1
|
Zhai G, Jiang Z, Zhou W. Differences in cardiovascular disease mortality between northern and southern China under exposure to different temperatures: a systematic review. PeerJ 2024; 12:e18355. [PMID: 39494270 PMCID: PMC11531265 DOI: 10.7717/peerj.18355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Background Due to differences in climate and other environmental factors, exposure to different temperatures in China has different effects on the relative risk (RR) of cardiovascular disease (CVD) mortality. It is therefore important to compare the effects of exposure to different temperatures on CVD mortality in different regions of China. Methods To compare these effects, we performed a meta-analysis of 21 studies identified by a search of the Web of Science and China National Knowledge Infrastructure databases from January 1, 2014 to January 1, 2024. We performed the Cochran Q test and I 2 statistics test to evaluate heterogeneity and Egger's test to evaluate publication bias. Results The pooled estimated size of the relationship between exposure to different temperatures and CVD mortality was 1.60 (95% confidence interval [CI]: [1.42-1.80]) for the extreme cold, 1.17 (95% CI [1.10-1.25]) for the extreme heat, and 1.16 (95% CI [1.10-1.24]) for extremely high diurnal temperature range (DTR). The Egger's test showed potential publication bias in studies analyzing both the extreme cold and the extreme heat. Discussion Extreme cold, extreme heat, and extremely high DTR are associated with an increase in CVD mortality in China, with extreme cold having the most significant effect. Residents of northern regions are more susceptible to high temperatures, while residents of southern regions are more sensitive to low temperatures.
Collapse
Affiliation(s)
- Guangyu Zhai
- School of Economics and Management, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Ziqing Jiang
- School of Economics and Management, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Wenjuan Zhou
- Network Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Fastl C, Arnberger A, Gallistl V, Stein VK, Dorner TE. Heat vulnerability: health impacts of heat on older people in urban and rural areas in Europe. Wien Klin Wochenschr 2024; 136:507-514. [PMID: 39158652 PMCID: PMC11390756 DOI: 10.1007/s00508-024-02419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Exposure to extreme heat is associated with both increased morbidity and mortality, especially in older people. Health burdens associated with heat include heat stroke, diabetes mellitus, hypertension, ischemic heart diseases, heart failure and arrhythmia, pulmonary diseases but also injuries, problems with activities of daily living, and mental disorders. In Europe, there are remarkable spatial differences in heat exposure between urban and less populated areas. In Austria, for example, there is a significant gradual association between population density and the number of heat days, where the gradient of urbanization also follows the gradient of sea level. The European population is continuously ageing, especially in rural areas. Older adults are especially vulnerable to negative health consequences resulting from heat exposure, due to a lack of physiological, social, cognitive, and behavioral resources. Older people living in urban areas are particularly at risk, due to the urban heat island effect, the heat-promoting interplay between conditions typically found in cities, such as a lack of vegetation combined with a high proportion of built-up areas; however, older people living in rural regions often have less infrastructure to cope with extreme heat, such as fewer cooling centers and emergency services. Additionally, older adults still engaged in agricultural or forestry activities may be exposed to high temperatures without adequate protection or hydration. More research is required to examine factors responsible for heat vulnerability in older adults and the interactions and possibilities for increasing resilience in older urban and rural populations to the health consequences of heat.
Collapse
Affiliation(s)
- Christina Fastl
- Academy for Ageing Research, Haus der Barmherzigkeit, Vienna, Austria
| | - Arne Arnberger
- Institute of Landscape Development, Recreation and Conservation Planning, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Vera Gallistl
- Division of Gerontology and Health Research, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Viktoria K Stein
- Karl-Landsteiner Institute for Health Promotion Research, Sitzenberg-Reidling, Austria
| | - Thomas E Dorner
- Academy for Ageing Research, Haus der Barmherzigkeit, Vienna, Austria.
- Karl-Landsteiner Institute for Health Promotion Research, Sitzenberg-Reidling, Austria.
- Center for Public Health, Department of Social and Preventive Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Bu Y, Sun Z, Tao Y, Zhao X, Zhao Y, Liang Y, Hang X, Han L. The synergistic effect of high temperature and relative humidity on non-accidental deaths at different urbanization levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173612. [PMID: 38823719 DOI: 10.1016/j.scitotenv.2024.173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Numerous studies have examined the impact of temperature on mortality, yet research on the combined effect of temperature and humidity on non-accidental deaths remains limited. This study investigates the synergistic impact of high temperature and humidity on non-accidental deaths in China, assessing the influence of urban development and urbanization level. Utilizing the distributed lag nonlinear model (DLNM) of quasi-Poisson regression, we analyzed the relationship between Wet Bulb Globe Temperature (WBGT) and non-accidental deaths in 30 Chinese cities from 2010 to 2016, including Guangzhou during 2012-2016. We stratified temperature and humidity across these cities to evaluate the influence of varying humidity levels on deaths under high temperatures. Then, we graded the duration of heat and humidity in these cities to assess the impact of deaths with different durations. Additionally, the cities were categorized based on gross domestic product (GDP), and a vulnerability index was calculated to examine the impact of urban development and urbanization level on non-accidental deaths. Our findings reveal a pronounced synergistic effect of high temperature and humidity on non-accidental deaths, particularly at elevated humidity levels. The synergies of high temperature and humidity are extremely complex. Moreover, the longer the duration of high temperature and humidity, the higher the risk of non-accidental death. Furthermore, areas with higher urbanization exhibited lower relative risks (RR) associated with the synergistic effects of heat and humidity. Consequently, it is imperative to focus on damp-heat related mortality among vulnerable populations in less developed regions.
Collapse
Affiliation(s)
- Yaqin Bu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Zhaobin Sun
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China.
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuxin Zhao
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Yinglin Liang
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Xiaoyi Hang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
4
|
Chen Y, Zhou L, Zha Y, Wang Y, Wang K, Lu L, Guo P, Zhang Q. Impact of Ambient Temperature on Mortality Burden and Spatial Heterogeneity in 16 Prefecture-Level Cities of a Low-Latitude Plateau Area in Yunnan Province: Time-Series Study. JMIR Public Health Surveill 2024; 10:e51883. [PMID: 39045874 PMCID: PMC11287102 DOI: 10.2196/51883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Background The relation between climate change and human health has become one of the major worldwide public health issues. However, the evidence for low-latitude plateau regions is limited, where the climate is unique and diverse with a complex geography and topography. objectives This study aimed to evaluate the effect of ambient temperature on the mortality burden of nonaccidental deaths in Yunnan Province and to further explore its spatial heterogeneity among different regions. Methods We collected mortality and meteorological data from all 129 counties in Yunnan Province from 2014 to 2020, and 16 prefecture-level cities were analyzed as units. A distributed lagged nonlinear model was used to estimate the effect of temperature exposure on years of life lost (YLL) for nonaccidental deaths in each prefecture-level city. The attributable fraction of YLL due to ambient temperature was calculated. A multivariate meta-analysis was used to obtain an overall aggregated estimate of effects, and spatial heterogeneity among 16 prefecture-level cities was evaluated by adjusting the city-specific geographical characteristics, demographic characteristics, economic factors, and health resources factors. Results The temperature-YLL association was nonlinear and followed slide-shaped curves in all regions. The cumulative cold and heat effect estimates along lag 0-21 days on YLL for nonaccidental deaths were 403.16 (95% empirical confidence interval [eCI] 148.14-615.18) and 247.83 (95% eCI 45.73-418.85), respectively. The attributable fraction for nonaccidental mortality due to daily mean temperature was 7.45% (95% eCI 3.73%-10.38%). Cold temperature was responsible for most of the mortality burden (4.61%, 95% eCI 1.70-7.04), whereas the burden due to heat was 2.84% (95% eCI 0.58-4.83). The vulnerable subpopulations include male individuals, people aged <75 years, people with education below junior college level, farmers, nonmarried individuals, and ethnic minorities. In the cause-specific subgroup analysis, the total attributable fraction (%) for mean temperature was 13.97% (95% eCI 6.70-14.02) for heart disease, 11.12% (95% eCI 2.52-16.82) for respiratory disease, 10.85% (95% eCI 6.70-14.02) for cardiovascular disease, and 10.13% (95% eCI 6.03-13.18) for stroke. The attributable risk of cold effect for cardiovascular disease was higher than that for respiratory disease cause of death (9.71% vs 4.54%). Furthermore, we found 48.2% heterogeneity in the effect of mean temperature on YLL after considering the inherent characteristics of the 16 prefecture-level cities, with urbanization rate accounting for the highest proportion of heterogeneity (15.7%) among urban characteristics. Conclusions This study suggests that the cold effect dominated the total effect of temperature on mortality burden in Yunnan Province, and its effect was heterogeneous among different regions, which provides a basis for spatial planning and health policy formulation for disease prevention.
Collapse
Affiliation(s)
- Yang Chen
- School of Public Health, Kunming Medical University, Kunming, China
- Institute for Noncommunicable Disease Prevention and Control, Yunnan Centers for Disease Prevention and Control, Kunming, China
| | - Lidan Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Yuanyi Zha
- Graduate School, Kunming University of Medical, Kunming, China
| | - Yujin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Kai Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Lvliang Lu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Hu K, Wang S, Fei F, Song J, Chen F, Zhao Q, Shen Y, Fu J, Zhang Y, Cheng J, Zhong J, Yang X, Wu J. Modifying temperature-related cardiovascular mortality through green-blue space exposure. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100408. [PMID: 38560758 PMCID: PMC10979139 DOI: 10.1016/j.ese.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Green-blue spaces (GBS) are pivotal in mitigating thermal discomfort. However, their management lacks guidelines rooted in epidemiological evidence for specific planning and design. Here we show how various GBS types modify the link between non-optimal temperatures and cardiovascular mortality across different thermal extremes. We merged fine-scale population density and GBS data to create novel GBS exposure index. A case time series approach was employed to analyse temperature-cardiovascular mortality association and the effect modifications of type-specific GBSs across 1085 subdistricts in south-eastern China. Our findings indicate that both green and blue spaces may significantly reduce high-temperature-related cardiovascular mortality risks (e.g., for low (5%) vs. high (95%) level of overall green spaces at 99th vs. minimum mortality temperature (MMT), Ratio of relative risk (RRR) = 1.14 (95% CI: 1.07, 1.21); for overall blue spaces, RRR = 1.20 (95% CI: 1.12, 1.29)), while specific blue space types offer protection against cold temperatures (e.g., for the rivers at 1st vs MMT, RRR = 1.17 (95% CI: 1.07, 1.28)). Notably, forests, parks, nature reserves, street greenery, and lakes are linked with lower heat-related cardiovascular mortality, whereas rivers and coasts mitigate cold-related cardiovascular mortality. Blue spaces provide greater benefits than green spaces. The severity of temperature extremes further amplifies GBS's protective effects. This study enhances our understanding of how type-specific GBS influences health risks associated with non-optimal temperatures, offering valuable insights for integrating GBS into climate adaptation strategies for maximal health benefits.
Collapse
Affiliation(s)
- Kejia Hu
- School of Public Health, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Shiyi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangrong Fei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Jinglu Song
- Department of Urban Planning and Design, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Feng Chen
- Zhejiang Institute of Meteorological Sciences, Hangzhou, 310008, China
| | - Qi Zhao
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Yujie Shen
- School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Jingqiao Fu
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Yunquan Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jian Cheng
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xuchao Yang
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jiayu Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Yang X, Wang J, Zhang G, Yu Z. Spatiotemporal distribution and lag effect of extreme temperature exposure on mortality of residents in Jiangsu, China. Heliyon 2024; 10:e30538. [PMID: 38765142 PMCID: PMC11098786 DOI: 10.1016/j.heliyon.2024.e30538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Background With the ever-increasing occurrence of extreme weather events as a result of global climate change, the impact of extreme temperatures on human health has become a critical area of concern. Specifically, it is imperative to investigate the impact of extreme weather conditions on the health of residents. Methods In this study, we analyze the daily death data from 13 prefecture-level cities in Jiangsu Province from January 2014 to September 2022, using the distributed lag nonlinear model (DLNM) to comprehensively account for factors such as relative humidity, atmospheric pressure, air pollutants, and other factors to evaluate the lag and cumulative effects of extreme low temperature and high temperature on the death of residents across different age groups. Additionally, we utilize the Geographical Detector to analyze the effects of various meteorological and environmental factors on the distribution of resident death in Jiangsu Province. This provides valuable insights that can guide health authorities in decision-making and in the protection of residents. Results The experimental results indicate that both extreme low and high temperatures increase the mortality of residents. We observe that the impact of extreme low temperatures has a delayed effect, peaking after 3-5 days and lasting up to 11-21 days. In contrast, the impact of extreme high temperature is greatest on the first day, and lasts only 2-4 days. Conclusion Both extreme high and low temperatures increase the mortality of residents, with the former being more transient and stronger and the latter being more persistent and slower. Furthermore, residents over 75 years of age are more vulnerable to the effects of extreme temperatures. Finally, we note that the spatial distribution of resident deaths is most closely associated consistent with the spatial distribution of daily mean temperature, and there is significant spatial heterogeneity in deaths among residents in Jiangsu Province.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, Jiangsu, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu, 210023, China
| | - Junshu Wang
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, Jiangsu, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu, 210023, China
| | - Guoming Zhang
- Health Information Center of Jiangsu Province, Nanjing, Jiangsu, 210008, China
| | - Zhaoyuan Yu
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, Jiangsu, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
7
|
Park J, Kim A, Bell ML, Kim H, Lee W. Heat and hospital admission via the emergency department for people with intellectual disability, autism, and mental disorders in South Korea: a nationwide, time-stratified, case-crossover study. Lancet Psychiatry 2024; 11:359-367. [PMID: 38631786 DOI: 10.1016/s2215-0366(24)00067-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Given the anticipated increase in ambient temperature due to climate change, the hazardous effects of heat on health have been extensively studied; however, its impact on people with intellectual disability, autism, and mental illness is largely unknown. We aimed to estimate the association between heat and hospitalisation through the emergency department (ED) among people with these mental disorders. METHODS In this nationwide study, we used data from the National Health Insurance Database (NHID) of the National Health Insurance Service, the single universal insurer in South Korea, the claims data for which is based on the ICD-10. We included individuals with identified intellectual disability, autism, and mental disorders (including schizophrenia, bipolar disorder, recurrent depressive disorder, schizoaffective disorder and persistent obsessive-compulsive disorder, Tourette's disorder, and narcolepsy) and we established two control groups of people without these disorders: one including 1 million systematically sampled individuals, and one matched to the cohort based on sex, age, and income group. Data on hospital admission via the ED were obtained from the NHID, including the primary cause of admission and corresponding medical costs, for the warm season (June-September) of the period 2006-2021. We used the Google Earth Engine with the ERA5-Land dataset to collect data on the daily mean temperature. We applied a time-stratified case-crossover design using a distributed lag non-linear model and performed a conditional logistic regression. The risk ratio was estimated as the odds ratio (OR) with calculated odds at the 99th percentile temperature compared with that at the local 75th percentile temperature. We did not include people with lived experience of mental illness in this study. FINDINGS Of the 456 946 people with intellectual disability, autism, or mental disorder in the NHID records, 99 845 were admitted to the ED, including 59 821 (59·9%) males and 40 024 (40·1%) females, and including 29 192 people with intellectual disability, 1428 people with autism, and 69 225 people with mental disorders. We were not able to collect data on ethnicity. The mean age at ED admission was 42·1 years (SD 17·9, range 0-102) for people with intellectual disability, 18·6 years (SD 10·4, range 1-72) for people with autism, and 50·8 years (SD 11·9, range 2-94) for people with mental disorders. The heat OR (odds at the 99th percentile vs 75th percentile of temperature) of ED admission was 1·23 (95% CI 1·11-1·36) for intellectual disability, 1·06 (0·68-1·63) for autism, and 1·20 (1·12-1·29) for mental disorders. People with intellectual disability, female individuals, people living in rural areas, or those with a low-income status were at increased risk of ED admission due to heat. The risk of ED admission due to genitourinary diseases was higher than that from other causes. Annual increase in medical costs attributable to heat among people with intellectual disability, autism, and mental disorders was US$ 224 970 per 100 000 person-years (95% empirical CI 139 784-305 770). INTERPRETATION People with intellectual disability, autism, and mental disorders should be included in groups considered at a high-risk for heat exposure, and heat adaptation policies should be implemented with consideration of these groups and their needs. FUNDING The National Research Foundation of Korea, Korean Ministry of Environment, and Korean Ministry of Education. TRANSLATION For the Korean translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Jinah Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ayoung Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven CT, USA
| | - Ho Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and 14 Environment, Seoul National University, Seoul, South Korea
| | - Whanhee Lee
- School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, South Korea.
| |
Collapse
|
8
|
Wu Q, Xing X, Yang M, Bai Z, He Q, Cheng Q, Hu J, Wang H, Fan Y, Su H, Liu Z, Cheng J. Increased Suicide Mortality and Reduced Life Expectancy Associated With Ambient Heat Exposure. Am J Prev Med 2024; 66:780-788. [PMID: 38311191 DOI: 10.1016/j.amepre.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Ambient heat exposure is a risk factor for suicide in many regions of the world. However, little is known about the extent to which life expectancy has been shortened by heat-related suicide deaths. This study aimed to evaluate the short-term effects of heat on suicide mortality and quantify the reduced life expectancy associated with heat in China. METHODS A time-stratified, case-crossover analysis in 2023 was performed during the warm season (May to September) from 2016 to 2020 to assess the short-term association between extreme heat (the 95th percentile of mean temperature) and suicide mortality in Anhui Province, China. A subgroup analysis was performed according to sex, age, marital status, suicide type, and region. The attributable fraction and years of life lost due to heat were calculated, and the heat-related life expectancy loss was estimated. RESULTS This study included 9,642 suicide deaths, with an average age of 62.4 years and 58.8% of suicides in males. Suicide risk was associated with an 80.7% increase (95% confidence interval [CI]: 21.4%-68.9%) after exposure to extreme heat (30.6°C) in comparison to daily minimum temperature (7.9°C). Subgroup analysis revealed that heat-related suicide risk was more prominent in the married population than in the unmarried population. Heat was estimated to be associated with 31.7% (95% CI: 18.0%-43.2%) of the suicides, corresponding to 7.0 years of loss in life expectancy for each decedent. CONCLUSIONS Heat exposure was associated with an increased risk of suicide and reduced life expectancy. However, further prospective studies are required to confirm this relationship.
Collapse
Affiliation(s)
- Qiyue Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Xiuya Xing
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China; Public Health Research Institute of Anhui Province, Hefei, China
| | - Min Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Zhongliang Bai
- Department of Health Services Management, School of Health Services Management, Anhui Medical University, Hefei, China
| | - Qin He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China; Public Health Research Institute of Anhui Province, Hefei, China
| | - Qianyao Cheng
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China; Public Health Research Institute of Anhui Province, Hefei, China
| | - Jingyao Hu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China; Public Health Research Institute of Anhui Province, Hefei, China
| | - Huadong Wang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China; Public Health Research Institute of Anhui Province, Hefei, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Zhirong Liu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China; Public Health Research Institute of Anhui Province, Hefei, China.
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
9
|
Monteiro dos Santos D, Libonati R, Garcia BN, Geirinhas JL, Salvi BB, Lima e Silva E, Rodrigues JA, Peres LF, Russo A, Gracie R, Gurgel H, Trigo RM. Twenty-first-century demographic and social inequalities of heat-related deaths in Brazilian urban areas. PLoS One 2024; 19:e0295766. [PMID: 38265975 PMCID: PMC10807764 DOI: 10.1371/journal.pone.0295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Population exposure to heat waves (HWs) is increasing worldwide due to climate change, significantly affecting society, including public health. Despite its significant vulnerabilities and limited adaptation resources to rising temperatures, South America, particularly Brazil, lacks research on the health impacts of temperature extremes, especially on the role played by socioeconomic factors in the risk of heat-related illness. Here, we present a comprehensive analysis of the effects of HWs on mortality rates in the 14 most populous urban areas, comprising approximately 35% of the country's population. Excess mortality during HWs was estimated through the observed-to-expected ratio (O/E) for total deaths during the events identified. Moreover, the interplay of intersectionality and vulnerability to heat considering demographics and socioeconomic heterogeneities, using gender, age, race, and educational level as proxies, as well as the leading causes of heat-related excess death, were assessed. A significant increase in the frequency was observed from the 1970s (0-3 HWs year-1) to the 2010s (3-11 HWs year-1), with higher tendencies in the northern, northeastern, and central-western regions. Over the 2000-2018 period, 48,075 (40,448-55,279) excessive deaths were attributed to the growing number of HWs (>20 times the number of landslides-related deaths for the same period). Nevertheless, our event-based surveillance analysis did not detect the HW-mortality nexus, reinforcing that extreme heat events are a neglected disaster in Brazil. Among the leading causes of death, diseases of the circulatory and respiratory systems and neoplasms were the most frequent. Critical regional differences were observed, which can be linked to the sharp North-South inequalities in terms of socioeconomic and health indicators, such as life expectancy. Higher heat-related excess mortality was observed for low-educational level people, blacks and browns, older adults, and females. Such findings highlight that the strengthening of primary health care combined with reducing socioeconomic, racial, and gender inequalities represents a crucial step to reducing heat-related deaths.
Collapse
Affiliation(s)
| | - Renata Libonati
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Beatriz N. Garcia
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João L. Geirinhas
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| | - Barbara Bresani Salvi
- Escola Nacional de Saúde Pública Sergio Arouca - ENSP/ Fiocruz - Programa de Pós Graduação em Saúde Pública e Meio Ambiente
| | - Eliane Lima e Silva
- Departamento de Geografia, Universidade de Brasilia, Distrito Federal, Brazil
- LMI Sentinela, International Joint Laboratory “Sentinela” (Fiocruz, UnB, IRD), Distrito Federal, Brazil
| | - Julia A. Rodrigues
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo F. Peres
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Russo
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| | - Renata Gracie
- Instituto de Comunicação e Informação Científica e Tecnológica em Saúde - ICICT/Fiocruz Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helen Gurgel
- Departamento de Geografia, Universidade de Brasilia, Distrito Federal, Brazil
- LMI Sentinela, International Joint Laboratory “Sentinela” (Fiocruz, UnB, IRD), Distrito Federal, Brazil
| | - Ricardo M. Trigo
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| |
Collapse
|
10
|
Wang W, Li S, Zhang T, Yin F, Ma Y. Detecting the spatial clustering of exposure-response relationships with estimation error: a novel spatial scan statistic. Biometrics 2023; 79:3522-3532. [PMID: 36964947 DOI: 10.1111/biom.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Detecting the spatial clustering of the exposure-response relationship (ERR) between environmental risk factors and health-related outcomes plays important roles in disease control and prevention, such as identifying highly sensitive regions, exploring the causes of heterogeneous ERRs, and designing region-specific health intervention measures. However, few studies have focused on this issue. A possible reason is that the commonly used cluster-detecting tool, spatial scan statistics, cannot be used for multivariate spatial datasets with estimation error, such as the ERR, which is often defined by a vector with its covariance estimated by a regression model. Such spatial datasets have been produced in abundance in the last decade, which suggests the importance of developing a novel cluster-detecting tool applicable for multivariate datasets with estimation error. In this work, by extending the classic scan statistic, we developed a novel spatial scan statistic called the estimation-error-based scan statistic (EESS), which is applicable for both univariate and multivariate datasets with estimation error. Then, a two-stage analytic process was proposed to detect the spatial clustering of ERRs in practical studies. A published motivating example and a simulation study were used to validate the performance of EESS. The results show that the clusters detected by EESS can efficiently reflect the clustering heterogeneity and yield more accurate ERR estimates by adjusting for such heterogeneity.
Collapse
Affiliation(s)
- Wei Wang
- West China School of Public Health and West China Fourth hospital, Sichuan University, Chengdu, China
| | - Sheng Li
- West China School of Public Health and West China Fourth hospital, Sichuan University, Chengdu, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth hospital, Sichuan University, Chengdu, China
| | - Fei Yin
- West China School of Public Health and West China Fourth hospital, Sichuan University, Chengdu, China
| | - Yue Ma
- West China School of Public Health and West China Fourth hospital, Sichuan University, Chengdu, China
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Li A, Toll M, Bentley R. Mapping social vulnerability indicators to understand the health impacts of climate change: a scoping review. Lancet Planet Health 2023; 7:e925-e937. [PMID: 37940212 DOI: 10.1016/s2542-5196(23)00216-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
The need to assess and measure how social vulnerability influences the health impacts of climate change has resulted in a rapidly growing body of research literature. To date, there has been no overarching, systematic examination of where this evidence is concentrated and what inferences can be made. This scoping review provides an overview of studies published between 2012 and 2022 on social vulnerability to the negative health effects of climate change. Of the 2115 studies identified from four bibliographic databases (Scopus, Web of Science, PubMed, and CAB Direct), 230 that considered indicators of social vulnerability to climate change impacts on health outcomes were selected for review. Frequency and thematic analyses were conducted to establish the scope of the social vulnerability indicators, climate change impacts, and health conditions studied, and the substantive themes and findings of this research. 113 indicators of social vulnerability covering 15 themes were identified, with a small set of indicators receiving most of the research attention, including age, sex, ethnicity, education, income, poverty, unemployment, access to green and blue spaces, access to health services, social isolation, and population density. The results reveal an undertheorisation and few indicators that conceptualise and operationalise social vulnerability beyond individual sociodemographic characteristics by identifying structural and institutional dimensions of vulnerability, and a preponderance of social vulnerability research in high-income countries. This Review highlights the need for future research, data infrastructure, and policy attention to address structural, institutional, and sociopolitical conditions, which will better support climate resilience and adaptation planning.
Collapse
Affiliation(s)
- Ang Li
- NHMRC Centre of Research Excellence in Healthy Housing, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Mathew Toll
- NHMRC Centre of Research Excellence in Healthy Housing, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Bentley
- NHMRC Centre of Research Excellence in Healthy Housing, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Nawaro J, Gianquintieri L, Pagliosa A, Sechi GM, Caiani EG. Heatwave Definition and Impact on Cardiovascular Health: A Systematic Review. Public Health Rev 2023; 44:1606266. [PMID: 37908198 PMCID: PMC10613660 DOI: 10.3389/phrs.2023.1606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Objectives: We aimed to analyze recent literature on heat effects on cardiovascular morbidity and mortality, focusing on the adopted heat definitions and their eventual impact on the results of the analysis. Methods: The search was performed on PubMed, ScienceDirect, and Scopus databases: 54 articles, published between January 2018 and September 2022, were selected as relevant. Results: In total, 21 different combinations of criteria were found for defining heat, 12 of which were based on air temperature, while the others combined it with other meteorological factors. By a simulation study, we showed how such complex indices could result in different values at reference conditions depending on temperature. Heat thresholds, mostly set using percentile or absolute values of the index, were applied to compare the risk of a cardiovascular health event in heat days with the respective risk in non-heat days. The larger threshold's deviation from the mean annual temperature, as well as higher temperature thresholds within the same study location, led to stronger negative effects. Conclusion: To better analyze trends in the characteristics of heatwaves, and their impact on cardiovascular health, an international harmonization effort to define a common standard is recommendable.
Collapse
Affiliation(s)
- Julia Nawaro
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Lorenzo Gianquintieri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | | | - Enrico Gianluca Caiani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
13
|
Bo Y, Zhu Y, Lu R, Chen L, Wen W, Jiang B, Wang X, Li J, Chen S, Qin P. Burden of stroke attributable to high ambient temperature from 1990 to 2019: A global analysis. Int J Stroke 2023; 18:1121-1131. [PMID: 37300302 DOI: 10.1177/17474930231183858] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AIMS To determine the global and regional burden of stroke due to high temperature and the spatiotemporal trends in 204 countries and territories from 1990 to 2019. METHODS Based on Global Burden of Disease Study 2019, deaths, disability-adjusted life years (DALYs), and age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR) for stroke attributable to high temperature (i.e. a daily mean temperature warmer than the theoretical minimum-risk exposure level (TMREL)) were calculated in global, geographical location, and country and analyzed by age, sex, subtypes, and socio-demographic index (SDI) from 1990 to 2019. The trends in ASMR and ASDR from 1990 to 2019 were estimated by linear regression model. The regression coefficients (β) referred to a mean change of per year for ASMR or ASDR attributable to high temperature. RESULTS The global burden of stroke attributable to high temperature had an increase trend from 1990 to 2019 (β = 0.005, 95% uncertainty interval (UI) = 0.003-0.007 for ASMR and β = 0.104, 95% UI = 0.066-0.142 for ASDR, respectively). Globally, in 2019, an estimated 0.048 million deaths and 1.01 million DALYs of stroke were attributable to high temperature, and the global ASMR and ASDR of stroke attributable to high temperature were 0.60 (95% UI = 0.07-1.30) and 13.31 (1.40-28.97) per 100,000 population, respectively. The largest burden occurred in Western Sub-Saharan Africa, followed by South Asia, Southeast Asia, and North Africa and the Middle East. ASMR and ASDR increased with age and were higher in males and for intracerebral hemorrhage, and were the highest in the low SDI regions. In 2019, the region with the largest percentage increase in ASMR and ASDR attributable to high temperature was Eastern Sub-Saharan Africa from 1990 to 2019. CONCLUSIONS Stroke burden due to high temperature has been increasing, and a higher burden was observed in people aged 65-75 years, males, and countries with a low SDI. Stroke burden attributable to high temperature constitutes a major global public health concern in the context of global warming.
Collapse
Affiliation(s)
- Yacong Bo
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjian Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiqi Lu
- School of Public Health, Shantou University, Shantou, China
- Clinical Center for Public Health, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Lifang Chen
- Department of Cardiology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Wanyi Wen
- School of Public Health, Shantou University, Shantou, China
- Clinical Center for Public Health, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Bin Jiang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jiangtao Li
- Department of Cardiology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Shanquan Chen
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Pei Qin
- Clinical Center for Public Health, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
14
|
Hebbern C, Gosselin P, Chen K, Chen H, Cakmak S, MacDonald M, Chagnon J, Dion P, Martel L, Lavigne E. Future temperature-related excess mortality under climate change and population aging scenarios in Canada. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2023; 114:726-736. [PMID: 37308698 PMCID: PMC10484859 DOI: 10.17269/s41997-023-00782-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/27/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Climate change is expected to increase global temperatures. How temperature-related mortality risk will change is not completely understood, and how future demographic changes will affect temperature-related mortality needs to be clarified. We evaluate temperature-related mortality across Canada until 2099, accounting for age groups and scenarios of population growth. METHODS We used daily counts of non-accidental mortality for 2000 to 2015 for all 111 health regions across Canada, incorporating in the study both urban and rural areas. A two-part time series analysis was used to estimate associations between mean daily temperatures and mortality. First, current and future daily mean temperature time series simulations were developed from Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from past and projected climate change scenarios under Shared Socioeconomic Pathways (SSPs). Next, excess mortality due to heat and cold and the net difference were projected to 2099, also accounting for different regional and population aging scenarios. RESULTS For 2000 to 2015, we identified 3,343,311 non-accidental deaths. On average, a net increase of 17.31% (95% eCI: 13.99, 20.62) in temperature-related excess mortality under a higher greenhouse gas emission scenario is expected for Canada in 2090-2099, which represents a greater burden than a scenario that assumed strong levels of greenhouse gas mitigation policies (net increase of 3.29%; 95% eCI: 1.41, 5.17). The highest net increase was observed among people aged 65 and over, and the largest increases in both net and heat- and cold-related mortality were observed in population scenarios that incorporated the highest rates of aging. CONCLUSION Canada may expect net increases in temperature-related mortality under a higher emissions climate change scenario, compared to one assuming sustainable development. Urgent action is needed to mitigate future climate change impacts.
Collapse
Affiliation(s)
| | - Pierre Gosselin
- Institut National de La Recherche Scientifique (Centre Eau-Terre-Environnement), Québec, QC, Canada
- Institut National de Santé Publique du Québec, Québec, QC, Canada
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- Yale Center On Climate Change and Health, Yale School of Public Health, New Haven, CT, USA
| | - Hong Chen
- Population Studies Division, Health Canada, Ottawa, ON, Canada
| | - Sabit Cakmak
- Population Studies Division, Health Canada, Ottawa, ON, Canada
| | - Melissa MacDonald
- Meteorological Service of Canada, Environment and Climate Change Canada, Gatineau, QC, Canada
| | | | - Patrice Dion
- Centre for Demography, Statistics Canada, Ottawa, ON, Canada
| | - Laurent Martel
- Centre for Demography, Statistics Canada, Ottawa, ON, Canada
| | - Eric Lavigne
- Population Studies Division, Health Canada, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Casey JA, Daouda M, Babadi RS, Do V, Flores NM, Berzansky I, González DJ, Van Horne YO, James-Todd T. Methods in Public Health Environmental Justice Research: a Scoping Review from 2018 to 2021. Curr Environ Health Rep 2023; 10:312-336. [PMID: 37581863 PMCID: PMC10504232 DOI: 10.1007/s40572-023-00406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW The volume of public health environmental justice (EJ) research produced by academic institutions increased through 2022. However, the methods used for evaluating EJ in exposure science and epidemiologic studies have not been catalogued. Here, we completed a scoping review of EJ studies published in 19 environmental science and epidemiologic journals from 2018 to 2021 to summarize research types, frameworks, and methods. RECENT FINDINGS We identified 402 articles that included populations with health disparities as a part of EJ research question and met other inclusion criteria. Most studies (60%) evaluated EJ questions related to socioeconomic status (SES) or race/ethnicity. EJ studies took place in 69 countries, led by the US (n = 246 [61%]). Only 50% of studies explicitly described a theoretical EJ framework in the background, methods, or discussion and just 10% explicitly stated a framework in all three sections. Among exposure studies, the most common area-level exposure was air pollution (40%), whereas chemicals predominated personal exposure studies (35%). Overall, the most common method used for exposure-only EJ analyses was main effect regression modeling (50%); for epidemiologic studies the most common method was effect modification (58%), where an analysis evaluated a health disparity variable as an effect modifier. Based on the results of this scoping review, current methods in public health EJ studies could be bolstered by integrating expertise from other fields (e.g., sociology), conducting community-based participatory research and intervention studies, and using more rigorous, theory-based, and solution-oriented statistical research methods.
Collapse
Affiliation(s)
- Joan A. Casey
- University of Washington School of Public Health, Seattle, WA USA
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Misbath Daouda
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Ryan S. Babadi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Vivian Do
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Nina M. Flores
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Isa Berzansky
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - David J.X. González
- Department of Environmental Science, Policy & Management and School of Public Health, University of California, Berkeley, Berkeley, CA 94720 USA
| | | | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
16
|
Guo Y, Chen P, Xie Y, Wang Y, Mu Y, Zhou R, Niu Y, Shi X, Zhu J, Liang J, Liu Q. Association of Daytime-Only, Nighttime-Only, and Compound Heat Waves With Preterm Birth by Urban-Rural Area and Regional Socioeconomic Status in China. JAMA Netw Open 2023; 6:e2326987. [PMID: 37566422 PMCID: PMC10422195 DOI: 10.1001/jamanetworkopen.2023.26987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023] Open
Abstract
Importance Associations between heat waves and preterm birth (PTB) have been reported. However, associations of daytime-only, nighttime-only, and compound heat waves with PTB have yet to be explored at a national level. Furthermore, possible heterogeneity across urban-rural communities with different socioeconomic statuses needs to be explored. Objective To examine the association between daytime-only, nighttime-only, and compound heat waves and PTB in China and to find variations between urban and rural regions. Design, Setting, and Participants This case-crossover study used nationwide representative birth data between January 1, 2012, and December 31, 2019, from China's National Maternal Near Miss Surveillance System. This multisite study covered 30 provinces in China and ensured the representation of urban and rural populations across 3 socioeconomic regions. Singleton live births delivered in the warm seasons from April to October during the study period were included. Exclusion criteria consisted of gestational age younger than 20 or older than 45 weeks, maternal ages younger than 13 or older than 50 years, conception dates earlier than 20 weeks before January 1, 2012, and later than 45 weeks before December 31, 2019, and an inconsistent combination of birthweight and gestational age according to growth standard curves of Chinese newborns. Data were analyzed from September 10, 2021, to April 25, 2023. Exposures Eighteen definitions of heat waves by 3 distinct types, including daytime only (only daily maximum temperature exceeds thresholds), nighttime only (only daily minimum temperature exceeds thresholds), and compound (both daily maximum and minimum temperature exceeds thresholds) heat waves, and 6 indexes, including 75th percentile of daily temperature thresholds for 2 or more (75th-D2), 3 or more (75th-D3), or 4 or more (75th-D4) consecutive days and 90th percentile of daily temperature thresholds for 2 or more (90th-D2), 3 or more (90th-D3), and 4 or more (90th-D4) consecutive days. Main Outcomes and Measures Preterm births with less than 37 completed weeks of gestation. Results Among the 5 446 088 singleton births in the final analytic sample (maternal mean [SD] age, 28.8 [4.8] years), 310 384 were PTBs (maternal mean [SD] age, 29.5 [5.5] years). Compared with unexposed women, exposure of pregnant women to compound heat waves in the last week before delivery was associated with higher risk for PTB, with the adjusted odds ratios (AORs) ranging from 1.02 (95% CI, 1.00-1.03) to 1.04 (95% CI, 1.01-1.07) in 6 indexes. For daytime-only heat wave exposures, AORs ranged from 1.03 (95% CI, 1.01-1.05) to 1.04 (95% CI, 1.01-1.08) in the 75th-D4, 90th-D2, 90th-D3, and 90th-D4 indexes. Such associations varied by rural (AOR range, 1.05 [95% CI, 1.01-1.09] to 1.09 [95% CI, 1.04-1.14]) and urban (AOR range, 1.00 [95% CI, 0.98-1.02] to 1.01 [95% CI, 0.99-1.04]) regions during exposure to daytime-only heat waves in the 75th-D3 and 90th-D3 indexes. Conclusions and Relevance In this case-crossover study, exposure to compound and daytime-only heat waves in the last week before delivery were associated with PTB, particularly for pregnant women in rural regions exposed to daytime-only heat waves. These findings suggest that tailored urban-rural preventive measures may improve maternal health in the context of climate change.
Collapse
Affiliation(s)
- Yafei Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Chinese Center for Disease Control and Prevention Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peiran Chen
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanxia Xie
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanping Wang
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Mu
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ruobing Zhou
- Department of Health, Ethics and Society, Maastricht University, Maastricht, the Netherlands
| | - Yanlin Niu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xiaoming Shi
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhu
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Juan Liang
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
17
|
Gou A, Tan G, Ding X, Wang J, Lv X, Gou C, Tan Q. Urban-rural difference in the lagged effects of PM2.5 and PM10 on COPD mortality in Chongqing, China. BMC Public Health 2023; 23:1270. [PMID: 37391730 PMCID: PMC10311728 DOI: 10.1186/s12889-023-16113-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND It is true that Chronic obstructive pulmonary disease (COPD) will increase social burden, especially in developing countries. Urban-rural differences in the lagged effects of PM2.5 and PM10 on COPD mortality remain unclear, in Chongqing, China. METHODS In this study, a distributed lag non-linear model (DLNMs) was established to describe the urban-rural differences in the lagged effects of PM2.5, PM10 and COPD mortality in Chongqing, using 312,917 deaths between 2015 and 2020. RESULTS According to the DLNMs results, COPD mortality in Chongqing increases with increasing PM2.5 and PM10 concentrations, and the relative risk (RR) of the overall 7-day cumulative effect is higher in rural areas than in urban areas. High values of RR in urban areas occurred at the beginning of exposure (Lag 0 ~ Lag 1). High values of RR in rural areas occur mainly during Lag 1 to Lag 2 and Lag 6 to Lag 7. CONCLUSION Exposure to PM2.5 and PM10 is associated with an increased risk of COPD mortality in Chongqing, China. COPD mortality in urban areas has a high risk of increase in the initial phase of PM2.5 and PM10 exposure. There is a stronger lagging effect at high concentrations of PM2.5 and PM10 exposure in rural areas, which may further exacerbate inequalities in levels of health and urbanization.
Collapse
Affiliation(s)
- Aiping Gou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Guanzheng Tan
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xianbin Ding
- Institute of Chronic and Non-communicable Disease Control and Prevention, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China.
| | - Jiangbo Wang
- College of Architecture, Nanjing Tech University, Nanjing, 211816, China.
| | - Xiaoyan Lv
- Institute of Chronic and Non-communicable Disease Control and Prevention, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Chunyan Gou
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Qiang Tan
- Institute of Chronic and Non-communicable Disease Control and Prevention, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| |
Collapse
|
18
|
de Schrijver E, Royé D, Gasparrini A, Franco OH, Vicedo-Cabrera AM. Exploring vulnerability to heat and cold across urban and rural populations in Switzerland. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:025003-25003. [PMID: 36969952 PMCID: PMC7614344 DOI: 10.1088/2752-5309/acab78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heat- and cold-related mortality risks are highly variable across different geographies, suggesting a differential distribution of vulnerability factors between and within countries, which could partly be driven by urban-to-rural disparities. Identifying these drivers of risk is crucial to characterize local vulnerability and design tailored public health interventions to improve adaptation of populations to climate change. We aimed to assess how heat- and cold-mortality risks change across urban, peri-urban and rural areas in Switzerland and to identify and compare the factors associated with increased vulnerability within and between different area typologies. We estimated the heat- and cold-related mortality association using the case time-series design and distributed lag non-linear models over daily mean temperature and all-cause mortality series between 1990-2017 in each municipality in Switzerland. Then, through multivariate meta-regression, we derived pooled heat and cold-mortality associations by typology (i.e. urban/rural/peri-urban) and assessed potential vulnerability factors among a wealth of demographic, socioeconomic, topographic, climatic, land use and other environmental data. Urban clusters reported larger pooled heat-related mortality risk (at 99th percentile, vs. temperature of minimum mortality (MMT)) (relative risk=1.17(95%CI:1.10;1.24, vs peri-urban 1.03(1.00;1.06), and rural 1.03 (0.99;1.08)), but similar cold-mortality risk (at 1st percentile, vs. MMT) (1.35(1.28;1.43), vs rural 1.28(1.14;1.44) and peri-urban 1.39 (1.27-1.53)) clusters. We found different sets of vulnerability factors explaining the differential risk patterns across typologies. In urban clusters, mainly environmental factors (i.e. PM2.5) drove differences in heat-mortality association, while for peri-urban/rural clusters socio-economic variables were also important. For cold, socio-economic variables drove changes in vulnerability across all typologies, while environmental factors and ageing were other important drivers of larger vulnerability in peri-urban/rural clusters, with heterogeneity in the direction of the association. Our findings suggest that urban populations in Switzerland may be more vulnerable to heat, compared to rural locations, and different sets of vulnerability factors may drive these associations in each typology. Thus, future public health adaptation strategies should consider local and more tailored interventions rather than a one-size fits all approach. size fits all approach.
Collapse
Affiliation(s)
- Evan de Schrijver
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
- Graduate school of Health Sciences (GHS), University of Bern, Bern, Switzerland
| | - Dominic Royé
- Department of Geography, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London (LSHTM), London, United Kingdom
- Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London United Kingdom
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Ana M Vicedo-Cabrera
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Han L, Qin T, Sun Z, Ren H, Zhao N, An X, Wang Z. Influence of Urbanization on the Spatial Distribution of Associations Between Air Pollution and Mortality in Beijing, China. GEOHEALTH 2023; 7:e2022GH000749. [PMID: 36925585 PMCID: PMC10013134 DOI: 10.1029/2022gh000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the influence of urbanization on the intra-city spatial distribution of associations between air pollution and mortality in Beijing, China. First, we utilized the generalized additive model to establish the exposure-response associations of PM2.5, O3, with nonaccidental and cardiorespiratory mortality between urban and suburban areas. Second, we assessed district-specific air pollution-related mortality and analyzed how these associations were affected by the degree of urbanization. Finally, we analyzed the changes in air pollution-related mortality before and after the enforcement of the Air Pollution Prevention and Control Action Plan (referred to as the Action Plan). The effect estimates of PM2.5 for nonaccidental mortality were 0.20% (95% CI: 0.12-0.28) in urban areas and 0.46% (95% CI: 0.35-0.58) in suburban areas per 10 μg/m3 increase in PM2.5 concentrations. The corresponding estimates of O3 were 0.13% (95% CI: -0.04-0.29) in urban areas and 0.34% (95% CI: 0.12-0.56) in suburban areas per 10 μg/m3 increase in O3 concentrations; however, the difference between the estimates of O3 in urban and suburban areas was not statistically significant. The district-specific results suggested that the estimated risks increased along with urban vulnerability levels for the effects of PM2.5. Implementing the Action Plan reduced the mortality risks of PM2.5, but the risks of O3 increased in some districts. However, the difference in the estimates between the pre- and post-emission reductions was not statistically significant. Our study indicated that populations living in less urbanized areas are more vulnerable to the adverse effects of air pollution in Beijing, particularly for PM2.5.
Collapse
Affiliation(s)
- Ling Han
- State Key Laboratory for Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Tian Qin
- State Key Laboratory for Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Zhaobin Sun
- Institute of Urban MeteorologyChina Meteorological AdministrationBeijingChina
- Joint International Research Laboratory of Atmospheric and Earth System SciencesSchool of Atmospheric SciencesNanjing UniversityNanjingChina
- China Meteorological Administration Urban Meteorology Key LaboratoryBeijingChina
| | - Hongyu Ren
- State Key Laboratory for Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Na Zhao
- State Key Laboratory for Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Xingqin An
- Institute of Atmospheric CompositionChinese Academy of Meteorological SciencesBeijingChina
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMAChinese Academy of Meteorological SciencesBeijingChina
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| |
Collapse
|
20
|
Navas-Martín MÁ, López-Bueno JA, Ascaso-Sánchez MS, Follos F, Vellón JM, Mirón IJ, Luna MY, Sánchez-Martínez G, Díaz J, Linares C. Territory Differences in Adaptation to Heat among Persons Aged 65 Years and Over in Spain (1983-2018). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4168. [PMID: 36901177 PMCID: PMC10002076 DOI: 10.3390/ijerph20054168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Climate change is currently regarded as the greatest global threat to human health, and its health-related consequences take different forms according to age, sex, socioeconomic level, and type of territory. The aim of this study is to ascertain the differences in vulnerability and the heat-adaptation process through the minimum mortality temperature (MMT) among the Spanish population aged ≥65 years by territorial classification. A retrospective, longitudinal, ecological time-series study, using provincial data on daily mortality and maximum daily temperature across the period 1983-2018, was performed, differentiating between urban and nonurban populations. The MMTs in the study period were higher for the ≥65-year age group in urban provinces, with a mean value of 29.6 °C (95%CI 29.2-30.0) versus 28.1 °C (95%CI 27.7-28.5) in nonurban provinces. This difference was statistically significant (p < 0.05). In terms of adaptation levels, higher average values were obtained for nonurban areas, with values of 0.12 (95%CI -0.13-0.37), than for urban areas, with values of 0.09 (95%CI -0.27-0.45), though this difference was not statistically significant (p < 0.05). These findings may contribute to better planning by making it possible to implement more specific public health prevention plans. Lastly, they highlight the need to conduct studies on heat-adaptation processes, taking into account various differential factors, such as age and territory.
Collapse
Affiliation(s)
- Miguel Ángel Navas-Martín
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
- Doctorate Program in Biomedical Sciences and Public Health, National University of Distance Education, 28015 Madrid, Spain
| | | | | | - Fernando Follos
- Tdot Soluciones Sostenibles, SL. Ferrol, 15401 A Coruña, Spain
| | | | - Isidro Juan Mirón
- Regional Health Authority of Castile La Mancha, 45500 Torrijos, Spain
| | | | | | - Julio Díaz
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Cristina Linares
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
21
|
Niu Y, Yang J, Zhao Q, Gao Y, Xue T, Yin Q, Yin P, Wang J, Zhou M, Liu Q. The main and added effects of heat on mortality in 33 Chinese cities from 2007 to 2013. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:81. [PMID: 39450420 PMCID: PMC7616734 DOI: 10.1007/s11783-023-1681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 10/26/2024]
Abstract
Increases in ambient temperatures and the frequency of extreme heat events constitute important burdens on global public health. However, evidence on their effects on public health is limited and inconclusive in China. In this study, data on daily deaths recorded in 33 Chinese cities from 2007 to 2013 was used to evaluate the effect of heat on mortality in China. In addition to the definition of a heatwave established by the China Meteorological Administration, we combined four city-specific relative thresholds (90th, 92.5th, 95th, and 97.5th percentiles) of the daily mean temperature during the study period and three durations of ⩾ 2, ⩾ 3, and ⩾ 4 days, from which 13 heatwave definitions were developed. Then, we estimated the main and added effects of heat at the city level using a quasi-Poisson generalized additive model combined with a distributed lag nonlinear model. Next, the estimates for the effects were pooled at the national level using a multivariable meta-analysis. Subgroup analysis was performed according to sex, age, educational attainment, and spatially stratified heterogeneity. The results showed that the mortality risk increased from 22.3% to 37.1% due to the effects of the different heatwave definitions. The added effects were much lower, with the 2 Front. Environ. Sci. Eng. 2023, 17(7): 81 highest increase of 3.9% (95% CI: 1.7%-6.1%) in mortality risk. Females, the elderly, populations with low educational levels, and populations living inland in China were found to be the most vulnerable to the detrimental effects of heat. These findings have important implications for the improvement of early warning systems for heatwaves.
Collapse
Affiliation(s)
- Yanlin Niu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing100013, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing102206, China
- University College London, London, WC1H 0NN, UK
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou511436, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan250012, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan250100, China
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf40225, Germany
| | - Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| | - Tao Xue
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing100191, China
| | - Qian Yin
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing100050, China
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing100050, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing102206, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan250100, China
| |
Collapse
|
22
|
Manware M, Dubrow R, Carrión D, Ma Y, Chen K. Residential and Race/Ethnicity Disparities in Heat Vulnerability in the United States. GEOHEALTH 2022; 6:e2022GH000695. [PMID: 36518814 PMCID: PMC9744626 DOI: 10.1029/2022gh000695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Adverse health outcomes caused by extreme heat represent the most direct human health threat associated with the warming of the Earth's climate. Socioeconomic, demographic, health, land cover, and temperature determinants contribute to heat vulnerability; however, nationwide patterns of residential and race/ethnicity disparities in heat vulnerability in the United States are poorly understood. This study aimed to develop a Heat Vulnerability Index (HVI) for the United States; to assess differences in heat vulnerability across geographies that have experienced historical and/or contemporary forms of marginalization; and to quantify HVI by race/ethnicity. Principal component analysis was used to calculate census tract level HVI scores based on the 2019 population characteristics of the United States. Differences in HVI scores were analyzed across the Home Owners' Loan Corporation (HOLC) "redlining" grades, the Climate and Economic Justice Screening Tool (CEJST) disadvantaged versus non-disadvantaged communities, and race/ethnicity groups. HVI scores were calculated for 55,267 U.S. census tracts. Mean HVI scores were 17.56, 18.61, 19.45, and 19.93 for HOLC grades "A"-"D," respectively. CEJST-defined disadvantaged census tracts had a significantly higher mean HVI score (19.13) than non-disadvantaged tracts (16.68). The non-Hispanic African American or Black race/ethnicity group had the highest HVI score (18.51), followed by Hispanic or Latino (18.19). Historically redlined and contemporary CEJST disadvantaged census tracts and communities of color were found to be associated with increased vulnerability to heat. These findings can help promote equitable climate change adaptation policies by informing policymakers about the national distribution of place- and race/ethnicity-based disparities in heat vulnerability.
Collapse
Affiliation(s)
- Mitchell Manware
- Department of Social and Behavioral SciencesYale School of Public HealthNew HavenCTUSA
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
| | - Robert Dubrow
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| | - Daniel Carrión
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| | - Yiqun Ma
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| | - Kai Chen
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| |
Collapse
|
23
|
Du Y, Jing M, Lu C, Zong J, Wang L, Wang Q. Global Population Exposure to Extreme Temperatures and Disease Burden. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13288. [PMID: 36293869 PMCID: PMC9603138 DOI: 10.3390/ijerph192013288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The frequency and duration of extreme temperature events continues to increase worldwide. However, the scale of population exposure and its quantitative relationship with health risks remains unknown on a global scale, limiting our ability to identify policy priorities in response to climate change. Based on data from 171 countries between 2010 and 2019, this study estimated the exposure of vulnerable populations to extreme temperatures, and their contemporary and lag associations with disease burden attributed to non-optimal temperatures. Fixed-effects models and dynamic panel models were applied. Increased vulnerable population exposure to extreme temperatures had adverse contemporary effects on the burden of disease attributed to non-optimal temperature. Health risks stemming from extreme cold could accumulate to a greater extent, exhibiting a larger lag effect. Population exposure to extreme cold was mainly distributed in high-income countries, while extreme heat occurred more in low-income and middle-income countries. However, the association between population exposure to extreme cold and burden of disease was much stronger in low-income and middle-income countries than in high-income countries, whereas the effect size of population exposure to extreme heat was similar. Our study highlighted that differential strategies should be determined and implemented according to the characteristics in different countries.
Collapse
Affiliation(s)
- Yajie Du
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250012, China
| | - Ming Jing
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Chunyu Lu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250012, China
| | - Jingru Zong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250012, China
| | - Lingli Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250012, China
| | - Qing Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
Zhang R, Zhang N, Liu Y, Liu T, Sun J, Ling F, Wang Z. Factors associated with hemorrhagic fever with renal syndrome based maximum entropy model in Zhejiang Province, China. Front Med (Lausanne) 2022; 9:967554. [PMID: 36275790 PMCID: PMC9579348 DOI: 10.3389/fmed.2022.967554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS) is a serious public health problem in China. The geographic distribution has went throughout China, among which Zhejiang Province is an important epidemic area. Since 1963, more than 110,000 cases have been reported. Methods We collected the meteorological factors and socioeconomic indicators of Zhejiang Province, and constructed the HFRS ecological niche model of Zhejiang Province based on the algorithm of maximum entropy. Results Model AUC from 2009 to 2018, is 0.806–0.901. The high incidence of epidemics in Zhejiang Province is mainly concentrated in the eastern, western and central regions of Zhejiang Province. The contribution of digital elevation model ranged from 2009 to 2018 from 4.22 to 26.0%. The contribution of average temperature ranges from 6.26 to 19.65%, Gross Domestic Product contribution from 7.53 to 21.25%, and average land surface temperature contribution with the highest being 16.73% in 2011. In addition, the average contribution of DMSP/OLS, 20-8 precipitation and 8-20 precipitation were all in the range of 9%. All-day precipitation increases with the increase of rainfall, and the effect curve peaks at 1,250 mm, then decreases rapidly, and a small peak appears again at 1,500 mm. Average temperature response curve shows an inverted v-shape, where the incidence peaks at 17.8°C. The response curve of HFRS for GDP and DMSP/OLS shows a positive correlation. Conclusion The incidence of HFRS in Zhejiang Province peaked in areas where the average temperature was 17.8°C, which reminds that in the areas where temperature is suitable, personal protection should be taken when going out as to avoid contact with rodents. The impact of GDP and DMSP/OLS on HFRS is positively correlated. Most cities have good medical conditions, but we should consider whether there are under-diagnosed cases in economically underdeveloped areas.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ning Zhang
- Puyan Street Community Health Service Center of Binjiang District, Hangzhou, Zhejiang, China
| | - Ying Liu
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tianxiao Liu
- School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Jimin Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Jimin Sun,
| | - Feng Ling
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,Feng Ling,
| | - Zhen Wang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,Zhen Wang,
| |
Collapse
|
25
|
Song J, Lu Y, Zhao Q, Zhang Y, Yang X, Chen Q, Guo Y, Hu K. Effect modifications of green space and blue space on heat-mortality association in Hong Kong, 2008-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156127. [PMID: 35605868 DOI: 10.1016/j.scitotenv.2022.156127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Despite emerging recognition of the benefits of green and blue spaces on human health, evidence for their effect modifications on heat-mortality associations is limited. We aimed to investigate the effect modifications of green and blue spaces on heat-mortality associations among different age and sex groups and at different heat levels. METHODS Daily mortality and meteorological data from 2008 to 2017 in Hong Kong, China were collected. The Normalized Difference Vegetation Index and distance to coast were used as proxies for green and blue space exposure, respectively. Time-series analyses was performed using fitting generalized linear mixed models with an interaction term between heat and levels of exposure to either green or blue space. Age-, sex-, and heat level-stratified analyses were also conducted. RESULTS With a 1 °C increase in temperature above the 90th percentile (29.61 °C), mortality increased by 5.7% (95% confidence interval [CI]: 1.6, 10.1%), 5.4% (1.4, 9.5%), and 4.6% (0.8, 8.9%) for low, medium and high levels of green space exposure, respectively, and by 7.5% (3.9, 11.2%) and 3.5% (0.3, 6.8%) for low and high levels of blue space exposure, respectively. Significant effect modifications of green and blue spaces were not observed for the whole population or any specific age and sex group, either at a moderate heat level or a heat level (Ps > 0.05). CONCLUSIONS No significant effect modifications of green and blue spaces on heat-related mortality risk were observed in Hong Kong. These findings challenge the existing evidence on the prominent protective role of green and blue spaces in mitigating heat-related mortality risks.
Collapse
Affiliation(s)
- Jinglu Song
- Department of Urban Planning and Design, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Yi Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Shandong University, Jinan 250012, China.
| | - Yunquan Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xuchao Yang
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Qian Chen
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia.
| | - Kejia Hu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
26
|
Song J, Qin W, Pan R, Yi W, Song S, Cheng J, Su H. A global comprehensive analysis of ambient low temperature and non-communicable diseases burden during 1990-2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66136-66147. [PMID: 35501439 DOI: 10.1007/s11356-022-20442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Climate change and health are inextricably linked, especially the role of ambient temperature. This study aimed to analyze the non-communicable disease (NCD) burden attributable to low temperature globally, regionally, and temporally using data from the Global Burden of Disease (GBD) study 2019. Globally, in 2019, low temperature was responsible for 5.42% DALY and 7.18% death of NCDs, representing the age-standardized disability-adjusted life years (DALY) and death rates (per 100,000 population) of 359.6 (95% uncertainty intervals (UI): 306.09, 416.88) and 21.36 (95% UI:18.26, 24.74). Ischemic heart disease was the first leading cause of DALY and death resulting from low temperature, followed by stroke. However, age-standardized DALY and death rates attributable to low temperature have exhibited wide variability across regions, with the highest in Central Asia and Eastern Europe and the lowest in Caribbean and Western sub-Saharan Africa. During the study period (1990-2019), there has been a significant decrease in the burden of NCDs attributable to low temperature, but progress has been uneven across countries, whereas nations exhibiting high sociodemographic index (SDI) declined more significantly compared with low SDI nations. Notably, three nations, including Uzbekistan, Tajikistan, and Lesotho, had the maximum NCDs burden attributed to low temperature and displayed an upward trend. In conclusion, ambient low temperature contributes to substantial NCD burden with notable geographical variations.
Collapse
Affiliation(s)
- Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Wei Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Lu'an Center for Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| |
Collapse
|
27
|
Ahn J, Bae S, Chung BH, Myong JP, Park MY, Lim YH, Kang MY. Association of summer temperatures and acute kidney injury in South Korea: a case-crossover study. Int J Epidemiol 2022:6661204. [PMID: 35950799 DOI: 10.1093/ije/dyac163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Due to climate change, days with high temperatures are becoming more frequent. Although the effect of high temperature on the kidneys has been reported in research from Central and South America, Oceania, North America and Europe, evidence from Asia is still lacking. This study aimed to examine the association between short-term exposure to high temperatures and acute kidney injury (AKI) in a nationwide study in South Korea. METHODS We used representative sampling data from the 2002-2015 National Health Insurance Service-National Sample Cohort in South Korea to link the daily mean temperatures and AKI cases that occurred in the summer. We used a bidirectional case-crossover study design with 0-7 lag days before the emergency room visit for AKI. In addition, we stratified the data into six income levels to identify the susceptible population. RESULTS A total of 1706 participants were included in this study. The odds ratio (OR) per 1°C increase at 0 lag days was 1.051, and the ORs per 1°C increase at a lag of 2 days were both 1.076. The association between exposure to high temperatures and AKI was slightly greater in the low-income group (OR = 1.088; 95% CI: 1.049-1.128) than in the high-income group (OR = 1.065; 95% CI: 1.026-1.105). CONCLUSIONS In our study, a relationship between exposure to high temperatures and AKI was observed. Precautions should be taken at elevated temperatures to minimize the risk of negative health effects.
Collapse
Affiliation(s)
- Joonho Ahn
- Department of Occupational and Environmental Medicine, College of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, College of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Min Young Park
- Department of Occupational and Environmental Medicine, College of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mo-Yeol Kang
- Department of Occupational and Environmental Medicine, College of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
28
|
Huang Y, Yang J, Chen J, Shi H, Lu X. Association between ambient temperature and age-specific mortality from the elderly: Epidemiological evidence from the Chinese prefecture with most serious aging. ENVIRONMENTAL RESEARCH 2022; 211:113103. [PMID: 35278469 DOI: 10.1016/j.envres.2022.113103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 05/16/2023]
Abstract
Older people are main susceptible group affected by non-optimal temperature. The aim of the study was to determine how mortality of older people with different ages are affected by temperatures. For this study, we collected data of all-cause death of 256,037 people aged between 65 and 104 years of age from a prefecture located in the north subtropical area with most serious aging rate in 2000, 2010 and 2020 in China. A distributed lag nonlinear model under different age groups was used to estimate non-optimal temperature associations to mortality. The results revealed: (1) With increasing age, older people were more likely to die during moderate low temperature, the proportion of attributable fraction of moderate low temperature in all temperature gradually increased with age. (2) Moderate low temperature could be divided into two parts, the lower part caused most death at age 65-79 and the higher part was not so dangerous, while for age 80+, preventive actions should be taken for both parts. (3) A leveling-off and deceleration phenomenon was observed at age 95-99 for low temperature, but not 100-104, it may be virtually a consequence of "harvesting effect" in that susceptible and common people have died before age 95, it was coincidence with mortality deceleration at extreme old ages found by demographic scholars over the past 200 years. (4) Heat wave had much higher relative risk than cold spell compared with moderate high and low temperature because of steeper slope of relative risk at the period of moderate-extreme conversion of high temperature, the older people should pay more attention to weather with moderate-extreme conversion of high temperature. Furthermore, our findings could help improve the understanding of non-optimal temperature on health of older people and support the development of response strategies for different seasons at different ages.
Collapse
Affiliation(s)
- Yi Huang
- School of Geographic Sciences, Nantong University, Nantong, 226000, China.
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jianwei Chen
- School of Geographic Sciences, Nantong University, Nantong, 226000, China
| | - Hujing Shi
- School of Geographic Sciences, Nantong University, Nantong, 226000, China
| | - Xianjing Lu
- School of Geographic Sciences, Nantong University, Nantong, 226000, China
| |
Collapse
|
29
|
Zhan ZY, Zhong X, Yang J, Ding Z, Xie XX, Zheng ZQ, Hu ZJ. Effect of apparent temperature on hospitalization from a spectrum of cardiovascular diseases in rural residents in Fujian, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119101. [PMID: 35248617 DOI: 10.1016/j.envpol.2022.119101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular disease (CVD) is a leading threat to global public health. Although associations between temperature and CVD hospitalization have been suggested for developed countries, limited evidence is available for developing countries or rural residents. Moreover, the effect of apparent temperature (AT) on the spectrum of cause-specific CVDs remains unknown. Based on 2,024,147 CVD hospitalizations for rural residents from eight regions in Fujian Province, China, during 2010-2016, a quasi-Poisson regression with distributed lag non-linear model was fitted to estimate the AT effect on daily CVD hospitalization for each region, and then pooled in a meta-regression that included regional indicators related to rural residents. Stratified analyses were performed according to the cause of hospitalization, sex and age groups. Finally, we calculated the fraction of CVD hospitalizations attributable to AT, as a reflection of the burden associated with AT. The heat effect appeared at lag 0-1 days, with 19% (95% CI, 11-26%) increased risk of CVD hospitalization, which was worse for ischemic heart disease, heart failure, arrhythmias and ischemic stroke. The decreased AT was associated with increase of hemorrhagic stroke at lag 0-28 days. People aged 65 and above suffered more from the heat effect on cardiovascular and cerebrovascular diseases. Regions with a lower gross value of agricultural production, rural residents' per capita net income, number of air conditioners and water heaters were more susceptible. A large number of hospitalizations were attributable to heat for most subcategories. High AT level increased CVD hospitalization, and the subcategories had different susceptibilities. The effects were modified by individual and regional characteristics. These findings have important implications for the development of targeted interventions and for hospital service planning.
Collapse
Affiliation(s)
- Zhi-Ying Zhan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Xue Zhong
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zan Ding
- Institute of Low Carb Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, 518102, Guangdong Province, China
| | - Xiao-Xu Xie
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Zhen-Quan Zheng
- Institute of Health Research, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Zhi-Jian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
30
|
López-Bueno JA, Navas-Martín MA, Díaz J, Mirón IJ, Luna MY, Sánchez-Martínez G, Culqui D, Linares C. Analysis of vulnerability to heat in rural and urban areas in Spain: What factors explain Heat's geographic behavior? ENVIRONMENTAL RESEARCH 2022; 207:112213. [PMID: 34666017 DOI: 10.1016/j.envres.2021.112213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION There is currently little knowledge and few published works on the subject of vulnerability to heat in rural environments at the country level. Therefore, the objective of this study was to determine whether rural areas are more vulnerable to extreme heat than urban areas in Spain. This study aimed to analyze whether a pattern of vulnerability depends on contextual, environmental, demographic, economic and housing variables. METHODS An ecological, longitudinal and retrospective study was carried out based on time series data between January 01, 2000 and December 31, 2013 in 42 geographic areas in 10 provinces in Spain. We first analyzed the functional relationship between the mortality rate per million inhabitants and maximum daily temperature (Tmax). We then determined the summer temperature threshold (Pthreshold) (June-September) at which increases in mortality are produced that are attributable to heat. In a second phase, based on Pthreshold, a vulnerability variable was calculated, and its distribution was analyzed using mixed linear models from the Poisson family (link = log). In these models, the dependent variable was vulnerability, and the independent variables were exposure to high temperatures, aridity of the climate, deprivation index, percentage of people over age 65, rurality index, percentage of housing built prior to 1980 and condition of dwellings. RESULTS Rurality was a protective factor, and vulnerability in urban areas was six times greater. In contrast, risk factors included aridity (RR = 5.89 (2.26 15.36)), living in cool summer zones (2.69 (1.23, 5.91)), poverty (4.05 (1.91 8.59)) and the percentage of dysfunctional housing (1.13 (1.04 1.24)). CONCLUSIONS Rural areas are less vulnerable to extreme heat than the urban areas analyzed. Also, population groups with worse working conditions and higher percentages of dwellings in poor conditions are more vulnerable.
Collapse
Affiliation(s)
- J A López-Bueno
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain.
| | - M A Navas-Martín
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - J Díaz
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - I J Mirón
- Consejería de Sanidad, Junta de Comunidades de Castilla la Mancha, Toledo, Spain
| | - M Y Luna
- Agencia Estatal de Meteorología, Madrid, Spain
| | | | - D Culqui
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - C Linares
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Xing Q, Sun Z, Tao Y, Shang J, Miao S, Xiao C, Zheng C. Projections of future temperature-related cardiovascular mortality under climate change, urbanization and population aging in Beijing, China. ENVIRONMENT INTERNATIONAL 2022; 163:107231. [PMID: 35436720 DOI: 10.1016/j.envint.2022.107231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 05/26/2023]
Abstract
Climate change is causing the surface temperature to rise and the extreme weather events to increase in frequency and intensity, which will pose potential threats to the survival and health of residents. Beijing is facing multiple challenges such as coping with climate change, urbanization, and population aging, which puts huge decision-making pressure on decision maker. However, few studies that systematically consider the health effects of climate change, urbanization, and population aging for China. Based on the distributed lag nonlinear model (DLNM) and 13 global climate models in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this study obtained the temporal and spatial distribution of surface temperature through statistical downscaling methods, and comprehensively explored the independent and comprehensive effects of urbanization and population aging on the projection of future temperature-related cardiovascular disease (CVD) mortality in the context of climate and population change. The results showed that only improving urbanization can reduce future temperature-related CVD mortality by 1.7-18.3%, and only intensified aging can increase future temperature-related CVD mortality by 48.8-325.9%. Taking into account the improving urbanization and intensified aging, future temperature-related CVD mortality would increase by 44.1-256.6%, and the increase was slightly lower than that of only intensified aging. Therefore, the intensified aging was the biggest disadvantage in tackling climate change, which would obviously magnify the mortality risks of temperature-related CVD in the future. Although the advancement of urbanization would alleviate the adverse effects of the intensified aging population, the mitigation effects would be limited. Even so, Urbanization should be continued to reduce health risks for residents. These findings would contribute to formulate policies related to mitigate climate change and reduce baseline mortality rate (especially the elderly) in international mega-city - Beijing. In addition, relevant departments should improve the medical health care level and optimize the allocation of social resources to better cope with and adapt to climate change.
Collapse
Affiliation(s)
- Qian Xing
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - ZhaoBin Sun
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China; Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jing Shang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Shiguang Miao
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Chan Xiao
- National Climate Center, China Meteorology Administration, Beijing 100081, China
| | - Canjun Zheng
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
32
|
Guo H, Li W, Wu J, Ho HC. Does air pollution contribute to urban-rural disparity in male lung cancer diseases in China? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23905-23918. [PMID: 34817820 DOI: 10.1007/s11356-021-17406-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
It remains unknown whether exposure to ambient air pollution can be a mediator linking socioeconomic indicator to health outcome. The present study aims to examine the mediation effect of PM2.5 air pollution on the association between urban-rural division and the incidence (mortality) rate of male lung cancer. We performed a nationwide analysis in 353 counties (districts) of China between 2006 and 2015. A structural equation model was developed to determine the mediation effect of exposure to PM2.5. We also tested whether the findings of the mediation effect of exposure to PM2.5 are sensitive to the controls of smoking factors and additional air pollutant, and PM2.5 exposures with different lag structures. According to the results, we found that exposure to PM2.5 significantly mediated the association between urban-rural division and the incidence rate of male lung cancer. Specifically, there were significant associations between urban-rural division, exposure to PM2.5, and the incidence rate of male lung cancer, with PM2.5 exposure accounting for 29.80% of total urban-rural difference in incidence rates of male lung cancer. A similar pattern of results was observed for the mortality rate of male lung cancer. That is, there was a significant mediation effect by PM2.5 on the association of the mortality rate with urban-rural division. The findings of exposure to PM2.5 as a mediator were robust in the three sensitivity analyses. In conclusion, urban-rural difference in exposures to PM2.5 may be a potential factor that contributes to urban-rural disparity in male lung cancer diseases in China. The findings inform that air pollution management and control may be effective measures to alleviate the great difference in male lung cancer diseases between urban and rural areas in China.
Collapse
Affiliation(s)
- Huagui Guo
- School of Architecture and Urban-Rural Planning, Fuzhou University, Fuzhou, 350108, China
| | - Weifeng Li
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518057, China
| | - Jiansheng Wu
- Key Laboratory for Urban Habitat Environmental Science and Technology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Key Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Awasthi A, Vishwakarma K, Pattnayak KC. Retrospection of heatwave and heat index. THEORETICAL AND APPLIED CLIMATOLOGY 2022; 147:589-604. [PMID: 34785831 PMCID: PMC8581126 DOI: 10.1007/s00704-021-03854-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/29/2021] [Indexed: 05/21/2023]
Abstract
The frequency and intensity of extreme events especially heat waves (HW) are growing all around the world which ultimately poses a serious threat to the health of individuals. To quantify the effects of extreme temperature, appropriate information, and the importance of HW and heat index (HI) are carefully discussed for different parts of the world. Varied definitions of the HW and HI formula proposed and used by different countries are carried out systematically continent-wise. Different studies highlighted the number of definitions of HW; however, mostly used Steadman's formulae, which was developed in the late 1970s, for the calculation of HI that uses surface air temperature and relative humidity as climatic fields. Since then, dramatic changes in climatic conditions have been observed as evident from the ERA5 datasets which need to be addressed; likewise, the definition of HW, which is modified by the researchers as per the geographic conditions. It is evident from the ERA5 data that the temperature has increased by 1-2 °C as compared to the 1980s. There is a threefold increase in the number of heatwave days over most of the continents in the last 40 years. This study will help the researcher community to understand the importance of HW and HI. Furthermore, it opens the scope to develop an equation based on the present scenario keeping in mind the basics of an index as considered by Steadman.
Collapse
Affiliation(s)
- Amit Awasthi
- Department of Applied Sciences, University of Petroleum & Energy Studies, Dehradun, 248007 Uttarakhand India
| | - Kirti Vishwakarma
- Department of Aerospace Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand India
| | | |
Collapse
|
34
|
Ambient Ozone, PM 1 and Female Lung Cancer Incidence in 436 Chinese Counties. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910386. [PMID: 34639686 PMCID: PMC8508222 DOI: 10.3390/ijerph181910386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Ozone air pollution has been increasingly severe and has become another major air pollutant in Chinese cities, while PM1 is more harmful to human health than coarser PMs. However, nationwide studies estimating the effects of ozone and PM1 are quite limited in China. This study aims to assess the spatial associations between ozone (and PM1) and the incidence rate of female lung cancer in 436 Chinese cancer registries (counties/districts). The effects of ozone and PM1 were estimated, respectively, using statistical models controlling for time, location and socioeconomic covariates. Then, three sensitivity analyses including the adjustments of smoking covariates and co-pollutant (SO2) and the estimates of ozone, PM1 and SO2 effects in the same model, were conducted to test the robustness of the effects of the two air pollutants. Further still, we investigated the modifying role of urban-rural division on the effects of ozone and PM1. According to the results, a 10 μg/m3 increase in ozone and PM1 was associated with a 4.57% (95% CI: 4.32%, 16.16%) and 4.89% (95% CI: 4.37%, 17.56%) increase in the incidence rate of female lung cancer relative to its mean, respectively. Such ozone and PM1 effects were still significant in three sensitivity analyses. Regarding the modifying role of urban-rural division, the effect of PM1 was greater by 2.98% (95% CI: 1.01%, 4.96%) in urban than in rural areas when PM1 changed by 10 μg/m3. However, there was no modification effect of urban-rural division for ozone. In conclusion, there were positive associations between ozone (and PM1) and the incidence rate of female lung cancer in China. Urban-rural division may modify the effect of PM1 on the incidence rate of female lung cancer, which is seldom reported. Continuous and further prevention and control measures should be developed to alleviate the situation of the two air pollutants.
Collapse
|
35
|
Tian H, Zhou Y, Wang Z, Huang X, Ge E, Wu S, Wang P, Tong X, Ran P, Luo M. Effects of high-frequency temperature variabilities on the morbidity of chronic obstructive pulmonary disease: Evidence in 21 cities of Guangdong, South China. ENVIRONMENTAL RESEARCH 2021; 201:111544. [PMID: 34157271 DOI: 10.1016/j.envres.2021.111544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND While temperature changes have been confirmed as one of the contributory factors affecting human health, the association between high-frequency temperature variability (HFTV, i.e., temperature variation at short time scales such as 1, 2, and 5 days) and the hospitalization of chronic obstructive pulmonary disease (COPD) was rarely reported. OBJECTIVES To evaluate the associations between high-frequency temperature variabilities (i.e., at 1, 2, and 5-day scales) and daily COPD hospitalization. METHODS We collected daily records of COPD hospitalization and meteorological variables from 2013 to 2017 in 21 cities of Guangdong Province, South China. A quasi-Poisson regression with a distributed lag nonlinear model was first employed to quantify the effects of two HFTV measures, i.e., the day-to-day (DTD) temperature change and the intraday-interday temperature variability (IITV), on COPD morbidity for each city. Second, we used multivariate meta-analysis to pool the city-specific estimates, and stratified analyses were performed by age and sex to identify vulnerable groups. Then, the meta-regression with city-level characteristics was employed to detect the potential sources of the differences among 21 cities. RESULTS A monotonic increasing curve of the overall exposure-response association was observed, suggesting that positive HFTV (i.e., increased DTD and IITV) will significantly increase the risk of COPD admission. Negative DTD was associated with reduced COPD morbidity while positive DTD elevated the COPD risk. An interquartile range (IQR) increase in DTD was associated with a 24% (95% CI: 12-38%) increase in COPD admissions. An IQR increase in IITV0-1 was associated with 18% (95% CI: 7-27%) increase in COPD admissions. Males and people aged 0-64 years appeared to be more vulnerable to the DTD effect than others. Potential sources of the disparity among different cities include urbanization level, sex structure, industry structure, gross domestic product (GDP), health care services, and air quality. CONCLUSIONS The increases of DTD and IITV have significant adverse impacts on COPD hospitalization. As climate change intensifies, precautions need to be taken to mitigate the impacts of high-frequency temperature changes.
Collapse
Affiliation(s)
- Hao Tian
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoliang Huang
- Department of Health of Guangdong Province, Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, China
| | - Erjia Ge
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Sijia Wu
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
| | - Xuelin Tong
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Ming Luo
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Song J, Pan R, Yi W, Wei Q, Qin W, Song S, Tang C, He Y, Liu X, Cheng J, Su H. Ambient high temperature exposure and global disease burden during 1990-2019: An analysis of the Global Burden of Disease Study 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147540. [PMID: 33992940 DOI: 10.1016/j.scitotenv.2021.147540] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A warming climate throughout the 21st century makes ambient high temperature exposure a major threat to population health worldwide. Mitigating the health impact of high temperature requires a timely, comprehensive and reliable assessment of disease burden globally, regionally and temporally. AIM Based on Global Burden of Disease (GBD) Study 2019, this study aimed to evaluate the disease burden attributable to high temperature from various epidemiology perspectives. METHODS A three-stage analysis was undertaken to investigate the number and age-standardized rates of death and disability-adjusted life years (DALY) attributable to high temperature from GBD Study 2019. First, we reported the high temperature-related disease burden for the whole world and for different groups by gender, age, region, country and disease. Second, we examined the temporal trend of the disease burden attributable to high temperature from 1990 to 2019. Finally, we explored if and how the high temperature-related disease burden was modified by a number of country-level indicators. RESULTS Globally, high temperature accounted for 0.54% of death and 0.46% of DALY in 2019, equating to the age-standardized rates of death and DALY (per 100,000 population) of 3.99 (95% uncertainty interval (UI): 2.88, 5.93) and 156.81 (95% UI: 107.98, 261.98), respectively. In 2019, the high temperature-related DALY and death rates were the highest for lower respiratory infections, although they showed a downward trend. In contrast, during 1990-2019, high temperature-related non-communicable diseases burden exhibited an upward trend. Meanwhile, the disease burden attributable to high temperature varied spatially, with the heaviest burden in regions with low sociodemographic index (SDI) and the lightest burden in regions with high SDI. In addition, high temperature-related disease burden appeared to be higher in a country with a higher population density and PM2.5 concentration background but lower in a country with a higher density of greenness. CONCLUSION This study for the first time provided a comprehensive understanding of the global disease burden attributable to high temperature, underscoring the policy priority to protect human health worldwide in the context of global warming with particular attention to vulnerable countries or regions as well as susceptible population and diseases.
Collapse
Affiliation(s)
- Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Wei Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
37
|
Choi HM, Chen C, Son JY, Bell ML. Temperature-mortality relationship in North Carolina, USA: Regional and urban-rural differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147672. [PMID: 34000533 PMCID: PMC8214419 DOI: 10.1016/j.scitotenv.2021.147672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Health disparities exist between urban and rural populations, yet research on rural-urban disparities in temperature-mortality relationships is limited. As inequality in the United States increases, understanding urban-rural and regional differences in the temperature-mortality association is crucial. OBJECTIVE We examined regional and urban-rural differences of the temperature-mortality association in North Carolina (NC), USA, and investigated potential effect modifiers. METHODS We applied time-series models allowing nonlinear temperature-mortality associations for 17 years (2000-2016) to generate heat and cold county-specific estimates. We used second-stage analysis to quantify the overall effects. We also explored potential effect modifiers (e.g. social associations, greenness) using stratified analysis. The analysis considered relative effects (comparing risks at 99th to 90th temperature percentiles based on county-specific temperature distributions for heat, and 1st to 10th percentiles for cold) and absolute effects (comparing risks at specific temperatures). RESULTS We found null effects for heat-related mortality (relative effect: 1.001 (95% CI: 0.995-1.007)). Overall cold-mortality risk for relative effects was 1.019 (1.015-1.023). All three regions had statistically significant cold-related mortality risks for relative and absolute effects (relative effect: 1.019 (1.010-1.027) for Coastal Plains, 1.021 (1.015-1.027) for Piedmont, 1.014 (1.006-1.023) for Mountains). The heat mortality risk was not statistically significant, whereas the cold mortality risk was statistically significant, showing higher cold-mortality risks in urban areas than rural areas (relative effect for heat: 1.006 (0.997-1.016) for urban, 1.002 (0.988-1.017) for rural areas; relative effect for cold: 1.023 (1.017-1.030) for urban, 1.012 (1.001-1.023) for rural areas). Findings are suggestive of higher relative cold risks in counties with the less social association, higher population density, less green-space, higher PM2.5, lower education level, higher residential segregation, higher income inequality, and higher income (e.g., Ratio of Relative Risks 1.72 (0.68, 4.35) comparing low to high education). CONCLUSION Results indicate cold-mortality risks in NC, with potential differences by regional, urban-rural areas, and community characteristics.
Collapse
Affiliation(s)
| | - Chen Chen
- School of the Environment, Yale University, New Haven, CT, USA
| | - Ji-Young Son
- School of the Environment, Yale University, New Haven, CT, USA
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA.
| |
Collapse
|
38
|
Yu W, Xu R, Ye T, Han C, Chen Z, Song J, Li S, Guo Y. Temperature-mortality association during and before the COVID-19 pandemic in Italy: A nationwide time-stratified case-crossover study. URBAN CLIMATE 2021; 39:100948. [PMID: 34580627 PMCID: PMC8459163 DOI: 10.1016/j.uclim.2021.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To identify the associations of temperature with non-COVID-19 mortality and all-cause mortality in the pandemic 2020 in comparison with the non-COVID-19 period in Italy. METHODS The data on 3,189,790 all-cause deaths (including 3,134,137 non-COVID-19 deaths) and meteorological conditions in 107 Italian provinces between February 1st and November 30th in each year of 2015-2020 were collected. We employed a time-stratified case-crossover study design combined with the distributed lag non-linear model to investigate the relationships of temperature with all-cause and non-COVID-19 mortality in the pandemic and non-pandemic periods. RESULTS Cold temperature exposure contributed higher risks for both all-cause and non-COVID-19 mortality in the pandemic period in 2020 than in 2015-2019. However, no different change was found for the impacts of heat. The relative risk (RR) of non-COVID-19 deaths and all-cause mortality at extremely cold (2 °C) in comparison with the estimated minimum mortality temperature (19 °C) in 2020 were 1.63 (95% CI: 1.55-1.72) and 1.45 (95%CI: 1.31-1.61) respectively, which were higher than all-cause mortality risk in 2015-2019 with RR of 1.19 (95%CI: 1.17-1.21). CONCLUSION Cold exposure indicated stronger impacts than high temperatures on all-cause and non-COVID-19 mortality in the pandemic year 2020 compared to its counterpart period in 2015-2019 in Italy.
Collapse
Affiliation(s)
- Wenhua Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Chunlei Han
- School of Public Health and Management, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Zhuying Chen
- Department of Biomedical Engineering, The University of Melbourne, 203 Bouverie Street, Melbourne, VIC 3053, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
39
|
Follos F, Linares C, López-Bueno JA, Navas MA, Culqui D, Vellón JM, Luna MY, Sánchez-Martínez G, Díaz J. Evolution of the minimum mortality temperature (1983-2018): Is Spain adapting to heat? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147233. [PMID: 34088038 DOI: 10.1016/j.scitotenv.2021.147233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 05/16/2023]
Abstract
The objective of this study was to analyze at the level of Spain's 52 provinces province level the temporal evolution of minimum mortality temperatures (MMT) from 1983 to 2018, in order to determine whether the increase in MMT would be sufficient to compensate for the increase in environmental temperatures in Spain for the period. It also aimed to analyze whether the rate of evolution of MMT would be sufficient, were it to remain constant, to compensate for the predicted increase in temperatures in an unfavorable (RCP 8.5) emissions scenario for the time horizon 2051-2100. The independent variable was made up of maximum daily temperature data (Tmax) for the summer months in the reference observatories of each province for the 1983-2018 period. The dependent variable was daily mortality rate due to natural causes (ICD 10: A00-R99). For each year and province, MMT was determined using a quadratic or cubic fit (p < 0.05). Based on the annual MMT values, a linear fit was carried out that allowed for determining the time evolution of MMT. These values were compared with the evolution of Tmax registered in each observatory during the 1983-2018 analyzed period and with the predicted values of Tmax obtained for an RCP8.5 scenario for the period 2051-2100. The rate of global variance in Tmax in the summer months in Spain during the 1983-2018 period was 0.41 °C/decade, while MMT across the whole country increased at a rate of 0.64 °C/decade. Variations in the provinces were heterogeneous. For the 2051-2100 time horizon, there was predicted increase in Tmax values of 0.66 °C/decade, with marked geographical differences. Although at the global level it is possible to speak of adaptation, the heterogeneities among the provinces suggest that the local level measures are needed in order to facilitate adaptation in those areas where it is not occurring.
Collapse
Affiliation(s)
- F Follos
- Tdot Soluciones Sostenibles, SL, Ferrol, A Coruña, Spain
| | - C Linares
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J A López-Bueno
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - M A Navas
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - D Culqui
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J M Vellón
- Tdot Soluciones Sostenibles, SL, Ferrol, A Coruña, Spain
| | - M Y Luna
- State Meteorological Agency, Madrid, Spain
| | | | - J Díaz
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
40
|
Lee W, Choi M, Bell ML, Kang C, Jang J, Song I, Kim YO, Ebi K, Kim H. Effects of urbanization on vulnerability to heat-related mortality in urban and rural areas in South Korea: a nationwide district-level time-series study. Int J Epidemiol 2021; 51:111-121. [PMID: 34386817 DOI: 10.1093/ije/dyab148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although urbanization is often an important topic in climate change studies, the complex effect of urbanization on heat vulnerability in urban and rural areas has rarely been studied. We investigated the disparate effects of urbanization on heat vulnerability in urban and rural areas, using nationwide data. METHODS We collected daily weather data for all 229 administrative districts in South Korea (2011-17). Population density was applied as an urbanization indicator. We calculated the heat-mortality risk using a distributed lag nonlinear model and analysed the relationship with population density. We also examined district characteristics that can be related to the spatial heterogeneity in heat-mortality risk. RESULTS We found a U-shaped association between population density and heat-mortality risk, with the highest risk for rural populations; in urban areas, risk increases with increasing population density. Higher heat-mortality risk was associated with a lower number of hospital beds per person and higher percentage of people requiring recuperation. The association between hospital beds and heat-mortality risk was prominent in high-density urban areas, whereas the association between the percentage of people requiring recuperation and heat-mortality risk was pronounced in rural areas. CONCLUSIONS Our findings indicate that the association between population density and heat-mortality risk is different in urban and rural areas, and that district characteristics related to heat-mortality risk also differ by urbanicity. These results can contribute to understanding the complex role of urbanization on heat vulnerability and can provide evidence to policy makers for prioritizing resources.
Collapse
Affiliation(s)
- Whanhee Lee
- School of the Environment, Yale University, New Haven, CT, USA
| | - Munjeong Choi
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| | - Cinoo Kang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Jeongju Jang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Insung Song
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yong-Ook Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Kristie Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Ho Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Institute for Sustainable Development, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation. SUSTAINABILITY 2021. [DOI: 10.3390/su13168685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban green infrastructure (UGI) within sustainable stormwater management provides numerous benefits to urban residents, including urban heat island (UHI) mitigation. Cost–benefit analyses (CBA) for UGI have been conducted at neighborhood level with a focus on stormwater management, but valuations of reductions in heat-related hospitalizations and mortality are lacking. These benefits create significant social value; the quantification thereof is essential for urban planning in providing a scientific foundation for the inclusion of UGI in UHI mitigation strategies. This study assesses the potential of three UGI scenarios developed for an urban neighborhood in Berlin, Germany. First, climate data analyses were conducted to determine the cooling effects of tree drains, facade greening, and green roofs. Second, a CBA was performed for each scenario to value UHI mitigation by estimating the damage costs avoided in reduced heat-related hospitalizations and fatalities, using the net present value (NPV) and benefit–cost ratio (BCR) as indicators of economic feasibility. The results indicate heat mitigation capabilities of all three UGI types, with tree drains achieving the strongest cooling effects. Regarding economic feasibility, all scenarios achieve positive NPVs and BCRs above one. The findings confirm the potential of stormwater management in mitigating UHI and generating substantial social value.
Collapse
|
42
|
Wang M, Huang Y, Song Y, Chen J, Liu X. Study on Environmental and Lifestyle Factors for the North-South Differential of Cardiovascular Disease in China. Front Public Health 2021; 9:615152. [PMID: 34336751 PMCID: PMC8322531 DOI: 10.3389/fpubh.2021.615152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Human death and life span are closely related to the geographical environment and regional lifestyle. These factors considerably vary among counties and regions, leading to the geographical disparity of disease. Quantitative studies on this phenomenon are insufficient. Cerebrovascular and heart diseases are the leading causes of death. The mortality rate of cerebrovascular and heart diseases is statistically higher in northern China than in southern China; the p-value of t-test for cerebrovascular and heart diseases was 0.047 and 0.000, respectively. The population attribution fraction of 12 major risk factors for cardiovascular disease (CVD) in each province was calculated based on their exposure and relative risk. The results found that residents in northern China consume high sodium-containing food, fewer vegetables, and less sea food products, and tend to be overweight. Fine particulate matter is higher in northern China than in southern China. Cold temperatures also cause a greater number of deaths than hot temperatures. All these factors have resulted in a higher CVD mortality rate in northern China. The attributive differential for sodium, vegetable, fruit, smoking, PM2.5, omega-3, obesity, low temperature, and high temperature of heart disease between the two parts of China is 9.1, 0.7, -2.5, 0.1, 1.4, 1.3, 2.0, 4.7, and -2.1%, respectively. Furthermore, the attributive differential for the above factors of cerebrovascular disease between the two parts of China is 8.7, 0.0, -5.2, 0.1, 1.0, 0.0, 2.4, 4.7, and -2.1%. Diet high in sodium is the leading cause of the north-south differential in CVD, resulting in 0.71 less years of life expectancy in northern compared with that in southern China.
Collapse
Affiliation(s)
- Mengqi Wang
- School of Geographic Sciences, Nantong University, Nantong, China
| | - Yi Huang
- School of Geographic Sciences, Nantong University, Nantong, China
| | - Yanxin Song
- School of Geographic Sciences, Nantong University, Nantong, China
| | - Jianwei Chen
- School of Geographic Sciences, Nantong University, Nantong, China
| | - Xiaoxiao Liu
- School of Geographic Sciences, Nantong University, Nantong, China
| |
Collapse
|
43
|
Wang Y, Liu Y, Ye D, Li N, Bi P, Tong S, Wang Y, Cheng Y, Li Y, Yao X. Temperatures and health costs of emergency department visits: A multisite time series study in China. ENVIRONMENTAL RESEARCH 2021; 197:111023. [PMID: 33745933 DOI: 10.1016/j.envres.2021.111023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Evidence is limited regarding the association between temperatures and health costs. OBJECTIVES We tried to investigate the association between temperatures and emergency department visits (EDVs) costs in China. METHODS Daily data on EDVs costs, weather, air pollution were collected from 17 sites in China during 2014-2018. A quasi-Poisson generalized additive regression with distributed lag nonlinear model was applied to assess the temperature-EDVs cost association. Random-effect meta-analysis was used to pool the estimates from each site. Attributable fractions and national attributable EDVs costs due to heat and cold were calculated. RESULTS Relative risk (RR) due to extreme heat over 0-7 lag days was 1.14 [95% confidence intervals (CI): 1.08-1.19] and 1.11 (95% CI: 1.07-1.16) for EDVs examination (including treatment) and medicine cost, respectively. People aged 18-44 and those with genitourinary diseases were at higher risk from heat. 0.72% of examination cost and 0.57% of medicine cost were attributed to extreme heat, costing 274 million Chinese Yuan annually. Moderate heat had lower RR but higher attributable fraction of EDVs costs. Exposure to extreme cold over 0-21 lag days increased the risk of medicine cost for people aged 18-44 [RR: 1.30 (95% CI: 1.10-1.55)] and those with respiratory diseases [RR: 1.56 (95% CI: 1.14-2.14)], but had non-statistically significant attributable fraction of the total EDVs cost. CONCLUSIONS Exposure to heat and cold resulted in remarkable health costs. More resources and preparedness are needed to tackle such a challenge as our climate is rapidly changing.
Collapse
Affiliation(s)
- Yu Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dianxiu Ye
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Na Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shilu Tong
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Center for Global Health, Nanjing Medical University, Nanjing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yan Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yibin Cheng
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yonghong Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Xiaoyuan Yao
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
44
|
López-Bueno JA, Navas-Martín MA, Linares C, Mirón IJ, Luna MY, Sánchez-Martínez G, Culqui D, Díaz J. Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid. ENVIRONMENTAL RESEARCH 2021; 195:110892. [PMID: 33607097 DOI: 10.1016/j.envres.2021.110892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to analyze and compare the effect of high temperatures on daily mortality in the urban and rural populations in Madrid. Data were analyzed from municipalities in Madrid with a population of over 10,000 inhabitants during the period from January 1, 2000 to December 31, 2020. Four groups were generated: Urban Metropolitan Center, Rural Northern Mountains, Rural Center, and Southern Rural. The dependent variable used was the rate of daily mortality due to natural causes per million inhabitants (CIE-X: A00-R99) between the months of June and September for the period. The primary independent variable was maximum daily temperature. Social and demographic "context variables" were included: population >64 years of age (%), deprivation index and housing indicators. The analysis was carried out in three phases: 1) determination of the threshold definition temperature of a heat wave (Tumbral) for each study group; 2) determination of relative risks (RR) attributable to heat for each group using Poisson linear regression (GLM), and 3) calculation of odds ratios (OR) using binomial family GLM for the frequency of the appearance of heat waves associated with context variables. The resulting percentiles (for the series of maximum daily temperatures for the summer months) corresponding to Tthreshold were: 74th percentile for Urban Metropolitan Center, 76th percentile for Southern Rural, 83rd for Rural Northern Mountains and 98th percentile for Center Rural (98). Greater vulnerability was found for the first two. In terms of context variables that explained the appearance of heat waves, deprivation index level, population >64 years of age and living in the metropolitan area were found to be risk factors. Rural and urban areas behaved differently, and socioeconomic inequality and the composition of the population over age 64 were found to best explain the vulnerability of the Rural Center and Southern Rural zones.
Collapse
Affiliation(s)
- J A López-Bueno
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain.
| | - M A Navas-Martín
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - C Linares
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - I J Mirón
- Consejería de Sanidad, Junta de Comunidades de Castilla-La Mancha, Toledo, Spain
| | - M Y Luna
- State Meteorological Agency (AEMET), Madrid, Spain
| | | | - D Culqui
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - J Díaz
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| |
Collapse
|
45
|
Wang Z, Zhou Y, Zhang Y, Huang X, Duan X, Chen D, Ou Y, Tang L, Liu S, Hu W, Liao C, Zheng Y, Wang L, Xie M, Zheng J, Liu S, Luo M, Wu F, Deng Z, Tian H, Peng J, Yang H, Xiao S, Wang X, Zhong N, Ran P. Association of change in air quality with hospital admission for acute exacerbation of chronic obstructive pulmonary disease in Guangdong, China: A province-wide ecological study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111590. [PMID: 33396113 DOI: 10.1016/j.ecoenv.2020.111590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
AIMS To assess possible effect of air quality improvements, we investigated the temporal change in hospital admissions for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) associated with pollutant concentrations. METHODS We collected daily concentrations of particulate matter (i.e., PM2.5, PM10 and PMcoarse), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and admissions for AECOPD for 21 cities in Guangdong from 2013 to 2017. We examined the association of air pollution with AECOPD admissions using two-stage time-series analysis, and estimated the annual attributable fractions, numbers, and direct hospitalization costs of AECOPD admissions with principal component analysis. RESULTS From 2013-2017, mean daily concentrations of SO2, PM10 and PM2.5 declined by nearly 40%, 30%, and 26% respectively. As the average daily 8 h O3 concentration increased considerably, the number of days exceeding WHO target (i.e.,100 μg/m³) increased from 103 in 2015-152 in 2017. For each interquartile range increase in pollutant concentration, the relative risks of AECOPD admission at lag 0-3 were 1.093 (95% CI 1.06-1.13) for PM2.5, 1.092 (95% CI 1.08-1.11) for O3, and 1.092 (95% CI 1.05-1.14) for SO2. Attributable fractions of AECOPD admission advanced by air pollution declined from 9.5% in 2013 to 4.9% in 2016, then increased to 6.0% in 2017. A similar declining trend was observed for direct AECOPD hospitalization costs. CONCLUSION Declined attributable hospital admissions for AECOPD may be associated with the reduction in concentrations of PM2.5, PM10 and SO2 in Guangdong, while O3 has emerged as an important risk factor. Summarizes the main finding of the work: Reduction in PM may result in declined attributable hospitalizations for AECOPD, while O3 has emerged as an important risk factor following an intervention.
Collapse
Affiliation(s)
- Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yongbo Zhang
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Xiaoliang Huang
- Department of Health of Guangdong Province, Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, China
| | - Xianzhong Duan
- Department of Environmental Protection of Guangdong Province, Department of Ecology and Environment of Guangdong Province, Guangzhou, China
| | - Duohong Chen
- Department of Environmental Protection of Guangdong Province, Guangdong Environmental Monitoring Center, Key Laboratory of Regional Air Quality Monitoring, Ministry of Environmental Protection, Guangzhou, China
| | - Yubo Ou
- Department of Environmental Protection of Guangdong Province, Guangdong Environmental Monitoring Center, Key Laboratory of Regional Air Quality Monitoring, Ministry of Environmental Protection, Guangzhou, China
| | - Longhui Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shiliang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Center for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Canada
| | - Wei Hu
- Department of Health of Guangdong Province, Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, China
| | - Chenghao Liao
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Yijia Zheng
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Long Wang
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Min Xie
- Department of Environmental Protection of Guangdong Province, Guangdong Environmental Monitoring Center, Key Laboratory of Regional Air Quality Monitoring, Ministry of Environmental Protection, Guangzhou, China
| | - Jinzhen Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Sha Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ming Luo
- School of Geography and Planning, Sun Yat Sen University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xinwang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Zhao S, Liu S, Hou X, Sun Y, Beazley R. Air pollution and cause-specific mortality: A comparative study of urban and rural areas in China. CHEMOSPHERE 2021; 262:127884. [PMID: 33182102 DOI: 10.1016/j.chemosphere.2020.127884] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Air pollution increases the risks of all-cause mortality, cardiovascular mortality and respiratory mortality across China. However, the urban-rural differences in the associations between air pollution and mortality have not been clearly identified. In this study, a distributed lag nonlinear model was used to examine whether the air pollutants-mortality associations vary between urban and rural areas. Then, we used logistic regression analyses to evaluate the air pollutants-mortality relations. Also, generalized additive models were simulated to evaluate the nonlinear curves. Our results showed that the relative risks of air pollution-related mortality were generally higher in rural areas, where PM2.5 pollution was the dominant factor (p-value < 0.05). Mortality risks for all-cause, cardiovascular and respiratory will increase when average annual PM2.5 concentrations exceed approximately 38 μg/m3, 41 μg/m3 and 41 μg/m3, respectively, all of which exceed the annual Grade II standards. In urban areas, PM10-2.5 and NO2 were associated with mortality (p-value < 0.05). We proposed some area-specific strategies for controlling the NO2 pollution and PM10-2.5 pollution in urban areas and the PM2.5 pollution in rural areas to eliminate the gaps. Our findings identify that rural residents are more sensitive to air pollution than urban residents in China, and this result challenges previous assumptions about the more adverse effects of urbanization on residents' health in developing countries.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Shiliang Liu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoyun Hou
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Yongxiu Sun
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Robert Beazley
- Department of Natural Resources, College of Agriculture and Life Sciences, Fernow Hall 302, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
47
|
Xing Q, Sun Z, Tao Y, Zhang X, Miao S, Zheng C, Tong S. Impacts of urbanization on the temperature-cardiovascular mortality relationship in Beijing, China. ENVIRONMENTAL RESEARCH 2020; 191:110234. [PMID: 32956657 DOI: 10.1016/j.envres.2020.110234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The effect of temperature on cardiovascular disease (CVD) mortality has been extensively studied. However, it remains largely unknown over whether there is any difference between urban and suburban areas within the same city and how urbanization modifies the relationship between temperature and CVD mortality. In order to examine whether the association between temperature and CVD mortality existed difference in urban and suburban areas, and how urbanization modified this association, we used a distributed lag nonlinear model and a generalized additive model to investigate temperature-related CVD mortality in urban and suburban areas in Beijing, China, from 2006 to 2011. The age, gender, and educational attainment of the population were stratified to explore the modifying effect. We observed that the impacts of heat and cold temperature on CVD mortality were higher in suburban areas than in urban areas. In addition, the elderly and illiterate subjects in suburban areas were more vulnerable to both heat and cold than their counterparts in urban areas. Moreover, higher urbanization levels were significantly associated with districts having lower the excess risks for temperature- CVD mortality. Our findings provide evidence that populations in suburban Beijing have higher risk of temperature-related CVD mortality than those in urban areas. Therefore, greater attention should be paid to vulnerable groups in suburban areas to reduce temperature-related health burden.
Collapse
Affiliation(s)
- Qian Xing
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - ZhaoBin Sun
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China.
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaoling Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Shiguang Miao
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - Canjun Zheng
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shilu Tong
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, 230032, China; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia
| |
Collapse
|
48
|
Jang J, Lee W, Choi M, Kang C, Kim H. Roles of urban heat anomaly and land-use/land-cover on the heat-related mortality in the national capital region of South Korea: A multi-districts time-series study. ENVIRONMENT INTERNATIONAL 2020; 145:106127. [PMID: 32950794 DOI: 10.1016/j.envint.2020.106127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The urban heat anomaly has been suggested as a representative risk factor for human health in metropolitan areas, but few studies have measured a quantitative increase in risk due to the urban heat anomaly on heat-related mortality in the summer season or assessed the role of various types of land-use/land-cover (LULC), which may contribute to the urban heat anomaly. In this study, we evaluated the association between the urban heat anomaly and heat-related mortality risk in the summer and the potential roles of multiple types of LULC indicators. We used district-level time-series and cadastral data from 51 urban districts in the national capital region of South Korea. We applied a two-stage analysis. In the first stage, we estimated the district-specific heat-related mortality risk by using a distributed lag non-linear model. In the second stage, we used a meta-analysis to pool the estimates across all districts and calculate the association between the urban heat anomaly/LULC indicators and heat-related mortality risk. We found that the higher urban heat anomaly was related to lower vegetation and higher urban surface indicators, and the urban heat anomaly was positively associated with the heat-related mortality risk. The association between the urban heat anomaly and the heat-related mortality risk was more pronounced in the elderly (age ≥ 65 years) and female population than in the non-elderly and male population. We also found that the LULC indicators affected the heat-related mortality only through the urban heat anomaly. Our findings indicate that urban areas may be more vulnerable to heat-related mortality risk as determined by the urban heat anomaly. These results suggest a need for urban heat mitigation strategies such as increased vegetation or surface albedo to help reduce heat-related mortality risk.
Collapse
Affiliation(s)
- Jeongju Jang
- Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Whanhee Lee
- Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Munjeong Choi
- Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Cinoo Kang
- Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ho Kim
- Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
49
|
Xu R, Zhao Q, Coelho MSZS, Saldiva PHN, Abramson MJ, Li S, Guo Y. Socioeconomic inequality in vulnerability to all-cause and cause-specific hospitalisation associated with temperature variability: a time-series study in 1814 Brazilian cities. Lancet Planet Health 2020; 4:e566-e576. [PMID: 33278374 DOI: 10.1016/s2542-5196(20)30251-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to temperature variability has been associated with increased risk of mortality and morbidity. We aimed to evaluate whether the association between short-term temperature variability and hospitalisation was affected by local socioeconomic level in Brazil. METHODS In this time-series study, we collected city-level socioeconomic data, and daily hospitalisation and weather data from 1814 Brazilian cities between Jan 1, 2000, and Dec 31, 2015. All-cause and cause-specific hospitalisation data was from the Hospital Information System of the Unified Health System in Brazil. City-specific daily minimum and maximum temperatures came from a 0·25° × 0·25° Brazilian meteorological dataset. We represented city-specific socioeconomic level using literacy rate, urbanisation rate, average monthly household income per capita (using the 2000 and 2010 Brazilian census), and GDP per capita (using statistics from the Brazilian Institute of Geography and Statistics for 2000-15), and cities were categorised according to the 2015 World Bank standard. We used quasi-Poisson regression to do time-series analyses and obtain city-specific associations between temperature variability and hospitalisation. We pooled city-specific estimates according to different socioeconomic quartiles or levels using random-effect meta-analyses. Meta-regressions adjusting for demographic and climatic characteristics were used to evaluate the modification effect of city-level socioeconomic indicators on the association between temperature variability and hospitalisation. FINDINGS We included a total of 147 959 243 hospitalisations (59·0% female) during the study period. Overall, we estimated that the hospitalisation risk due to every 1°C increase in the temperature variability in the current and previous day (TV0-1) increased by 0·52% (95% CI 0·50-0·55). For lower-middle-income cities, this risk was 0·63% (95% CI 0·58-0·69), for upper-middle-income cities it was 0·50% (0·47-0·53), and for high-income cities it was 0·39% (0·33-0·46). The socioeconomic inequality in vulnerability to TV0-1 was especially evident for people aged 0-19 years (effect estimate 1·21% [1·11-1·31] for lower-middle income vs 0·52% [0·41-0·63] for high income) and people aged 60 years or older (0·60% [0·50-0·70] vs 0·43% [0·31-0·56]), and for hospitalisation due to infectious diseases (1·62% [1·46-1·78] vs 0·56% [0·30-0·82]), respiratory diseases (1·32% [1·20-1·44] vs 0·55% [0·37-0·74]), and endocrine diseases (1·21% [0·99-1·43] vs 0·32% [0·02-0·62]). INTERPRETATION People living in less developed cities in Brazil were more vulnerable to hospitalisation related to temperature variability. This disparity could exacerbate existing health and socioeconomic inequalities in Brazil, and it suggests that more attention should be paid to less developed areas to mitigate the adverse health effects of short-term temperature fluctuations. FUNDING None.
Collapse
Affiliation(s)
- Rongbin Xu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Qi Zhao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Micheline S Z S Coelho
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo H N Saldiva
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Michael J Abramson
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
50
|
Zou X, Nie JB. Family vulnerability for sick older adults: An empirical ethics study. Nurs Ethics 2020; 28:603-613. [PMID: 33190589 DOI: 10.1177/0969733020964850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In China, the conventional family-based ageing care model is under pressure from social transitions, raising the question of whether and to what extent families are still capable of dealing with the care of the aged. OBJECTIVE This article examines the vulnerability and inadequacy of families to bear responsibility for the care of the aged against a backdrop of socioeconomic transformation and diminishing institutional support in rural China. RESEARCH DESIGN This article adopts an empirical ethical approach that integrates empirical investigation with ethical inquiry. PARTICIPANTS AND RESEARCH CONTEXT The empirical component of this article focuses on the lived experiences of caring for a wife and mother with dementia in one rural Chinese family, collected from a 6-month fieldwork study conducted at one primary hospital. ETHICAL CONSIDERATIONS Approval was obtained from the university ethics committee. FINDINGS The empirical study highlights a conflicted family process of managing and negotiating care that indicates the inadequacies and limited ability of families to deal with aged care tasks. In addition, inadequate structures and institutional deficiencies exacerbate the vulnerability of rural families and their inability to offer adequate care. CONCLUSION Acknowledging the vulnerability of families as ageing care providers, this article calls for a socially supported family care model for rural older people in China and also proposes policy recommendations.
Collapse
|