of bacterial strains cannot be grown in the laboratory. Since standard culture-dependent methods detect fewer than 1% of all bacterial species, a metagenomic approach could be used to detect bacteria that cannot be cultivated. The skin microbiome exhibits spatial distribution associated with the microenvironment (sebaceous, moist, and dry areas). However, although disturbance of the skin microbiome can lead to a number of pathological conditions and diseases, it is still not clear whether skin diseases result from change in the microbiome or cause such a change. Thus far, the skin microbiome has been studied in atopic dermatitis, seborrheic dermatitis, psoriasis, acne, and rosacea. Studies on the possible association between changes in the microbiome and their association with skin diseases have improved the understanding of disease development, diagnostics, and therapeutics. The identification of the bacterial markers associated with particular inflammatory skin diseases would significantly accelerate the diagnostics and reduce treatment costs. Microbiota research and determination could facilitate the identification of potential causes of skin diseases that cannot be detected by simpler methods, thereby contributing to the design and development of more effective therapies.
Collapse
|
26
|
Sanjar F, Weaver AJ, Peacock TJ, Nguyen JQ, Brandenburg KS, Leung KP. Identification of Metagenomics Structure and Function Associated With Temporal Changes in Rat (Rattus norvegicus) Skin Microbiome During Health and Cutaneous Burn. J Burn Care Res 2021; 41:347-358. [PMID: 31665423 DOI: 10.1093/jbcr/irz165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cutaneous skin microbiome is host to a vast ensemble of resident microbes that provide essential capabilities including protection of skin barrier integrity and modulation of the host immune response. Cutaneous burn-injury promotes alteration of cutaneous and systemic immune response that can affect both commensal and pathogenic microbes. A cross-sectional study of a limited number of burn patients revealed a difference in the bacteriome of burned versus control participants. Temporal changes of the skin microbiome during health and cutaneous burn-injury remains largely unknown. Furthermore, how this microbial shift relates to community function in the collective metagenome remain elusive. Due to cost considerations and reduced healing time, rodents are frequently used in burn research, despite inherent physiological differences between rodents and human skin. Using a rat burn model, a longitudinal study was conducted to characterize the rat skin bacterial residents and associated community functions in states of health (n = 30) (sham-burned) and when compromised by burn-injury (n = 24). To address the knowledge gap, traumatic thermal injury and disruption of cutaneous surface is associated with genus-level changes in the microbiota, reduced bacterial richness, and altered representation of bacterial genes and associated predicted functions across different skin microbial communities. These findings demonstrate that, upon burn-injury, there is a shift in diversity of the skin's organismal assemblages, yielding a core microbiome that is distinct at the genome and functional level. Moreover, deviations from the core community correlate with temporal changes post-injury and community transition from the state of cutaneous health to disease (burn-injury).
Collapse
Affiliation(s)
- Fatemeh Sanjar
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | - Alan J Weaver
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | | | - Jesse Q Nguyen
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | - Kenneth S Brandenburg
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| |
Collapse
|
27
|
Changes in Skin and Nasal Microbiome and Staphylococcal Species Following Treatment of Atopic Dermatitis with Dupilumab. Microorganisms 2021; 9:microorganisms9071487. [PMID: 34361924 PMCID: PMC8303790 DOI: 10.3390/microorganisms9071487] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Investigation of changes in the skin microbiome following treatment of atopic dermatitis (AD) with dupilumab may provide valuable insights into the skin microbiome as a therapeutic target. The aim of this study is to assess changes in the AD skin microbiome following treatment of AD with dupilumab (n = 27). E-swabs were collected from nose, lesional, and nonlesional skin before and after 16 weeks of dupilumab therapy, and the microbiome was analyzed by 16S rRNA and tuf gene sequencing. Data for 17 patients with milder disease receiving treatment with non-targeted therapies are also presented. The results show that both groups experienced clinical improvement (p < 0.001) following dupilumab therapy and that Shannon diversity increased and bacterial community structure changed. The relative abundance of the genus Staphylococcus (S.) and S. aureus decreased, while that of S. epidermidis and S. hominis increased. No significant changes were observed for patients receiving non-targeted treatments. The increases in S. epidermidis and S. hominis and the decrease in S. aureus correlated with clinical improvement. Furthermore, changes in S. hominis and S. epidermidis correlated inversely with S. aureus. In conclusion, treatment with dupilumab significantly changed the skin microbiome and decreased S. aureus. Our results suggest a favorable role of commensal staphylococci in AD.
Collapse
|
28
|
Santos B, Bletz MC, Sabino-Pinto J, Cocca W, Fidy JFS, Freeman KL, Kuenzel S, Ndriantsoa S, Noel J, Rakotonanahary T, Vences M, Crottini A. Characterization of the microbiome of the invasive Asian toad in Madagascar across the expansion range and comparison with a native co-occurring species. PeerJ 2021; 9:e11532. [PMID: 34249488 PMCID: PMC8247705 DOI: 10.7717/peerj.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Biological invasions are on the rise, with each invader carrying a plethora of associated microbes. These microbes play important, yet poorly understood, ecological roles that can include assisting the hosts in colonization and adaptation processes or as possible pathogens. Understanding how these communities differ in an invasion scenario may help to understand the host's resilience and adaptability. The Asian common toad, Duttaphrynus melanostictus is an invasive amphibian, which has recently established in Madagascar and is expected to pose numerous threats to the native ecosystems. We characterized the skin and gut bacterial communities of D. melanostictus in Toamasina (Eastern Madagascar), and compared them to those of a co-occurring native frog species, Ptychadena mascareniensis, at three sites where the toad arrived in different years. Microbial composition did not vary among sites, showing that D. melanostictus keeps a stable community across its expansion but significant differences were observed between these two amphibians. Moreover, D. melanostictus had richer and more diverse communities and also harboured a high percentage of total unique taxa (skin: 80%; gut: 52%). These differences may reflect the combination of multiple host-associated factors including microhabitat selection, skin features and dietary preferences.
Collapse
Affiliation(s)
- Bárbara Santos
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | - Molly C Bletz
- Department of Biology, University of Massachussetts Boston, Boston, MA, USA
| | - Joana Sabino-Pinto
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Walter Cocca
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | | | - Karen Lm Freeman
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Germany, Plön, Germany
| | - Serge Ndriantsoa
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Jean Noel
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Tsanta Rakotonanahary
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Angelica Crottini
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| |
Collapse
|
29
|
[The skin microbiome-useful for diagnosis and therapy?]. Hautarzt 2021; 72:579-585. [PMID: 34115159 DOI: 10.1007/s00105-021-04830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Our skin is a very important and complex organ of the body. The microorganisms of the skin, the so-called microbiome, represent an important part of the healthy skin barrier and are influenced by various external and internal factors. AIM The question to what extent the skin microbiome represents a diagnostic or even therapeutic target in the context of skin diseases is discussed. MATERIALS AND METHODS A literature search was performed. RESULTS Several diseases are associated with negative alterations of the skin microbiome. In atopic dermatitis, a correlation between severity and increased availability of Staphylococcus aureus is known, with a loss of bacterial diversity on the skin. In the future, S. aureus will not only be used as a diagnostic marker in atopic dermatitis, but also represents a promising target as a predictive marker for therapeutic success. The role of the skin microbiome in psoriasis has not yet been researched in depth. However, there is evidence that dysbiosis of the skin microbiome contributes to the course of psoriasis and that there is a disturbance in immune tolerance in patients. In the case of acne, the involvement of Cutibacterium acnes in the clinical picture is well known; however, recent findings show that it is not sufficient to identify the species, but certain characteristics of C. acnes strains are associated. CONCLUSION Microbial biomarkers are currently only established in atopic dermatitis. For other diseases, this might be the case in the future; however combinations of microorganisms, single species and also strains with specific characteristics must be considered.
Collapse
|
30
|
Luger T, Amagai M, Dreno B, Dagnelie MA, Liao W, Kabashima K, Schikowski T, Proksch E, Elias PM, Simon M, Simpson E, Grinich E, Schmuth M. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci 2021; 102:142-157. [PMID: 34116898 DOI: 10.1016/j.jdermsci.2021.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disorder characterized by eczematous and pruritic skin lesions. In recent decades, the prevalence of AD has increased worldwide, most notably in developing countries. The enormous progress in our understanding of the complex composition and functions of the epidermal barrier allows for a deeper appreciation of the active role that the skin barrier plays in the initiation and maintenance of skin inflammation. The epidermis forms a physical, chemical, immunological, neuro-sensory, and microbial barrier between the internal and external environment. Not only lesional, but also non-lesional areas of AD skin display many morphological, biochemical and functional differences compared with healthy skin. Supporting this notion, genetic defects affecting structural proteins of the skin barrier, including filaggrin, contribute to an increased risk of AD. There is evidence to suggest that natural environmental allergens and man-made pollutants are associated with an increased likelihood of developing AD. A compromised epidermal barrier predisposes the skin to increased permeability of these compounds. Numerous topical and systemic therapies for AD are currently available or in development; while anti-inflammatory therapy is central to the treatment of AD, some existing and novel therapies also appear to exert beneficial effects on skin barrier function. Further research on the skin barrier, particularly addressing epidermal differentiation and inflammation, lipid metabolism, and the role of bacterial communities for skin barrier function, will likely expand our understanding of the complex etiology of AD and lead to identification of novel targets and the development of new therapies.
Collapse
Affiliation(s)
- Thomas Luger
- Department of Dermatology, University of Münster, Münster, Germany.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Brigitte Dreno
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Marie-Ange Dagnelie
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Peter M Elias
- San Francisco VA Medical Center, University of California, San Francisco, CA, United States
| | - Michel Simon
- UDEAR, Inserm, University of Toulouse, U1056, Toulouse, France
| | - Eric Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Erin Grinich
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Matthias Schmuth
- Department of Dermatology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Hong CH, Schachter J, Sutton AB, Salsberg JM, Li MK, Humphrey SD, Dayeh NR. 89% Vichy mineralizing water with hyaluronic acid is a well-tolerated adjunct treatment that helps restore skin barrier function in dry skin-related inflammatory dermatoses and post-procedure skin care: A Canadian study. J Cosmet Dermatol 2021; 20:2148-2155. [PMID: 33786979 DOI: 10.1111/jocd.14116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/12/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Minéral 89 (M89), comprised of 89% Vichy mineralizing water and hyaluronic acid, has been formulated to help strengthen and restore skin barrier. AIM Assess tolerance and efficacy of M89 in post-esthetic procedures and dry skin-related facial dermatoses. METHOD Adults post-esthetic procedure or presenting with inflammatory dermatoses (47 subjects; mean age 40.9 ± 13.2 years; any Fitzpatrick or skin phototype), applied M89 for 4 weeks, once or twice daily, as an adjuvant treatment. Information on clinical signs and subject-reported symptoms, skin characteristics, tolerance, and subject and investigator satisfaction were collected. RESULTS Following 4 weeks of M89 use, significant decreases with complete resolution of erythema (27.6%), desquamation (29.8%), irritation (32%), and skin dehydration (35.8%), as compared to baseline signs and symptoms, were observed. Overall grading improvements for erythema (84.8%; p < 0.001), desquamation (91.7%; %; p < 0.003), irritation (91.7%; %; p < 0.015), and skin hydration (46.2%; p < 0.015) were noted. There was no significant improvement in papules and pustules. Evaluation of subjective signs demonstrated significant decreases in skin sensations such as burning (-73%; p < 0.0001), itching (-71%; p < 0.0001), stinging-tingling (-66.7%; p < 0.0001), as well as in skin dryness (-60%; p < 0.0001). M89 texture was rated very pleasant by 90% of patients. Investigators assessed M89 tolerance to be either good or very good (93%), and satisfactory or highly satisfactory impact on patient's skin (91.5%). CONCLUSION M89 is a highly tolerable adjuvant treatment that significantly improved clinical signs and symptoms related to a compromised skin barrier in various facial dermatoses and post-aesthetic procedures.
Collapse
Affiliation(s)
- Chih-Ho Hong
- Department of Dermatology and Skin Science, University of British Columbia, Surrey, BC, Canada
| | - Jordana Schachter
- Department of Dermatology, Hôpital du Haut-Richelieu, Saint-Jean-sur-Richelieu, QC, Canada
| | - Allison B Sutton
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | | - Monica K Li
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Shannon D Humphrey
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
32
|
Park DH, Kim JW, Park HJ, Hahm DH. Comparative Analysis of the Microbiome across the Gut-Skin Axis in Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22084228. [PMID: 33921772 PMCID: PMC8073639 DOI: 10.3390/ijms22084228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a refractory and relapsing skin disease with a complex and multifactorial etiology. Various congenital malformations and environmental factors are thought to be involved in the onset of the disease. The etiology of the disease has been investigated, with respect to clinical skin symptoms and systemic immune response factors. A gut microbiome–mediated connection between emotional disorders such as depression and anxiety, and dermatologic conditions such as acne, based on the comorbidities of these two seemingly unrelated disorders, has long been hypothesized. Many aspects of this gut–brain–skin integration theory have recently been revalidated to identify treatment options for AD with the recent advances in metagenomic analysis involving powerful sequencing techniques and bioinformatics that overcome the need for isolation and cultivation of individual microbial strains from the skin or gut. Comparative analysis of microbial clusters across the gut–skin axis can provide new information regarding AD research. Herein, we provide a historical perspective on the modern investigation and clinical implications of gut–skin connections in AD in terms of the integration between the two microbial clusters.
Collapse
Affiliation(s)
- Dong Hoon Park
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Joo Wan Kim
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Dae-Hyun Hahm
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0366
| |
Collapse
|
33
|
Rozas M, Hart de Ruijter A, Fabrega MJ, Zorgani A, Guell M, Paetzold B, Brillet F. From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms 2021; 9:628. [PMID: 33803499 PMCID: PMC8003110 DOI: 10.3390/microorganisms9030628] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cutibacterium acnes is the most abundant bacterium living in human, healthy and sebum-rich skin sites, such as the face and the back. This bacterium is adapted to this specific environment and therefore could have a major role in local skin homeostasis. To assess the role of this bacterium in healthy skin, this review focused on (i) the abundance of C. acnes in the skin microbiome of healthy skin and skin disorders, (ii) its major contributions to human skin health, and (iii) skin commensals used as probiotics to alleviate skin disorders. The loss of C. acnes relative abundance and/or clonal diversity is frequently associated with skin disorders such as acne, atopic dermatitis, rosacea, and psoriasis. C. acnes, and the diversity of its clonal population, contributes actively to the normal biophysiological skin functions through, for example, lipid modulation, niche competition and oxidative stress mitigation. Compared to gut probiotics, limited dermatological studies have investigated skin probiotics with skin commensal strains, highlighting their unexplored potential.
Collapse
Affiliation(s)
- Miquel Rozas
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Astrid Hart de Ruijter
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Maria Jose Fabrega
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Amine Zorgani
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Marc Guell
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Bernhard Paetzold
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Francois Brillet
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| |
Collapse
|
34
|
Chen D, He J, Li J, Zou Q, Si J, Guo Y, Yu J, Li C, Wang F, Chan T, Shi H. Microbiome and Metabolome Analyses Reveal Novel Interplay Between the Skin Microbiota and Plasma Metabolites in Psoriasis. Front Microbiol 2021; 12:643449. [PMID: 33796091 PMCID: PMC8007969 DOI: 10.3389/fmicb.2021.643449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that affects millions of people worldwide. There is still no effective approach for the clinical treatment of psoriasis. This is largely due to the lack of understanding of the pathological mechanism. Here, we comprehensively characterized the skin microbiome and plasma metabolome alterations of psoriasis patients. We observed that some pathogenic bacteria, including Vibrio, were significantly increased in psoriasis patients. The metabolomics results showed alterations in some metabolic pathways, especially pathways for lipid metabolism. In addition, microbiome-specific metabolites, including bile acids and kynurenine, were significantly changed. Correlation analysis revealed the interplay between the skin microbiota and plasma metabolites, especially between Vibrio and several lipids. Our results provide new evidence for the interplay between the skin microbiome and plasma metabolites, which is dramatically disrupted in psoriasis patients. This study also revealed the mechanism underlying the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Dongmei Chen
- Innovation Team for Skin Disease Diagnosis and Treatment Technology & Drug Discovery and Development, The General Hospital of Ningxia Medical University, Yinchuan, China.,Institute of Human Stem Cell Research, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jingquan He
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Jinping Li
- Department of Oncology Surgery, Ningxia Medical University, Yinchuan, China
| | - Qian Zou
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Jiawei Si
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Yatao Guo
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Jiayu Yu
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Cheng Li
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Fang Wang
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Tianlong Chan
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Huijuan Shi
- Innovation Team for Skin Disease Diagnosis and Treatment Technology & Drug Discovery and Development, The General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
35
|
Letsiou S. Tracing skin aging process: a mini- review of in vitro approaches. Biogerontology 2021; 22:261-272. [PMID: 33721158 DOI: 10.1007/s10522-021-09916-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Skin is a rather complex, yet useful organ of our body. Besides, skin aging is a complicated process that gains a growing interest as mediates many molecular processes in our body. Thus, an efficient skin model is important to understand skin aging function as well as to develop an effective innovative product for skin aging treatment. In this mini review, we present in vitro methods for assessments of skin aging in an attempt to pinpoint basic molecular mechanisms behind this process achieving both a better understanding of aging function and an effective evaluation of potential products or ingredients that counteract aging. Specifically, this study presents in vitro assays such as 2D or 3D skin models, to evaluate skin aging-related processes such as skin moisturization, photoaging, wound healing, menopause, and skin microbiome as novel efforts in the designing of efficacy assessments in the development of skincare products.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece.
| |
Collapse
|
36
|
Cook J, Holmes CJ, Wixtrom R, Newman MI, Pozner JN. Characterizing the Microbiome of the Contracted Breast Capsule Using Next Generation Sequencing. Aesthet Surg J 2021; 41:440-447. [PMID: 32291435 DOI: 10.1093/asj/sjaa097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Recent work suggests that bacterial biofilms play a role in capsular contracture (CC). However, traditional culture techniques provide only a limited understanding of the bacterial communities present within the contracted breast. Next generation sequencing (NGS) represents an evolution of polymerase chain reaction technology that can sequence all DNA present in a given sample. OBJECTIVES The aim of this study was to utilize NGS to characterize the bacterial microbiome of the capsule in patients with CC following cosmetic breast augmentation. METHODS We evaluated 32 consecutive patients with Baker grade III or IV CC following augmentation mammoplasty. Specimens were obtained from all contracted breasts (n = 53) during capsulectomy. Tissue specimens from contracted capsules as well as intraoperative swabs of the breast capsule and implant surfaces were obtained. Samples were sent to MicroGenDX Laboratories (Lubbock, TX) for NGS. RESULTS Specimens collected from 18 of 32 patients (56%) revealed the presence of microbial DNA. The total number of positive samples was 22 of 53 (42%). Sequencing identified a total of 120 unique bacterial species and 6 unique fungal species. Specimens with microbial DNA yielded a mean [standard deviation] of 8.27 [4.8] microbial species per patient. The most frequently isolated species were Escherichia coli (25% of all isolates), Diaphorobacter nitroreducens (12%), Cutibacterium acnes (12%), Staphylococcus epidermidis (11%), fungal species (7%), and Staphylococcus aureus (6%). CONCLUSIONS NGS enables characterization of the bacterial ecosystem surrounding breast implants in unprecedented detail. This is a critical step towards understanding the role this microbiome plays in the development of CC. LEVEL OF EVIDENCE: 4
Collapse
|
37
|
Forss R, Hugman Z, Ridlington K, Radley M, Henry-Toledo E, O'Neill B. Does the Application of a Semiocclusive Dressing Alter the Microflora of Healthy Intact Skin on the Foot? J Am Podiatr Med Assoc 2021; 111:462608. [PMID: 33690804 DOI: 10.7547/18-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The skin on human feet presents unique environments for the proliferation of potentially pathogenic commensals. This study examined microflora changes on healthy intact skin under a semiocclusive dressing on the medial longitudinal arch of the foot to determine changes in growth, distribution, and frequency of microflora under the dressing. METHODS Nine human participants wore a low-adherent, absorbent, semiocclusive dressing on the medial longitudinal arch of the left foot for 2 weeks. An identical location on the right foot was swabbed and used as a control. Each foot was swabbed at baseline, week 1, and week 2. The swabs were cultured for 48 hours. Visual identification, Gram staining, DNase test agar, and a latex slide agglutination test were used to identify genera and species. RESULTS Microflora growth was categorized as scant (0-10 colony-forming units [CFU]), light (11-50 CFU), moderate (51-100 CFU), or heavy (>100 CFU). Scant and light growth decreased and moderate and heavy growth increased under the dressing compared with the control. Seven different genera of bacteria were identified. Coagulase-negative Staphylococcus spp appeared most frequently, followed by Corynebacterium spp. CONCLUSIONS Changes in microflora distribution, frequency, and growth were found under the dressing, supporting historical studies. Microflora changes were identified as an increase in bioburden and reduction in diversity. The application of similar methods, using more sophisticated identification and analysis techniques and a variety of dressings, could lead to a better understanding of bacterial and fungal growth under dressings, informing better dressing selection to assist the healing process of wounds and prevent infection.
Collapse
|
38
|
Zhang S, Cai Y, Meng C, Ding X, Huang J, Luo X, Cao Y, Gao F, Zou M. The role of the microbiome in diabetes mellitus. Diabetes Res Clin Pract 2021; 172:108645. [PMID: 33359751 DOI: 10.1016/j.diabres.2020.108645] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The microbiome is greatly significant for immune system development and homeostasis. Dysbiosis in gut microbial composition and function is linked to immune responses and the development of metabolic diseases, including diabetes mellitus (DM). However, skin microbiome changes in diabetic patients and their role in DM are poorly elucidated. In this review, we summarize recent findings about the association between the gut and skin microbiota and DM, highlighting their roles in the proinflammatory status of DM. Moreover, although there is evidence that the connection between the gut and skin causes the same activated innate immune response, additional studies are needed to explore the mechanism. These findings might inform future DM prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Shili Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulan Cai
- Department of Endocrinology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chuzhen Meng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyi Ding
- School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, China
| | - Jiali Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangrong Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Gao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Joura MI, Brunner A, Nemes-Nikodém É, Sárdy M, Ostorházi E. Interactions between immune system and the microbiome of skin, blood and gut in pathogenesis of rosacea. Acta Microbiol Immunol Hung 2021; 68:1-6. [PMID: 33522984 DOI: 10.1556/030.2021.01366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
The increasingly wide use of next-generation sequencing technologies has revolutionised our knowledge of microbial environments associated with human skin, gastrointestinal tract and blood. The collective set of microorganisms influences metabolic processes, affects immune responses, and so directly or indirectly modulates disease. Rosacea is a skin condition of abnormal inflammation and vascular dysfunction, and its progression is affected by Demodex mites on the skin surface. When looking into the effects influencing development of rosacea, it is not only the skin microbiome change that needs to be considered. Changes in the intestinal microbiome and their circulating metabolites, as well as changes in the blood microbiome also affect the progression of rosacea. Recent research has confirmed the increased presence of bacterial genera like Acidaminococcus and Megasphera in the intestinal microbiome and Rheinheimera and Sphingobium in the blood microbiome of rosacea patients. In this review we discuss our current knowledge of the interactions between the immune system and the skin, gut and blood microbiome, with particular attention to rosacea diagnostic opportunities.
Collapse
Affiliation(s)
- Marie Isolde Joura
- 1Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Alexandra Brunner
- 1Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Éva Nemes-Nikodém
- 2Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Miklós Sárdy
- 1Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Eszter Ostorházi
- 1Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- 3Department of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
40
|
Liu-Walsh F, Tierney NK, Hauschild J, Rush AK, Masucci J, Leo GC, Capone KA. Prebiotic Colloidal Oat Supports the Growth of Cutaneous Commensal Bacteria Including S. epidermidis and Enhances the Production of Lactic Acid. Clin Cosmet Investig Dermatol 2021; 14:73-82. [PMID: 33500646 PMCID: PMC7826061 DOI: 10.2147/ccid.s253386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Background Multiple skin conditions have been associated with alterations in the diversity and composition of the skin microbiome, including dry skin and atopic dermatitis. In these conditions, a number of commensal skin bacteria have been implicated in supporting a healthy skin barrier, including Staphylococcus epidermidis. Recent clinical studies in patients with mild-to-moderate atopic dermatitis and dry/itchy skin have shown significantly improved skin barrier function and microbial diversity upon treatment with moisturizers containing 1% colloidal oat. We hypothesized that direct use of colloidal oat by skin microbes contributes to these therapeutic benefits. Methods Skin bacterial growth was assessed using the BacT/ALERT system. Staphylococcus aureus and S. epidermidis growth rates and metabolism were compared in an in vitro competition assay. The effect of a 1% colloidal oat-containing moisturizer on lactic acid content of the stratum corneum was clinically assessed in subjects with moderate-to-severe dry skin. S. epidermidis gene expression was evaluated by next-generation mRNA sequencing. Short-chain fatty acids were quantified in bacterial culture supernatants. Results In vitro, colloidal oat increased the growth rate of S. epidermidis vs S. aureus, as well as the metabolism of S. epidermidis. Colloidal oat also significantly increased lactic acid concentrations in supernatants of both strains and decreased pH, consistent with clinical findings that 6-week use of a 1% colloidal oat-containing lotion significantly increased lactic acid on dry skin. Further analyses suggest that colloidal oat alters the gene expression profile of S. epidermidis. Conclusion Colloidal oat directly affects the growth, metabolism, lactic acid production, and gene expression of skin commensal bacteria, as shown via in vitro studies. The increased production of lactic acid reflects clinical observations with colloidal oat-containing skin moisturizers. Our findings suggest a new mechanism for colloidal oat as a skin prebiotic, which may contribute to improvements in skin and microbiome diversity in various skin conditions, including dry/itchy skin and atopic dermatitis.
Collapse
Affiliation(s)
| | | | - James Hauschild
- Johnson & Johnson Microbiological Quality & Sterility Assurance, Johnson & Johnson Inc., Raritan, NJ, USA
| | | | - John Masucci
- Janssen R&D Companies of Johnson & Johnson, Springhouse, PA, USA
| | - Gregory C Leo
- Janssen R&D Companies of Johnson & Johnson, Springhouse, PA, USA
| | | |
Collapse
|
41
|
Stahl-Rommel S, Jain M, Nguyen HN, Arnold RR, Aunon-Chancellor SM, Sharp GM, Castro CL, John KK, Juul S, Turner DJ, Stoddart D, Paten B, Akeson M, Burton AS, Castro-Wallace SL. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes (Basel) 2021; 12:genes12010106. [PMID: 33467183 PMCID: PMC7830261 DOI: 10.3390/genes12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
For the past two decades, microbial monitoring of the International Space Station (ISS) has relied on culture-dependent methods that require return to Earth for analysis. This has a number of limitations, with the most significant being bias towards the detection of culturable organisms and the inherent delay between sample collection and ground-based analysis. In recent years, portable and easy-to-use molecular-based tools, such as Oxford Nanopore Technologies’ MinION™ sequencer and miniPCR bio’s miniPCR™ thermal cycler, have been validated onboard the ISS. Here, we report on the development, validation, and implementation of a swab-to-sequencer method that provides a culture-independent solution to real-time microbial profiling onboard the ISS. Method development focused on analysis of swabs collected in a low-biomass environment with limited facility resources and stringent controls on allowed processes and reagents. ISS-optimized procedures included enzymatic DNA extraction from a swab tip, bead-based purifications, altered buffers, and the use of miniPCR and the MinION. Validation was conducted through extensive ground-based assessments comparing current standard culture-dependent and newly developed culture-independent methods. Similar microbial distributions were observed between the two methods; however, as expected, the culture-independent data revealed microbial profiles with greater diversity. Protocol optimization and verification was established during NASA Extreme Environment Mission Operations (NEEMO) analog missions 21 and 22, respectively. Unique microbial profiles obtained from analog testing validated the swab-to-sequencer method in an extreme environment. Finally, four independent swab-to-sequencer experiments were conducted onboard the ISS by two crewmembers. Microorganisms identified from ISS swabs were consistent with historical culture-based data, and primarily consisted of commonly observed human-associated microbes. This simplified method has been streamlined for high ease-of-use for a non-trained crew to complete in an extreme environment, thereby enabling environmental and human health diagnostics in real-time as future missions take us beyond low-Earth orbit.
Collapse
Affiliation(s)
| | - Miten Jain
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Hang N. Nguyen
- JES Tech, Houston, TX 77058, USA; (S.S.-R.); (H.N.N.); (C.L.C.)
| | - Richard R. Arnold
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA; (R.R.A.); (S.M.A.-C.)
| | | | | | | | - Kristen K. John
- Project Management and Systems Engineering Division, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Sissel Juul
- Oxford Nanopore Technologies, New York, NY 10013, USA;
| | - Daniel J. Turner
- Oxford Nanopore Technologies, Oxford Science Park, Oxford OX4 4DQ, UK; (D.J.T.); (D.S.)
| | - David Stoddart
- Oxford Nanopore Technologies, Oxford Science Park, Oxford OX4 4DQ, UK; (D.J.T.); (D.S.)
| | - Benedict Paten
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Mark Akeson
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Aaron S. Burton
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Sarah L. Castro-Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX 77058, USA
- Correspondence: ; Tel.: +1-281-483-7254
| |
Collapse
|
42
|
Sumida K, Lau WL, Kovesdy CP, Kalantar-Zadeh K, Kalantar-Zadeh K. Microbiome modulation as a novel therapeutic approach in chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:75-84. [PMID: 33148949 DOI: 10.1097/mnh.0000000000000661] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Gut dysbiosis has been implicated in the pathogenesis of chronic kidney disease (CKD). Interventions aimed at restoring gut microbiota have emerged as a potential therapeutic option in CKD. This review summarizes the current evidence on gut microbiota-targeted strategies in patients with CKD. RECENT FINDINGS A growing number of studies have shown that plant-based diets, low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment may lead to favorable alterations in the gut microbiota. Current evidence suggests that the implementation of both plant-based and low-protein diets has potential benefits for the primary prevention of CKD, and for slowing CKD progression, with minimal risk of hyperkalemia and/or cachexia. The use of prebiotics, probiotics, and synbiotics and laxatives may have beneficial effects on uremic toxin generation, but their evidence is limited for the prevention and treatment of CKD. Recent advances in diagnostic technologies (e.g., high-throughput sequencing and nanotechnology) could enhance rapid diagnosis, monitoring, and design of effective therapeutic strategies for mitigating gut dysbiosis in CKD. SUMMARY Plant-based and low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment represent novel gut microbiota-targeted strategies in the conservative management of CKD, which could improve clinical outcomes in CKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Ling Lau
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
43
|
Kelly VW, Liang BK, Sirk SJ. Living Therapeutics: The Next Frontier of Precision Medicine. ACS Synth Biol 2020; 9:3184-3201. [PMID: 33205966 DOI: 10.1021/acssynbio.0c00444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modern medicine has long studied the mechanism and impact of pathogenic microbes on human hosts, but has only recently shifted attention toward the complex and vital roles that commensal and probiotic microbes play in both health and dysbiosis. Fueled by an enhanced appreciation of the human-microbe holobiont, the past decade has yielded countless insights and established many new avenues of investigation in this area. In this review, we discuss advances, limitations, and emerging frontiers for microbes as agents of health maintenance, disease prevention, and cure. We highlight the flexibility of microbial therapeutics across disease states, with special consideration for the rational engineering of microbes toward precision medicine outcomes. As the field advances, we anticipate that tools of synthetic biology will be increasingly employed to engineer functional living therapeutics with the potential to address longstanding limitations of traditional drugs.
Collapse
Affiliation(s)
- Vince W. Kelly
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Benjamin K. Liang
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu Rev Anim Biosci 2020; 9:423-452. [PMID: 33256435 DOI: 10.1146/annurev-animal-062920-113114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.
Collapse
Affiliation(s)
- Nuno Borges
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Gracinda M M Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - António Louvado
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , , .,Centre of Marine Sciences, Algarve University, 8005-139 Faro, Portugal.,Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
45
|
Łoś-Rycharska E, Gołębiewski M, Grzybowski T, Rogalla-Ładniak U, Krogulska A. The microbiome and its impact on food allergy and atopic dermatitis in children. Postepy Dermatol Alergol 2020; 37:641-650. [PMID: 33240001 PMCID: PMC7675070 DOI: 10.5114/ada.2019.90120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023] Open
Abstract
Food allergy (FA) affects 4-10% of children, especially children with atopic dermatitis (AD). During infancy the gut microbiome may determine both the course of FA and tolerance to food allergens. Analogically, the skin microbiome changes in the course of AD. Most studies have associated FA with a lower abundance and diversity of Lactobacillales and Clostridiales, but greater numbers of Enterobacterales, while AD in children has been associated with lower numbers of Staphylococcus epidermidis and S. hominis but an abundance of S. aureus and Streptococcus species. An understanding of the impact of the microbiome on the clinical course of FA and AD may allow for the development of new models of allergy treatment and prevention.
Collapse
Affiliation(s)
- Ewa Łoś-Rycharska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Marcin Gołębiewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Grzybowski
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Urszula Rogalla-Ładniak
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Aneta Krogulska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
46
|
Corcione S, Lupia T, De Rosa FG. Microbiome in the setting of burn patients: implications for infections and clinical outcomes. BURNS & TRAUMA 2020; 8:tkaa033. [PMID: 32821744 PMCID: PMC7428410 DOI: 10.1093/burnst/tkaa033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Indexed: 01/02/2023]
Abstract
Burn damage can lead to a state of immune dysregulation that facilitates the development of infections in patients. The most deleterious impact of this dysfunction is the loss of the skin’s natural protective barrier. Furthermore, the risk of infection is exacerbated by protracted hospitalization, urinary catheters, endotracheal intubation, inhalation injury, arterial lines and central venous access, among other mainstays of burn care. Currently, infections comprise the leading cause of mortality after major burn injuries, which highlights the improvements observed over the last 50 years in the care provided to burn victims. The need to implement the empirical selection of antibiotic therapy to treat multidrug-resistant bacteria may concomitantly lead to an overall pervasiveness of difficult-to-treat pathogens in burn centres, as well as the propagation of antimicrobial resistance and the ultimate dysregulation of a healthy microbiome. While preliminary studies are examining the variability and evolution of human and mice microbiota, both during the early and late phase burn injury, one must consider that abnormal microbiome conditions could influence the systemic inflammatory response. A better understanding of the changes in the post-burn microbiome might be useful to interpret the provenance and subsequent development of infections, as well as to come up with inferences on the prognosis of burn patients. This review aims to summarise the current findings describing the microbiological changes in different organs and systems of burn patients and how these alterations affect the risks of infections, complications, and, ultimately, healing.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | | |
Collapse
|
47
|
Ribeiro BMDSS, da Silva VA, Boaretto JP, Freitas IRS, Dalri RDCDMB, Martins EAP. Reflections on biosafety in acupuncture. Rev Bras Med Trab 2020; 18:109-112. [PMID: 32783012 DOI: 10.5327/z1679443520200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/11/2020] [Indexed: 11/05/2022] Open
Abstract
Background Acupuncture is an integrative and complementary practice for which biosafety standards are essential. Objective To elicit a reflection on biosafety in acupuncture to reduce occupational hazards associated with infection as adverse effect for both provider and patient. Methods The present theoretical essay is grounded on references intentionally selected from June through October 2019. Results Infection is the adverse effect most frequently reported for acupuncture practice, which involves considerable risk of microorganism inoculation. Provider awareness should be raised to comply with biosafety principles and thus ensure their and patient safety without any negative implications for the effectiveness of treatment. Conclusion We recommended providers to adopt universal biosafety practices during acupuncture procedures.
Collapse
Affiliation(s)
| | - Vladimir Araujo da Silva
- Nursing, Universidade Federal de Santa Catarina - Curitibanos (SC), Brazil. Universidade Federal de Santa Catarina Nursing Universidade Federal de Santa Catarina Brazil
| | - Jucelei Pascoal Boaretto
- Nursing, Universidade Estadual de Londrina - Londrina (PR), Brazil. Universidade Estadual de Londrina Nursing Universidade Estadual de Londrina Brazil
| | - Iria Roberta Staut Freitas
- Nursing, Universidade Estadual de Londrina - Londrina (PR), Brazil. Universidade Estadual de Londrina Nursing Universidade Estadual de Londrina Brazil
| | | | - Eleine Aparecida Penha Martins
- Nursing, Universidade Estadual de Londrina - Londrina (PR), Brazil. Universidade Estadual de Londrina Nursing Universidade Estadual de Londrina Brazil
| |
Collapse
|
48
|
Hernandez-Valdes JA, Zhou L, de Vries MP, Kuipers OP. Impact of spatial proximity on territoriality among human skin bacteria. NPJ Biofilms Microbiomes 2020; 6:30. [PMID: 32764612 PMCID: PMC7413532 DOI: 10.1038/s41522-020-00140-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
Bacteria display social behavior and establish cooperative or competitive interactions in the niches they occupy. The human skin is a densely populated environment where many bacterial species live. Thus, bacterial inhabitants are expected to find a balance in these interactions, which eventually defines their spatial distribution and the composition of our skin microbiota. Unraveling the physiological basis of the interactions between bacterial species in organized environments requires reductionist analyses using functionally relevant species. Here, we study the interaction between two members of our skin microbiota, Bacillus subtilis and Staphylococcus epidermidis. We show that B. subtilis actively responds to the presence of S. epidermidis in its proximity by two strategies: antimicrobial production and development of a subpopulation with migratory response. The initial response of B. subtilis is production of chlorotetain, which degrades the S. epidermidis at the colony level. Next, a subpopulation of B. subtilis motile cells emerges. Remarkably this subpopulation slides towards the remaining S. epidermidis colony and engulfs it. A slow response back from S. epidermidis cells give origin to resistant cells that prevent both attacks from B. subtilis. We hypothesized that this niche conquering and back-down response from B. subtilis and S. epidermidis, respectively, which resembles other conflicts in nature as the ones observed in animals, may play a role in defining the presence of certain bacterial species in the specific microenvironments that these bacteria occupy on our skin.
Collapse
Affiliation(s)
- Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Lu Zhou
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Marcel P de Vries
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
49
|
Searle T, Ali FR, Carolides S, Al‐Niaimi F. Rosacea and the gastrointestinal system. Australas J Dermatol 2020; 61:307-311. [DOI: 10.1111/ajd.13401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Tamara Searle
- University of Birmingham Medical School Birmingham UK
| | - Faisal R. Ali
- Dermatological Surgery & Laser Unit St John’s Institute of Dermatology Guy’s Hospital Cancer Centre Guy’s and St Thomas’ NHS Foundation Trust Great Maze Pond London UK
- Vernova Healthcare CIC Macclesfield Cheshire UK
| | | | - Firas Al‐Niaimi
- Department of Dermatology Aalborg University Hospital Aalborg Denmark
| |
Collapse
|
50
|
Frew JW. Hidradenitis suppurativa is an autoinflammatory keratinization disease: A review of the clinical, histologic, and molecular evidence. JAAD Int 2020; 1:62-72. [PMID: 34409324 PMCID: PMC8361883 DOI: 10.1016/j.jdin.2020.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenic model of hidradenitis suppurativa is in the midst of a paradigm shift away from a disorder of primary follicular occlusion to an autoinflammatory keratinization disease. Observational, experimental, and therapeutic evidence supports the concept of hidradenitis suppurativa as a primarily inflammatory disorder, a disorder of autoimmunity, or both, in contrast to the current prevailing paradigm of primary follicular occlusion. The lack of reliable and high-fidelity disease models has limited the available experimental and mechanistic evidence to support or refute one pathogenic model over another. This scholarly review synthesizes the existing clinical, histologic, and molecular data to evaluate the extant evidence supporting the autoinflammatory paradigm and further informing the molecular mechanisms of hidradenitis suppurativa pathogenesis. Follicular hyperkeratosis/occlusion and perifollicular inflammation coexist in histologic specimens, with interleukin 1α demonstrated to stimulate comedogenesis in the infundibulum. pH elevation in occluded body sites alters the microbiome and amplifies existing T-helper cell type 17 immunoresponses. Known metabolic comorbidities and smoking are known to upregulate interleukin 1α in follicular keratinocytes. Identified genetic variants may alter epidermal growth factor receptor signaling, leading to upregulated keratinocyte inflammatory responses. The process of follicular rupture and dermal tunnel formation can be explained as secondary responses to inflammatory activation of fibroblasts and epithelial-mesenchymal transition, with antibody production associated with inflammatory amplification in advanced disease. This review aims to reevaluate and integrate the current clinical, histologic, and molecular data into a pathogenic model of hidradenitis suppurativa. This is essential to advance our understanding of the disease and identify novel therapeutic targets and approaches.
Collapse
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, Rockefeller University, New York, New York
| |
Collapse
|