1
|
Kulberg JL, Becker AAMJ, Malik YS, Ghosh S. First Report on Detection and Molecular Characterization of Astroviruses in Mongooses. Viruses 2024; 16:1269. [PMID: 39205243 PMCID: PMC11358933 DOI: 10.3390/v16081269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Applying a pan-astrovirus (AstV) RT-hemi-nested PCR assay, we report here high detection rates (28.3%, 15/53) of AstVs in the small Indian mongoose (Urva auropunctata) on the Caribbean Island of St. Kitts. Based on deduced amino acid (aa) identities and phylogenetic analysis of long RNA-dependent RNA polymerase (RdRp) sequences (~315 aa, partial RdRp), the AstVs detected in the mongooses (designated as Mon-AstVs) were classified into two distinct groups (deduced aa identities of 66.45-67.30% between the groups). The putative RdRps of the Mon-AstVs shared low deduced aa identities with those of AstVs from other host species (<69%, <54%, and <50% identities with reptilian/amphibian AstVs, avastroviruses, and mamastroviruses, respectively). Phylogenetically, the group-I and group-II Mon-AstVs formed two distinct clusters, near the cluster of reptilian/amphibian AstVs, and were distantly related to avastroviruses and mamastroviruses. Since the mongooses were apparently healthy during sampling, we could not establish if the Mon-AstVs infected the animal or were of dietary origin. Although we could not ascertain the true host of the Mon-AstVs, phylogenetic analysis indicated that these viruses might have originated from lower vertebrates. To our knowledge, this is the first report on the detection and molecular characterization of AstVs in mongooses, highlighting the wide host range and significant genetic diversity within the family Astroviridae.
Collapse
Affiliation(s)
- Jessica L. Kulberg
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (J.L.K.); (A.A.M.J.B.)
| | - Anne A. M. J. Becker
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (J.L.K.); (A.A.M.J.B.)
| | - Yashpal S. Malik
- ICAR-Indian Veterinary Research Institute, Mukteswar 263168, Uttarakhand, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (J.L.K.); (A.A.M.J.B.)
| |
Collapse
|
2
|
Animal reservoirs for hepatitis E virus within the Paslahepevirus genus. Vet Microbiol 2023; 278:109618. [PMID: 36640568 DOI: 10.1016/j.vetmic.2022.109618] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans. It is a single-stranded, positive-sense RNA virus that belongs to the Hepeviridae family. The majority of concerning HEV genotypes belong to the Paslahepevirus genus and are subsequently divided into eight genotypes. HEV genotypes 1 and 2 exclusively infect humans and primates while genotypes 3 and 4 infect both humans and other mammals. Whereas HEV genotypes 5 and 6 are isolated from wild boars and genotypes 7 and 8 were identified from camels in the United Arab Emirates and China, respectively. HEV mainly spreads from humans to humans via the fecal-oral route. However, some genotypes with the capability of zoonotic transmissions, such as 3 and 4 transmit from animals to humans through feces, direct contact, and ingestion of contaminated meat products. As we further continue to uncover novel HEV strains in various animal species, it is becoming clear that HEV has a broad host range. Therefore, understanding the potential animal reservoirs for this virus will allow for better risk management and risk mitigation of infection with HEV. In this review, we mainly focused on animal reservoirs for the members of the species Paslahepevirus balayani and provided a comprehensive list of the host animals identified to date.
Collapse
|
3
|
Si F, Widén F, Dong S, Li Z. Hepatitis E as a Zoonosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:49-58. [PMID: 37223858 DOI: 10.1007/978-981-99-1304-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E viruses in the family of Hepeviridae have been classified into 2 genus, 5 species, and 13 genotypes, involving different animal hosts of different habitats. Among all these genotypes, four (genotypes 3, 4, 7, and C1) of them are confirmed zoonotic causing sporadic human diseases, two (genotypes 5 and 8) were likely zoonotic showing experimental animal infections, and the other seven were not zoonotic or unconfirmed. These zoonotic HEV carrying hosts include pig, boar, deer, rabbit, camel, and rat. Taxonomically, all the zoonotic HEVs belong to the genus Orthohepevirus, which include genotypes 3, 4, 5, 7, 8 HEV in the species A and genotype C1 HEV in the species C. In the chapter, information of zoonotic HEV such as swine HEV (genotype 3 and 4), wild boar HEV (genotypes 3-6), rabbit HEV (genotype 3), camel HEV (genotype 7 and 8), and rat HEV (HEV-C1) was provided in detail. At the same time, their prevalence characteristics, transmission route, phylogenetic relationship, and detection technology were discussed. Other animal hosts of HEVs were introduced briefly in the chapter. All these information help peer researchers have basic understanding of zoonotic HEV and adopt reasonable strategy of surveillance and prevention.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Frederik Widén
- The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
4
|
Sarchese V, Fruci P, Palombieri A, Di Profio F, Robetto S, Ercolini C, Orusa R, Marsilio F, Martella V, Di Martino B. Molecular Identification and Characterization of a Genotype 3 Hepatitis E Virus (HEV) Strain Detected in a Wolf Faecal Sample, Italy. Animals (Basel) 2021; 11:ani11123465. [PMID: 34944242 PMCID: PMC8698176 DOI: 10.3390/ani11123465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) infection is a major health problem worldwide. In developed countries, zoonotic transmission of HEV genotypes (Gt) 3 and 4 is caused by the ingestion of raw or undercooked meat of infected pigs and wild boars, the main reservoirs of HEV. However, additional animals may harbour HEV or HEV-related strains, including carnivores. In this study, we investigated the molecular epidemiology of orthohepeviruses in wild canids by screening a total of 136 archival faecal samples, collected from wolves (42) and red foxes (94) in Northwestern Italy. Orthohepevirus RNA was identified in a faecal specimen, collected from a wolf carcass in the province of La Spezia (Liguria Region, Italy). The nearly full-length (7212 nucleotides) genome of the strain HEV/81236/Wolf/2019/ITA (GenBank accession no. MZ463196) was determined by combining a sequence-independent single-primer amplification (SISPA) approach with the Oxford Nanopore Technologies sequencing platform. Upon phylogenetic analysis, the HEV detected in wolf was segregated into clade HEV-3.1, displaying the highest nucleotide (nt) identity (89.0-93.3%) to Gt3 strains belonging to subtype c. Interestingly, the wolf faecal sample also contained porcine astrovirus sequences, endorsing the hypothesis of a dietary origin of the HEV strain due to preying habits.
Collapse
Affiliation(s)
- Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), 11020 Aosta, Italy; (S.R.); (R.O.)
| | - Carlo Ercolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, SC Liguria e Portualità Marittima, 19100 La Spezia, Italy;
| | - Riccardo Orusa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), 11020 Aosta, Italy; (S.R.); (R.O.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70121 Valenzano, Italy;
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
- Correspondence:
| |
Collapse
|
5
|
Gainor K, Becker AAMJ, Malik YS, Ghosh S. First Report on Detection and Molecular Characterization of Adenoviruses in the Small Indian Mongoose ( Urva auropunctata). Viruses 2021; 13:v13112194. [PMID: 34835000 PMCID: PMC8622525 DOI: 10.3390/v13112194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Anne A. M. J. Becker
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, 141004 Ludhiana, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
- Correspondence: or ; Tel.: +1-(869)-4654161 (ext. 401-1202)
| |
Collapse
|
6
|
Detection and Complete Genome Analysis of Circoviruses and Cycloviruses in the Small Indian Mongoose ( Urva auropunctata): Identification of Novel Species. Viruses 2021; 13:v13091700. [PMID: 34578282 PMCID: PMC8471302 DOI: 10.3390/v13091700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Fecal samples from 76 of 83 apparently healthy small Indian mongooses (Urva auropunctata) were PCR positive with circovirus/cyclovirus pan-rep (replicase gene) primers. In this case, 30 samples yielded high quality partial rep sequences (~400 bp), of which 26 sequences shared maximum homology with cycloviruses from an arthropod, bats, humans or a sheep. Three sequences exhibited maximum identities with a bat circovirus, whilst a single sequence could not be assigned to either genus. Using inverse nested PCRs, the complete genomes of mongoose associated circoviruses (Mon-1, -29 and -66) and cycloviruses (Mon-20, -24, -32, -58, -60 and -62) were determined. Mon-1, -20, -24, -29, -32 and -66 shared <80% maximum genome-wide pairwise nucleotide sequence identities with circoviruses/cycloviruses from other animals/sources, and were assigned to novel circovirus, or cyclovirus species. Mon-58, -60 and -62 shared maximum pairwise identities of 79.90–80.20% with human and bat cycloviruses, which were borderline to the cut-off identity value for assigning novel cycloviral species. Despite high genetic diversity, the mongoose associated circoviruses/cycloviruses retained the various features that are conserved among members of the family Circoviridae, such as presence of the putative origin of replication (ori) in the 5′-intergenic region, conserved motifs in the putative replication-associated protein and an arginine rich region in the amino terminus of the putative capsid protein. Since only fecal samples were tested, and mongooses are polyphagous predators, we could not determine whether the mongoose associated circoviruses/cycloviruses were of dietary origin, or actually infected the host. To our knowledge, this is the first report on detection and complete genome analysis of circoviruses/cycloviruses in the small Indian mongoose, warranting further studies in other species of mongooses.
Collapse
|
7
|
Advances in Hepatitis E Virus Biology and Pathogenesis. Viruses 2021; 13:v13020267. [PMID: 33572257 PMCID: PMC7915517 DOI: 10.3390/v13020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.
Collapse
|
8
|
Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11:E456. [PMID: 31109076 PMCID: PMC6563261 DOI: 10.3390/v11050456] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. Modes of transmission range from the classic fecal-oral route or zoonotic route, to relatively recently recognized but increasingly common routes, such as via the transfusion of blood products or organ transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological abnormalities, have been documented in some limited cases, typically in patients with immune suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have been identified worldwide from human populations as well as growing numbers of animal species. The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, global genotype distribution, clinical significance of HEV genotype and genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| |
Collapse
|
9
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|
10
|
Tsachev I, Baymakova M, Ciccozzi M, Pepovich R, Kundurzhiev T, Marutsov P, Dimitrov KK, Gospodinova K, Pishmisheva M, Pekova L. Seroprevalence of Hepatitis E Virus Infection in Pigs from Southern Bulgaria. Vector Borne Zoonotic Dis 2019; 19:767-772. [PMID: 31017536 DOI: 10.1089/vbz.2018.2430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) has been isolated from humans and several animals' species. During the last years, the knowledge of HEV infection dramatically changed and enriched. The aim of this study was to estimate the seroprevalence of HEV in industrial pigs in different districts of Southern Bulgaria. Three hundred sixty swine serum samples were tested for anti-HEV IgG antibodies. The samples were collected from four industrial farms from three districts of Southern Bulgaria. HEV-specific antibodies in porcine serum were detected by enzyme-linked immunosorbent assay (PrioCHECK HEV Ab porcine). The overall HEV seroprevalence was 60.3%. The seropositivity varied widely depending on age groups and investigated farms. The overall prevalence in weaners was 25%, in fattening pigs 75.8%, and in group of sows was found the highest HEV positivity of 80%. The occurrence of HEV positivity in sows and fattening pigs presented odds ratio (OR) = 17.200 (95% confidence interval [CI]: 8.8-33.7) and OR = 11.342 (95% CI: 6.1-21.0), respectively, compared to weaners. The study indicated that HEV is widespread in industrial farms in Bulgaria and presented high seroprevalence in pigs. The results found that HEV seropositivity showed age dependency. The National Health Authorities should raise awareness of HEV and its zoonotic potential.
Collapse
Affiliation(s)
- Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Universita Campus Bio-Medico di Roma, Rome, Italy
| | - Roman Pepovich
- Department of Infectious Pathology, Hygiene, Technology and Control of Foods from Animal Origin, Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, Sofia, Bulgaria
| | - Plamen Marutsov
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Kiril K Dimitrov
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Krasimira Gospodinova
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, General Hospital, Pazardzhik, Bulgaria
| | - Liliya Pekova
- Department of Infectious Diseases, Stara Zagora University Hospital, Stara Zagora, Bulgaria
| |
Collapse
|
11
|
King NJ, Hewitt J, Perchec-Merien AM. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:225-252. [PMID: 29623595 DOI: 10.1007/s12560-018-9342-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Historically in developed countries, reported hepatitis E cases were typically travellers returning from countries where hepatitis E virus (HEV) is endemic, but now there are increasing numbers of non-travel-related ("autochthonous") cases being reported. Data for HEV in New Zealand remain limited and the transmission routes unproven. We critically reviewed the scientific evidence supporting HEV transmission routes in other developed countries to inform how people in New Zealand may be exposed to this virus. A substantial body of indirect evidence shows domesticated pigs are a source of zoonotic human HEV infection, but there is an information bias towards this established reservoir. The increasing range of animals in which HEV has been detected makes it important to consider other possible animal reservoirs of HEV genotypes that can or could infect humans. Foodborne transmission of HEV from swine and deer products has been proven, and a large body of indirect evidence (e.g. food surveys, epidemiological studies and phylogenetic analyses) support pig products as vehicles of HEV infection. Scarce data from other foods suggest we are neglecting other potential sources of foodborne HEV infection. Moreover, other transmission routes are scarcely investigated in developed countries; the role of infected food handlers, person-to-person transmission via the faecal-oral route, and waterborne transmission from recreational contact or drinking untreated or inadequately treated water. People have become symptomatic after receiving transfusions of HEV-contaminated blood, but it is unclear how important this is in the overall hepatitis E disease burden. There is need for broader research efforts to support establishing risk-based controls.
Collapse
Affiliation(s)
- Nicola J King
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand.
| | - Anne-Marie Perchec-Merien
- New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
12
|
Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus. J Virol 2018; 92:JVI.00251-18. [PMID: 29669835 DOI: 10.1128/jvi.00251-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625DFCP628, 458PSRPF462, and 407EPTV410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design.IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts.
Collapse
|
13
|
Spahr C, Knauf-Witzens T, Vahlenkamp T, Ulrich RG, Johne R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health 2017; 65:11-29. [PMID: 28944602 DOI: 10.1111/zph.12405] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 01/15/2023]
Abstract
Hepatitis E is a human disease mainly characterized by acute liver illness, which is caused by infection with the hepatitis E virus (HEV). Large hepatitis E outbreaks have been described in developing countries; however, the disease is also increasingly recognized in industrialized countries. Mortality rates up to 25% have been described for pregnant women during outbreaks in developing countries. In addition, chronic disease courses could be observed in immunocompromised transplant patients. Whereas the HEV genotypes 1 and 2 are mainly confined to humans, genotypes 3 and 4 are also found in animals and can be zoonotically transmitted to humans. Domestic pig and wild boar represent the most important reservoirs for these genotypes. A distinct subtype of genotype 3 has been repeatedly detected in rabbits and a few human patients. Recently, HEV genotype 7 has been identified in dromedary camels and in an immunocompromised transplant patient. The reservoir animals get infected with HEV without showing any clinical symptoms. Besides these well-known animal reservoirs, HEV-specific antibodies and/or the genome of HEV or HEV-related viruses have also been detected in many other animal species, including primates, other mammals and birds. In particular, genotypes 3 and 4 infections are documented in many domestic, wildlife and zoo animal species. In most cases, the presence of HEV in these animals can be explained by spillover infections, but a risk of virus transmission through contact with humans cannot be excluded. This review gives a general overview on the transmission pathways of HEV to humans. It particularly focuses on reported serological and molecular evidence of infections in wild, domestic and zoo animals with HEV or HEV-related viruses. The role of these animals for transmission of HEV to humans and other animals is discussed.
Collapse
Affiliation(s)
- C Spahr
- Wilhelma Zoological-Botanical Gardens, Stuttgart, Germany.,Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | | | - T Vahlenkamp
- Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | - R G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Braunschweig, Germany
| | - R Johne
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
14
|
Full-length genome of a novel genotype 3 hepatitis E virus strain obtained from domestic pigs in Japan. Virus Res 2017; 240:147-153. [DOI: 10.1016/j.virusres.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
|
15
|
Donnelly MC, Scobie L, Crossan CL, Dalton H, Hayes PC, Simpson KJ. Review article: hepatitis E-a concise review of virology, epidemiology, clinical presentation and therapy. Aliment Pharmacol Ther 2017; 46:126-141. [PMID: 28449246 DOI: 10.1111/apt.14109] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a leading cause of acute icteric hepatitis and acute liver failure in the developing world. During the last decade, there has been increasing recognition of autochthonous (locally acquired) HEV infection in developed countries. Chronic HEV infection is now recognised, and in transplant recipients this may lead to cirrhosis and organ failure. AIM To detail current understanding of the molecular biology of HEV, diagnostic and therapeutic strategies and propose future directions for basic science and clinical research. METHODS PubMed was searched for English language articles using the key words "hepatitis E", "viral hepatitis", "autochthonous infection", "antiviral therapy", "liver transplantation", "acute", "chronic", "HEV", "genotype", "transmission" "food-borne", "transfusion". Additional relevant publications were identified from article reference lists. RESULTS There has been increasing recognition of autochthonous HEV infection in Western countries, mainly associated with genotype 3. Chronic HEV infection has been recognised since 2008, and in transplant recipients this may lead to cirrhosis and organ failure. Modes of transmission include food-borne transmission, transfusion of blood products and solid organ transplantation. Ribavirin therapy is used to treat patients with chronic HEV infection, but new therapies are required as there have been reports of treatment failure with ribavirin. CONCLUSIONS Autochthonous HEV infection is a clinical issue with increasing burden. Future work should focus on increasing awareness of HEV infection in the developed world, emphasising the need for clinicians to have a low threshold for HEV testing, particularly in immunosuppressed patients. Patients at potential risk of chronic HEV infection must also be educated and given advice regarding prevention of infection.
Collapse
Affiliation(s)
- M C Donnelly
- Department of Hepatology and Scottish Liver Transplant Unit, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - L Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - C L Crossan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - H Dalton
- Royal Cornwall Hospital Trust and European Centre for Environment and Human Health, University of Exeter, Truro, UK
| | - P C Hayes
- Department of Hepatology and Scottish Liver Transplant Unit, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - K J Simpson
- Department of Hepatology and Scottish Liver Transplant Unit, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Geng Y, Wang Y. Transmission of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 948:89-112. [DOI: 10.1007/978-94-024-0942-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Doceul V, Bagdassarian E, Demange A, Pavio N. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes. Viruses 2016; 8:v8100270. [PMID: 27706110 PMCID: PMC5086606 DOI: 10.3390/v8100270] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources.
Collapse
Affiliation(s)
- Virginie Doceul
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| | - Eugénie Bagdassarian
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| | - Antonin Demange
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| | - Nicole Pavio
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| |
Collapse
|
18
|
Identification of Distribution Characteristics and Epidemic Trends of Hepatitis E in Zhejiang Province, China from 2007 to 2012. Sci Rep 2016; 6:25407. [PMID: 27146250 PMCID: PMC4857129 DOI: 10.1038/srep25407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 01/04/2023] Open
Abstract
Hepatitis E virus is a common hepatotropic virus that causes serious gastrointestinal symptoms. Data of reported HEV cases in Zhejiang Province was collected between 2007 and 2012. Descriptive epidemiological methods and spatial-temporal epidemiological methods were used to investigate the epidemiological trends and identify high-risk regions of hepatitis E infection. In this study, the average morbidity of hepatitis E infection was 4.03 per 100,000 in Zhejiang Province, peaking in winter and spring. The ratio between the male and the female was 2.39:1, and the high-risk population was found to be aged between 40 and 60. Trend surface analysis and IDW maps revealed higher incidences in the northwestern counties. The spatial-temporal analysis showed comparable incidences in the counties at the basins of three rivers, mostly under administration of Hangzhou Municipality. Besides, the seasonal exponential smoothing method was determined as the better model for the retrieved data. The epidemiological characteristics of HEV suggested the need of strengthened supervision and surveillance of sanitary water, sewage treatment and food in high-risk areas especially around the Spring Festival. Additionally, time series model could be useful for forecasting the epidemics of HEV in future. All these findings may contribute to the prevention and control of HEV epidemics.
Collapse
|
19
|
Abstract
Hepatitis E (HE) virus infection is not limited to spread from human to human but also occurs between animals and more importantly as zoonotic spread from animals to humans. Genotyping of strains from hepatitis E virus-infected patients has revealed that these infections are not all caused by genotypes 1 or 2 but often by genotypes 3 or 4. Therefore, it is important to understand the striking difference between the spread of genotypes 1 and 2 in countries with poor sanitary standards and the spread of genotypes 3 and 4 in countries with good sanitary standards. The number of animal species known to be infected with HEV is expanding rapidly. The finding of HEV in new host species always raises the question regarding the zoonotic potential of these newfound strains. However, as new strains are found, the complexity increases.Certain genotypes are known to have the ability of zoonotic spread from certain animal species and these animals may even constitute an infection reservoir. Some animal species may contribute to zoonotic infections albeit on a smaller scale, while others are believed to be of minor or no importance at all. This chapter reviews possible sources of zoonotic hepatitis E virus infection.
Collapse
|
20
|
Serracca L, Battistini R, Rossini I, Mignone W, Peletto S, Boin C, Pistone G, Ercolini R, Ercolini C. Molecular Investigation on the Presence of Hepatitis E Virus (HEV) in Wild Game in North-Western Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:206-12. [PMID: 26006251 DOI: 10.1007/s12560-015-9201-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/16/2015] [Indexed: 05/20/2023]
Abstract
Meat products from HEV-infected reservoir animal species are capable of transmitting HEV to humans and represent a public health concern. Human HEV cases have been linked to the consumption of raw or undercooked pig liver sausages, pork, and game meats, such as wild boars and deer worldwide. Direct exposure to swine or wild game species might also represent a source of HEV transmission especially for veterinarians, hunters, or butchers. A limited amount of data is available on HEV prevalence in wild boars in Italy and no data are available for other wild game species intended for human consumption. In this study, the circulation of HEV in four different animal species hunted in north-western Italy was evaluated to gain insight into the infection levels and the genetic diversity of the virus in such animal populations. Liver samples of 372 wild boars, 30 roe deer, 47 European hares and 38 coypus were analyzed for HEV RNA by real-time RT-PCR; positive samples were then sequenced and submitted to phylogenetic analysis. HEV RNA was detected in the livers of 7/372 (1.9%) wild boars tested, while no sample was positive for roe deer, European hare, and coypu. Phylogenetic analysis showed that wild boar HEV sequences belonged to HEV subtypes 3e, 3c, and 3f. Our results indicate that HEV is circulating only in wild boar among the considered game species in north-western Italy and suggest a potential zoonotic risk related to handling and/or consumption of raw or undercooked meat and products made of the liver from this species.
Collapse
Affiliation(s)
- Laura Serracca
- IZSPLVA - Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - Sezione La Spezia, Via degli Stagnoni 96, 19100, La Spezia, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sridhar S, Lau SKP, Woo PCY. Hepatitis E: A disease of reemerging importance. J Formos Med Assoc 2015; 114:681-90. [PMID: 25773541 PMCID: PMC7126687 DOI: 10.1016/j.jfma.2015.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 01/02/2023] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide. Originally considered to be restricted to humans, it is now clear that HEV and HEV-like viruses have several animal reservoirs with complex ecology and genetic diversity, as exemplified by the recent discovery of HEV in dromedaries, a previously underestimated reservoir of zoonotic viruses prior to the emergence of Middle East Respiratory Syndrome coronavirus. Zoonotic foodborne transmission from pigs and feral animals such as wild boar is of increasing importance in the rapidly industrializing countries of the Asia Pacific region. Such zoonotic hepatitis E infection has particular relevance to the increasing population living with immunosuppression, due to the risk of chronic hepatitis E in these patients. Fortunately, major strides have been made recently in the management of chronic hepatitis E patients. Furthermore, an effective vaccine is also available that promises better control of hepatitis E burden in the near future. This review highlights these major recent developments in the epidemiology, treatment, and prevention of hepatitis E.
Collapse
Affiliation(s)
- Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
22
|
Johne R, Dremsek P, Reetz J, Heckel G, Hess M, Ulrich RG. Hepeviridae: an expanding family of vertebrate viruses. INFECTION GENETICS AND EVOLUTION 2014; 27:212-29. [PMID: 25050488 DOI: 10.1016/j.meegid.2014.06.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The hepatitis E virus (HEV) was first identified in 1990, although hepatitis E-like diseases in humans have been recorded for a long time dating back to the 18th century. The HEV genotypes 1-4 have been subsequently detected in human hepatitis E cases with different geographical distribution and different modes of transmission. Genotypes 3 and 4 have been identified in parallel in pigs, wild boars and other animal species and their zoonotic potential has been confirmed. Until 2010, these genotypes along with avian HEV strains infecting chicken were the only known representatives of the family Hepeviridae. Thereafter, additional HEV-related viruses have been detected in wild boars, distinct HEV-like viruses were identified in rats, rabbit, ferret, mink, fox, bats and moose, and a distantly related agent was described from closely related salmonid fish. This review summarizes the characteristics of the so far known HEV-like viruses, their phylogenetic relationship, host association and proposed involvement in diseases. Based on the reviewed knowledge, a suggestion for a new taxonomic grouping scheme of the viruses within the family Hepeviridae is presented.
Collapse
Affiliation(s)
- Reimar Johne
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Paul Dremsek
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Jochen Reetz
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Gerald Heckel
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland; Swiss Institute of Bioinformatics, Genopode, Lausanne, Switzerland
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), Vienna, Austria
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.
| |
Collapse
|
23
|
Van der Poel WHM. Food and environmental routes of Hepatitis E virus transmission. Curr Opin Virol 2014; 4:91-6. [DOI: 10.1016/j.coviro.2014.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
|
24
|
Hepatitis E: an emerging disease. INFECTION GENETICS AND EVOLUTION 2014; 22:40-59. [PMID: 24434240 DOI: 10.1016/j.meegid.2014.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 02/07/2023]
Abstract
Currently, the infection with the hepatitis E virus represents the most frequent cause for acute hepatitis and jaundice in the world. According to WHO estimations, around two billion people, representing one third of the world's population, live in endemic areas for HEV and, therefore, are at risk of infection. In developed countries, the circulation of the virus in both human and animal (swine, boar, deer) sewage has been confirmed; however, the incidence rate is low compared to that of developing countries where outbreaks of acute hepatitis transmitted via the fecal-oral route are originated, more frequently in the flooding season or after natural disasters, combined with deficient sanitary conditions. There are currently 4 known genotypes of HEV. Genotypes 1 and 2 are isolated in all human epidemic outbreaks in developing countries, while genotypes 3 and 4 are isolated not only in humans but also in animals, in both developing and industrialized countries. These data support genotypes 3 and 4 having zoonotic nature. The diagnosis of this disease is based in the detection of anti-HEV IgG and IgM in blood serum using enzyme-linked immunosorbent methods. However, the method that best confirms the diagnosis is the RT-PCR, which detects HEV RNA in blood serum and also provides the genotype. The clinical course is generally that of an acute hepatitis which in some cases may require hospitalization and that, in transplant patients or HIV infected individuals can become a chronic hepatitis. Furthermore, the virus constitutes an important risk for pregnant women. The hepatitis E can present a wide range of symptoms, from a subclinical case to chronic liver disease with extrahepatic manifestations. For this reason, the diagnostic is challenging if no differential diagnosis is included. There is no specific antiviral drug for hepatitis E, but satisfactory results have been observed in some patients treated with pegylated interferon alfa2a and/or ribavirin. This revision is an update of all the molecular, epidemiological, clinic and preventive knowledge on this emergent disease up to date.
Collapse
|
25
|
Takahashi M, Okamoto H. Features of hepatitis E virus infection in humans and animals in Japan. Hepatol Res 2014; 44:43-58. [PMID: 23721425 DOI: 10.1111/hepr.12175] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 02/08/2023]
Abstract
In Japan, hepatitis E had long been considered to be a rare liver disease which can be accidentally imported from endemic countries in Asia and Africa, where the sanitation conditions are suboptimal. However, since the identification of the first autochthonous hepatitis E case and hepatitis E viremic domestic pigs in Japan in 2001, our understanding of hepatitis E virus (HEV) infection in this country has been changing markedly. This has largely been due to the development of serological and gene-based diagnostic assays, the accumulation of molecular epidemiological findings on HEV infection in humans and animals (as potential reservoirs for HEV in humans) and the recognition of the importance of zoonotic food-borne and other routes of transmission of HEV, including blood-borne transmission. Although it is now evident that autochthonous hepatitis E in Japan is far more common than was previously thought, clinical and subclinical HEV infections indigenous to Japan remain underdiagnosed and their prevalence is still underestimated due to the presence of unknown transmission routes and a low awareness of the infection status by many physicians in Japan. This review focuses on the features of HEV infection in humans and animals, as definitive or potential reservoirs for HEV, in Japan, and updates the current knowledge on the routes of transmission, including zoonotic routes, which are important for the maintenance and spread of HEV in Japan.
Collapse
Affiliation(s)
- Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | | |
Collapse
|
26
|
Takahashi M, Nishizawa T, Nagashima S, Jirintai S, Kawakami M, Sonoda Y, Suzuki T, Yamamoto S, Shigemoto K, Ashida K, Sato Y, Okamoto H. Molecular characterization of a novel hepatitis E virus (HEV) strain obtained from a wild boar in Japan that is highly divergent from the previously recognized HEV strains. Virus Res 2013; 180:59-69. [PMID: 24370869 DOI: 10.1016/j.virusres.2013.12.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/16/2023]
Abstract
Although a consensus classification system for hepatitis E virus (HEV) genotypes is currently unavailable, HEV variants (JBOAR135-Shiz09 and wbJOY_06) from wild boars (Sus scrofa leucomystax) have provisionally been classified into two novel genotypes (5 and 6). While performing a survey of HEV infections among 566 wild boars that were captured in Japan between January 2010 and August 2013, we found 24 boars (4.2%) with ongoing HEV infections: 13 had genotype 3 HEV, 10 had genotype 4 HEV and the remaining boar possessed a novel HEV variant (designated wbJNN_13). The entire wbJNN_13 genome comprised 7247 nucleotides excluding the poly(A) tail, and was highly divergent from known genotype 1 to 4 HEV isolates derived from humans, swine, wild boars, deer, mongoose and rabbits by 22.4-28.2%, JBOAR135-Shiz09 and wbJOY_06 by 19.6-21.9% and rat, ferret, bat and avian HEV isolates by 40.9-46.1% over the entire genome. Phylogenetic trees confirmed that wbJNN_13 is distantly related to all known HEV isolates. A Simplot analysis revealed no significant recombination among the existing HEV strains. These results indicate the presence of at least three genetic lineages of presumably boar-indigenous HEV strains. Further studies to fully understand the extent of the genomic heterogeneity of HEV variants infecting wild boars are warranted.
Collapse
Affiliation(s)
- Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Manri Kawakami
- Hepatology Research Center, Okayama Saiseikai General Hospital, Okayama-shi, Okayama 700-8511, Japan
| | | | | | - Shogo Yamamoto
- Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki-shi, Miyazaki 889-2155, Japan
| | | | - Kozo Ashida
- Division of Internal Medicine, Okayama University Hospital Misasa Medical Center, Misasa, Tottori 682-0122, Japan
| | - Yukihiro Sato
- Kamiichi General Hospital, Kamiichi, Toyama 930-0391, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
| |
Collapse
|
27
|
Mulyanto, Suparyatmo JB, Andayani IGAS, Khalid, Takahashi M, Ohnishi H, Jirintai S, Nagashima S, Nishizawa T, Okamoto H. Marked genomic heterogeneity of rat hepatitis E virus strains in Indonesia demonstrated on a full-length genome analysis. Virus Res 2013; 179:102-12. [PMID: 24231359 DOI: 10.1016/j.virusres.2013.10.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
Abstract
Rat hepatitis E virus (HEV) strains have recently been isolated in several areas of Germany, Vietnam, the United States, Indonesia and China. However, genetic information regarding these rat HEV strains is limited. A total of 369 wild rats (Rattus rattus) captured in Central Java (Solo) and on Lombok Island, Indonesia were tested for the presence of rat HEV-specific antibodies and RNA. Overall, 137 rats (37.1%) tested positive for rat anti-HEV antibodies, while 97 (26.3%) had rat HEV RNA detectable on reverse transcription-PCR with primers targeting the ORF1-ORF2 junctional region. The 97 HEV strains recovered from these viremic rats were 76.3-100% identical to each other in an 840-nucleotide sequence and 75.4-88.4% identical to the rat HEV strains reported in Germany and Vietnam. Five representative Indonesian strains, one from each of five phylogenetic clusters, whose entire genomic sequence was determined, were segregated into three genetic groups (a German type, Vietnamese type and novel type), which differed from each other by 19.5-23.5 (22.0 ± 1.7)% over the entire genome. These results suggest the presence of at least three genetic groups of rat HEV and indicate the circulation of polyphyletic strains of rat HEV belonging to three distinct genetic groups in Indonesia.
Collapse
Affiliation(s)
- Mulyanto
- West Nusa Tenggara Hepatitis Laboratory, Mataram, Indonesia; Immunobiology Laboratory, Faculty of Medicine, University of Mataram, Mataram, Indonesia
| | | | | | - Khalid
- Immunobiology Laboratory, Faculty of Medicine, University of Mataram, Mataram, Indonesia
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498, Japan
| | - Hiroshi Ohnishi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498, Japan.
| |
Collapse
|
28
|
Hepatitis E virus: foodborne, waterborne and zoonotic transmission. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4507-33. [PMID: 24071919 PMCID: PMC3823334 DOI: 10.3390/ijerph10104507] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/20/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1–4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans.
Collapse
|
29
|
Pérez-Gracia MT, Mateos Lindemann ML, Caridad Montalvo Villalba M. Hepatitis E: current status. Rev Med Virol 2013; 23:384-98. [PMID: 24038432 DOI: 10.1002/rmv.1759] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Acute hepatitis E is a very common disease in developing countries, to the point that, according to World Health Organization estimates, one third of the world's population has been exposed to HEV. It also causes outbreaks in refugee camps or after natural disasters such as floods or earthquakes. Sporadic cases of acute hepatitis have been observed in practically all European countries and other developed geographical areas, not only in travelers from endemic countries but also in people with no risk factors. But, lately, new aspects of this infection are appearing in industrialized countries such as the possibility of the disease becoming chronic in transplant patients, the immunocompromised in general, and even in patients with previous liver disease who are immunocompetent. In this comprehensive review, we summarize the current knowledge on HEV infection.
Collapse
Affiliation(s)
- María Teresa Pérez-Gracia
- Área de Microbiología. Departamento Farmacia. Instituto de Ciencias Biomédicas. Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Moncada Valencia, Spain
| | | | | |
Collapse
|
30
|
Nakano T, Takahashi K, Arai M, Okano H, Kato H, Ayada M, Okamoto H, Mishiro S. Identification of European-type hepatitis E virus subtype 3e isolates in Japanese wild boars: Molecular tracing of HEV from swine to wild boars. INFECTION GENETICS AND EVOLUTION 2013; 18:287-98. [PMID: 23770142 DOI: 10.1016/j.meegid.2013.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|