1
|
Brown O, Flegg JA, Weiss DJ, Golding N. A global mathematical model of climatic suitability for Plasmodium falciparum malaria. Malar J 2024; 23:306. [PMID: 39390501 PMCID: PMC11465573 DOI: 10.1186/s12936-024-05122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control. Previous work has developed mathematical models and global maps for the suitability of temperature for malaria transmission. In this paper, existing temperature-based models are extended to include two other important bioclimatic factors: humidity and rainfall. This model is combined with fine spatial resolution climatic data to produce a more biologically-realistic global map of climatic suitability for Plasmodium falciparum malaria. The climatic suitability index developed corresponds more closely than previous temperature suitability indices with the global distribution of P. falciparum malaria. There is weak agreement between the Malaria Atlas Project estimates of P. falciparum prevalence in Africa and the estimates of suitability solely based on temperature (Spearman Correlation coefficient of ρ = 0.24 ). The addition of humidity and then rainfall improves the comparison ( ρ = 0.62 when humidity added; ρ = 0.70 when both humidity and rainfall added). By incorporating the impacts of humidity and rainfall, this model identifies arid regions that are not climatically suitable for transmission of P. falciparum malaria. Incorporation of this improved index of climatic suitability into geospatial models can improve global estimates of malaria prevalence and transmission intensity.
Collapse
Affiliation(s)
- Owen Brown
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
| | - Daniel J Weiss
- The Kids Research Institute Australia, Perth Children's Hospital, Nedlands, Australia
- School of Population Health, Curtin University, Bentley, Australia
| | - Nick Golding
- The Kids Research Institute Australia, Perth Children's Hospital, Nedlands, Australia
- School of Population Health, Curtin University, Bentley, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Valiati NCM, Rice B, Villela DAM. Disentangling the seasonality effects of malaria transmission in the Brazilian Amazon basin. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231764. [PMID: 39076372 PMCID: PMC11285569 DOI: 10.1098/rsos.231764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 07/31/2024]
Abstract
The evidence of seasonal patterns in malaria epidemiology in the Brazilian Amazon basin indicates the need for a thorough investigation of seasonality in this last and heterogeneous region. Additionally, since these patterns are linked to climate variables, malaria models should also incorporate them. This study applies wavelet analysis to incidence data from 2003 to 2020 in the Epidemiological Surveillance System for Malaria (SIVEP-Malaria) database. A mathematical model with climate-dependent parametrization is proposed to study counts of malaria cases over time based on notification data, temperature and rainfall. The wavelet analysis reveals marked seasonality in states Amazonas and Amapá throughout the study period, and from 2003 to 2012 in Pará. However, these patterns are not as marked in other states such as Acre and Pará in more recent years. The wavelet coherency analysis indicates a strong association between incidence and temperature, especially for the municipalities of Macapá and Manaus, and a similar association for rainfall. The mathematical model fits well with the observed temporal trends in both municipalities. Studies on climate-dependent mathematical models provide a good assessment of the baseline epidemiology of malaria. Additionally, the understanding of seasonality effects and the application of models have great potential as tools for studying interventions for malaria control.
Collapse
Affiliation(s)
- Naiara C. M. Valiati
- National School of Public Health Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Benjamin Rice
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Daniel A. M. Villela
- Program of Scientific Computing, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Center for Health and Wellbeing, School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Talib J, Abatan AA, HoekSpaans R, Yamba EI, Egbebiyi TS, Caminade C, Jones A, Birch CE, Olagbegi OM, Morse AP. The effect of explicit convection on simulated malaria transmission across Africa. PLoS One 2024; 19:e0297744. [PMID: 38625879 PMCID: PMC11020401 DOI: 10.1371/journal.pone.0297744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/11/2024] [Indexed: 04/18/2024] Open
Abstract
Malaria transmission across sub-Saharan Africa is sensitive to rainfall and temperature. Whilst different malaria modelling techniques and climate simulations have been used to predict malaria transmission risk, most of these studies use coarse-resolution climate models. In these models convection, atmospheric vertical motion driven by instability gradients and responsible for heavy rainfall, is parameterised. Over the past decade enhanced computational capabilities have enabled the simulation of high-resolution continental-scale climates with an explicit representation of convection. In this study we use two malaria models, the Liverpool Malaria Model (LMM) and Vector-Borne Disease Community Model of the International Centre for Theoretical Physics (VECTRI), to investigate the effect of explicitly representing convection on simulated malaria transmission. The concluded impact of explicitly representing convection on simulated malaria transmission depends on the chosen malaria model and local climatic conditions. For instance, in the East African highlands, cooler temperatures when explicitly representing convection decreases LMM-predicted malaria transmission risk by approximately 55%, but has a negligible effect in VECTRI simulations. Even though explicitly representing convection improves rainfall characteristics, concluding that explicit convection improves simulated malaria transmission depends on the chosen metric and malaria model. For example, whilst we conclude improvements of 45% and 23% in root mean squared differences of the annual-mean reproduction number and entomological inoculation rate for VECTRI and the LMM respectively, bias-correcting mean climate conditions minimises these improvements. The projected impact of anthropogenic climate change on malaria incidence is also sensitive to the chosen malaria model and representation of convection. The LMM is relatively insensitive to future changes in precipitation intensity, whilst VECTRI predicts increased risk across the Sahel due to enhanced rainfall. We postulate that VECTRI's enhanced sensitivity to precipitation changes compared to the LMM is due to the inclusion of surface hydrology. Future research should continue assessing the effect of high-resolution climate modelling in impact-based forecasting.
Collapse
Affiliation(s)
- Joshua Talib
- U.K. Centre for Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Abayomi A. Abatan
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Remy HoekSpaans
- Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Edmund I. Yamba
- Department of Meteorology and Climate Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Temitope S. Egbebiyi
- Climate Systems Analysis Group, Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Cyril Caminade
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Anne Jones
- International Business Machines (IBM) Research Europe, Daresbury, United Kingdom
| | - Cathryn E. Birch
- School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Oladapo M. Olagbegi
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew P. Morse
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Zain A, Sadarangani SP, Shek LPC, Vasoo S. Climate change and its impact on infectious diseases in Asia. Singapore Med J 2024; 65:211-219. [PMID: 38650059 PMCID: PMC11132621 DOI: 10.4103/singaporemedj.smj-2023-180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
ABSTRACT Climate change, particularly increasing temperature, changes in rainfall, extreme weather events and changes in vector ecology, impacts the transmission of many climate-sensitive infectious diseases. Asia is the world's most populous, rapidly evolving and diverse continent, and it is already experiencing the effects of climate change. Climate change intersects with population, sociodemographic and geographical factors, amplifying the public health impact of infectious diseases and potentially widening existing disparities. In this narrative review, we outline the evidence of the impact of climate change on infectious diseases of importance in Asia, including vector-borne diseases, food- and water-borne diseases, antimicrobial resistance and other infectious diseases. We also highlight the imperative need for strategic intersectoral collaboration at the national and global levels and for the health sector to implement adaptation and mitigation measures, including responsibility for its own greenhouse gas emissions.
Collapse
Affiliation(s)
- Amanda Zain
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
| | - Sapna P Sadarangani
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lynette Pei-Chi Shek
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
6
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Chitre SD, Crews CM, Tessema MT, Plėštytė-Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 2024; 95:496-507. [PMID: 38057578 PMCID: PMC10872406 DOI: 10.1038/s41390-023-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Collapse
Affiliation(s)
- Smit D Chitre
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Cecilia M Crews
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mesfin Teklu Tessema
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA.
- International Rescue Committee, New York, NY, USA.
| | | | - Megan Coffee
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- International Rescue Committee, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene T Richardson
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Searle KM, Earland DE, Francisco Bibe A, Novela A, Muhiro V, Ferrão JL. Long-lasting household damage from Cyclone Idai increases malaria risk in rural western Mozambique. Sci Rep 2023; 13:21590. [PMID: 38062239 PMCID: PMC10703775 DOI: 10.1038/s41598-023-49200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Cyclone Idai in 2019 was one of the worst tropical cyclones recorded in the Southern Hemisphere. The storm caused catastrophic damage and led to a humanitarian crisis in Mozambique. The affected population suffered a cholera epidemic on top of housing and infrastructure damage and loss of life. The housing and infrastructure damage sustained during Cyclone Idai still has not been addressed in all affected communities. This is of grave concern because storm damage results in poor housing conditions which are known to increase the risk of malaria. Mozambique has the 4th highest malaria prevalence in sub-Saharan Africa and is struggling to control malaria in most of the country. We conducted a community-based cross-sectional survey in Sussundenga Village, Manica Province, Mozambique in December 2019-February 2020. We found that most participants (64%) lived in households that sustained damage during Cyclone Idai. The overall malaria prevalence was 31% measured by rapid diagnostic test (RDT). When controlling for confounding variables, the odds of malaria infection was nearly threefold higher in participants who lived in households damaged by Cyclone Idai nearly a year after the storm. This highlights the need for long-term disaster response to improve the efficiency and success of malaria control efforts.
Collapse
Affiliation(s)
- Kelly M Searle
- University of Minnesota School of Public Health, Minneapolis, MN, USA.
| | | | | | - Anísio Novela
- Direcção Distrital de Saúde de Sussundenga, Sussundenga, Manica, Mozambique
| | - Vali Muhiro
- Direcção Distrital de Saúde de Sussundenga, Sussundenga, Manica, Mozambique
| | - João L Ferrão
- Consultores Associados de Manica, Sussundenga, Mozambique
| |
Collapse
|
9
|
Kinyatta N, Wachira D, Githae R, Lusweti J, Ingonga J, Ichugu C, Maina C, Haji R, Kimani F, Musili R, Muli J, Kamau L. Detection of Wuchereria bancrofti in human blood samples and mosquitoes in Matayos, Busia County-Kenya. Sci Rep 2023; 13:19420. [PMID: 37940673 PMCID: PMC10632445 DOI: 10.1038/s41598-023-46329-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Lymphatic filariasis is a mosquito borne disease which leads to abnormal painful enlarged body parts, severe disability and social stigma. We screened Wuchereria bancrofti in Matayos constituency in Busia County. Blood samples were collected from 23 villages selected purposively based on clinical case reports. Finger prick and/or venous blood sampling and mosquito collections was carried out. Antigenaemia and filarial DNA prevalence were determined. Infection rates on mosquito pools were estimated and SPSS version 26 was used for descriptive statistics analysis. A total of 262 participants were recruited, 73.3% (n = 192) of the participants had no symptoms, 14.1% (n = 5.3) had swollen legs, 5.3% (n = 14) had painful legs and 3.8% (n = 10) with scrotal swellings. Average antigenemia prevalence was 35.9% (n = 94) and DNA prevalence was at 8.0% (n = 21). A total of 1305 mosquitoes were collected and pooled into 2-20 mosquitoes of the same species and from the same village. Two pools out of 78 were positive for filarial DNA with a minimum infection rate of 0.15%. From this study, antigenaemia and infected mosquitoes are an indication of active transmission. The clinical signs are evidence that filarial infections have been in circulation for over 10 years. The global climate change phenomenon currently happening has been shown to adversely affect the transmission of vector borne diseases and is likely to increase lymphatic filariasis transmission in the area. This study therefore recommends further screening before Mass Drug Administration, morbidity management and enhanced mosquito control Programmes are recommended in the study area.
Collapse
Affiliation(s)
- Nancy Kinyatta
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya.
| | - Dorcas Wachira
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Rosemary Githae
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Japheth Lusweti
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Johnstone Ingonga
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Christine Ichugu
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Caroline Maina
- Department of Bioinformatics and Molecular Biology, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Rukiya Haji
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Francis Kimani
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Rael Musili
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Jacinta Muli
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| | - Luna Kamau
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
10
|
Liu Z, Zhang Q, Li L, He J, Guo J, Wang Z, Huang Y, Xi Z, Yuan F, Li Y, Li T. The effect of temperature on dengue virus transmission by Aedes mosquitoes. Front Cell Infect Microbiol 2023; 13:1242173. [PMID: 37808907 PMCID: PMC10552155 DOI: 10.3389/fcimb.2023.1242173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Dengue is prevalent in tropical and subtropical regions. As an arbovirus disease, it is mainly transmitted by Aedes aegypti and Aedes albopictus. According to the previous studies, temperature is closely related to the survival of Aedes mosquitoes, the proliferation of dengue virus (DENV) and the vector competence of Aedes to transmit DENV. This review describes the correlations between temperature and dengue epidemics, and explores the potential reasons including the distribution and development of Aedes mosquitoes, the structure of DENV, and the vector competence of Aedes mosquitoes. In addition, the immune and metabolic mechanism are discussed on how temperature affects the vector competence of Aedes mosquitoes to transmit DENV.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qingxin Zhang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Liya Li
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Junjie He
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Jinyang Guo
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zichen Wang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yige Huang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zimeng Xi
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Fei Yuan
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yiji Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Tingting Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Suresh S, Meraj G, Kumar P, Singh D, Khan ID, Gupta A, Yadav TK, Kouser A, Avtar R. Interactions of urbanisation, climate variability, and infectious disease dynamics: insights from the Coimbatore district of Tamil Nadu. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1226. [PMID: 37725204 DOI: 10.1007/s10661-023-11856-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Climate change and shifts in land use/land cover (LULC) are critical factors affecting the environmental, societal, and health landscapes, notably influencing the spread of infectious diseases. This study delves into the intricate relationships between climate change, LULC alterations, and the prevalence of vector-borne and waterborne diseases in Coimbatore district, Tamil Nadu, India, between 1985 and 2015. The research utilised Landsat-4, Landsat-5, and Landsat-8 data to generate LULC maps, applying the maximum likelihood algorithm to highlight significant transitions over the years. This study revealed that built-up areas have increased by 67%, primarily at the expense of agricultural land, which was reduced by 51%. Temperature and rainfall data were obtained from APHRODITE Water Resources, and with a statistical analysis of the time series data revealed an annual average temperature increase of 1.8 °C and a minor but statistically significant rainfall increase during the study period. Disease data was obtained from multiple national health programmes, revealing an increasing trend in dengue and diarrhoeal diseases over the study period. In particular, dengue cases surged, correlating strongly with the increase in built-up areas and temperature. This research is instrumental for policy decisions in public health, urban planning, and climate change mitigation. Amidst limited research on the interconnections among infectious diseases, climate change, and LULC changes in India, our study serves as a significant precursor for future management strategies in Coimbatore and analogous regions.
Collapse
Affiliation(s)
- Sudha Suresh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Gowhar Meraj
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-8654, Japan
| | - Pankaj Kumar
- Institute for Global Environmental Strategies, Hayama, 240-0115, Japan
| | - Deepak Singh
- Research Institute for Humanity and Nature (RIHN), 457-4 MotoyamaKita-Ku, KamigamoKyoto, 603-8047, Japan
| | - Inam Danish Khan
- Department of Clinical Microbiology, Army Base Hospital, Delhi Cantonment, New Delhi, 110010, India
| | - Ankita Gupta
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tarun Kumar Yadav
- Centre of Environmental Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Asma Kouser
- Department of Economics, Bengaluru City University, Bengaluru, Karnataka, 560001, India
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ram Avtar
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
12
|
Gouda KC, Pernaje N, Benke M. Climate parameter and malaria association in north-east India. J Parasit Dis 2023; 47:501-512. [PMID: 37520211 PMCID: PMC10382377 DOI: 10.1007/s12639-023-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 08/01/2023] Open
Abstract
This study was performed in order to understand the effect of climatological variables on the malaria situation in the north-east region of India, which is prolonged by the disease. Time-series analysis of major climate parameters like rainfall, maximum temperature, minimum temperature, mean temperature, relative humidity, and soil moisture distributions is carried out, and their correlation with the malaria incidence is quantified state-wise, which is the unique part of the study. The correlation analysis reveals that malaria is significantly related with the maximum temperature and soil moisture in three out of eight states in NE India. To assess the climate variability, the inter-dependency between the meteorological parameters is obtained and the state wise correlation matrix for all states are reported. The analysis shows that maximum and mean temperature has highest positive correlation whereas minimum temperature and relative humidity has negative correlation. The climate-malaria relation is being carried out in the study region using the regression analysis and the results revealed that the regional climate has the most impact for the malaria incidence in the state of Arunachal Pradesh, Meghalaya, Tripura and Nagaland and in other states the impact is moderate. Analysis of variance modelling in the regions also indicates the degree of the fitment of both the data sets with the regression model and it is observed that the relation is also significant in the same 4 states. As a case study the impact of large scale oscillations like El Niño-Southern Oscillation on the malaria load is also assessed which can be a good indicator in the prediction of the climate and in turn the malaria incidences over the region.
Collapse
Affiliation(s)
- K. C. Gouda
- CSIR Fourth Paradigm Institute, Wind Tunnel Road, Bangalore, 560037 India
| | | | - Mahendra Benke
- CSIR Fourth Paradigm Institute, Wind Tunnel Road, Bangalore, 560037 India
| |
Collapse
|
13
|
Debash H, Nigatie M, Bisetegn H, Feleke DG, Tesfaw G, Amha A, Abate MA, Gedefie A. Malaria surveillance, outbreak investigation, response and its determinant factors in Waghemra Zone, Northeast Ethiopia: unmatched case-control study. Sci Rep 2023; 13:9938. [PMID: 37336906 DOI: 10.1038/s41598-023-36918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
Malaria is a major global public health concern, with around half of the world's population at risk of infection. It is one of the most common epidemic-prone diseases, resulting in on-going epidemics and significant public health problems. On September 12, 2022, Waghemra Zone malaria monitoring data revealed that the district was suffering an unusually high number of malaria cases. Therefore, the aim of this study was to assess the occurrence of malaria outbreaks and investigate contracting factors in Waghemra Zone, Northeast Ethiopia. A community-based case-control study with a 1:1 ratio was employed at Waghemra Zone from September 14 to November 27, 2022. A total of 260 individuals (130 cases and 130 controls) were included in the study. A structured questionnaire was used to collect the data. Malaria cases were confirmed by either microscopy or malaria rapid diagnostic tests. The magnitude of the outbreak was described by place, person, and time. A multivariable logistic regression analysis was conducted to identify malaria risk factors. A total of 13,136 confirmed cases of malaria were detected in the Waghemra zone, with an overall attack rate of 26.5 per 1000 and slide positivity rate was 43.0%. The predominant species was Plasmodium falciparum accounting for 66.1%. Children under five years old (AOR = 5.1; 95% CI 2.6-23.0), the presence of artificial water-holding bodies (AOR: 2.7; 95% CI 1.340-5.420), intermittent rivers closer to the living house (AOR = 4.9; 95% CI 2.51-9.62), sleeping outside a home (AOR = 4.9; 95% CI 2.51-9.62), and a lack of knowledge about malaria transmission and prevention (AOR: 9.7; 95% CI 4.459-20.930) were factors associated with malaria contraction. The overall attack rate for malaria during this outbreak was high. Children less than five years, the presence of mosquito breeding sites, staying outdoors overnight, and a lack of knowledge on malaria transmission and prevention were predictors of malaria. Early management of local vector breeding places, as well as adequate health education on malaria transmission and prevention methods, should be provided to the community to prevent such outbreaks in the future.
Collapse
Affiliation(s)
- Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Marye Nigatie
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Habtye Bisetegn
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Daniel Getacher Feleke
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gebru Tesfaw
- Department of Internal Medicine, School of Medicine, Wollo University, Dessie, Ethiopia
| | - Askale Amha
- Waghemra Zone Health Department, Sekota, Ethiopia
| | - Megbaru Alemu Abate
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Bahirdar University, Bahirdar, Ethiopia
- The University of Queensland, School of Public Health, Brisbane, Australia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
14
|
When host populations move north, but disease moves south: Counter-intuitive impacts of climate change on disease spread. THEOR ECOL-NETH 2023. [DOI: 10.1007/s12080-022-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Jacobsen AP, Khiew YC, Duffy E, O'Connell J, Brown E, Auwaerter PG, Blumenthal RS, Schwartz BS, McEvoy JW. Climate change and the prevention of cardiovascular disease. Am J Prev Cardiol 2022; 12:100391. [PMID: 36164332 PMCID: PMC9508346 DOI: 10.1016/j.ajpc.2022.100391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Climate change is a worsening global crisis that will continue negatively impacting population health and well-being unless adaptation and mitigation interventions are rapidly implemented. Climate change-related cardiovascular disease is mediated by air pollution, increased ambient temperatures, vector-borne disease and mental health disorders. Climate change-related cardiovascular disease can be modulated by climate change adaptation; however, this process could result in significant health inequity because persons and populations of lower socioeconomic status have fewer adaptation options. Clear scientific evidence for climate change and its impact on human health have not yet resulted in the national and international impetus and policies necessary to slow climate change. As respected members of society who regularly communicate scientific evidence to patients, clinicians are well-positioned to advocate on the importance of addressing climate change. This narrative review summarizes the links between climate change and cardiovascular health, proposes actionable items clinicians and other healthcare providers can execute both in their personal life and as an advocate of climate policies, and encourages communication of the health impacts of climate change when counseling patients. Our aim is to inspire the reader to invest more time in communicating the most crucial public health issue of the 21st century to their patients.
Collapse
Affiliation(s)
- Alan P. Jacobsen
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yii Chun Khiew
- Division of Gastroenterology, Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Eamon Duffy
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - James O'Connell
- Department of Public Health, Health Service Executive West, Galway, Ireland
| | - Evans Brown
- Department of Medicine, Division of Hospital Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul G. Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brian S. Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John William McEvoy
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- National Institute for Prevention and Cardiovascular Health, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Mohammed K, Salifu MG, Batung E, Amoak D, Avoka VA, Kansanga M, Luginaah I. Spatial analysis of climatic factors and plasmodium falciparum malaria prevalence among children in Ghana. Spat Spatiotemporal Epidemiol 2022; 43:100537. [PMID: 36460447 DOI: 10.1016/j.sste.2022.100537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Malaria is a major public health problem especially in Africa where 94% of global malaria cases occur. Malaria prevalence and mortalities are disproportionately higher among children. In 2019, children accounted for 67% of malaria deaths globally. Recently, climatic factors have been acknowledged to influence the number and severity of malaria cases. Plasmodium falciparum-the most deadly malaria parasite, accounts for more than 95% of malaria infections among children in Ghana. Using the 2017 Ghana Demographic Health Survey data, we examined the local variation in the prevalence and climatic determinants of child malaria. The findings showed that climatic factors such as temperature, rainfall aridity and Enhanced Vegetation Index are significantly and positively associated with Plasmodium falciparum malaria prevalence among children in Ghana. However, there are local variations in how these climatic factors affect child malaria prevalence. Plasmodium falciparum malaria prevalence was highest among children in the south western, north western and northern Ghana.
Collapse
Affiliation(s)
- Kamaldeen Mohammed
- Department of Geography and Environment, University of Western Ontario, 151 Richmond St, London, Ontario, Canada.
| | | | - Evans Batung
- Department of Geography and Environment, University of Western Ontario, 151 Richmond St, London, Ontario, Canada
| | - Daniel Amoak
- Department of Geography and Environment, University of Western Ontario, 151 Richmond St, London, Ontario, Canada
| | | | - Moses Kansanga
- Department of Geography, George Washington University, 2121 I St NW, Washington, DC 20052, USA
| | - Isaac Luginaah
- Department of Geography and Environment, University of Western Ontario, 151 Richmond St, London, Ontario, Canada
| |
Collapse
|
17
|
Spatial Analysis of Mosquito-Borne Diseases in Europe: A Scoping Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14158975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mosquito-borne infections are increasing in endemic areas and previously unaffected regions. In 2020, the notification rate for Dengue was 0.5 cases per 100,000 population, and for Chikungunya <0.1/100,000. In 2019, the rate for Malaria was 1.3/100,000, and for West Nile Virus, 0.1/100,000. Spatial analysis is increasingly used in surveillance and epidemiological investigation, but reviews about their use in this research topic are scarce. We identify and describe the methodological approaches used to investigate the distribution and ecological determinants of mosquito-borne infections in Europe. Relevant literature was extracted from PubMed, Scopus, and Web of Science from inception until October 2021 and analysed according to PRISMA-ScR protocol. We identified 110 studies. Most used geographical correlation analysis (n = 50), mainly applying generalised linear models, and the remaining used spatial cluster detection (n = 30) and disease mapping (n = 30), mainly conducted using frequentist approaches. The most studied infections were Dengue (n = 32), Malaria (n = 26), Chikungunya (n = 26), and West Nile Virus (n = 24), and the most studied ecological determinants were temperature (n = 39), precipitation (n = 24), water bodies (n = 14), and vegetation (n = 11). Results from this review may support public health programs for mosquito-borne disease prevention and may help guide future research, as we recommended various good practices for spatial epidemiological studies.
Collapse
|
18
|
O’Keeffe KR, Oppler ZJ, Prusinski M, Falco RC, Oliver J, Haight J, Sporn LA, Backenson PB, Brisson D. Phylogeographic dynamics of the arthropod vector, the blacklegged tick (Ixodes scapularis). Parasit Vectors 2022; 15:238. [PMID: 35765050 PMCID: PMC9241328 DOI: 10.1186/s13071-022-05304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence of vector-borne pathogens in novel geographic areas is regulated by the migration of their arthropod vectors. Blacklegged ticks (Ixodes scapularis) and the pathogens they vector, including the causative agents of Lyme disease, babesiosis and anaplasmosis, continue to grow in their population sizes and to expand in geographic range. Migration of this vector over the previous decades has been implicated as the cause of the re-emergence of the most prevalent infectious diseases in North America. METHODS We systematically collected ticks from across New York State (hereafter referred to as New York) from 2004 to 2017 as part of routine tick-borne pathogen surveillance in the state. This time frame corresponds with an increase in range and incidence of tick-borne diseases within New York. We randomly sampled ticks from this collection to explore the evolutionary history and population dynamics of I. scapularis. We sequenced the mitochondrial genomes of each tick to characterize their current and historical spatial genetic structure and population growth using phylogeographic methods. RESULTS We sequenced whole mitochondrial genomes from 277 ticks collected across New York between 2004 and 2017. We found evidence of population genetic structure at a broad geographic scale due to differences in the relative abundance, but not the composition, of haplotypes among sampled ticks. Ticks were often most closely related to ticks from the same and nearby collection sites. The data indicate that both short- and long-range migration events shape the population dynamics of blacklegged ticks in New York. CONCLUSIONS We detailed the population dynamics of the blacklegged tick (Ixodes scapularis) in New York during a time frame in which tick-borne diseases were increasing in range and incidence. Migration of ticks occurred at both coarse and fine scales in the recent past despite evidence of limits to gene flow. Past and current tick population dynamics have implications for further range expansion as habitat suitability for ticks changes due to global climate change. Analyses of mitochondrial genome sequencing data will expound upon previously identified drivers of tick presence and abundance as well as identify additional drivers. These data provide a foundation on which to generate testable hypotheses on the drivers of tick population dynamics occurring at finer scales.
Collapse
Affiliation(s)
| | - Zachary J. Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | | | | | - JoAnne Oliver
- Department of Health, Central New York Regional Office, Syracuse, NY 13202 USA
| | - Jamie Haight
- New York State Department of Health, Albany, NY USA
| | | | | | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
19
|
Malaria Threatens to Bounce Back in Abergele District, Northeast Ethiopia: Five-Year Retrospective Trend Analysis from 2016-2020 in Nirak Health Center. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6388979. [PMID: 35711525 PMCID: PMC9197627 DOI: 10.1155/2022/6388979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Background In Sub-Saharan African countries, malaria is a leading cause of morbidity and mortality. In Ethiopia, malaria is found in three-fourths of its land mass with more than 63 million people living in malaria endemic areas. Nowadays, Ethiopia is implementing a malaria elimination program with the goal of eliminating the disease by 2030. To assist this goal, the trends of malaria cases should be evaluated with a function of time in different areas of the country to develop area-specific evidence-based interventions. Therefore, this study was aimed at analysing a five year trend of malaria in Nirak Health Center, Abergele District, Northeast Ethiopia, from 2016 to 2020. Methods A retrospective study was conducted at Nirak Health Center, Abergele District, Northeast Ethiopia from February to April 2021. Five-year (2016 to 2020) retrospective data were reviewed from the malaria registration laboratory logbook. The sociodemographic and malaria data were collected using a predesigned data collection sheet. Data were entered, cleaned, and analysed using SPSS version 26. Results In the five-year period, a total of 19,433 malaria suspected patients were diagnosed by microscopic examination. Of these, 6,473 (33.3%) were positive for malaria parasites. Of the total confirmed cases, 5,900 (91.2%) were P. falciparum and 474 (7.2%) were P. vivax. Majority of the cases were males (62.2%) and in the age group of 15-45 years old (52.8%). The findings of this study showed an increasing trend in malaria cases in the past five years (2016-2020). The maximum number of confirmed malaria cases reported was in the year 2020, while the minimum number of confirmed malaria cases registered was in 2016. Regarding the seasonal distribution of malaria, the highest number of malaria cases (55.2%) was observed in Dry season (September to January) and also the least (15.9%) was observed in Autumn (March to May) replaced by the least (21.6%) was observed in Rainy season (June to August), that is, the major malaria transmission season in Ethiopia and the least (15.9%) was observed in autumn (March to May). Conclusion The trends of malaria in Nirak Health Center showed steadily increasing from the year 2016–2020, and the predominant species isolated was P. falciparum. This showed that the malaria control and elimination strategy in the area were not properly implemented or failed to achieve its designed goal. Therefore, this finding alarms the local governments and other stack holders urgently to revise their intervention strategies and take action in the locality.
Collapse
|
20
|
Parihar RS, Bal PK, Saini A, Mishra SK, Thapliyal A. Potential future malaria transmission in Odisha due to climate change. Sci Rep 2022; 12:9048. [PMID: 35641573 PMCID: PMC9156684 DOI: 10.1038/s41598-022-13166-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Future projections of malaria transmission is made for Odisha, a highly endemic region of India, through numerical simulations using the VECTRI dynamical model. The model is forced with bias-corrected temperature and rainfall from a global climate model (CCSM4) for the baseline period 1975–2005 and for the projection periods 2020s, 2050s, and 2080s under RCP8.5 emission scenario. The temperature, rainfall, mosquito density and entomological inoculation rate (EIR), generated from the VECTRI model are evaluated with the observation and analyzed further to estimate the future malaria transmission over Odisha on a spatio-temporal scale owing to climate change. Our results reveal that the malaria transmission in Odisha as a whole during summer and winter monsoon seasons may decrease in future due to the climate change except in few districts with the high elevations and dense forest regions such as Kandhamal, Koraput, Raygada and Mayurbhanj districts where an increase in malaria transmission is found. Compared to the baseline period, mosquito density shows decrease in most districts of the south, southwest, central, north and northwest regions of Odisha in 2030s, 2050s and 2080s. An overall decrease in malaria transmission of 20–40% (reduction in EIR) is seen during the monsoon season (June-Sept) over Odisha with the increased surface temperature of 3.5–4 °C and with the increased rainfall of 20–35% by the end of the century with respect to the baseline period. Furthermore, malaria transmission is likely to reduce in future over most of the Odisha regions with the increase in future warm and cold nights temperatures.
Collapse
Affiliation(s)
- Ruchi Singh Parihar
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India.,Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | - Atul Saini
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India.,Delhi School of Climate Change and Sustainability, Institution of Eminence, University of Delhi, Delhi, India
| | - Saroj Kanta Mishra
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashish Thapliyal
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| |
Collapse
|
21
|
Veras H. Wrong place, wrong time: The long-run effects of in-utero exposure to malaria on educational attainment. ECONOMICS AND HUMAN BIOLOGY 2022; 44:101092. [PMID: 34923211 DOI: 10.1016/j.ehb.2021.101092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
This paper investigates the long-term relationship between early life exposure to malaria and human capital accumulation in Brazil. The identification strategy relies on exogenous variation in the risk of malaria outbreaks in different states and seasons of the year to identify in utero exposure according to the timing and location of birth. I find consistent negative treatment effects of in utero exposure to malaria on educational attainment. The effects are stronger for exposure during the first trimester of pregnancy than during other periods of gestation. Effective anti-malaria policies can, thus, be an important factor contributing to reducing the educational inequality by targeting pregnant women, especially those in their first months of gestation.
Collapse
Affiliation(s)
- Henrique Veras
- Department of Economics and Business, Centre College, Crounse Hall 417, 1600 W Walnut St, Danville, KY 40422, USA.
| |
Collapse
|
22
|
Ogden NH, Beard CB, Ginsberg HS, Tsao JI. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1536-1545. [PMID: 33112403 PMCID: PMC9620468 DOI: 10.1093/jme/tjaa220] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 05/09/2023]
Abstract
The global climate has been changing over the last century due to greenhouse gas emissions and will continue to change over this century, accelerating without effective global efforts to reduce emissions. Ticks and tick-borne diseases (TTBDs) are inherently climate-sensitive due to the sensitivity of tick lifecycles to climate. Key direct climate and weather sensitivities include survival of individual ticks, and the duration of development and host-seeking activity of ticks. These sensitivities mean that in some regions a warming climate may increase tick survival, shorten life-cycles and lengthen the duration of tick activity seasons. Indirect effects of climate change on host communities may, with changes in tick abundance, facilitate enhanced transmission of tick-borne pathogens. High temperatures, and extreme weather events (heat, cold, and flooding) are anticipated with climate change, and these may reduce tick survival and pathogen transmission in some locations. Studies of the possible effects of climate change on TTBDs to date generally project poleward range expansion of geographical ranges (with possible contraction of ranges away from the increasingly hot tropics), upslope elevational range spread in mountainous regions, and increased abundance of ticks in many current endemic regions. However, relatively few studies, using long-term (multi-decade) observations, provide evidence of recent range changes of tick populations that could be attributed to recent climate change. Further integrated 'One Health' observational and modeling studies are needed to detect changes in TTBD occurrence, attribute them to climate change, and to develop predictive models of public- and animal-health needs to plan for TTBD emergence.
Collapse
Affiliation(s)
- Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC, Canada J2S 2M2
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada J2S 2M2
- Corresponding author,
| | - C. Ben Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Howard S. Ginsberg
- U.S. Geological Survey, Patuxent Wildlife Research Center, Rhode Island Field Station, University of Rhode Island, Kingston, RI 02881
| | - Jean I. Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
23
|
Thongsripong P, Hyman JM, Kapan DD, Bennett SN. Human-Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2021; 114:397-414. [PMID: 34249219 PMCID: PMC8266639 DOI: 10.1093/aesa/saab011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 05/26/2023]
Abstract
Despite the critical role that contact between hosts and vectors, through vector bites, plays in driving vector-borne disease (VBD) transmission, transmission risk is primarily studied through the lens of vector density and overlooks host-vector contact dynamics. This review article synthesizes current knowledge of host-vector contact with an emphasis on mosquito bites. It provides a framework including biological and mathematical definitions of host-mosquito contact rate, blood-feeding rate, and per capita biting rates. We describe how contact rates vary and how this variation is influenced by mosquito and vertebrate factors. Our framework challenges a classic assumption that mosquitoes bite at a fixed rate determined by the duration of their gonotrophic cycle. We explore alternative ecological assumptions based on the functional response, blood index, forage ratio, and ideal free distribution within a mechanistic host-vector contact model. We highlight that host-vector contact is a critical parameter that integrates many factors driving disease transmission. A renewed focus on contact dynamics between hosts and vectors will contribute new insights into the mechanisms behind VBD spread and emergence that are sorely lacking. Given the framework for including contact rates as an explicit component of mathematical models of VBD, as well as different methods to study contact rates empirically to move the field forward, researchers should explicitly test contact rate models with empirical studies. Such integrative studies promise to enhance understanding of extrinsic and intrinsic factors affecting host-vector contact rates and thus are critical to understand both the mechanisms driving VBD emergence and guiding their prevention and control.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - James M Hyman
- Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Durrell D Kapan
- Department of Entomology and Center for Comparative Genomics, Institute of Biodiversity Sciences and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
- Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawai’i at Manoa, 3050 Maile Way, Honolulu, HI 96822
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| |
Collapse
|
24
|
Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nat Commun 2021; 12:3971. [PMID: 34172729 PMCID: PMC8233338 DOI: 10.1038/s41467-021-24134-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Studies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.
Collapse
|
25
|
Athni TS, Shocket MS, Couper LI, Nova N, Caldwell IR, Caldwell JM, Childress JN, Childs ML, De Leo GA, Kirk DG, MacDonald AJ, Olivarius K, Pickel DG, Roberts SO, Winokur OC, Young HS, Cheng J, Grant EA, Kurzner PM, Kyaw S, Lin BJ, López RC, Massihpour DS, Olsen EC, Roache M, Ruiz A, Schultz EA, Shafat M, Spencer RL, Bharti N, Mordecai EA. The influence of vector-borne disease on human history: socio-ecological mechanisms. Ecol Lett 2021; 24:829-846. [PMID: 33501751 PMCID: PMC7969392 DOI: 10.1111/ele.13675] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023]
Abstract
Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.
Collapse
Affiliation(s)
- Tejas S. Athni
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marta S. Shocket
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Lisa I. Couper
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Iain R. Caldwell
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Jamie M. Caldwell
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jasmine N. Childress
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Marissa L. Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, USA
| | - Giulio A. De Leo
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Devin G. Kirk
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J. MacDonald
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | | | - David G. Pickel
- Department of Classics, Stanford University, Stanford, CA, USA
| | | | - Olivia C. Winokur
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Julian Cheng
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | | - Saw Kyaw
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Bradford J. Lin
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | | - Erica C. Olsen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Maggie Roache
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Angie Ruiz
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Muskan Shafat
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, Penn State University, University Park, PA, USA
| | | |
Collapse
|
26
|
Padilla-Rodríguez JC, Olivera MJ, Ahumada-Franco ML, Paredes-Medina AE. Malaria risk stratification in Colombia 2010 to 2019. PLoS One 2021; 16:e0247811. [PMID: 33705472 PMCID: PMC7951809 DOI: 10.1371/journal.pone.0247811] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
Background Heterogeneity and focalization are the most common epidemiological characteristics of endemic countries in the Americas, where malaria transmission is moderate and low. During malaria elimination, the first step is to perform a risk stratification exercise to prioritize interventions. This study aimed to identify malaria risk strata in the ecoepidemiological regions of Colombia. Methods This was a descriptive and retrospective study using cumulative malaria cases in 1,122 municipalities of Colombia from 2010 to 2019. To identify the strata, the criteria proposed by PAHO were adapted. To classify the receptive areas (strata 2, 3, and 4) and nonreceptive areas (stratum 1), 1,600 m above sea level, ecotypes, main malaria vector presence, Plasmodium species prevalence and occurrence of malaria cases were used. The area occupied by the receptive municipalities, the cumulative burden, and the at-risk population in the regions were calculated. Results Ninety-one percent of the Colombian territory is receptive to the transmission of malaria and includes 749 municipalities with 9,734,271 (9,514,243–9,954,299) million at-risk inhabitants. Stratum 4 accounted for 96.7% of the malaria burden, and cases were concentrated primarily in the Pacific and Uraba-Bajo Cauca-Sinu-San Jorge regions. Plasmodium vivax predominates in most of the receptive municipalities, except in the municipalities of the Pacific region, where P. falciparum predominates. Anopheles albimanus, An. nuneztovari s.l., and An. darlingi were the main vectors in receptive areas. Conclusions In Colombia, 91.2% of the territory is receptive to the transmission of malaria and is characterized by being both heterogeneous and focused. Stratum 4 contains the greatest burden of disease, with a relatively greater proportion of municipalities with a predominance of P. vivax. However, there is a low proportion of municipalities with P. falciparum mainly in the Pacific region. These findings suggest that the latter be prioritized within the malaria elimination plan in Colombia.
Collapse
Affiliation(s)
| | - Mario J. Olivera
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- * E-mail:
| | | | | |
Collapse
|
27
|
Near-term climate change impacts on sub-national malaria transmission. Sci Rep 2021; 11:751. [PMID: 33436862 PMCID: PMC7803742 DOI: 10.1038/s41598-020-80432-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
The role of climate change on global malaria is often highlighted in World Health Organisation reports. We modelled a Zambian socio-environmental dataset from 2000 to 2016, against malaria trends and investigated the relationship of near-term environmental change with malaria incidence using Bayesian spatio-temporal, and negative binomial mixed regression models. We introduced the diurnal temperature range (DTR) as an alternative environmental measure to the widely used mean temperature. We found substantial sub-national near-term variations and significant associations with malaria incidence-trends. Significant spatio-temporal shifts in DTR/environmental predictors influenced malaria incidence-rates, even in areas with declining trends. We highlight the impact of seasonally sensitive DTR, especially in the first two quarters of the year and demonstrate how substantial investment in intervention programmes is negatively impacted by near-term climate change, most notably since 2010. We argue for targeted seasonally-sensitive malaria chemoprevention programmes.
Collapse
|
28
|
Emeto TI, Adegboye OA, Rumi RA, Khan MUI, Adegboye M, Khan WA, Rahman M, Streatfield PK, Rahman KM. Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9469. [PMID: 33348771 PMCID: PMC7766360 DOI: 10.3390/ijerph17249469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022]
Abstract
Malaria occurrence in the Chittagong Hill Tracts in Bangladesh varies by season and year, but this pattern is not well characterized. The role of environmental conditions on the occurrence of this vector-borne parasitic disease in the region is not fully understood. We extracted information on malaria patients recorded in the Upazila (sub-district) Health Complex patient registers of Rajasthali in Rangamati district of Bangladesh from February 2000 to November 2009. Weather data for the study area and period were obtained from the Bangladesh Meteorological Department. Non-linear and delayed effects of meteorological drivers, including temperature, relative humidity, and rainfall on the incidence of malaria, were investigated. We observed significant positive association between temperature and rainfall and malaria occurrence, revealing two peaks at 19 °C (logarithms of relative risks (logRR) = 4.3, 95% CI: 1.1-7.5) and 24.5 °C (logRR = 4.7, 95% CI: 1.8-7.6) for temperature and at 86 mm (logRR = 19.5, 95% CI: 11.7-27.3) and 284 mm (logRR = 17.6, 95% CI: 9.9-25.2) for rainfall. In sub-group analysis, women were at a much higher risk of developing malaria at increased temperatures. People over 50 years and children under 15 years were more susceptible to malaria at increased rainfall. The observed associations have policy implications. Further research is needed to expand these findings and direct resources to the vulnerable populations for malaria prevention and control in the Chittagong Hill Tracts of Bangladesh and the region with similar settings.
Collapse
Affiliation(s)
- Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Oyelola A. Adegboye
- Public Health & Tropical Medicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Reza A. Rumi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | - Mahboob-Ul I. Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | | | - Wasif A. Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Peter K. Streatfield
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | - Kazi M. Rahman
- North Coast Public Health Unit, New South Wales Health, Lismore, NSW 2480, Australia;
- The University of Sydney, University Centre for Rural Health, Lismore, NSW 2480, Australia
| |
Collapse
|
29
|
Singh H, Singh N, Mall RK. Japanese Encephalitis and Associated Environmental Risk Factors in Eastern Uttar Pradesh: A time series analysis from 2001 to 2016. Acta Trop 2020; 212:105701. [PMID: 32956640 DOI: 10.1016/j.actatropica.2020.105701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023]
Abstract
India and other Southeast Asian countries are severely affected by Japanese encephalitis (JE), one of the deadliest vector-borne disease threat to human health. Several epidemiological observations suggest climate variables play a role in providing a favorable environment for mosquito development and virus transmission. In this study, generalized additive models were used to determine the association of JE admissions and mortality with climate variables in Gorakhpur district, India, from 2001-2016. The model predicted that every 1 unit increase in mean (Tmean;°C), and minimum (Tmin;°C) temperature, rainfall (RF; mm) and relative humidity (RH; %) would on average increase the JE admissions by 22.23 %, 17.83 %, 0.66 %, and 5.22 % respectively and JE mortality by 13.27 %, 11.77 %, 0.94 %, and 3.27 % respectively Conversely, every unit decrease in solar radiation (Srad; MJ/m2/day) and wind speed (WS; Kmph) caused an increase in JE admission by 17% and 11.42% and in JE mortality by 9.37% and 4.88% respectively suggesting a protective effect at higher levels. The seasonal analysis shows that temperature was significantly associated with JE in pre-monsoon and post-monsoon while RF, RH, Srad, and WS are associated with the monsoon. Effect modification due to age and gender showed an equal risk for both genders and increased risk for adults above 15 years of age, however, males and age groups under 15 years outnumbered females and adults. Sensitivity analysis results to explore lag effects in climate variables showed that climate variables show the strongest association at lag 1 to 1.5 months with significant lag effect up tp lag 0-60 days. The exposure-response curve for climate variables showed a more or less linear relationship, with an increase in JE admissions and mortality after a certain threshold and decrease were reported at extreme levels of exposure. The study concludes that climate variables could influence the JE vector development and multiplication and parasite maturation and transmission in the Gorakhpur region whose indirect impact was noted for JE admission and mortality. In response to the changing climate, public health interventions, public awareness, and early warning systems would play an unprecedented role to compensate for future risk.
Collapse
|
30
|
Smith MW, Willis T, Alfieri L, James WHM, Trigg MA, Yamazaki D, Hardy AJ, Bisselink B, De Roo A, Macklin MG, Thomas CJ. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Nat Commun 2020; 11:4353. [PMID: 32859908 PMCID: PMC7455692 DOI: 10.1038/s41467-020-18239-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
Continental-scale models of malaria climate suitability typically couple well-established temperature-response models with basic estimates of vector habitat availability using rainfall as a proxy. Here we show that across continental Africa, the estimated geographic range of climatic suitability for malaria transmission is more sensitive to the precipitation threshold than the thermal response curve applied. To address this problem we use downscaled daily climate predictions from seven GCMs to run a continental-scale hydrological model for a process-based representation of mosquito breeding habitat availability. A more complex pattern of malaria suitability emerges as water is routed through drainage networks and river corridors serve as year-round transmission foci. The estimated hydro-climatically suitable area for stable malaria transmission is smaller than previous models suggest and shows only a very small increase in state-of-the-art future climate scenarios. However, bigger geographical shifts are observed than with most rainfall threshold models and the pattern of that shift is very different when using a hydrological model to estimate surface water availability for vector breeding. Prior studies mapping climatologically suitable areas for malaria transmission have used relatively simple thresholds for precipitation. Here the authors show that when models incorporate hydrological processes a more complex pattern of malaria suitability emerges in Africa and future shifts in suitability are more pronounced.
Collapse
Affiliation(s)
- M W Smith
- School of Geography and Water@Leeds, University of Leeds, Leeds, UK.
| | - T Willis
- School of Geography and Water@Leeds, University of Leeds, Leeds, UK
| | - L Alfieri
- European Commission, Joint Research Centre, Ispra, Italy
| | - W H M James
- School of Geography and Water@Leeds, University of Leeds, Leeds, UK
| | - M A Trigg
- School of Civil Engineering and Water@Leeds, University of Leeds, Leeds, UK
| | - D Yamazaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - A J Hardy
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - B Bisselink
- European Commission, Joint Research Centre, Ispra, Italy
| | - A De Roo
- European Commission, Joint Research Centre, Ispra, Italy
| | - M G Macklin
- School of Geography and Lincoln Centre for Water and Planetary Health, University of Lincoln, Lincoln, UK
| | - C J Thomas
- School of Geography and Lincoln Centre for Water and Planetary Health, University of Lincoln, Lincoln, UK
| |
Collapse
|
31
|
Fischer L, Gültekin N, Kaelin MB, Fehr J, Schlagenhauf P. Rising temperature and its impact on receptivity to malaria transmission in Europe: A systematic review. Travel Med Infect Dis 2020; 36:101815. [PMID: 32629138 DOI: 10.1016/j.tmaid.2020.101815] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Malaria is one of the most life-threatening vector-borne diseases globally. Recent autochthonous cases registered in several European countries have raised awareness regarding the threat of malaria reintroduction to Europe. An increasing number of imported malaria cases today occur due to international travel and migrant flows from malaria-endemic countries. The cumulative factors of the presence of competent vectors, favourable climatic conditions and evidence of increasing temperatures might lead to the re-emergence of malaria in countries where the infection was previously eliminated. METHODS We performed a systematic literature review following PRISMA guidelines. We searched for original articles focusing on rising temperature and the receptivity to malaria transmission in Europe. We evaluated the quality of the selected studies using a standardised tool. RESULTS The search resulted in 1'999 articles of possible relevance and after screening we included 10 original research papers in the quantitative analysis for the systematic review. With further increasing temperatures studies predicted a northward spread of the occurrence of Anopheles mosquitoes and an extension of seasonality, enabling malaria transmission for annual periods up to 6 months in the years 2051-2080. Highest vector stability and receptivity were predicted in Southern and South-Eastern European areas. Anopheles atroparvus, the main potential malaria vector in Europe, might play an important role under changing conditions favouring malaria transmission. CONCLUSION The receptivity of Europe for malaria transmission will increase as a result of rising temperature unless socioeconomic factors remain favourable and appropriate public health measures are implemented. Our systematic review serves as an evidence base for future preventive measures.
Collapse
Affiliation(s)
- Lena Fischer
- Department of Public and Global Health, MilMedBiol Competence Centre, Institute for Epidemiology, Biostatistics and Prevention, University of Zurich, Zurich, Switzerland
| | - Nejla Gültekin
- Centre of Competence for Military and Disaster Medicine, Federal Department of Defence, Civil Protection and Sport DDPS, Swiss Armed Forces, Switzerland
| | - Marisa B Kaelin
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich & Department of Public and Global Health, Institute for Epidemiology, Biostatistics and Prevention, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- University of Zurich Centre for Travel Medicine, WHO Collaborating Centre for Travellers' Health, Department of Public and Global Health, Institute for Epidemiology, Biostatistics and Prevention, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patricia Schlagenhauf
- University of Zurich Centre for Travel Medicine, WHO Collaborating Centre for Travellers' Health, Department of Public and Global Health, MilMedBiol Competence Centre, Institute for Epidemiology, Biostatistics and Prevention, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Chaturvedi S, Dwivedi S. Estimating the malaria transmission over the Indian subcontinent in a warming environment using a dynamical malaria model. JOURNAL OF WATER AND HEALTH 2020; 18:358-374. [PMID: 32589621 DOI: 10.2166/wh.2020.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Malaria is a major public health problem in India. The malaria transmission is sensitive to climatic parameters. The regional population-related factors also influence malaria transmission. To take into account temperature and rainfall variability and associated population-related effects (in a changing climate) on the malaria transmission over India, a regional dynamical malaria model, namely VECTRI (vector-borne disease community model) is used. The daily temperature and rainfall data derived from the historical (years 1961-2005) and representative concentration pathway (years 2006-2050) runs of the Coupled Model Intercomparison Project Phase 5 models have been used for the analysis. The model results of the historical run are compared with the observational data. The spatio-temporal changes (region-specific as well as seasonal changes) in the malaria transmission as a result of climate change are quantified over the India. The parameters related to the breeding cycle of malaria as well as those which estimate the malaria cases are analyzed in the global warming scenario.
Collapse
Affiliation(s)
- Shweta Chaturvedi
- K Banerjee Centre of Atmospheric and Ocean Studies and M N Saha Centre of Space Studies, University of Allahabad, Allahabad, Uttar Pradesh 211002, India E-mail:
| | - Suneet Dwivedi
- K Banerjee Centre of Atmospheric and Ocean Studies and M N Saha Centre of Space Studies, University of Allahabad, Allahabad, Uttar Pradesh 211002, India E-mail:
| |
Collapse
|
33
|
Modeling an association between malaria cases and climate variables for Keonjhar district of Odisha, India: a Bayesian approach. J Parasit Dis 2020; 44:319-331. [PMID: 32508406 DOI: 10.1007/s12639-020-01210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/03/2020] [Indexed: 01/05/2023] Open
Abstract
Malaria, a vector-borne disease, is a significant public health problem in Keonjhar district of Odisha (the malaria capital of India). Prediction of malaria, in advance, is an urgent need for reporting rolling cases of disease throughout the year. The climate condition do play an essential role in the transmission of malaria. Hence, the current study aims to develop and assess a simple and straightforward statistical model of an association between malaria cases and climate variates. It may help in accurate predictions of malaria cases given future climate conditions. For this purpose, a Bayesian Gaussian time series regression model is adopted to fit a relationship of the square root of malaria cases with climate variables with practical lag effects. The model fitting is assessed using a Bayesian version of R2 (RsqB). Whereas, the predictive ability of the model is measured using a cross-validation technique. As a result, it is found that the square root of malaria cases with lag 1, maximum temperature, and relative humidity with lag 3 and 0 (respectively), are significantly positively associated with the square root of the cases. However, the minimum and average temperatures with lag 2, respectively, are observed as negatively (significantly) related. The considered model accounts for moderate amount of variation in the square root of malaria cases as received through the results for RsqB. We also present Absolute Percentage Errors (APE) for each of the 12 months (January-December) for a better understanding of the seasonal pattern of the predicted (square root of) malaria cases. Most of the APEs obtained corresponding to test data points is reasonably low. Further, the analysis shows that the considered model closely predicted the actual (square root of) malaria cases, except for some peak cases during the particular months. The output of the current research might help the district to develop and strengthen early warning prediction of malaria cases for proper mitigation, eradication, and prevention in similar settings.
Collapse
|
34
|
Matthew OJ. Investigating climate suitability conditions for malaria transmission and impacts of climate variability on mosquito survival in the humid tropical region: a case study of Obafemi Awolowo University Campus, Ile-Ife, south-western Nigeria. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:355-365. [PMID: 31655868 DOI: 10.1007/s00484-019-01814-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
This study investigated impacts of climate variability on mosquito survival at Obafemi Awolowo University Campus, Ile-Ife, south-western Nigeria, and determined the regional climate suitability level for malaria transmission between 1996 and 2015. It employed some established climate-dependent models to simulate daily mosquito survival probabilities, p and a fuzzy logic suitability (FLS) model to determine the suitability conditions for malaria transmission across seasons. Multivariate regression analysis and lag correlation up to 4 months were performed to examine contributions of climate variation to the reported malaria cases. Results revealed that mosquitoes could survive all-year round with p values ranging between 0.40 and 0.96 under the prevailing mean climate. However, the climate suitability level for transmission of malaria was 'moderate' (0.45 < p ≤ 0.60) in the dry season but 'very high' (0.75 < p ≤ 0.96) in the wet. Rainfall was found to be the best predictor (r = 0.7, R2 = 0.448, p < 0.05) and no significant time-delay effect was noticed between climatic variables and malaria occurrence except for wind speed at 1-month lag. About 61% (multiple R2= 0.613 at p = 0.1) of monthly variations in reported malaria cases were accounted for by climate variability. Further probe revealed that non-climatic factors such as behavioural and socio-cultural status of the students' population played a very important role in malaria transmission and occurrence. The findings suggested that effective malaria control and interventions must integrate the crucial roles of both climatic and non-climatic factors in the study area.
Collapse
Affiliation(s)
- Olaniran J Matthew
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, Nigeria.
| |
Collapse
|
35
|
Gashaw KW, Kassa SM, Ouifki R. Climate-dependent malaria disease transmission model and its analysis. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Malaria infection continues to be a major problem in many parts of the world including Africa. Environmental variables are known to significantly affect the population dynamics and abundance of insects, major catalysts of vector-borne diseases, but the exact extent and consequences of this sensitivity are not yet well established. To assess the impact of the variability in temperature and rainfall on the transmission dynamics of malaria in a population, we propose a model consisting of a system of non-autonomous deterministic equations that incorporate the effect of both temperature and rainfall to the dispersion and mortality rate of adult mosquitoes. The model has been validated using epidemiological data collected from the western region of Ethiopia by considering the trends for the cases of malaria and the climate variation in the region. Further, a mathematical analysis is performed to assess the impact of temperature and rainfall change on the transmission dynamics of the model. The periodic variation of seasonal variables as well as the non-periodic variation due to the long-term climate variation have been incorporated and analyzed. In both periodic and non-periodic cases, it has been shown that the disease-free solution of the model is globally asymptotically stable when the basic reproduction ratio is less than unity in the periodic system and when the threshold function is less than unity in the non-periodic system. The disease is uniformly persistent when the basic reproduction ratio is greater than unity in the periodic system and when the threshold function is greater than unity in the non-periodic system.
Collapse
Affiliation(s)
| | - Semu Mitiku Kassa
- Department of Mathematics, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa
| |
Collapse
|
36
|
Bayar M, Aral MM. An Analysis of Large-Scale Forced Migration in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4210. [PMID: 31671615 PMCID: PMC6861999 DOI: 10.3390/ijerph16214210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/16/2022]
Abstract
In this paper, human security-related causes of large-scale forced migration (LSFM) in Africa are investigated for the period 2011-2017. As distinct from the conventional understanding of (national) security, human security involves economic, public health, environmental and other aspects of people's wellbeing. Testing various hypotheses, we have found that civil and interstate conflicts, lack of democracy and poverty are the most important drivers of mass population displacements, whereas climate change has an indirect effect on the dependent variable. As a policy tool, foreign aid is also tested to see if it lowers the probability of LSFM. Our findings have implications for policy planning, since the conventional understanding of security falls short of addressing LSFM without taking various aspects of human security into account.
Collapse
Affiliation(s)
- Murat Bayar
- Institute for Eastern and African Studies, Social Sciences University of Ankara, Ankara 06030, Turkey.
| | - Mustafa M Aral
- Department of Civil Engineering, Bartin University, Bartin 74100, Turkey.
| |
Collapse
|
37
|
Sarkar S, Gangare V, Singh P, Dhiman RC. Shift in Potential Malaria Transmission Areas in India, Using the Fuzzy-Based Climate Suitability Malaria Transmission (FCSMT) Model under Changing Climatic Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183474. [PMID: 31540493 PMCID: PMC6766004 DOI: 10.3390/ijerph16183474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022]
Abstract
The future implications of climate change on malaria transmission at the global level have already been reported, however such evidences are scarce and limited in India. Here our study aims to assess, identify and map the potential effects of climate change on Plasmodium vivax (Pv) and Plasmodium falciparum (Pf) malaria transmission in India. A Fuzzy-based Climate Suitability Malaria Transmission (FCSMT) model under the GIS environment was generated using Temperature and Relative Humidity data, extracted from CORDEX South Asia for Baseline (1976-2005) and RCP 4.5 scenario for future projection by the 2030s (2021-2040). National malaria data were used at the model analysis stage. Model outcomes suggest that climate change may significantly increase the spatial spread of Pv and Pf malaria with a numerical increase in the transmission window's (TW) months, and a shift in the months of transmission. Some areas of the western Himalayan states are likely to have new foci of Pv malaria transmission. Interior parts of some southern and eastern states are likely to become more suitable for Pf malaria transmission. Study has also identified the regions with a reduction in transmission months by the 2030s, leading to unstable malaria, and having the potential for malaria outbreaks.
Collapse
Affiliation(s)
- Soma Sarkar
- ICMR-National Institute of Malaria Research, Dwarka sector 8, Delhi 110077, India.
| | - Vinay Gangare
- ICMR-National Institute of Malaria Research, Dwarka sector 8, Delhi 110077, India.
| | - Poonam Singh
- ICMR-National Institute of Malaria Research, Dwarka sector 8, Delhi 110077, India.
| | - Ramesh C Dhiman
- ICMR-National Institute of Malaria Research, Dwarka sector 8, Delhi 110077, India.
| |
Collapse
|
38
|
Akpan GE, Adepoju KA, Oladosu OR. Potential distribution of dominant malaria vector species in tropical region under climate change scenarios. PLoS One 2019; 14:e0218523. [PMID: 31216349 PMCID: PMC6583992 DOI: 10.1371/journal.pone.0218523] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023] Open
Abstract
Risk assessment regarding the distribution of malaria vectors and environmental variables underpinning their distribution under changing climates is crucial towards malaria control and eradication. On this basis, we used Maximum Entropy (MaxEnt) Model to estimate the potential future distribution of major transmitters of malaria in Nigeria-Anopheles gambiae sensu lato and its siblings: Anopheles gambiae sensu stricto, and Anopheles arabiensis under low and high emissions scenarios. In the model, we used mosquito occurrence data sampled from 1900 to 2010 alongside land use and terrain variables, and bioclimatic variables for baseline climate 1960-1990 and future climates of 2050s (2041-2060) and 2070s (2061-2080) that follow RCP2.6 and RCP8.5 scenarios. The Anopheles gambiae species are projected to experience large shift in potential range and population with increased distribution density, higher under high emissions scenario (RCP8.5) and 2070s than low emission scenario (RCP2.6) and 2050s. Anopheles gambiae sensu stricto and Anopheles arabiensis are projected to have highest invasion with 47-70% and 10-14% percentage increase, respectively in Sahel and Sudan savannas within northern states in 2041-2080 under RCP8.5. Highest prevalence is predicted for Humid forest and Derived savanna in southern and North Central states in 2041-2080; 91-96% and 97-99% for Anopheles gambiae sensu stricto, and 67-71% and 72-75% for Anopheles arabiensis under RCP2.6 and RCP8.5, respectively. The higher magnitude of change in species prevalence predicted for the later part of the 21st century under high emission scenario, driven mainly by increasing and fluctuating temperature, alongside longer seasonal tropical rainfall accompanied by drier phases and inherent influence of rapid land use change, may lead to more significant increase in malaria burden when compared with other periods and scenarios during the century; especially in Humid forest, Derived savanna, Sahel and Sudan savannas.
Collapse
Affiliation(s)
- Godwin E. Akpan
- African Regional Centre for Space Science and Technology Education in English (ARCSSTEE), Obafemi Awolowo University (OAU), Ile-Ife, Osun State, Nigeria
- * E-mail:
| | - Kayode A. Adepoju
- Department of Geography, University of The Free State, Qwaqwa Campus, Qwaqwa, Phuthaditjhaba, South Africa
| | - Olakunle R. Oladosu
- African Regional Centre for Space Science and Technology Education in English (ARCSSTEE), Obafemi Awolowo University (OAU), Ile-Ife, Osun State, Nigeria
| |
Collapse
|
39
|
Fouque F, Reeder JC. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect Dis Poverty 2019; 8:51. [PMID: 31196187 PMCID: PMC6567422 DOI: 10.1186/s40249-019-0565-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
Background The climate variables that directly influence vector-borne diseases’ ecosystems are mainly temperature and rainfall. This is not only because the vectors bionomics are strongly dependent upon these variables, but also because most of the elements of the systems are impacted, such as the host behavior and development and the pathogen amplification. The impact of the climate changes on the transmission patterns of these diseases is not easily understood, since many confounding factors are acting together. Consequently, knowledge of these impacts is often based on hypothesis derived from mathematical models. Nevertheless, some direct evidences can be found for several vector-borne diseases. Main body Evidences of the impact of climate change are available for malaria, arbovirus diseases such as dengue, and many other parasitic and viral diseases such as Rift Valley Fever, Japanese encephalitis, human African trypanosomiasis and leishmaniasis. The effect of temperature and rainfall change as well as extreme events, were found to be the main cause for outbreaks and are alarming the global community. Among the main driving factors, climate strongly influences the geographical distribution of insect vectors, which is rapidly changing due to climate change. Further, in both models and direct evidences, climate change is seen to be affecting vector-borne diseases more strikingly in fringe of different climatic areas often in the border of transmission zones, which were once free of these diseases with human populations less immune and more receptive. The impact of climate change is also more devastating because of the unpreparedness of Public Health systems to provide adequate response to the events, even when climatic warning is available. Although evidences are strong at the regional and local levels, the studies on impact of climate change on vector-borne diseases and health are producing contradictory results at the global level. Conclusions In this paper we discuss the current state of the results and draw on evidences from malaria, dengue and other vector-borne diseases to illustrate the state of current thinking and outline the need for further research to inform our predictions and response. Electronic supplementary material The online version of this article (10.1186/s40249-019-0565-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florence Fouque
- UNICEF/UNDP/ World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), 20 Avenue Appia, 1211, Geneva 27, Switzerland.
| | - John C Reeder
- UNICEF/UNDP/ World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), 20 Avenue Appia, 1211, Geneva 27, Switzerland
| |
Collapse
|
40
|
Wang X, Zou X. Modeling the Potential Role of Engineered Symbiotic Bacteria in Malaria Control. Bull Math Biol 2019; 81:2569-2595. [PMID: 31161557 DOI: 10.1007/s11538-019-00619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/25/2019] [Indexed: 11/29/2022]
Abstract
Recent experimental study suggests that the engineered symbiotic bacteria Serratia AS1 may provide a novel, effective and sustainable biocontrol of malaria. These recombinant bacteria have been shown to be able to rapidly disseminate throughout mosquito populations and to efficiently inhibit development of malaria parasites in mosquitoes in controlled laboratory experiments. In this paper, we develop a climate-based malaria model which involves both vertical and horizontal transmissions of the engineered Serratia AS1 bacteria in mosquito population. We show that the dynamics of the model system is totally determined by the vector reproduction ratio [Formula: see text], and the basic reproduction ratio [Formula: see text]. If [Formula: see text], then the mosquito-free state is globally attractive. If [Formula: see text] and [Formula: see text], then the disease-free periodic solution is globally attractive. If [Formula: see text] and [Formula: see text], then the positive periodic solution is globally attractive. Numerically, we verify the obtained analytic result and evaluate the effects of releasing the engineered Serratia AS1 bacteria in field by conducting a case study for Douala, Cameroon. We find that ideally, by using Serratia AS1 alone, it takes at least 25 years to eliminate malaria from Douala. This implies that continued long-term investment is needed in the fight against malaria and confirms the necessity of integrating multiple control measures.
Collapse
Affiliation(s)
- Xiunan Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
| | - Xingfu Zou
- Department of Applied Mathematics, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
41
|
Taddese AA, Baraki AG, Gelaye KA. Spatial modeling, prediction and seasonal variation of malaria in northwest Ethiopia. BMC Res Notes 2019; 12:273. [PMID: 31088545 PMCID: PMC6518452 DOI: 10.1186/s13104-019-4305-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives The aim of this study was to determine the spatial modeling, seasonal variation of malaria and making prediction map of malaria in northwest Ethiopia. Results The overall average cumulative annual malaria incidence during the study period was 30 per 100 populations at risk. The highest proportion (29.2%) was observed from June 2015 to October 2016. In temporal analysis of clusters, the epidemic was observed from 2015/7/1 to 2016/12/31 throughout the study period in all districts. Hotspot areas with high clusters (p < 0.001) were observed in Metema district it accounts 18.6% of the total malaria cases. An area of high median predicted incidence proportion (> 50%) was seen in the southwest part of the region. Most of the northern part of the study area was predicted to have a low median incidence proportion (< 10%). Electronic supplementary material The online version of this article (10.1186/s13104-019-4305-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asefa Adimasu Taddese
- Department of Epidemiology and Biostatistics, Institute of Public Health College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Adhanom Gebreegziabher Baraki
- Department of Epidemiology and Biostatistics, Institute of Public Health College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Kassahun Alemu Gelaye
- Department of Epidemiology and Biostatistics, Institute of Public Health College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
42
|
Mukhtar AYA, Munyakazi JB, Ouifki R. Assessing the role of climate factors on malaria transmission dynamics in South Sudan. Math Biosci 2019; 310:13-23. [PMID: 30711479 DOI: 10.1016/j.mbs.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 01/16/2023]
Abstract
Malaria is endemic in South Sudan and it is one of the most severe diseases in the war-torn nation. There has been much concern about whether the severity of its transmission might depend upon climatic conditions that are related to the reproduction of the single-cell parasite attaching to female mosquitoes, especially in high altitude areas. The country experiences two different climatic conditions; namely one tropical and the other hot and semi-arid. In this study, we aim to assess the potential impact of climatic conditions on malaria prevalence in these two climatically distinct regions of South Sudan. We develop and analyze a host-mosquito disease-based model that includes temperature and rainfall. The model has also been parameterized in a Bayesian framework using Bayesian Markov Chain Monte Carlo (MCMC). The mathematical analysis for this study has included equilibria, stability and a sensitivity index on the basic reproduction number R0. The threshold R0 is also used to provide a numerical basis for further refinement and prediction of the impact of climate variability on malaria transmission intensity over the study region. The study highlights the impact of various temperature values on the population dynamics of the mosquito.
Collapse
Affiliation(s)
- Abdulaziz Y A Mukhtar
- Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-Mass), South Africa.
| | - Justin B Munyakazi
- Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Faculty of Natural & Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
43
|
Abstract
Vector-borne infectious diseases continue to be a major threat to public health. Although some prevention and treatment modalities exist for these diseases, resistance to such modalities, exacerbated by global climate change, remains a fundamental challenge. Developments in genomic engineering technologies present a new front in battling vector-borne illnesses; however, there is a lack of consensus over the scope and consequences of these approaches. In this article, we use malaria as a case study to address the developments and controversies surrounding gene drives, a novel genomic engineering technology. We draw attention to the themes of infection control, resistance, and reversibility using a science and technology studies framework. Unlike other current prevention and treatment modalities, gene drives have the capacity to alter not only single organisms but also entire species and ecologies. Therefore, broader public and scientific engagement is needed to inform a more inclusive discussion between clinicians, researchers, policy makers, and society.
Collapse
Affiliation(s)
| | - Peter F Martelli
- Department of Healthcare Administration, Sawyer Business School, Suffolk University, Boston, MA, USA,
| |
Collapse
|
44
|
Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci 2019; 1436:157-173. [PMID: 30120891 PMCID: PMC6378404 DOI: 10.1111/nyas.13950] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
Abstract
Climate change is one of the greatest threats to human health in the 21st century. Climate directly impacts health through climatic extremes, air quality, sea-level rise, and multifaceted influences on food production systems and water resources. Climate also affects infectious diseases, which have played a significant role in human history, impacting the rise and fall of civilizations and facilitating the conquest of new territories. Our review highlights significant regional changes in vector and pathogen distribution reported in temperate, peri-Arctic, Arctic, and tropical highland regions during recent decades, changes that have been anticipated by scientists worldwide. Further future changes are likely if we fail to mitigate and adapt to climate change. Many key factors affect the spread and severity of human diseases, including mobility of people, animals, and goods; control measures in place; availability of effective drugs; quality of public health services; human behavior; and political stability and conflicts. With drug and insecticide resistance on the rise, significant funding and research efforts must to be maintained to continue the battle against existing and emerging diseases, particularly those that are vector borne.
Collapse
Affiliation(s)
- Cyril Caminade
- Department of Epidemiology and Population Health, Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- NIHR Health Protection Research Unit in Emerging and Zoonotic InfectionsLiverpoolUK
| | - K. Marie McIntyre
- Department of Epidemiology and Population Health, Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- NIHR Health Protection Research Unit in Emerging and Zoonotic InfectionsLiverpoolUK
| | - Anne E. Jones
- Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
45
|
Ogwang R, Akena G, Yeka A, Osier F, Idro R. The 2015-2016 malaria epidemic in Northern Uganda; What are the implications for malaria control interventions? Acta Trop 2018; 188:27-33. [PMID: 30145260 PMCID: PMC7116666 DOI: 10.1016/j.actatropica.2018.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 02/03/2023]
Abstract
Vector control and effective case management are currently the backbone strategies of malaria control. Kitgum district, an area of perennial holoendemic malaria transmission intensity in Northern Uganda, appears to have experienced a malaria epidemic in 2015. This study aimed to describe the malaria trends in Kitgum General Hospital from 2011 to 2017 in relation to climatic factors and the application of population-based malaria control interventions. Hospital records were examined retrospectively to calculate malaria normal channels, malaria cases per 1000 population, test positivity rates (TPR) and to enumerate pregnancy malaria, hospitalizations and deaths. Climatic factors (humidity, temperature and rainfall) and population-based malaria control interventions that had been applied during this period were described. Kitgum district experienced an epidemic between the years 2015 and 2016; the malaria burden rose above the established normal channels. At its peak the number of malaria cases attending KGH was over 20 times above the normal channels. The total number of cases per 1000 population increased from 7 in 2014 to 113 in 2015 and 114 in 2016 (p value for trend <0.0001). Similarly, TPR increased from 10.5% to 54.6% between 2014 and 2016 (p value for trend <0.0001). This trend was also observed for malaria attributable hospitalizations, and malaria in pregnancy. There were no significant changes in any of the climatic factors assessed (p value = 0.92, 0.99, 0.52 for relative humidity, max temperature, and rainfall, respectively). The malaria upsurge occurred in conjunction with a general decline in the use and application of malaria control interventions. Specifically, indoor residual spraying was interrupted in 2014. In response to the epidemic, IRS was reapplied together with mass distribution of long-lasting insecticide treated nets (LLINs) in 2017. Subsequently, there was a decline in all malaria indicators. The epidemic in Kitgum occurred in association with the interruption of IRS and appears to have abated following its re-introduction alongside LLINs. The study suggests that to enable malaria elimination in areas of high malaria transmission intensity, effective control measures may need to be sustained for the long-term.
Collapse
Affiliation(s)
- Rodney Ogwang
- Makerere University College of Health Sciences, Kampala, Uganda; Centre of Tropical Neuroscience, Kitgum Site, Uganda
| | | | - Adoke Yeka
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Faith Osier
- Centre for Infectious Diseases, Parasitology Heidelberg University Hospital, Heidelberg, Germany; KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
| | - Richard Idro
- Makerere University College of Health Sciences, Kampala, Uganda; Centre of Tropical Neuroscience, Kitgum Site, Uganda; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Moshi IR, Manderson L, Ngowo HS, Mlacha YP, Okumu FO, Mnyone LL. Outdoor malaria transmission risks and social life: a qualitative study in South-Eastern Tanzania. Malar J 2018; 17:397. [PMID: 30373574 PMCID: PMC6206631 DOI: 10.1186/s12936-018-2550-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/25/2018] [Indexed: 12/03/2022] Open
Abstract
Background Behaviour changes in mosquitoes from indoor to outdoor biting result in continuing risk of malaria from outdoor activities, including routine household activities and occasional social and cultural practices and gatherings. This study aimed to identify the range of social and cultural gatherings conducted outdoors and their associated risks for mosquito bites. Methods A cross-sectional study was conducted in four villages in the Kilombero Valley from November 2015 to March 2016. Observations, focus group discussions, and key informant interviews were conducted. The recorded data were transcribed and translated from Swahili to English. Thematic content analysis was used to identify perspectives on the importance of various social and cultural gatherings that incidentally expose people to mosquito bites and malaria infection. Results Religious, cultural and social gatherings involving the wider community are conducted outdoors at night till dawn. Celebrations include life course events, religious and cultural ceremonies, such as Holy Communion, weddings, gatherings at Easter and Christmas, male circumcision, and rituals conducted to please the gods and to remember the dead. These celebrations, at which there is minimal use of interventions to prevent bites, contribute to individual satisfaction and social capital, helping to maintain a cohesive society. Bed net use while sleeping outdoors during mourning is unacceptable, and there is minimal use of other interventions, such as topical repellents. Long sleeve clothes are used for protection from mosquito bites but provide less protection. Conclusion Gatherings and celebrations expose people to mosquito bites. Approaches to prevent risks of mosquito bites and disease management need to take into account social, cultural and environmental factors. Area specific interventions may be expensive, yet may be the best approach to reduce risk of infection as endemic countries work towards elimination. Focusing on single interventions will not yield the best outcomes for malaria prevention as social contexts and vector behaviour vary.
Collapse
Affiliation(s)
- Irene R Moshi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, Mikocheni, PO Box 78373, Dar es Salaam, United Republic of Tanzania. .,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa.
| | - Lenore Manderson
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, Mikocheni, PO Box 78373, Dar es Salaam, United Republic of Tanzania
| | - Yeromin P Mlacha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, Mikocheni, PO Box 78373, Dar es Salaam, United Republic of Tanzania.,Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland.,University of Basel, Basel, Switzerland.,Sokoine University of Agriculture, Pest Management Centre, P.O. Box 3110, Morogoro, Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, Mikocheni, PO Box 78373, Dar es Salaam, United Republic of Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa.,Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ladislaus L Mnyone
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, Mikocheni, PO Box 78373, Dar es Salaam, United Republic of Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa.,Sokoine University of Agriculture, Pest Management Centre, P.O. Box 3110, Morogoro, Tanzania
| |
Collapse
|
47
|
Akpan GE, Adepoju KA, Oladosu OR, Adelabu SA. Dominant malaria vector species in Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with MaxEnt. PLoS One 2018; 13:e0204233. [PMID: 30281634 PMCID: PMC6169898 DOI: 10.1371/journal.pone.0204233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 09/05/2018] [Indexed: 11/19/2022] Open
Abstract
Malaria is a major infectious disease that still affects nearly half of the world's population. Information on spatial distribution of malaria vector species is needed to improve malaria control efforts. In this study we used Maximum Entropy Model (MaxEnt) to estimate the potential distribution of Anopheles gambiae sensu lato and its siblings: Anopheles gambiae sensu stricto, and Anopheles arabiensis in Nigeria. Species occurrence data collected during the period 1900-2010 was used together with 19 bioclimatic, landuse and terrain variables. Results show that these species are currently widespread across all ecological zones. Temperature fluctuation from mean diurnal temperature range, extreme temperature and precipitation conditions, high humidity in dry season from precipitation during warm months, and land use and land cover dynamics have the greatest influence on the current seasonal distribution of the Anopheles species. MaxEnt performed statistically significantly better than random with AUC approximately 0.7 for estimation of the Anopheles species environmental suitability, distribution and variable importance. This model result can contribute to surveillance efforts and control strategies for malaria eradication.
Collapse
Affiliation(s)
- Godwin E. Akpan
- African Regional Centre for Space Science and Technology Education in English (ARCSSTEE), Obafemi Awolowo University (OAU), Ile-Ife, Osun State, Nigeria
- * E-mail:
| | - Kayode A. Adepoju
- Department of Geography, University of The Free State, Qwaqwa Campus, Qwaqwa, Phuthaditjhaba, South Africa
| | - Olakunle R. Oladosu
- African Regional Centre for Space Science and Technology Education in English (ARCSSTEE), Obafemi Awolowo University (OAU), Ile-Ife, Osun State, Nigeria
| | - Samuel A. Adelabu
- Department of Geography, University of The Free State, Qwaqwa Campus, Qwaqwa, Phuthaditjhaba, South Africa
| |
Collapse
|
48
|
Babaie J, Barati M, Azizi M, Ephtekhari A, Sadat SJ. A systematic evidence review of the effect of climate change on malaria in Iran. J Parasit Dis 2018; 42:331-340. [PMID: 30166779 PMCID: PMC6104236 DOI: 10.1007/s12639-018-1017-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/03/2018] [Indexed: 11/26/2022] Open
Abstract
Climate is an effective factor in the ecological structure which plays an important role in control and outbreak of the diseases caused by biological factors like malaria. With regard to the occurring climatic change, this study aimed to review the effects of climate change on malaria in Iran. In this systematic review, Cochrane, PubMed and ScienceDirect (as international databases), SID and Magiran as Persian databases were investigated through MESH keywords including climate change, global warming, malaria, Anopheles, and Iran. The related articles were screened and finally their results were extracted using data extraction sheets. Totally 41 papers were resulted through databases searching process. Finally 14 papers which met inclusion criteria were included in data extraction stage. The findings indicated that Anopheles mosquitoes are present at least in 115 places in Iran; they are compatible with climatic zones of Iran. Malaria and it's vectors are affected by climate change. Temperature, precipitation, relative humidity, wind intensity and direction are the most important climatic factors affecting the growth and proliferation of Anopheles, Plasmodium and the prevalence of malaria. The transmission of malaria in Iran is associated with the climatic factors of temperature, rainfall, and humidity. Therefore, with regard to the occurring climatic change, the incidence of the disease may also change which needs to be taken into consideration while planning of malaria control.
Collapse
Affiliation(s)
- Javad Babaie
- Iranian Center of Excellence in Health Management, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barati
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Maryam Azizi
- Department of Health in Disaster and Emergency, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Adel Ephtekhari
- Department of Health in Disaster and Emergency, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Javad Sadat
- Department of Health in Disaster and Emergency, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
49
|
de Sousa TCM, Amancio F, Hacon SDS, Barcellos C. [Climate-sensitive diseases in Brazil and the world: systematic reviewEnfermedades sensibles al clima en Brasil y el mundo: revisión sistemática]. Rev Panam Salud Publica 2018; 42:e85. [PMID: 31093113 PMCID: PMC6385874 DOI: 10.26633/rpsp.2018.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To survey the literature regarding climate-sensitive diseases (CSD) and the impacts of climate changes on health. METHOD This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The Lilacs, SciELO, Scopus, and PubMed databases were searched in July 2017 without temporal restrictions for articles published in in Portuguese, English and Spanish. The following search strategy was used in all databases: (climate) AND (disease) AND (sensitive). RESULTS The systematic review included 106 articles, most of which focused on dengue, malaria, and respiratory and cardiovascular diseases. The most commonly studied climate variables were temperature and precipitation. The studies revealed a relationship between the incidence of certain diseases, especially cardiovascular and respiratory diseases, dengue, malaria, and arboviral diseases, and climate conditions in different regions of the world. This relationship was analyzed considering both past data on the incidence of diseases and climate variables and projections regarding the future incidence of diseases according to expected climate variations. A greater number of studies was performed by authors originating from developed countries. The world regions most often studied were China, the United States, Australia, and Brazil. CONCLUSIONS Despite the increase in the number of published articles on this theme, a greater number of climate and environmental variables must be studied, with expansion of studies to additional regions in the world.
Collapse
Affiliation(s)
| | - Flavia Amancio
- Fundação Oswaldo Cruz (Fiocruz), Escola Nacional de Saúde Pública (ENSP), Rio de Janeiro (RJ), Brasil
| | - Sandra de Sousa Hacon
- Fundação Oswaldo Cruz (Fiocruz), Escola Nacional de Saúde Pública (ENSP), Rio de Janeiro (RJ), Brasil
| | - Christovam Barcellos
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (ICICT), Rio de Janeiro (RJ), Brasil
| |
Collapse
|
50
|
Hundessa S, Williams G, Li S, Liu DL, Cao W, Ren H, Guo J, Gasparrini A, Ebi K, Zhang W, Guo Y. Projecting potential spatial and temporal changes in the distribution of Plasmodium vivax and Plasmodium falciparum malaria in China with climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1285-1293. [PMID: 30283159 PMCID: PMC6166864 DOI: 10.1016/j.scitotenv.2018.01.300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Global climate change is likely to increase the geographic range and seasonality of malaria transmission. Areas suitable for distribution of malaria vectors are predicted to increase with climate change but evidence is limited on future distribution of malaria with climate in China. OBJECTIVE Our aim was to assess a potential effect of climate change on Plasmodium vivax (P. vivax) and Plasmodium falciparum (P. falciparum) malaria under climate change scenarios. METHODS National malaria surveillance data during 2005-2014 were integrated with corresponding climate data to model current weather-malaria relationship. We used the Generalized Additive Model (GAM) with a spatial component, assuming a quasi-Poisson distribution and including an offset for the population while accounting for potential non-linearity and long-term trend. The association was applied to future climate to project county-level malaria distribution using ensembles of Global Climate Models under two climate scenarios - Representative Concentration Pathways (RCP4.5 and RCP8.5). RESULTS Climate change could substantially increase P. vivax and P. falciparum malaria, under both climate scenarios, but by larger amount under RCP8.5, compared to the baseline. P. falciparum is projected to increase more than P. vivax. The distributions of P. vivax and P. falciparum malaria are expected to increase in most regions regardless of the climate scenarios. A high percentage (>50%) increases are projected in some counties of the northwest, north, northeast, including northern tip of the northeast China, with a clearer spatial change for P. vivax than P. falciparum under both scenarios, highlighting potential changes in the latitudinal extent of the malaria. CONCLUSION Our findings suggest that spatial and temporal distribution of P. vivax and P. falciparum malaria in China will change due to future climate change, if there is no policy to mitigate it. These findings are important to guide the malaria elimination goal for China.
Collapse
Affiliation(s)
- Samuel Hundessa
- Division of Epidemiology and Biostatistics, School of Public Health, University of Queensland, Brisbane 4006, Australia
| | - Gail Williams
- Division of Epidemiology and Biostatistics, School of Public Health, University of Queensland, Brisbane 4006, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, New South Wales 2650, Wagga Wagga, Australia
| | - Wei Cao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Ren
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Guo
- Institute for Disease Control and Prevention of PLA, Beijing 100071, China
| | - Antonio Gasparrini
- Department of Social & Environmental Health Research, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, WC1H 9SH London, UK
| | - Kristie Ebi
- Department of Global Health, University of Washington, Seattle, WA 98105, United States
| | - Wenyi Zhang
- Institute for Disease Control and Prevention of PLA, Beijing 100071, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|