1
|
Gautam K, Singh S, Vamadevan B, Anbumani S. Molecular response of earthworm, Eisenia fetida to Oxybenzone (Benzophenone-3) exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179265. [PMID: 40158332 DOI: 10.1016/j.scitotenv.2025.179265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Benzophenone-type ultraviolet filters recently received significant attention to overlook regulatory agencies' safety potential due to their toxicological implications on humans and the environment. The present study has been carried out to explore the toxicity of Benzophenone-3 (BP-3) in earthworm Eisenia fetida. Low-level long-term exposure defiles earthworm health through elevated ROS and its detrimental impact on reproductive organs and reproduction. Based on KEGG and GO analysis, global transcriptomics reveals differentially expressed gene transcripts affecting key signaling pathways. Further validation by q-PCR showed significant upregulated expression of genes involved in stress (CuZn-SOD, CAT), metabolism (GST), reproduction and gametogenesis (ANN and Piwi-2), and endocrine (EcR) functions. Interestingly, lower concentrations of BP-3 are biologically effective in exhibiting a non-linear concentration-response pattern towards the expression of reproduction and endocrine function genes. In addition, BP-3, through soil exposure, significantly alters the gut microbiome by inducing changes in bacterial diversity, while fungal diversity remains unaffected. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes have significantly affected phyla, whereas Ascomycota and Basidiomycota remain dominant, suggesting their potential role in metabolizing or tolerating the BP-3 contamination. The findings highlight the molecular consequences of BP-3 exposure in earthworms and indicate the broader environmental impacts of benzophenone-type organic UV filters on terrestrial biota. The information could also be helpful for chemical risk assessment in soil ecotoxicology.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhveer Singh
- System Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; System Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhang B, Sun H, Zhu B, Wang M, Zuo B, Dai J. Relationship between the level of mixed chemicals in male urine and the prevalence of male cancers, especially prostate cancer. Front Public Health 2025; 13:1544174. [PMID: 40144993 PMCID: PMC11938062 DOI: 10.3389/fpubh.2025.1544174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives The aim of this study was to investigate the relationship between mixed chemicals in urine and the prevalence of cancers in men. Methods A total of 1,068 male subjects were included in this study. Analyses were performed by several analytical methods to ensure the stability of the results: one-way analysis, WQS analysis, Qgcomp analysis, BKMR analysis, and Restricted Cubic Spline (RCS). Results In the final adjusted model, each 1 increase in ln-transformed BPS increased the risk of developing cancerous prostate by 49% (95% CI: 1.00-2.20). The results of multiple sensitivity analyses by WQS and Qgcomp showed that the mixed chemicals was positively correlated with the prevalence of cancers and prostate cancer in men. In the final adjusted model, each quartile increase in the WQS index was associated with a 78% (OR: 1.78, 95% CI: 1.10-2.87) increase in the risk of cancers and a 148% (OR: 2.48, 95% CI: 1.07-5.71) increase in the risk of prostate cancer. Each quartile increase in the Qgcomp index was associated with a 59% (OR: 1.59, 95% CI: 1.09-2.33) increase in the risk of cancers, and a 105% (OR: 2.05, 95% CI: 1.04-4.06) increase in the risk of prostate cancer. Conclusion In conclusion, this study showed a positive correlation between the concentrations of the three groups of mixed chemicals in urine and the prevalence of cancers in men, as well as a positive correlation with the prevalence of prostate cancer.
Collapse
Affiliation(s)
- Bin Zhang
- Binhai County People's Hospital, Yancheng, Jiangsu, China
| | - Hao Sun
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Bin Zhu
- Licang District Geriatric Hospital, Qingdao, China
| | - Mengmeng Wang
- Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Bingli Zuo
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiuming Dai
- Binhai County People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
3
|
Gao H, Yang X, Pan P, Liu X, Ma Y, Chen Y, Liu Y, Sun Y, Cao S, Tian Y, Yang Y. Pubertal low dose exposure to benzophenone-3 (BP-3) alters murine mammary stem cell functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117982. [PMID: 40020383 DOI: 10.1016/j.ecoenv.2025.117982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Benzophenone-3 (BP-3) is an organic UV filter that is widely used in personal care products and has been indicated to have negative impacts on the environment and human health. The mammary glands of humans and rodents have been confirmed to be target organs affected by BP-3 exposure. However, limited information is available on the underlying mechanism currently. In this study, we hypothesized that low-concentration BP3 exposure during puberty might lead to a susceptibility to tumors through the mediation of mammary stem cells. Our findings revealed that BP-3 exposure at 50 mg/kg/day for 5 weeks during puberty led to reproductive outcomes such as reduced body weight, decreased serum estradiol and progesterone levels, and increased terminal end bud (TEB) numbers and areas. These effects were accompanied by a decreased fraction of basal mammary stem cells and decreased self-renewal and differentiation abilities of basal mammary stem cells in vitro and in vivo such as decreased sphere formation ability, a smaller 3D structure, increased branching points and hyperplastic lesions in regenerated mammary glands. Notably, for the regenerated mammary glands formed by the basal mammary stem cells of BP-3-treated mice, a decrease in the fraction of basal mammary stem cells and decreased expression levels of the milk protein β-casein and STAT5 were observed. Taken together, our data suggest that pubertal BP-3 exposure decreases the function of basal mammary stem cells such that they induce the abnormal development of mammary glands.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Xintong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xueli Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yadan Chen
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yunxin Liu
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yaqi Sun
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Sinan Cao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Tian
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
5
|
Zhang Y, Tu L, Chen J, Zhou L. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics-In Vitro Studies. Int J Endocrinol 2024; 2024:2564389. [PMID: 39659890 PMCID: PMC11631346 DOI: 10.1155/ije/2564389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 12/12/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs), found in various cosmetic products, interfere with the normal functioning of the endocrine system, impacting hormone regulation and posing risks to human health. Common cosmetic EDCs, such as ultraviolet (UV) filters, parabens, and triclosan, can enter the human body through different routes, including skin absorption. Their presence has been linked to adverse effects on reproduction, immune function, and development. High-throughput in vitro assays, using various human cell lines, were employed to assess the effects of common cosmetic EDCs such as ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), homosalate, and parabens. Despite ongoing regulatory efforts, gaps persist in understanding their long-term impacts, particularly when they are present as mixtures or degradation products in the environment. This study focuses on recent in vitro research to investigate the mechanisms through which cosmetic-related EDCs disrupt the endocrine system and other physiological systems. The in vitro findings highlight the broader systemic impact of these chemicals, extending beyond the endocrine system to include immune, reproductive, and cardiovascular effects. This research underscores the importance of developing safer cosmetic formulations and enhancing public health protection, emphasizing the need for stricter regulations.
Collapse
Affiliation(s)
- Yixuan Zhang
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Tu
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Jian Chen
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Zhou
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| |
Collapse
|
6
|
Gautam K, Anbumani S. Understudied and underestimated impacts of organic UV filters on terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176008. [PMID: 39236826 DOI: 10.1016/j.scitotenv.2024.176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Organic UV filters (OUVFs) are vital components in various personal care products (PCPs) and commercial goods, with the annual consumption estimated at 10,000 tons. Consequently, the unavoidable use of OUVFs in PCPs and other unregulated commercial applications could present a considerable risk to human and environmental health. These chemical entities enter terrestrial ecosystems through wastewater discharge, agriculture, atmospheric deposition, and recreational activities. Compared to aqueous ecosystems, the effects of OUVFs on terrestrial environments should be more studied and potentially underestimated. The present review addresses the abovementioned gap by summarizing 189 studies conducted between 2006 and 2024, focusing on the analytical measures, occurrence, and ecotoxicological effects of OUVFs on terrestrial ecosystems. These studies underscore the harmful effects of certain OUVFs on the development, reproduction, and endocrine systems of terrestrial organisms, highlighting the necessity for comprehensive toxicological assessments to understand their impacts on non-target species in terrestrial ecosystems. Besides, by underscoring the ecological effects of OUVFs, this review aims to guide future research and inform regulatory measures to mitigate the risks posed by these widespread contaminants. Meanwhile, interdisciplinary research is essential, integrating environmental science, toxicology, ecology, and chemistry to tackle OUVF challenges in terrestrial ecosystems.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Yang Y, Gao R, Zhu Z, Xiao W, Wang J, Zhao W, Li Y. Benzophenone-3 exposure induced apoptosis via impairing mitochondrial function in human chondrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117286. [PMID: 39520751 DOI: 10.1016/j.ecoenv.2024.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease affecting millions of adults worldwide, characterized by degeneration of articular cartilage. Many environmental risk factors contribute to OA development. Benzophenone-3 (BP-3), a commonly used ultraviolet filter in personal care products, has been positively associated with OA risk. However, it remains unclear whether and how BP-3 induces toxic effects on articular chondrocytes and promote OA development. This study aims to investigate the damage of BP-3 at environmentally relevant concentrations to human chondrocytes, as well as potential mechanisms linking BP-3 with injury of chondrocytes. Notably, BP-3 significantly inhibited cell viability, induced apoptosis, and up-regulated matrix metalloproteinase (MMP) 1 and 13 which mediated cartilage degradation in C28/I2 human normal chondrocytes. Moreover, the function of mitochondria was impaired and oxidative stress occurred in BP-3 exposure groups, evidenced by elevation of reactive oxygen species (ROS) generation, reduction of mitochondrial membrane potential, decrease of ATP production and inhibition of mitochondrial respiratory chain complex I, II, III and IV. Meanwhile, BP-3 caused mitochondrial cristae vague and formation of autophagosomes. PTEN induced putative kinase 1/E3 ubiquitin protein ligase (PINK1/Parkin) pathway was also activated by BP-3. Addition of autophagy inhibitor, 3-Methyladenine (3-MA), suppressed PINK1/Parkin-mediated mitophagy, but increased BP-3-induced expression of MMP1 and 13, as well as exacerbated BP-3-induced apoptosis, suggesting mitophagy may exert a chondroprotective effect and partially alleviate apoptosis induced by this compound. In brief, BP-3 exposure may increase OA risk via inducing apoptosis and increasing breakdown of extracellular matrix in chondrocytes, and mitochondrial dysfunction and mitophagy may play a crucial role in the mechanisms of BP-3-induced toxicity to articular chondrocytes.
Collapse
Affiliation(s)
- Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhenyu Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenfeng Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Wang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenxia Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
8
|
Pan ZN, Zhuang LL, Zhao HS, Yin SY, Chu M, Liu XY, Bao HC. Propylparaben exposure impairs G2/M and metaphase-anaphase transition during mouse oocyte maturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116798. [PMID: 39083874 DOI: 10.1016/j.ecoenv.2024.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Propylparaben (PrPB) is a known endocrine disrupting chemicals that is widely applied as preservative in pharmaceuticals, food and cosmetics. PrPB has been detected in human urine samples and human serum and has been proven to cause functional decline in reproduction. However, the direct effects of PrPB on mammalian oocyte are still unknown. Here, we demonstrationed that exposure to PrPB disturbed mouse oocyte maturation in vitro, causing meiotic resumption arrest and first polar body extrusion failure. Our results indicated that 600 μM PrPB reduced the rate of oocyte germinal vesicle breakdown (GVBD). Further research revealed that PrPB caused mitochondrial dysfunction and oxidative stress, which led to oocyte DNA damage. This damage further disturbed the activity of the maturation promoting factor (MPF) complex Cyclin B1/ Cyclin-dependent kinase 1 (CDK1) and induced G2/M arrest. Subsequent experiments revealed that PrPB exposure can lead to spindle morphology disorder and chromosome misalignment due to unstable microtubules. In addition, PrPB adversely affected the attachment between microtubules and kinetochore, resulting in persistent activation of BUB3 amd BubR1, which are two spindle-assembly checkpoint (SAC) protein. Taken together, our studies indicated that PrPB damaged mouse oocyte maturation via disrupting MPF related G2/M transition and SAC depended metaphase-anaphase transition.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Li-Li Zhuang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Hui-Shan Zhao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Shu-Yuan Yin
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Xiao-Yan Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| | - Hong-Chu Bao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| |
Collapse
|
9
|
Abud JE, Pagotto R, Galliani V, Teglia C, Culzoni J, Bollati-Fogolín M, Zenclussen ML, Rodríguez HA. In vitro blastocyst implantation and trophoblast migration are disrupted by the UV filter benzophenone-3 (BP3). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123840. [PMID: 38537797 DOI: 10.1016/j.envpol.2024.123840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Benzophenone-3 (BP3) is a common ingredient in personal care products (PCPs) due to its well-established effectiveness in absorbing UV radiation. Sunscreen products are among the most widely used PCPs-containing BP3 applied to the skin, resulting in significant human exposure to BP3 primarily through a dermal application. In the present work, we have tested the action of three environmentally relevant concentrations of BP3 (2, 20 and 200 μg/L) on an in vitro model of implantation of murine blastocysts and on migration ability of the human trophoblast cell line Swan 71. We showed that BP3 caused a significant reduction of blastocyst expansion and a delayed hatching in a non-monotonic way. Besides, embryos displayed a delayed attachment in the three BP3 groups, resulting in a smaller implantation area on the 6th day of culture: BP3(2) (0.32 ± 0.07 mm2); BP3(20) (0.30 ± 0.08 mm2) and BP3(200) (0.25 ± 0.06 mm2) in comparison to the control (0.42 ± 0.07 mm2). We also found a reduced migration capacity of the human first-trimester trophoblast cell line Swan 71 in a scratch assay when exposed to BP3: the lowest dose displayed a higher uncovered area (UA) at 6h when compared to the control, whereas a higher UA of the wound was observed for the three BP3 concentrations at 18 and 24 h of exposure. The changes in UA provoked by BP3 restored to normal values in the presence of flutamide, an androgen receptor (AR) inhibitor. These results indicate that a direct impairment on early embryo implantation and a defective migration of extravillous trophoblast cells through the androgen receptor pathway can be postulated as mechanisms of BP3-action on early gestation with potential impact on fetal growth.
Collapse
Affiliation(s)
- Julián Elías Abud
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), UNL, Santa Fe, Argentina
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Valentina Galliani
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina
| | - Carla Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, FBCB-UNL, Santa Fe, Argentina
| | - Julia Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, FBCB-UNL, Santa Fe, Argentina
| | | | - Maria Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), UNL, Santa Fe, Argentina
| | - Horacio Adolfo Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), UNL, Santa Fe, Argentina.
| |
Collapse
|
10
|
Chen HC, Huang YF, Wu CT. Concentrations, compositional profiles, and health risks of benzophenones among the Taiwanese population based on analysis of 23 daily consumed foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134077. [PMID: 38574654 DOI: 10.1016/j.jhazmat.2024.134077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
In this study, we analyzed the occurrence and distribution of 11 benzophenone-type ultraviolet filters (BPs) in 893 food samples spanning 7 food categories in Taiwan. We conducted a Monte Carlo simulation to determine the carcinogenic and noncarcinogenic risks of BPs. The results indicated that cornflakes had the highest mean level of BPs (103 ng/g), followed by bread (101 ng/g) and pastries (59 ng/g). BP was the most prevalent category, followed by 4-methylbenzophenone (4-MBP), 2-hydroxybenzophenone, and benzophenone-3. Estimation of the lifetime cancer risk (LTCR) of BP (average life expectancy of 80 years) placed them in the 50th and 97.5th percentiles [P50 (P97.5)] LTCR of 1.9 × 10-7 (5.7 × 10-6), indicating that BP in food poses a low renal hazard to the Taiwanese population. The noncarcinogenic risk of BPs was evaluated using a hazard quotient and combined margin of exposure (MOET), revealing a P50 (P97.5) hazard index of < 1 for BP, 4-MBP, and methyl-2-benzoylbenzoate. Although the P50 MOET values for all age groups were within the moderate range of concern, with a more conservative extreme (P2.5), the MOET values for the 0-3, 3-6, and 6-12 age groups fell below 100, indicating a high concern for renal degeneration and hyperplasia.
Collapse
Affiliation(s)
- Hsin-Chang Chen
- Department of Chemistry, College of Science, Tunghai University, Taichung, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chen-Ting Wu
- Institute of Food Safety and Health Science Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
12
|
Khan SA, Jain M, Pant KK, Ziora ZM, Blaskovich MAT. Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171020. [PMID: 38369133 DOI: 10.1016/j.scitotenv.2024.171020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
13
|
Nie Y, Liu H, Wu R, Fan J, Yang Y, Zhao W, Bao J, You Z, He F, Li Y. Interference with SPARC inhibits Benzophenone-3 induced ferroptosis in osteoarthritis: Evidence from bioinformatics analyses and biological experimentation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116217. [PMID: 38489904 DOI: 10.1016/j.ecoenv.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The aim of this study is to conduct a thorough evaluation of the association between Benzophenone-3 (BP-3) exposure and OA, offering critical insights into the underlying mechanisms involved. The National Health and Nutrition Examination Survey (NHANES) database was utilized to investigate the correlation between BP-3 and osteoarthritis. Proteomic sequencing from clinical sample and the PharmMapper online tool were employed to predict the biological target of BP-3. Cellular molecular assays and transfection studies were performed to verify the prediction from bioinformatics analyses. Through cross-sectional analysis of the NHANES database, we identified BP-3 as a risk factor for OA development. The results of proteomic sequencing showed that Secreted Protein Acidic and Rich in Cysteine (SPARC) was significantly elevated in the area of damage compared to the undamaged area. SPARC was also among the potential biological targets of BP-3 predicted by the online program. Through in vitro cell experiments, we further determined that the toxicological effects of BP-3 may be due to SPARC, which elevates intracellular GPX4 levels, activates the glutathione system, and promotes lipid peroxidation to mitigate ferroptosis. Inhibiting SPARC expression has been shown to reduce inflammation and ferroptosis in OA contexts. This research provides an expansive understanding of BP-3's influence on osteoarthritis development. We have identified SPARC as a potent target for combating chondrocyte ferroptosis in BP-3-associated osteoarthritis.
Collapse
Affiliation(s)
- Yaoyao Nie
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Houpu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Runtao Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Ye Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Wenxia Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiapeng Bao
- Department of Orthopaedics, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310058, China
| | - Zhenqiang You
- Department of Food Science and Engineering, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
14
|
Yao YN, Wang Y, Zhang H, Gao Y, Zhang T, Kannan K. A review of sources, pathways, and toxic effects of human exposure to benzophenone ultraviolet light filters. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:30-44. [PMID: 38162868 PMCID: PMC10757257 DOI: 10.1016/j.eehl.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Benzophenone ultraviolet light filters (BPs) are high-production-volume chemicals extensively used in personal care products, leading to widespread human exposure. Given their estrogenic properties, the potential health risks associated with exposure to BPs have become a public health concern. This review aims to summarize sources and pathways of exposure to BPs and associated health risks. Dermal exposure, primarily through the use of sunscreens, constitutes a major pathway for BP exposure. At a recommended application rate, dermal exposure of BP-3 via the application of sunscreens may reach or exceed the suggested reference dose. Other exposure pathways to BPs, such as drinking water, seafood, and packaged foods, contribute minimal to the overall dose. Inhalation is a minor pathway of exposure; however, its contribution cannot be ignored. Human exposure to BPs is an order of magnitude higher in North America than in Asia and Europe. Studies conducted on laboratory animals and cells have consistently demonstrated the toxic effects of BP exposure. BPs are estrogenic and elicit reproductive and developmental toxicities. Furthermore, neurotoxicity, hepatotoxicity, nephrotoxicity, and carcinogenicity have been reported from chronic BP exposure. In addition to animal and cell studies, epidemiological investigations have identified associations between BPs and couples' fecundity and other reproductive disorders, as well as adverse birth outcomes. Further studies are urgently needed to understand the risks posed by BPs on human health.
Collapse
Affiliation(s)
- Ya-Nan Yao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hengling Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York, NY 12237, USA
| |
Collapse
|
15
|
Ye R, Li Z, Xian H, Zhong Y, Liang B, Huang Y, Chen D, Dai M, Tang S, Guo J, Bai R, Feng Y, Chen Z, Yang X, Huang Z. Combined Effects of Polystyrene Nanosphere and Homosolate Exposures on Estrogenic End Points in MCF-7 Cells and Zebrafish. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27011. [PMID: 38381479 PMCID: PMC10880820 DOI: 10.1289/ehp13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Micro- and nanoplastics (MNPs) and homosalate (HMS) are ubiquitous emerging environmental contaminants detected in human samples. Despite the well-established endocrine-disrupting effects (EDEs) of HMS, the interaction between MNPs and HMS and its impact on HMS-induced EDEs remain unclear. OBJECTIVES This study aimed to investigate the influence of MNPs on HMS-induced estrogenic effects and elucidate the underlying mechanisms in vitro and in vivo. METHODS We assessed the impact of polystyrene nanospheres (PNSs; 50 nm , 1.0 mg / L ) on HMS-induced MCF-7 cell proliferation (HMS: 0.01 - 1 μ M , equivalent to 2.62 - 262 μ g / L ) using the E-SCREEN assay and explored potential mechanisms through transcriptomics. Adult zebrafish were exposed to HMS (0.0262 - 262 μ g / L ) with or without PNSs (50 nm , 1.0 mg / L ) for 21 d. EDEs were evaluated through gonadal histopathology, fertility tests, steroid hormone synthesis, and gene expression changes in the hypothalamus-pituitary-gonad-liver (HPGL) axis. RESULTS Coexposure of HMS and PNSs resulted in higher expression of estrogen receptor α (ESR1) and the mRNAs of target genes (pS2, AREG, and PGR), a greater estrogen-responsive element transactivation activity, and synergistic stimulation on MCF-7 cell proliferation. Knockdown of serum and glucocorticoid-regulated kinase 1 (SGK1) rescued the MCF-7 cell proliferation induced by PNSs alone or in combination with HMS. In zebrafish, coexposure showed higher expression of SGK1 and promoted ovary development but inhibited spermatogenesis. In addition, coexposure led to lower egg hatchability, higher embryonic mortality, and greater larval malformation. Coexposure also modulated steroid hormone synthesis genes (cyp17a2, hsd17[Formula: see text]1, esr2b, vtg1, and vtg2), and resulted in higher 17 β -estradiol (E 2 ) release in females. Conversely, males showed lower testosterone, E 2 , and gene expressions of cyp11a1, cyp11a2, cyp17a1, cyp17a2, and hsd17[Formula: see text]1. DISCUSSION PNS exposure exacerbated HMS-induced estrogenic effects via SGK1 up-regulation in MCF-7 cells and disrupting the HPGL axis in zebrafish, with gender-specific patterns. This offers new mechanistic insights and health implications of MNP and contaminant coexposure. https://doi.org/10.1289/EHP13696.
Collapse
Affiliation(s)
- Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | | | - Shuqin Tang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Jie Guo
- Hunter Biotechnology, Inc, Hangzhou, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
17
|
Kay JE, Brody JG, Schwarzman M, Rudel RA. Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available in Vivo, in Vitro, and in Silico Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17002. [PMID: 38197648 PMCID: PMC10777819 DOI: 10.1289/ehp13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer (BC) risk. Identifying chemicals with these activities can prompt steps to protect human health. OBJECTIVES We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary carcinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk. METHODS Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental Protection's (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overrepresentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mammary tumors. RESULTS We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mammary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone. Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend. DISCUSSION We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast, and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/EHP13233.
Collapse
Affiliation(s)
| | | | - Megan Schwarzman
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Family and Community Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
18
|
Fernández-Martínez NF, Rodríguez-Barranco M, Zamora-Ros R, Guevara M, Colorado-Yohar SM, Jiménez-Zabala A, Arrebola JP, Iribarne-Durán LM, Molina G, Agudo A, Trobajo-Sanmartín C, Chirlaque MD, Amiano P, Sánchez MJ. Relationship between exposure to parabens and benzophenones and prostate cancer risk in the EPIC-Spain cohort. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6186-6199. [PMID: 38147240 DOI: 10.1007/s11356-023-31682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The etiology of prostate cancer is not fully elucidated. Among environmental risk factors, endocrine-disrupting chemicals (EDCs) deserve special mention, as they alter metabolic pathways involved in hormone-dependent cancers. Epidemiological evidence assessing the carcinogenicity of EDCs is scarce. The aim of this study was to analyze the relationship between exposure to parabens and benzophenones and prostate cancer risk. We conducted a case-cohort study nested within the EPIC-Spain prospective multi-center cohort. Study population comprised 1,838 sub-cohort participants and 467 non-sub-cohort prostate cancer cases. Serum concentrations of four parabens and two benzophenones were assessed at recruitment. Covariates included age, physical activity, tobacco smoking, alcohol consumption, body mass index, educational level and diabetes. Borgan II weighted Cox proportional hazard models stratified by study center were applied. Median follow-up time was 18.6 years (range = 1.0-21.7 years). Most sub-cohort participants reached primary education at most (65.5%), were overweight (57.7%) and had a low level of physical activity (51.3%). Detection percentages varied widely, being lowest for butyl-paraben (11.3%) and highest for methyl-paraben (80.7%), which also showed the highest geometric mean (0.95 ng/ml). Cases showed significantly higher concentrations of methyl-paraben (p = 0.041) and propyl-paraben (p < 0.001). In the multivariable analysis, methyl-paraben - log-transformed (HR = 1.07; 95%CI = 1.01-1.12) and categorized into tertiles (HR = 1.60 for T3; 95%CI = 1.16-2.20) -, butyl-paraben - linear (HR = 1.19; 95%CI = 1.14-1.23) and log-transformed (HR = 1.17; 95%CI = 1.01-1.35) - and total parabens - log-transformed (HR = 1.09; 95%CI = 1.02-1.17) and categorized into tertiles (HR = 1.62 for T3; 95%CI = 1.10-2.40) - were associated with an increased prostate cancer risk. In this study, higher concentrations of methyl-, butyl-, and total parabens were positively associated with prostate cancer risk. Further research is warranted to confirm these findings.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Escuela Andaluza de Salud Pública (EASP), Cuesta del Observatorio, 4. 18011, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - Miguel Rodríguez-Barranco
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain.
- Escuela Andaluza de Salud Pública (EASP), Cuesta del Observatorio, 4. 18011, Granada, Spain.
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain.
| | - Raúl Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Public Health Institute, 31003, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Sandra Milena Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008, Murcia, Spain
| | - Ana Jiménez-Zabala
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013, San Sebastian, Spain
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| | - Luz María Iribarne-Durán
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Department of Radiology, School of Medicine, University of Granada, 18071, Granada, Spain
| | - Germán Molina
- Department of Preventive Medicine and Public Health, University Hospital of Santiago de Compostela, 15706 A, Coruña, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Camino Trobajo-Sanmartín
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Public Health Institute, 31003, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - María Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008, Murcia, Spain
- Department of Health and Social Sciences, Murcia University, 30100, Murcia, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013, San Sebastian, Spain
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - María-José Sánchez
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Escuela Andaluza de Salud Pública (EASP), Cuesta del Observatorio, 4. 18011, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| |
Collapse
|
19
|
Huang Y, Wang P, Peng W, Law JCF, Zhang L, Shi H, Zhang Y, Leung KSY. Co-exposure to organic UV filters and phthalates and their associations with oxidative stress levels in children: A prospective follow-up study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167433. [PMID: 37774881 DOI: 10.1016/j.scitotenv.2023.167433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Children are highly vulnerable to environmental pollutants, especially endocrine-disrupting chemicals (EDCs). Previous research has linked both organic UV filters and phthalates exposure to adiposity and pubertal development in children. Nevertheless, the individual and collective effects of these chemicals on this population remain poorly understood. In this study, twelve organic UV filters and metabolites, six phthalate metabolites and two oxidative stress biomarkers were analyzed in a prospective follow-up study in Shanghai, China after a baseline study conducted 1.5 years earlier. Results revealed a positive association between exposure to individual organic UV filters or their mixture and levels of 8-OHdG (β ranging from 0.242 to 0.588, P < 0.05), a marker of oxidative DNA damage. BP-3 and OD-PABA made a greater contribution to oxidative DNA damage than other UV filters. Levels of 8-OHdG were also positively correlated with single phthalate metabolites and their mixture, with MnBP and MMP contributing the most. Stratified analysis found that these associations were mainly observed in girls. Our mixture analysis revealed cumulative risks of oxidative DNA damage when there was co-exposure to these two kinds of EDCs. These results underscore the importance of considering the risks associated with organic UV filters and the necessity of evaluating the effects of all these pollutants, both individually and in mixtures.
Collapse
Affiliation(s)
- Yanran Huang
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, P. R. China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiyu Peng
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China.
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
20
|
Tapia JL, McDonough JC, Cauble EL, Gonzalez CG, Teteh DK, Treviño LS. Parabens Promote Protumorigenic Effects in Luminal Breast Cancer Cell Lines With Diverse Genetic Ancestry. J Endocr Soc 2023; 7:bvad080. [PMID: 37409182 PMCID: PMC10318621 DOI: 10.1210/jendso/bvad080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 07/07/2023] Open
Abstract
Context One in 8 women will develop breast cancer in their lifetime. Yet, the burden of disease is greater in Black women. Black women have a 40% higher mortality rate than White women, and a higher incidence of breast cancer at age 40 and younger. While the underlying cause of this disparity is multifactorial, exposure to endocrine disrupting chemicals (EDCs) in hair and other personal care products has been associated with an increased risk of breast cancer. Parabens are known EDCs that are commonly used as preservatives in hair and other personal care products, and Black women are disproportionately exposed to products containing parabens. Objective Studies have shown that parabens impact breast cancer cell proliferation, death, migration/invasion, and metabolism, as well as gene expression in vitro. However, these studies were conducted using cell lines of European ancestry; to date, no studies have utilized breast cancer cell lines of West African ancestry to examine the effects of parabens on breast cancer progression. Like breast cancer cell lines with European ancestry, we hypothesize that parabens promote protumorigenic effects in breast cancer cell lines of West African ancestry. Methods Luminal breast cancer cell lines with West African ancestry (HCC1500) and European ancestry (MCF-7) were treated with biologically relevant doses of methylparaben, propylparaben, and butylparaben. Results Following treatment, estrogen receptor target gene expression and cell viability were examined. We observed altered estrogen receptor target gene expression and cell viability that was paraben and cell line specific. Conclusion This study provides greater insight into the tumorigenic role of parabens in the progression of breast cancer in Black women.
Collapse
Affiliation(s)
- Jazma L Tapia
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jillian C McDonough
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Emily L Cauble
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cesar G Gonzalez
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dede K Teteh
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Lindsey S Treviño
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Mustieles V, Balogh RK, Axelstad M, Montazeri P, Márquez S, Vrijheid M, Draskau MK, Taxvig C, Peinado FM, Berman T, Frederiksen H, Fernández MF, Marie Vinggaard A, Andersson AM. Benzophenone-3: Comprehensive review of the toxicological and human evidence with meta-analysis of human biomonitoring studies. ENVIRONMENT INTERNATIONAL 2023; 173:107739. [PMID: 36805158 DOI: 10.1016/j.envint.2023.107739] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Benzophenone-3 (BP-3) and its major metabolite benzophenone-1 (BP-1) are widely used as UV filters in sunscreens and cosmetics to prevent sunburn and skin damage, or as stabilizers to prevent photodegradation in many commercial products. As a result, their presence is ubiquitous in the environment, wildlife and humans. Based on endocrine disruption concerns, international regulatory agencies are performing a closer evaluation. OBJECTIVE AND METHODS This work aimed to comprehensively review the available human relevant evidence for safety issues in MEDLINE/PubMed in order to create a structured database of studies, as well as to conduct an integrative analysis as part of the Human Biomonitoring for Europe (HBM4EU) Initiative. RESULTS A total of 1,635 titles and abstracts were screened and 254 references were evaluated and tabulated in detail, and classified in different categories: i) exposure sources and predictors; ii) human biomonitoring (HBM) exposure levels to perform a meta-analysis; iii) toxicokinetic data in both experimental animals and humans; iv) in vitro and in vivo rodent toxicity studies; and v) human data on effect biomarkers and health outcomes. Our integrative analysis showed that internal peak BP-3 concentrations achieved after a single whole-body application of a commercially available sunscreen (4% w/w) may overlap with concentrations eliciting endocrine disrupting effects in vitro, and with internal concentrations causing in vivo adverse female reproductive effects in rodents that were supported by still limited human data. The adverse effects in rodents included prolonged estrous cycle, altered uterine estrogen receptor gene expression, endometrium hyperplasia and altered proliferation and histology of the mammary gland, while human data indicated menstrual cycle hormonal alterations and increased risk of uterine fibroids and endometriosis. Among the modes of action reported (estrogenic, anti-androgenic, thyroid, etc.), BP-3 and especially BP-1 showed estrogenic activity at human-relevant concentrations, in agreement with the observed alterations in female reproductive endpoints. The meta-analysis of HBM studies identified a higher concern for North Americans, showing urinary BP-3 concentrations on average 10 and 20 times higher than European and Asian populations, respectively. DISCUSSION AND CONCLUSIONS Our work supports that these benzophenones present endocrine disrupting properties, endorsing recent European regulatory efforts to limit human exposure. The reproducible and comprehensive database generated may constitute a point of departure in future risk assessments to support regulatory initiatives. Meanwhile, individuals should not refrain from sunscreen use. Commercially available formulations using inorganic UV filters that are practically not absorbed into systemic circulation may be recommended to susceptible populations.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Ria K Balogh
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Parisa Montazeri
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Márquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martine Vrijheid
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Monica K Draskau
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francisco M Peinado
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Jerusalem 9101002, Israel
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
22
|
Akkam Y, Omari D, Alhmoud H, Alajmi M, Akkam N, Aljarrah I. Assessment of Xenoestrogens in Jordanian Water System: Activity and Identification. TOXICS 2023; 11:63. [PMID: 36668789 PMCID: PMC9866086 DOI: 10.3390/toxics11010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Sex hormone disruptors (xenoestrogens) are a global concern due to their potential toxicity. However, to date, there has been no study to investigate the presence of xenoestrogen pollutants in the Jordanian water system. Samples in triplicates were collected from six locations in Jordan, including dams, surface water, tap or faucet water, and filtered water (drinking water-local company). Xenoestrogens were then extracted and evaluated with a yeast estrogen screen utilizing Saccharomyces cerevisiae. Later, possible pollutants were mined using ultrahigh-performance liquid chromatography (UPLC) coupled with a Bruker impact II Q-TOF-MS. Possible hits were identified using MetaboScape software (4000 compounds), which includes pesticide, pharmaceutical pollutant, veterinary drug, and toxic compound databases and a special library of 75 possible xenoestrogens. The presence of xenoestrogens in vegetable samples collected from two different locations was also investigated. The total estrogen equivalents according to the YES system were 2.9 ± 1.2, 9.5 ± 5, 2.5 ± 1.5, 1.4 ± 0.9 ng/L for King Talal Dam, As-Samra Wastewater Treatment Plant, King Abdullah Canal, and tap water, respectively. In Almujeb Dam and drinking water, the estrogenic activity was below the detection limit. Numbers of identified xenoestrogens were: As-Samra Wastewater Treatment Plant 27 pollutants, King Talal Dam 20 pollutants, Almujeb Dam 10 pollutants, King Abdullah Canal 16 pollutants, Irbid tap water 32 pollutants, Amman tap water 30 pollutants, drinking water 3 pollutants, and vegetables 7 pollutants. However, a large number of compounds remained unknown. Xenoestrogen pollutants were detected in all tested samples, but the total estrogenic capacities were within the acceptable range. The major source of xenoestrogen pollutants was agricultural resources. Risk evaluations for low xenoestrogen activity should be taken into account, and thorough pesticide monitoring systems and regular inspections should also be established.
Collapse
Affiliation(s)
- Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Derar Omari
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Hassan Alhmoud
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
- Faculty of Pharmacy, Jerash University, Irbid 26110, Jordan
| | - Mohammad Alajmi
- Department of Law and Science Department, Kuwait International Law School, Doha 93151, Kuwait
| | - Nosaibah Akkam
- Department of Anatomy and Cell Biology, Faculty of Medicine, Universität des Saarlandes, 66424 Hamburg, Germany
| | - Islam Aljarrah
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
23
|
Liu Y, Gao L, Qiao L, Huang D, Lyu B, Li J, Wu Y, Zheng M. Concentrations, Compound Profiles, and Possible Sources of Organic UV Filters in Human Milk in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15930-15940. [PMID: 36260437 DOI: 10.1021/acs.est.2c04177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultraviolet (UV) filters are of great concern due to their wide occurrence, bioaccumulation, and toxicity. Little is known about human exposure to UV filters. A total of 3467 individual human milk samples from 24 Chinese provinces were collected during 2017-2019. The concentrations of 12 UV filters in 100 pooled milk samples were determined. The total UV filter concentration was 78-846 (mean 235 ± 120) ng/g lipid weight. The highest and lowest total mean concentrations were for samples from Qinghai and Sichuan provinces, respectively. A significant positive correlation was found between UV radiation levels and UV concentrations in the samples. The dominant UV filters were 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P) and ethylhexyl methoxycinnamate (EHMC), which contributed means of 32 and 22%, respectively, to the total concentrations. Plastic products and sunscreens were probably the sources of UV-P and EHMC in the human milk from China, respectively. The mean 2-(3,5-di-tert-amyl-2-hydroxyphenyl) benzotriazole (UV-328) concentration was 2.6 ± 2.6 ng/g lipid weight. The UV filter profiles were similar to profiles for samples from Japan, the Philippines, and Switzerland but not for samples from Korea and Vietnam. The estimated daily UV filter intake for breastfed infants was below the corresponding reference dose. This was the first large-scale study of UV filters in human milk and will help assess the risks posed.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
24
|
Güil-Oumrait N, Cano-Sancho G, Montazeri P, Stratakis N, Warembourg C, Lopez-Espinosa MJ, Vioque J, Santa-Marina L, Jimeno-Romero A, Ventura R, Monfort N, Vrijheid M, Casas M. Prenatal exposure to mixtures of phthalates and phenols and body mass index and blood pressure in Spanish preadolescents. ENVIRONMENT INTERNATIONAL 2022; 169:107527. [PMID: 36126421 DOI: 10.1016/j.envint.2022.107527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pregnant women are simultaneously exposed to several non-persistent endocrine-disrupting chemicals, which may influence the risk of childhood obesity and cardiovascular diseases later in life. Previous prospective studies have mostly examined single-chemical effects, with inconsistent findings. We assessed the association between prenatal exposure to phthalates and phenols, individually and as a mixture, and body mass index (BMI) and blood pressure (BP) in preadolescents. METHODS We used data from the Spanish INMA birth cohort study (n = 1,015), where the 1st and 3rd- trimester maternal urinary concentrations of eight phthalate metabolites and six phenols were quantified. At 11 years of age, we calculated BMI z-scores and measured systolic and diastolic BP. We estimated individual chemical effects with linear mixed models and joint effects of the chemical mixture with hierarchical Bayesian kernel machine regression (BKMR). Analyses were stratified by sex and by puberty status. RESULTS In single-exposure models, benzophenone-3 (BP3) was nonmonotonically associated with higher BMI z-score (e.g. Quartile (Q) 3: β = 0.23 [95% CI = 0.03, 0.44] vs Q1) and higher diastolic BP (Q2: β = 1.27 [0.00, 2.53] mmHg vs Q1). Methyl paraben (MEPA) was associated with lower systolic BP (Q4: β = -1.67 [-3.31, -0.04] mmHg vs Q1). No consistent associations were observed for the other compounds. Results from the BKMR confirmed the single-exposure results and showed similar patterns of associations, with BP3 having the highest importance in the mixture models, especially among preadolescents who reached puberty status. No overall mixture effect was found, except for a tendency of higher BMI z-score and lower systolic BP in girls. CONCLUSIONS Prenatal exposure to UV-filter BP3 may be associated with higher BMI and diastolic BP during preadolescence, but there is little evidence for an overall phthalate and phenol mixture effect.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Parisa Montazeri
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maria-Jose Lopez-Espinosa
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad Miguel Hernández, Alicante, Spain
| | - Loreto Santa-Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Spain
| | - Alba Jimeno-Romero
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
25
|
Gautam K, Seth M, Dwivedi S, Jain V, Vamadevan B, Singh D, Roy SK, Downs CA, Anbumani S. Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 213:113689. [PMID: 35718163 DOI: 10.1016/j.envres.2022.113689] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C A Downs
- Haereticus Environmental Laboratory, Clifford, VA, 24522, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Zhou S, Lu H, Zhang X, Shi X, Jiang S, Wang L, Lu Q. Paraben exposures and their interactions with ESR1/2 genetic polymorphisms on hypertension. ENVIRONMENTAL RESEARCH 2022; 213:113651. [PMID: 35690089 DOI: 10.1016/j.envres.2022.113651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The widely used paraben preservatives have been frequently detected in human urine, and shown to disrupt the endocrine system. Recently, several epidemiologic studies have investigated the associations between paraben exposures and hypertension risk, but findings are inconsistent. Genetic susceptibility variation may contribute to the conflicting results. This study aimed to explore the associations of paraben exposures and their interactions with estrogen receptor genes 1 and 2 (ESR1 and ESR2) polymorphisms with hypertension. We conducted a hospital-based case-control study involving 396 hypertension cases and 396 controls in Wuhan, China. The urinary paraben concentrations were determined using a liquid chromatography-quadrupole time of flight mass spectrometer. The genotyping of ESR1 and ESR2 was performed using the Applied Biosystems 3730 XL sequencer. Multivariable logistic regression models were applied to examine the associations between urinary paraben concentrations and hypertension risk. Gene-environment interactions were estimated on both multiplicative and additive scales. The results showed that urinary ethylparaben (EtP), propylparaben (PrP), and ∑parabens (∑PBs) levels were positively associated with the risk of hypertension (Ptrend<0.05). Compared with their reference groups, subjects in the highest tertile of EtP, PrP, and ∑PBs had a 4.05-fold (95% CI: 2.56, 6.41), 2.72-fold (95% CI: 1.76, 4.20), and 1.60-fold (95% CI: 1.08, 2.36) increased risk of hypertension, respectively. When stratified by sex, the hypertensive effect of EtP was more pronounced in males (Pinteraction = 0.012). Furthermore, interaction analysis showed that PrP exposure interacted with ESR1 rs2234693 polymorphism on hypertension risk, with the significance of multiplicative (Pinteraction = 0.043) and additive (RERI = 1.27, AP = 0.52). Our results suggested that paraben exposure was positively related to hypertension risk, and that ESR1 rs2234693 polymorphism might modify the parabens exposure-related hypertensive effect.
Collapse
Affiliation(s)
- Shuang Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueting Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunli Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Yan S, Wang J, Zheng Z, Ji F, Yan L, Yang L, Zha J. Environmentally relevant concentrations of benzophenones triggered DNA damage and apoptosis in male Chinese rare minnows (Gobiocypris rarus). ENVIRONMENT INTERNATIONAL 2022; 164:107260. [PMID: 35486964 DOI: 10.1016/j.envint.2022.107260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Benzophenone-type ultraviolet (UV) filters (BPs) are commonly used as sunscreen agents, fragrance enhancers and plastic additives, and are great threats to aquatic organisms due to their high detected concentrations in the aquatic environment. However, few studies on their toxicity and mechanism in fish have been clearly reported. In this study, Chinese rare minnows (Gobiocypris rarus) were exposed to benzophenone (BP), 2,4-dihydroxybenzophenone (BP-1), and 5-benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP-4) at 5, 50, 500 µg/L for 28 d to assess their toxicity. Transcriptomics screening showed that cell cycle, DNA replication and repair were significantly altered pathways (p < 0.05). The altered transcripts were similar to those identified by RNA-seq. DNA damage and 8-OHdG levels were significantly increased at 50 and 500 μg/L groups (p < 0.05). The DNA methylcytosine level was not significantly changed exposure to BP, BP-1 and BP-4. TUNEL assays indicated that hepatic apoptosis was significantly improved at 500 μg/L BP and BP-4 and 50 and 500 μg/L BP-1 (p < 0.05), with the significantly increasing the activity of caspase-3, -8 and -9 (p < 0.05). Molecular docking analysis revealed that BP, BP-1 and BP-4 could bind differently to caspase-3 through different binding interactions. Therefore, BP-1 induced more serious oxidative DNA damage and apoptosis by activating caspase-3 than BP and BP-4, which will provide theoretical basis and data support for ecological evaluation of aquatic organisms induced by BPs.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Ziting Zheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Fenfen Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Lihua Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
28
|
Santaliz Casiano A, Lee A, Teteh D, Madak Erdogan Z, Treviño L. Endocrine-Disrupting Chemicals and Breast Cancer: Disparities in Exposure and Importance of Research Inclusivity. Endocrinology 2022; 163:6553110. [PMID: 35325096 PMCID: PMC9391683 DOI: 10.1210/endocr/bqac034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 01/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are known contributors to breast cancer development. Exposures to EDCs commonly occur through food packaging, cookware, fabrics, and personal care products, as well as external environmental sources. Increasing evidence highlights disparities in EDC exposure across racial/ethnic groups, yet breast cancer research continues to lack the inclusion necessary to positively impact treatment response and overall survival in socially disadvantaged populations. Additionally, the inequity in environmental exposures has yet to be remedied. Exposure to EDCs due to structural racism poses an unequivocal risk to marginalized communities. In this review, we summarize recent epidemiological and molecular studies on 2 lesser-studied EDCs, the per- and polyfluoroalkyl substances (PFAS) and the parabens, the health disparities that exist in EDC exposure between populations, and their association with breast carcinogenesis. We discuss the importance of understanding the relationship between EDC exposure and breast cancer development, particularly to promote efforts to mitigate exposures and improve breast cancer disparities in socially disadvantaged populations.
Collapse
Affiliation(s)
- Ashlie Santaliz Casiano
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Annah Lee
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
| | - Dede Teteh
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Zeynep Madak Erdogan
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois, College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Zeynep Madak Erdogan, PhD, Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| | - Lindsey Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Correspondence: Lindsey S. Treviño, PhD, Department of Population Sciences, Division of Health Equities, Duarte - Main Campus, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Guo Y, Zhu G, Wang F, Zhang H, Chen X, Mao Y, Lv Y, Xia F, Jin Y, Ding G, Yu J. Distinct Serum and Fecal Metabolite Profiles Linking With Gut Microbiome in Older Adults With Frailty. Front Med (Lausanne) 2022; 9:827174. [PMID: 35479954 PMCID: PMC9035822 DOI: 10.3389/fmed.2022.827174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022] Open
Abstract
Frailty is a critical aging-related syndrome but the underlying metabolic mechanism remains poorly understood. The aim of this study was to identify novel biomarkers and reveal potential mechanisms of frailty based on the integrated analysis of metabolome and gut microbiome. In this study, twenty subjects consisted of five middle-aged adults and fifteen older adults, of which fifteen older subjects were divided into three groups: non-frail, pre-frail, and frail, with five subjects in each group. The presence of frailty, pre-frailty, or non-frailty was established according to the physical frailty phenotype (PFP). We applied non-targeted metabolomics to serum and feces samples and used 16S rDNA gene sequencing to detect the fecal microbiome. The associations between metabolites and gut microbiota were analyzed by the Spearman’s correlation analysis. Serum metabolic shifts in frailty mainly included fatty acids and derivatives, carbohydrates, and monosaccharides. Most of the metabolites belonging to these classes increased in the serum of frail older adults. Propylparaben was found to gradually decrease in non-frail, pre-frail, and frail older adults. Distinct changes in fecal metabolite profiles and gut microbiota were also found among middle-aged adults, non-frail and frail older subjects. The relative abundance of Faecalibacteriu, Roseburia, and Fusicatenibacter decreased while the abundance of Parabacteroides and Bacteroides increased in frailty. The above altered microbes were associated with the changed serum metabolites in frailty, which included dodecanedioic acid, D-ribose, D-(-)-mannitol, creatine and indole, and their related fecal metabolites. The changed microbiome and related metabolites may be used as the biomarkers of frailty and is worthy of further mechanistic studies.
Collapse
Affiliation(s)
- Yan Guo
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Yancheng City No. 1 People’s Hospital, Yancheng, China
| | - Guoqin Zhu
- Division of Geriatric Gastroenterology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengliang Wang
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyu Zhang
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Human Biology Undergraduate, University of Toronto, Toronto, ON, Canada
| | - Xin Chen
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Mao
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Lv
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xia
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jin
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Guoxian Ding,
| | - Jing Yu
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Yu,
| |
Collapse
|
30
|
Hu C, Tian M, Wu L, Chen L. Enhanced photocatalytic degradation of paraben preservative over designed g-C 3N 4/BiVO 4 S-scheme system and toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113175. [PMID: 35007828 DOI: 10.1016/j.ecoenv.2022.113175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Paraben preservatives have been listed as emerging pollutants due to their ubiquity in various environmental matrices, especially the water bodies. How to efficiently and practically eliminate these paraben pollutants is therefore of great importance. Herein, a designed S-scheme heterojunction photocatalyst, consisting of graphitic carbon nitride (g-C3N4) and monoclinic bismuth vanadate (BiVO4), was fabricated by a facile hydrothermal synthesis and employed to treat benzyl-paraben (BzP). TEM and XPS analysis testified the intimate interaction between g-C3N4 and BiVO4, and the consequently smoothed interfacial charge transfer rendered the feasible recombination of the photoexcited electrons (from BiVO4) and holes (from g-C3N4). The as-established S-scheme system enabled the left g-C3N4 electrons and BiVO4 holes to maintain the high redox abilities and accelerated the charge separation concurrently. In particular, the g-C3N4/BiVO4 composite generated much higher photocurrent response as compared with pure g-C3N4 and BiVO4, highlighting the improved separation of photoinduced charges. Therefore, under visible light and natural solar light irradiation, the g-C3N4/BiVO4 composite showed the significantly enhanced photocatalytic degradation of BzP, which was further optimized with 5 wt% g-C3N4 in the composite. According to the Mott-Schottky plots and identified active species, the mechanism of the g-C3N4/BiVO4 S-scheme heterojunction system was illustrated. In addition, during the photocatalytic degradation process, the acute toxicity of the reaction solutions on zebrafish embryos was notably reduced. In conclusion, the demonstrated strategy to enhance the photocatalytic performance by designing S-scheme heterostructure may provide more insights into the development of high-efficiency photocatalyst towards the solar energy utilization and environmental treatment. Furthermore, photocatalytic degradation had been proved to be an efficient method for eliminating the ecological risk of paraben pollutants, warranting more attention in future work.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Maosheng Tian
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Liqing Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
31
|
Matouskova K, Vandenberg LN. Towards a paradigm shift in environmental health decision-making: a case study of oxybenzone. Environ Health 2022; 21:6. [PMID: 34998398 PMCID: PMC8742442 DOI: 10.1186/s12940-021-00806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Technological advancements make lives safer and more convenient. Unfortunately, many of these advances come with costs to susceptible individuals and public health, the environment, and other species and ecosystems. Synthetic chemicals in consumer products represent a quintessential example of the complexity of both the benefits and burdens of modern living. How we navigate this complexity is a matter of a society's values and corresponding principles. OBJECTIVES We aimed to develop a series of ethical principles to guide decision-making within the landscape of environmental health, and then apply these principles to a specific environmental chemical, oxybenzone. Oxybenzone is a widely used ultraviolet (UV) filter added to personal care products and other consumer goods to prevent UV damage, but potentially poses harm to humans, wildlife, and ecosystems. It provides an excellent example of a chemical that is widely used for the alleged purpose of protecting human health and product safety, but with costs to human health and the environment that are often ignored by stakeholders. DISCUSSION We propose six ethical principles to guide environmental health decision-making: principles of sustainability, beneficence, non-maleficence, justice, community, and precautionary substitution. We apply these principles to the case of oxybenzone to demonstrate the complex but imperative decision-making required if we are to address the limits of the biosphere's regenerative rates. We conclude that both ethical and practical considerations should be included in decisions about the commercial, pervasive application of synthetic compounds and that the current flawed practice of cost-benefit analysis be recognized for what it is: a technocratic approach to support corporate interests.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts – Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA 01003 USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts – Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA 01003 USA
| |
Collapse
|
32
|
Chen HC, Chang JW, Sun YC, Chang WT, Huang PC. Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction. TOXICS 2022; 10:toxics10010021. [PMID: 35051063 PMCID: PMC8781104 DOI: 10.3390/toxics10010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
The development of a rapid analytical approach for determining levels of antibacterial agents, plasticizers, and ultraviolet filters in biosamples is crucial for individual exposure assessment. We developed an analytical method to determine the levels of four parabens—bisphenols A (BPA) and its analogs, triclosan (TCS), triclocarban, and benzophenone-3 (BP-3)—in human urine. We further measured the levels of these chemicals in children and adolescents. We used a supported liquid extraction (SLE) technique coupled with an isotope-dilution ultraperformance liquid chromatography-tandem mass spectrometry (ID-UPLC-MS/MS) method to assess the detection performance for these chemicals. Forty-one urine samples from 13 children and 28 adolescents were assessed to demonstrate the capability and feasibility of our method. An acceptable recovery (75.6–102.4%) and matrix effect (precision < 14.2%) in the three-level spiked artificial urine samples were achieved, and good performance of the validated ID-UPLC-MS/MS method regarding linearity, limits of detection, and quantitation was achieved. The within-run and between-run accuracy and precision also demonstrated the sensitivity and stability of this analytical method, applied after SLE. We concluded that the ID-UPLC-MS/MS method with SLE pretreatment is a valuable analytical method for the investigation of urinary antibacterial agents, plasticizers, and ultraviolet filters in humans, useful for human biomonitoring.
Collapse
Affiliation(s)
- Hsin-Chang Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan (R.O.C.); (H.-C.C.); (Y.-C.S.)
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan (R.O.C.)
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan (R.O.C.);
| | - Yi-Chen Sun
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan (R.O.C.); (H.-C.C.); (Y.-C.S.)
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan (R.O.C.);
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan (R.O.C.);
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40678, Taiwan (R.O.C.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (R.O.C.)
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 360302, Taiwan (R.O.C.)
- Correspondence:
| |
Collapse
|
33
|
Concentrations of urinary parabens and reproductive hormones in Iranian women: Exposure and risk assessment. Toxicol Rep 2022; 9:1894-1900. [DOI: 10.1016/j.toxrep.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
|
34
|
Wei F, Mortimer M, Cheng H, Sang N, Guo LH. Parabens as chemicals of emerging concern in the environment and humans: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146150. [PMID: 34030374 DOI: 10.1016/j.scitotenv.2021.146150] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Parabens are one of the most widely used preservatives in food, pharmaceuticals and personal care products (PCPs) because of their advantageous properties and low toxicity based on the early assessments. However, recent research indicates that parabens may act as endocrine-disrupting chemicals (EDCs) and thus, are considered as chemicals of emerging concern that have adverse human health effects. To provide the basis for future human health studies, we reviewed relevant literature, published between 2005 and 2020, regarding the levels of parabens in the consumer products (pharmaceuticals, PCPs and food), environmental matrices and humans, including susceptible populations, such as pregnant women and children. The analysis showed that paraben detection rates in consumer products, environmental compartments and human populations are high, while the levels vary greatly by country and paraben type. The concentrations of parabens reported in pregnant women (~20-120 μg/L) were an order of magnitude higher than in the general population. Paraben concentrations in food and pharmaceuticals were at the ng/g level, while the levels in PCPs reached mg/g levels. Environmental concentrations ranged from ng/L-μg/L in surface waters to tens of μg/g in wastewater and indoor dust. The levels of human exposure to parabens appear to be higher in the U.S. and EU countries than in China and India, which may change with the increasing production of parabens in the latter countries. The review provides context for future studies to connect paraben exposure levels with human health effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
35
|
Genetic modifiers regulating DNA replication and double-strand break repair are associated with differences in mammary tumors in mouse models of Li-Fraumeni syndrome. Oncogene 2021; 40:5026-5037. [PMID: 34183771 PMCID: PMC8349885 DOI: 10.1038/s41388-021-01892-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common tumor among women with inherited variants in the TP53 tumor suppressor, but onset varies widely suggesting interactions with genetic or environmental factors. Rodent models haploinsufficent for Trp53 also develop a wide variety of malignancies associated with Li-Fraumeni Syndrome, but BALB/c mice are uniquely susceptible to mammary tumors and is genetically linked to the Suprmam1 locus on chromosome 7. To define mechanisms that interact with deficiencies in p53 to alter susceptibility to mammary tumors, we fine-mapped the Suprmam1 locus in females from an N2 backcross of BALB/cMed and C57BL/6J mice. A major modifier was localized within a 10 cM interval on chromosome 7. The effect of the locus on DNA damage responses was examined in the parental strains and mice that are congenic for C57BL/6J alleles on the BALB/cMed background (SM1-Trp53+/−). The mammary epithelium of C57BL/6J-Trp53+/− females exhibited little radiation-induced apoptosis compared to BALB/cMed-Trp53+/− and SM1-Trp53+/− females indicating that the Suprmam1B6/B6 alleles could not rescue repair of radiation-induced DNA double-strand breaks mostly relying on non-homologous end joining. In contrast, the Suprmam1B6/B6 alleles in SM1-Trp53+/− mice were sufficient to confer the C57BL/6J-Trp53+/− phenotypes in homology-directed repair and replication fork progression. The Suprmam1B6/B6 alleles in SM1-Trp53+/− mice appear to act in trans to regulate a panel of DNA repair and replication genes which lie outside the locus.
Collapse
|
36
|
Mogus JP, LaPlante CD, Bansal R, Matouskova K, Schneider BR, Daniele E, Silva SJ, Hagen MJ, Dunphy KA, Jerry DJ, Schneider SS, Vandenberg LN. Exposure to Propylparaben During Pregnancy and Lactation Induces Long-Term Alterations to the Mammary Gland in Mice. Endocrinology 2021; 162:bqab041. [PMID: 33724348 PMCID: PMC8121128 DOI: 10.1210/endocr/bqab041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Benjamin R Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Elizabeth Daniele
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shannon J Silva
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary J Hagen
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karen A Dunphy
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Sallie S Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
37
|
Coogan PF, Rosenberg L, Palmer JR, Cozier YC, Lenzy YM, Bertrand KA. Hair product use and breast cancer incidence in the Black Women's Health Study. Carcinogenesis 2021; 42:924-930. [PMID: 34013957 PMCID: PMC8496025 DOI: 10.1093/carcin/bgab041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
Hair relaxers and leave-in conditioners and oils, commonly used by Black/African American women, may contain estrogens or estrogen-disrupting compounds. Thus, their use may contribute to breast cancer risk. Results of the few previous studies on this topic are inconsistent. We assessed the relation of hair relaxer and leave-in conditioner use to breast cancer incidence in the Black Women's Health Study, a nationwide prospective study of Black women. Among 50 543 women followed from 1997 to 2017, 2311 incident breast cancers occurred. Multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression for breast cancer overall and by estrogen receptor (ER) status. For heavy use (≥15 years of use for ≥7 times/year) of hair relaxers relative to never/light use (<4 years, no more than 1-2 times/year), the multivariable HR for breast cancer overall was 1.13 (95%CI: 0.96-1.33). Duration, frequency, age at first use and number of scalp burns were not associated with overall breast cancer risk. For heavy use of hair relaxers containing lye, the corresponding HR for ER+ breast cancer was 1.32 (95% CI: 0.97, 1.80); there was no association for non-lye products. There was no association of conditioner use and breast cancer. Results of this study were largely null, but there was some evidence that heavy use of lye-containing hair relaxers may be associated with increased risk of ER+ breast cancer. Consistent results from several studies are needed before it can be concluded that use of certain hair relaxers impacts breast cancer development.
Collapse
Affiliation(s)
- Patricia F Coogan
- Slone Epidemiology Center at Boston
University, Boston, MA, USA,To whom correspondence should be addressed. Tel: +001 617 206
6180; Fax: +001 617 738 5119;
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston
University, Boston, MA, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston
University, Boston, MA, USA
| | - Yvette C Cozier
- Slone Epidemiology Center at Boston
University, Boston, MA, USA
| | - Yolanda M Lenzy
- Lenzy Dermatology and Hair Loss Center,
Chicopee, MA, USA,UConn Health Dermatology,
Farmington, CT, USA
| | | |
Collapse
|
38
|
Huang Y, Law JCF, Lam TK, Leung KSY. Risks of organic UV filters: a review of environmental and human health concern studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142486. [PMID: 33038838 DOI: 10.1016/j.scitotenv.2020.142486] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 05/28/2023]
Abstract
Organic UV filters are compounds that absorb UV irradiation by their highly conjugated structure. With the developing consciousness over the last century of the skin damage UV radiation can cause, the demand for organic UV filters has risen, for use not only in sunscreens, but also in other personal care products. The massive production and usage of these organic UV filters has resulted in extensive release into the aquatic environment, and thereby making an important group of emerging contaminants. Considering the widespread occurrence of organic UV filters in not only ambient water, but also sediment, soil and even indoor dust, their threats towards the health of living organisms have been a subject of active investigation. In this review article, we present an overall review of existing knowledge on the risks of organic UV filters from the aspects of both environmental and human health impacts. As for the environment, some organic UV filters are proven to bioaccumulate in various kinds of aquatic organisms, and further to have adverse effects on different kinds of animal models. Toxicological studies including in vivo and in vitro studies are important and effective means to ascertain the effects and mechanisms of organic UV filters on both the ecosystem and humans. Subsequent concerns arise that these compounds will affect human health in the long term. This review concludes by suggesting future lines of research based on the remaining knowledge gaps.
Collapse
Affiliation(s)
- Yanran Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Tsz-Ki Lam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
39
|
Vandenberg LN, Bugos J. Assessing the Public Health Implications of the Food Preservative Propylparaben: Has This Chemical Been Safely Used for Decades. Curr Environ Health Rep 2021; 8:54-70. [PMID: 33415721 DOI: 10.1007/s40572-020-00300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Parabens are chemicals containing alkyl-esters of p-hydroxybenzoic acid, which give them antimicrobial, antifungal, and preservative properties. Propylparaben (PP) is one paraben that has been widely used in personal care products, cosmetics, pharmaceuticals, and food. In this review, we address the ongoing controversy over the safety of parabens, and PP specifically. These chemicals have received significant public attention after studies published almost 20 years ago suggested plausible associations between PP exposures and breast cancer. RECENT FINDINGS Here, we use key characteristics, a systematic approach to evaluate the endocrine disrupting properties of PP based on features of "known" endocrine disruptors, and consider whether its classification as a "weak" estrogen should alleviate public health concerns over human exposures. We also review the available evidence from rodent and human studies to illustrate how the large data gaps that exist in hazard assessments raise concerns about current evaluations by regulatory agencies that PP use is safe. Finally, we address the circular logic that is used to suggest that because PP has been used for several decades, it must be safe. We conclude that inadequate evidence has been provided for the safe use of PP in food, cosmetics, and consumer products.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA.
| | - Jennifer Bugos
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
40
|
Altamirano GA, Gomez AL, Schierano-Marotti G, Muñoz-de-Toro M, Rodriguez HA, Kass L. Bisphenol A and benzophenone-3 exposure alters milk protein expression and its transcriptional regulation during functional differentiation of the mammary gland in vitro. ENVIRONMENTAL RESEARCH 2020; 191:110185. [PMID: 32946892 DOI: 10.1016/j.envres.2020.110185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The plastic monomer and plasticizer bisphenol A (BPA), and the UV-filter benzophenone-3 (BP3) have been shown to have estrogenic activities that could alter mammary gland development. Our aim was to analyze whether BPA or BP3 direct exposure affects the functional differentiation of the mammary gland using an in vitro model. Mammary organoids were obtained and isolated from 8 week-old virgin female C57BL/6 mice and were differentiated on Matrigel with medium containing lactogenic hormones and exposed to: a) vehicle (0.01% ethanol); b) 1 × 10-9 M or 1 × 10-6 M BPA; or c) 1 × 10-12 M, 1 × 10-9 M or 1 × 10-6 M BP3 for 72 h. The mRNA and protein expression of estrogen receptor alpha (ESR1) and progesterone receptor (PR) were assessed. In addition, mRNA levels of PR-B isoform, glucocorticoid receptor (GR), prolactin receptor (PRLR) and Stat5a, and protein expression of pStat5a/b were evaluated at 72 h. The mRNA and protein expression of milk proteins and their DNA methylation status were also analyzed. Although mRNA level of PRLR and GR was similar between treatments, mRNA expression of ESR1, total PR, PR-B and Stat5a was increased in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. Total PR expression was also increased with 1 × 10-6 M BPA. Nuclear ESR1 and PR expression was observed in all treated organoids; whereas nuclear pStat5a/b alveolar cells was observed only in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. The beta-casein mRNA level was increased in both BPA concentrations and 1 × 10-12 M BP3, which was associated with hypomethylation of its promoter. The beta-casein protein expression was only increased with 1 × 10-9 M BPA or 1 × 10-12 M BP3. In contrast, BPA exposure decreased alpha-lactalbumin mRNA expression and increased DNA methylation level in different methylation-sensitive sites of the gene. Also, 1 × 10-9 M BPA decreased alpha-lactalbumin protein expression. Our results demonstrate that BPA or BP3 exposure alters milk protein synthesis and its transcriptional regulation during mammary gland differentiation in vitro.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Horacio A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
41
|
Dunphy KA, Black AL, Roberts AL, Sharma A, Li Z, Suresh S, Browne EP, Arcaro KF, Ser-Dolansky J, Bigelow C, Troester MA, Schneider SS, Makari-Judson G, Crisi GM, Jerry DJ. Inter-Individual Variation in Response to Estrogen in Human Breast Explants. J Mammary Gland Biol Neoplasia 2020; 25:51-68. [PMID: 32152951 PMCID: PMC7147970 DOI: 10.1007/s10911-020-09446-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Exposure to estrogen is strongly associated with increased breast cancer risk. While all women are exposed to estrogen, only 12% are expected to develop breast cancer during their lifetime. These women may be more sensitive to estrogen, as rodent models have demonstrated variability in estrogen sensitivity. Our objective was to determine individual variation in expression of estrogen receptor (ER) and estrogen-induced responses in the normal human breast. Human breast tissue from female donors undergoing reduction mammoplasty surgery were collected for microarray analysis of ER expression. To examine estrogen-induced responses, breast tissue from 23 female donors were cultured ex- vivo in basal or 10 nM 17β-estradiol (E2) media for 4 days. Expression of ER genes (ESR1 and ESR2) increased significantly with age. E2 induced consistent increases in global gene transcription, but expression of target genes AREG, PGR, and TGFβ2 increased significantly only in explants from nulliparous women. E2-treatment did not induce consistent changes in proliferation or radiation induced apoptosis. Responses to estrogen are highly variable among women and not associated with levels of ER expression, suggesting differences in intracellular signaling among individuals. The differences in sensitivity to E2-stimulated responses may contribute to variation in risk of breast cancer.
Collapse
Affiliation(s)
- Karen A Dunphy
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Amye L Black
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Amy L Roberts
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Aman Sharma
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Zida Li
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sneha Suresh
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Eva P Browne
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kathleen F Arcaro
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, USA
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallie S Schneider
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Pioneer Valley Life Sciences, Springfield, MA, USA
| | - Grace Makari-Judson
- Division of Hematology-Oncology, University of Massachusetts Medical School/Baystate, Springfield, MA, USA
| | - Giovanna M Crisi
- Department of Pathology, University of Massachusetts Medical School/Baystate, Springfield, MA, USA
| | - D Joseph Jerry
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Pioneer Valley Life Sciences, Springfield, MA, USA
| |
Collapse
|