1
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
2
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. Toxicol Sci 2025:kfaf014. [PMID: 39985174 DOI: 10.1093/toxsci/kfaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are in 99% of humans and are associated with a range of adverse health outcomes. It is impossible to test the >14,500 structurally diverse "forever chemicals" for safety, therefore improved assays to quantify structure-activity relationships are needed. Here, we determined the toxicity of a structurally distinct set of PFAS in twelve genetically diverse strains of the genetic model system Caenorhabditis elegans. Dose-response curves for perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), perfluoroalkyl sulfonic acids (PFOS and PFBS), perfluoroalkyl sulfonamides (PFOSA and PFBSA), fluoroether carboxylic acids (GenX and PFMOAA), fluoroether sulfonic acid (PFEESA), and fluorotelomers (6:2 FTCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and eleven genetically diverse wild strains. Body length was quantified after 48 hr of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). PFAS toxicity ranged by three orders of magnitude. Long-chain PFAS had greater toxicity than short-chain and fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation resulted in variation in susceptibility among twelve strains to almost all chemicals. Different C. elegans strains varied in susceptibility to different PFAS, which suggests distinct molecular responses to specific structural attributes. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful approach that can be used to investigate mechanisms of toxicity which may identify potentially susceptible individuals or populations and predict toxicity of untested PFAS to inform regulatory policies and improve human and environmental health.
Collapse
Affiliation(s)
- Tess C Leuthner
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2025; 19:211-229. [PMID: 39981556 PMCID: PMC11836584 DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
4
|
Engelhardt JA, Plassmann MM, Weiss JM. An extended PFAS profiling of a Swedish subpopulation and mixture risk assessments using multiple approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109214. [PMID: 39705977 DOI: 10.1016/j.envint.2024.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected worldwide, from the deep seas to polar regions. A previous review showed that PFAS are risk drivers of the chemical mixture present in human blood. This study focused on establishing the PFAS exposure of a Swedish subpopulation and investigated whether the exposure poses a risk of adverse health effects. Human serum from 60 blood donors in Stockholm, Sweden, was analyzed. A target method including 32 PFAS analytes and over 270 suspect features was used to detect and quantify PFAS. Twenty-six PFAS were quantified, and 7 suspect PFAS features (6 H-PFCAs and PFECHS) were semi-quantified. Nine mixture risk assessment (MRA) strategies were used to assess the risk of health outcomes. Fifteen effect levels were derived and used, along with 15 already established values. The certainty of various derivation techniques was discussed. The MRAs showed that the entire studied population exceeded some of the risk thresholds, with effects including high cholesterol and immune suppression. However, the certainty was lower when deriving these two effect levels. The MRA, using human biomonitoring guidance values (high certainty), concluded that for 63 % of the individuals, a risk for adverse health effects cannot be excluded. This study has demonstrated that there is a reason for concern regarding PFAS exposure in the general population of Sweden. To our knowledge, this is the first time the H-PFCAs have been semi-quantified in human blood using a reference standard.
Collapse
Affiliation(s)
| | - Merle M Plassmann
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jana M Weiss
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Wei Z, Wei K, Yang M, Ying M, Yin Z, Wang N, Zhang L. Kidney function mediates the effects of four per-and polyfluoroalkyl substances (PFAS) on atherosclerotic cardiovascular disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117395. [PMID: 39608156 DOI: 10.1016/j.ecoenv.2024.117395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND PFAS pose a significant threat to cardiovascular health and increase the risk of atherosclerotic cardiovascular disease (ASCVD). However, there is limited research evidence regarding the mechanisms by which PFAS affect the risk of ASCVD and the exposure-risk (E-R) relationship. The effect of kidney function in the relationship between PFAS and ASCVD risk has not been adequately validated. OBJECTIVE This study aims to explore the mechanisms by which four PFAS (Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorohexanesulfonic acid (PFHS), and Perfluorononanoic acid (PFNA)) affect the risk of ASCVD and to verify and discuss the mediating effect of kidney function in this impact. METHODS This study utilizes data from 14,607 participants in the NHANES 2005-2018 to conduct a cross-sectional study. Initially, Generalized Linear Model (GLM) and Restricted Cubic Splines models are used to assess the impact of four PFAS on ASCVD risk and the E-R relationship. Subsequently, the Weighted Quantile Sum regression (WQS) model is used to evaluate the relationship between mixed four PFAS exposure and ASCVD risk. Finally, Directed Acyclic Graphs (DAG) and causal mediation models are used to confirm and analyze whether the decline in kidney function mediates the impact of four PFAS on ASCVD risk. RESULTS The results from GLM and WQS models indicate that both singular and mixed four PFAS exposures are associated with an increased risk of ASCVD. The E-R curves between four PFAS singular and mixed exposures and ASCVD risk are all characterized by nonlinearity. The results from DAG and causal mediation models clearly indicate that the decline in kidney function plays a significant mediating role in the relationship between four PFAS and ASCVD risk. CONCLUSION Exposure levels of four PFAS do not significantly increase the risk of ASCVD unless they reach a certain threshold, and the decline in kidney function exerts a significant mediating effect in the relationship between four PFAS exposure and ASCVD risk.
Collapse
Affiliation(s)
- Zhengqi Wei
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Keke Wei
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China; Reproductive Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Ming Yang
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Ming Ying
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Ziyue Yin
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Na Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Lei Zhang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
6
|
Forthun IH, Roelants M, Knutsen HK, Haug LS, Iszatt N, Schell LM, Jugessur A, Bjerknes R, Oehme NB, Madsen A, Bruserud IS, Juliusson PB. Exposure to Per- and Polyfluoroalkyl Substances and Timing of Puberty in Norwegian Boys: Data from the Bergen Growth Study 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16336-16346. [PMID: 39226441 PMCID: PMC11411722 DOI: 10.1021/acs.est.4c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants with endocrine-disruptive properties. Their impact on puberty in boys is unclear. In this cross-sectional study, we investigated the association between PFAS exposure and pubertal timing in 300 Norwegian boys (9-16 years), enrolled in the Bergen Growth Study 2 during 2016. We measured 19 PFAS in serum samples and used objective pubertal markers, including ultrasound-measured testicular volume (USTV), Tanner staging of pubic hair development, and serum levels of testosterone, luteinizing hormone, and follicle-stimulating hormone. In addition to logistic regression of single pollutants and the sum of PFAS, Bayesian and elastic net regression were used to estimate the contribution of the individual PFAS. Higher levels of the sum of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS) were associated with later pubertal onset according to USTV (age-adjusted odds ratio (AOR): 2.20, 95% confidence interval (CI): 1.29, 3.93) and testosterone level (AOR: 2.35, 95% CI: 1.34, 4.36). Bayesian modeling showed that higher levels of PFNA and PFHxS were associated with later pubertal onset by USTV, while higher levels of PFNA and perfluoroundecanoic acid (PFUnDA) were associated with later pubertal onset by testosterone level. Our findings indicate that certain PFAS were associated with delay in male pubertal onset.
Collapse
Affiliation(s)
- Ingvild Halsør Forthun
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
| | - Mathieu Roelants
- Department of Public Health and Primary Care, Centre for Environment and Health KU Leuven, 3000 Leuven, Belgium
| | - Helle Katrine Knutsen
- Department of Food Safety, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Center for Sustainable Diets, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Center for Sustainable Diets, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Nina Iszatt
- Department of Food Safety, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Center for Sustainable Diets, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Lawrence M Schell
- Department of Epidemiology and Biostatistics, University at Albany, Albany, New York 12144, United States
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway
| | - Robert Bjerknes
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ninnie B Oehme
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andre Madsen
- Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Petur Benedikt Juliusson
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Health Registry Research and Development, Norwegian Institute of Public Health, 5808 Bergen, Norway
| |
Collapse
|
7
|
DeWitt JC, Glüge J, Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Patton S, Trier X, Vierke L, Wang Z, Adu-Kumi S, Balan S, Buser AM, Fletcher T, Haug LS, Heggelund A, Huang J, Kaserzon S, Leonel J, Sheriff I, Shi YL, Valsecchi S, Scheringer M. Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:786-797. [PMID: 39156923 PMCID: PMC11325642 DOI: 10.1021/acs.estlett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops.
Collapse
Affiliation(s)
- Jamie C. DeWitt
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis 97331, Oregon, United States
| | - Juliane Glüge
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich CH-8092, Switzerland
| | - Ian T. Cousins
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Dorte Herzke
- NILU,
Tromsø 9296, Norway and Department of Food Safety, Norwegian
Institute of Public Health, Oslo 0213, Norway
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett 02882, Rhode Island, United States
| | - Mark Miller
- National
Institute of Environmental Health Sciences, U.S. Public Health Service, Research
Triangle Park 27709, North Carolina, United States
| | - Carla A. Ng
- Department
of Civil & Environmental Engineering and Environmental and Occupational
Health, University of Pittsburgh, Pittsburgh 15261, Pennsylvania, United States
| | - Sharyle Patton
- Health
and
Environment Program Commonweal, Bolinas 94924, California, United States
| | - Xenia Trier
- Department
of Plant and Environmental Sciences, Section for Environmental Chemistry
and Physics, University of Copenhagen, Copenhagen 1165, Denmark
| | - Lena Vierke
- German
Environment Agency (UBA), Dessau-Roßlau 06844, Germany
| | - Zhanyun Wang
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | | | - Simona Balan
- California
Department of Toxic Substances Control, Safer Consumer Products Program, Berkeley 94710, California, United States
| | | | - Tony Fletcher
- Department
of Public Health, Environments & Society, London School of Hygiene & Tropical Medicine, London WC1H 9SH, U.K.
| | - Line Småstuen Haug
- Department
of Food Safety, Norwegian Institute of Public
Health, Oslo 0213, Norway
| | | | - Jun Huang
- School
of Environment, Tsinghua University, Beijing 100084, China
| | - Sarit Kaserzon
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Queensland 4102, Australia
| | - Juliana Leonel
- Department
of Oceanography, Universidade Federal de
Santa Catarina, Florianopólis 40170110, Brazil
| | - Ishmail Sheriff
- School
of Civil Engineering, Universiti Sains Malaysia, Penang 14300, Malaysia
| | - Ya-Li Shi
- School
of Environment, Hangzhou Institute for Advanced Study, University
of Chinese Academy of Sciences, Hangzhou, CN, 310024 and State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Sara Valsecchi
- Water
Research Institute-National Research Council, Brugherio 20861, Italy
| | - Martin Scheringer
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich CH-8092, Switzerland
- RECETOX, Masaryk
University, Brno 62500, Czech Republic
| |
Collapse
|
8
|
Borghese MM, Ward A, MacPherson S, Manz KE, Atlas E, Fisher M, Arbuckle TE, Braun JM, Bouchard MF, Ashley-Martin J. Serum concentrations of legacy, alternative, and precursor per- and polyfluoroalkyl substances: a descriptive analysis of adult female participants in the MIREC-ENDO study. Environ Health 2024; 23:55. [PMID: 38858670 PMCID: PMC11163811 DOI: 10.1186/s12940-024-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Several legacy and emerging per- and polyfluoroalkyl substances (PFAS) have been regulated around the world. There is growing concern over the proliferation of alternative PFAS, as well as PFAS precursors. Biomonitoring data for PFAS are critical for assessing exposure and human health risk. METHODS We collected serum samples from 289 adult female participants in a 2018-2021 follow-up study of the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort. Samples were analyzed for 40 PFAS using ultra-performance liquid chromatography-tandem mass spectrometry. For those compounds with > 50% detection, as well as the sum of these compounds, we describe serum concentrations and patterns of exposure according to sociodemographic and obstetrical history characteristics. RESULTS 17 out of 40 PFAS were detected in > 50% of samples with 7 of these detected in > 97% of samples. Median [95th percentile] concentrations (µg/L) were highest for PFOS (1.62 [4.56]), PFOA (0.69 [1.52]), PFNA (0.38 [0.81]), and PFHxS (0.33 [0.92]). Geometric mean concentrations of PFOA and PFHxS were approximately 2-fold lower among those with more children (≥ 3 vs. 1), greater number of children breastfed (≥ 3 vs. ≤ 1), longer lifetime duration of breastfeeding (> 4 years vs. ≤ 9 months), and shorter time since last pregnancy (≤ 4 years vs. > 8 years). We observed similar patterns for PFOS, PFHpS, and the sum of 17 PFAS, though the differences between groups were smaller. Concentrations of PFOA were higher among "White" participants, while concentrations of N-MeFOSE, N-EtFOSE, 7:3 FTCA, and 4:2 FTS were slightly higher among participants reporting a race or ethnicity other than "White". Concentrations of legacy, alternative, and precursor PFAS were generally similar across levels of age, education, household income, body mass index, and menopausal status. CONCLUSIONS We report the first Canadian biomonitoring data for several alternative and precursor PFAS. Our findings suggest that exposure to PFAS, including several emerging alternatives, may be widespread. Our results are consistent with previous studies showing that pregnancy and breastfeeding are excretion pathways for PFAS.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - A Ward
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - K E Manz
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - E Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - J M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - M F Bouchard
- Institut national de la recherche scientifique, Laval, QC, Canada
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
9
|
Janssen AWF, Jansen Holleboom W, Rijkers D, Louisse J, Hoekstra SA, Schild S, Vrolijk MF, Hoogenboom RLAP, Beekmann K. Determination of in vitro immunotoxic potencies of a series of perfluoralkylsubstances (PFASs) in human Namalwa B lymphocyte and human Jurkat T lymphocyte cells. FRONTIERS IN TOXICOLOGY 2024; 6:1347965. [PMID: 38549690 PMCID: PMC10976438 DOI: 10.3389/ftox.2024.1347965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/01/2024] [Indexed: 01/05/2025] Open
Abstract
Exposure to PFASs is associated to several adverse health effects, such as immunotoxicity. Immunotoxic effects of PFOA and PFOS, including a reduced antibody response in both experimental animals and humans, have been reported. However, there is limited understanding of the underlying mechanisms involved. Moreover, there is only a restricted amount of immunotoxicity data available for a limited number of PFASs. In the current study the effects of 15 PFASs, including short- and long-chain perfluorinated carboxylic and sulfonic acids, fluorotelomer alcohols, and perfluoralkyl ether carboxylic acids were studied on the expression of recombinant activating gene 1 (RAG1) and RAG2 in the Namalwa human B lymphoma cell line, and on the human IL-2 promotor activity in Jurkat T-cells. Concentration-response data were subsequently used to derive in vitro relative potencies through benchmark dose analysis. In vitro relative potency factors (RPFs) were obtained for 6 and 9 PFASs based on their effect on RAG1 and RAG2 gene expression in Namalwa B-cells, respectively, and for 10 PFASs based on their inhibitory effect on IL-2 promotor activity in Jurkat T-cells. The most potent substances were HFPO-TA for the reduction of RAG1 and RAG2 gene expression in Namalwa cells (RPFs of 2.1 and 2.3 respectively), and PFDA on IL-2 promoter activity (RPF of 9.1). RAG1 and RAG2 play a crucial role in V (D)J gene recombination, a process for acquiring a varied array of antibodies crucial for antigen recognition. Hence, the effects observed in Namalwa cells might indicate a PFAS-induced impairment of generating a diverse range of B-cells essential for antigen recognition. The observed outcomes in the Jurkat T-cells suggest a possible PFAS-induced reduction of T-cell activation, which may contribute to a decline in the T-cell dependent antibody response. Altogether, the present study provides potential mechanistic insights into the reported PFAS-induced decreased antibody response. Additionally, the presented in vitro models may represent useful tools for assessing the immunotoxic potential of PFASs and prioritization for further risk assessment.
Collapse
Affiliation(s)
- Aafke W. F. Janssen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Wendy Jansen Holleboom
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
- European Food Safety Authority, Parma, Italy
| | - Sjoerdtje A. Hoekstra
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Sanne Schild
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, Netherlands
| | - Ron L. A. P. Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Karsten Beekmann
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Zhang J, Hu L, Xu H. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167945. [PMID: 37871818 DOI: 10.1016/j.scitotenv.2023.167945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), dubbed "forever chemicals", are widely present in the environment. Environmental contamination and food contact substances are the main sources of PFAS in food, increasing the risk of human dietary exposure. Numerous epidemiological studies have established the link between dietary exposure to PFAS and liver disease. Correspondingly, PFAS induced-hepatotoxicity (e.g., hepatomegaly, cell viability, inflammation, oxidative stress, bile acid metabolism dysregulation and glycolipid metabolism disorder) observed from in vitro models and in vivo rodent studies have been extensively reported. In this review, the pertinent literature of the last 5 years from the Web of Science database was researched. This study summarized the source and fate of PFAS, and reviewed the occurrence of PFAS in food system (natural and processed food). Subsequently, the characteristics of human dietary exposure PFAS (population characteristics, distribution trend, absorption and distribution) were mentioned. Additionally, epidemiologic evidence linking PFAS exposure and liver disease was alluded, and the PFAS-induced hepatotoxicity observed from in vitro models and in vivo rodent studies was comprehensively reviewed. Lastly, we highlighted several critical knowledge gaps and proposed future research directions. This review aims to raise public awareness about food PFAS contamination and its potential risks to human liver health.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330299, China.
| |
Collapse
|
11
|
Conley JM, Lambright CS, Evans N, Farraj AK, Smoot J, Grindstaff RD, Hill D, McCord J, Medlock-Kakaley E, Dixon A, Hines E, Gray LE. Dose additive maternal and offspring effects of oral maternal exposure to a mixture of three PFAS (HFPO-DA, NBP2, PFOS) during pregnancy in the Sprague-Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164609. [PMID: 37271399 PMCID: PMC10681034 DOI: 10.1016/j.scitotenv.2023.164609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aimen K Farraj
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacob Smoot
- ORISE Participant, U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Rachel D Grindstaff
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Erin Hines
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Ring C, Blanchette A, Klaren WD, Fitch S, Haws L, Wheeler MW, DeVito M, Walker N, Wikoff D. A multi-tiered hierarchical Bayesian approach to derive toxic equivalency factors for dioxin-like compounds. Regul Toxicol Pharmacol 2023; 143:105464. [PMID: 37516304 PMCID: PMC11110530 DOI: 10.1016/j.yrtph.2023.105464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
In 2005, the World Health Organization (WHO) re-evaluated Toxic Equivalency factors (TEFs) developed for dioxin-like compounds believed to act through the Ah receptor based on an updated database of relative estimated potency (REP)(REP2004 database). This re-evalution identified the need to develop a consistent approach for dose-response modeling. Further, the WHO Panel discussed the significant heterogeneity of experimental datasets and dataset quality underlying the REPs in the database. There is a critical need to develop a quantitative, and quality weighted approach to characterize the TEF for each congener. To address this, a multi-tiered approach that combines Bayesian dose-response fitting and meta-regression with a machine learning model to predict REPS' quality categorizations was developed to predict the most likely relationship between each congener and its reference and derive model-predicted TEF uncertainty distributions. As a proof of concept, this 'Best-Estimate TEF workflow' was applied to the REP2004 database to derive TEF point-estimates and characterizations of uncertainty for all congeners. Model-TEFs were similar to the 2005 WHO TEFs, with the data-poor congeners having larger levels of uncertainty. This transparent and reproducible computational workflow incorporates WHO expert panel recommendations and represents a substantial improvement in the TEF methodology.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew W Wheeler
- National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, USA.
| | - Michael DeVito
- Environmental Protection Agency, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - Nigel Walker
- National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, USA.
| | | |
Collapse
|
13
|
Spyrakis F, Dragani TA. The EU's Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. TOXICS 2023; 11:721. [PMID: 37755732 PMCID: PMC10536631 DOI: 10.3390/toxics11090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may lead to significant problems in attempting to replace PFAS-based materials for environmental transition, as well as in medical devices and everyday products. Alternative materials may potentially be less safe, as a rush to replace PFAS would reduce the time needed for toxicological analyses. Studies have shown that PFAS exhibit a diverse range of mechanisms of action, biopersistence, and bioaccumulation potential, and should thus not be treated as a single group. This is particularly true for the class of fluoropolymers. A targeted approach that considers the specific risks and benefits of each chemical may be more effective. Moreover, the proposed ban may also have unintended consequences for the environment as PFAS use is also associated with benefits such as reducing greenhouse-gas emissions and improving energy efficiency. Policymakers must carefully weigh up the potential consequences before making a final decision on the ban.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | | |
Collapse
|
14
|
Uhl M, Schoeters G, Govarts E, Bil W, Fletcher T, Haug LS, Hoogenboom R, Gundacker C, Trier X, Fernandez MF, Calvo AC, López ME, Coertjens D, Santonen T, Murínová ĽP, Richterová D, Brouwere KD, Hauzenberger I, Kolossa-Gehring M, Halldórsson ÞI. PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU. Int J Hyg Environ Health 2023; 250:114168. [PMID: 37068413 DOI: 10.1016/j.ijheh.2023.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 μg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 μg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.
Collapse
Affiliation(s)
- Maria Uhl
- Environment Agency Austria, Vienna, Austria.
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; University of Antwerp, Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tony Fletcher
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, England, UK
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research, Wageningen, the Netherlands
| | | | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark
| | | | | | | | | | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Uusimaa, Finland
| | | | | | - Katleen De Brouwere
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | |
Collapse
|
15
|
Louisse J, Fragki S, Rijkers D, Janssen A, van Dijk B, Leenders L, Staats M, Bokkers B, Zeilmaker M, Piersma A, Luijten M, Hoogenboom R, Peijnenburg A. Determination of in vitro hepatotoxic potencies of a series of perfluoroalkyl substances (PFASs) based on gene expression changes in HepaRG liver cells. Arch Toxicol 2023; 97:1113-1131. [PMID: 36864359 PMCID: PMC10025204 DOI: 10.1007/s00204-023-03450-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are omnipresent and have been shown to induce a wide range of adverse health effects, including hepatotoxicity, developmental toxicity, and immunotoxicity. The aim of the present work was to assess whether human HepaRG liver cells can be used to obtain insight into differences in hepatotoxic potencies of a series of PFASs. Therefore, the effects of 18 PFASs on cellular triglyceride accumulation (AdipoRed assay) and gene expression (DNA microarray for PFOS and RT-qPCR for all 18 PFASs) were studied in HepaRG cells. BMDExpress analysis of the PFOS microarray data indicated that various cellular processes were affected at the gene expression level. From these data, ten genes were selected to assess the concentration-effect relationship of all 18 PFASs using RT-qPCR analysis. The AdipoRed data and the RT-qPCR data were used for the derivation of in vitro relative potencies using PROAST analysis. In vitro relative potency factors (RPFs) could be obtained for 8 PFASs (including index chemical PFOA) based on the AdipoRed data, whereas for the selected genes, in vitro RPFs could be obtained for 11-18 PFASs (including index chemical PFOA). For the readout OAT5 expression, in vitro RPFs were obtained for all PFASs. In vitro RPFs were found to correlate in general well with each other (Spearman correlation) except for the PPAR target genes ANGPTL4 and PDK4. Comparison of in vitro RPFs with RPFs obtained from in vivo studies in rats indicate that best correlations (Spearman correlation) were obtained for in vitro RPFs based on OAT5 and CXCL10 expression changes and external in vivo RPFs. HFPO-TA was found to be the most potent PFAS tested, being around tenfold more potent than PFOA. Altogether, it may be concluded that the HepaRG model may provide relevant data to provide insight into which PFASs are relevant regarding their hepatotoxic effects and that it can be applied as a screening tool to prioritize other PFASs for further hazard and risk assessment.
Collapse
Affiliation(s)
- Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands.
| | - Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Aafke Janssen
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Bas van Dijk
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Liz Leenders
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Martijn Staats
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marco Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Aldert Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| |
Collapse
|
16
|
Santonen T, Mahiout S, Alvito P, Apel P, Bessems J, Bil W, Borges T, Bose-O'Reilly S, Buekers J, Cañas Portilla AI, Calvo AC, de Alba González M, Domínguez-Morueco N, López ME, Falnoga I, Gerofke A, Caballero MDCG, Horvat M, Huuskonen P, Kadikis N, Kolossa-Gehring M, Lange R, Louro H, Martins C, Meslin M, Niemann L, Díaz SP, Plichta V, Porras SP, Rousselle C, Scholten B, Silva MJ, Šlejkovec Z, Tratnik JS, Joksić AŠ, Tarazona JV, Uhl M, Van Nieuwenhuyse A, Viegas S, Vinggaard AM, Woutersen M, Schoeters G. How to use human biomonitoring in chemical risk assessment: Methodological aspects, recommendations, and lessons learned from HBM4EU. Int J Hyg Environ Health 2023; 249:114139. [PMID: 36870229 DOI: 10.1016/j.ijheh.2023.114139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.
Collapse
Affiliation(s)
| | | | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Jos Bessems
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005, Lisbon, Portugal
| | - Stephan Bose-O'Reilly
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - Private University for Health Sciences, Medical Informations und Technology, Hall i.T., Austria
| | - Jurgen Buekers
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | | | - Argelia Castaño Calvo
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | | | | | | | | | | | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Carla Martins
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Matthieu Meslin
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Lars Niemann
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Susana Pedraza Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Veronika Plichta
- Austrian Agency for Health and Food Safety, Department Risk Assessment, Spargelfeldstraße 191, 1220, Vienna, Austria
| | | | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Bernice Scholten
- Research Group Risk Analysis for Products in Development, The Netherlands Organisation for Applied Scientific research (TNO), Utrecht, the Netherlands
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | | | | | | | - Jose V Tarazona
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain; European Food Safety Authority (EFSA), Parma, Italy
| | - Maria Uhl
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | | | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | | | - Marjolijn Woutersen
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Greet Schoeters
- VITO-Flemish Institute for Technological Research, Mol, Belgium; University of Antwerp, Dept of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
17
|
Bil W, Ehrlich V, Chen G, Vandebriel R, Zeilmaker M, Luijten M, Uhl M, Marx-Stoelting P, Halldorsson TI, Bokkers B. Internal relative potency factors based on immunotoxicity for the risk assessment of mixtures of per- and polyfluoroalkyl substances (PFAS) in human biomonitoring. ENVIRONMENT INTERNATIONAL 2023; 171:107727. [PMID: 36628859 DOI: 10.1016/j.envint.2022.107727] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Relative potency factors (RPFs) for per- and polyfluoroalkyl substances (PFAS) have previously been derived based on liver effects in rodents for the purpose of performing mixture risk assessment with primary input from biomonitoring studies. However, in 2020, EFSA established a tolerable weekly intake for four PFAS assuming equal toxic potency for immune suppressive effects in humans. In this study we explored the possibility of deriving RPFs for immune suppressive effects using available data in rodents and humans. Lymphoid organ weights, differential blood cell counts, and clinical chemistry from 28-day studies in male rats from the National Toxicology Program (NTP) were combined with modeled serum PFAS concentrations to derive internal RPFs by applying dose-response modelling. Identified functional studies used diverse protocols and were not suitable for derivation of RPFs but were used to support immunotoxicity of PFAS in a qualitative manner. Furthermore, a novel approach was used to estimate internal RPFs based on epidemiological data by dose-response curve fitting optimization, looking at serum antibody concentrations and key cell populations from the National Health and Nutrition Examination Survey (NHANES). Internal RPFs were successfully derived for PFAS based on rat thymus weight, spleen weight, and globulin concentration. The available dose-response information for blood cell counts did not show a significant trend. Immunotoxic potency in serum was determined in the order PFDA > PFNA > PFHxA > PFOS > PFBS > PFOA > PFHxS. The epidemiological data showed inverse associations for the sum of PFOA, PFNA, PFHxS, and PFOS with serum antibody concentrations to mumps and rubella, but the data did not allow for deduction of reliable internal RPF estimates. The internal RPFs for PFAS based on decreased rat lymphoid organ weights are similar to those previously established for increased rat liver weight, strengthening the confidence in the overall applicability of these RPFs.
Collapse
Affiliation(s)
- Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | | | - Guangchao Chen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marco Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Philip Marx-Stoelting
- Department Safety of Pesticides, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Thorhallur Ingi Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland (UI), Reykjavik, Iceland; Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
18
|
Bil W, Govarts E, Zeilmaker MJ, Woutersen M, Bessems J, Ma Y, Thomsen C, Haug LS, Lignell S, Gyllenhammar I, Palkovicova Murinova L, Fabelova L, Tratnik JS, Kosjek T, Gabriel C, Sarigiannis D, Pedraza-Diaz S, Esteban-López M, Castaño A, Rambaud L, Riou M, Franken C, Colles A, Vogel N, Kolossa-Gehring M, Halldorsson TI, Uhl M, Schoeters G, Santonen T, Vinggaard AM. Approaches to mixture risk assessment of PFASs in the European population based on human hazard and biomonitoring data. Int J Hyg Environ Health 2023; 247:114071. [PMID: 36446273 DOI: 10.1016/j.ijheh.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/25/2022] [Accepted: 11/05/2022] [Indexed: 11/27/2022]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a highly persistent, mobile, and bioaccumulative class of chemicals, of which emissions into the environment result in long-lasting contamination with high probability for causing adverse effects to human health and the environment. Within the European Biomonitoring Initiative HBM4EU, samples and data were collected in a harmonized way from human biomonitoring (HBM) studies in Europe to derive current exposure data across a geographic spread. We performed mixture risk assessments based on recent internal exposure data of PFASs in European teenagers generated in the HBM4EU Aligned Studies (dataset with N = 1957, sampling years 2014-2021). Mixture risk assessments were performed based on three hazard-based approaches: the Hazard Index (HI) approach, the sum value approach as used by the European Food Safety Authority (EFSA) and the Relative Potency Factor (RPF) approach. The HI approach resulted in the highest risk estimates, followed by the RPF approach and the sum value approach. The assessments indicate that PFAS exposure may result in a health risk in a considerable fraction of individuals in the HBM4EU teenager study sample, thereby confirming the conclusion drawn in the recent EFSA scientific opinion. This study underlines that HBM data are of added value in assessing the health risks of aggregate and cumulative exposure to PFASs, as such data are able to reflect exposure from different sources and via different routes.
Collapse
Affiliation(s)
- W Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - M J Zeilmaker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - M Woutersen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - J Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Y Ma
- National Food Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - C Thomsen
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - L S Haug
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - S Lignell
- Swedish Food Agency, Uppsala, Sweden
| | | | | | - L Fabelova
- Faculty of Public Health, Slovak Medical University (SZU), Bratislava, Slovakia
| | | | - T Kosjek
- Jožef Stefan Institute (IJS), Ljubljana, Slovenia
| | - C Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Thessaloniki, Greece
| | - D Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Thessaloniki, Greece; Environmental Health Engineering, Institute of Advanced Study, Pavia, Italy
| | - S Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - L Rambaud
- Santé Publique France, Saint-Maurice, France
| | - M Riou
- Santé Publique France, Saint-Maurice, France
| | - C Franken
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - N Vogel
- German Environment Agency (UBA), Berlin, Germany
| | | | - T I Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland (UI), Reykjavik, Iceland
| | - M Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - T Santonen
- Finnish Institute of Occupational Health (FIOH), Työterveyslaitos, Finland
| | - A M Vinggaard
- National Food Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| |
Collapse
|
19
|
Conley JM, Lambright CS, Evans N, Medlock-Kakaley E, Dixon A, Hill D, McCord J, Strynar MJ, Ford J, Gray LE. Cumulative maternal and neonatal effects of combined exposure to a mixture of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) during pregnancy in the Sprague-Dawley rat. ENVIRONMENT INTERNATIONAL 2022; 170:107631. [PMID: 36402036 PMCID: PMC9944680 DOI: 10.1016/j.envint.2022.107631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Jermaine Ford
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
20
|
Andra SS, Teitelbaum SL, Wolff MS. Comment on "Internal Relative Potency Factors for the Risk Assessment of Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) in Human Biomonitoring". ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:108001. [PMID: 36197374 PMCID: PMC9534282 DOI: 10.1289/ehp12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Syam S. Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan L. Teitelbaum
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary S. Wolff
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Schmidt S. Truth in the Serum? Estimating PFAS Relative Potency for Human Risk Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:94001. [PMID: 36129438 PMCID: PMC9491363 DOI: 10.1289/ehp11799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
|