1
|
Franca-Oliveira G, Monreal Peinado S, Alves de Souza SM, Kalume DE, Ferraz de Souza TL, Hernández-Ledesma B, Martinez-Rodriguez AJ. Proteomic Characterization of a Lunasin-Enriched Soybean Extract Potentially Useful in the Treatment of Helicobacter pylori Infection. Nutrients 2024; 16:2056. [PMID: 38999803 PMCID: PMC11242994 DOI: 10.3390/nu16132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Helicobacter pylori infection affects over 50% of the world's population and leads to chronic inflammation and gastric disorders, being the main pathogen correlated to gastric cancer development. Increasing antibiotic resistance levels are a major global concern and alternative treatments are needed. Soybean peptides and other compounds might be an alternative in the treatment to avoid, eradicate and/or control symptoms of H. pylori infection. This study aimed to characterize a lunasin-enriched soybean extract (LSE) using proteomics tools and to evaluate its antioxidant, anti-inflammatory and antibacterial properties against H. pylori infection. By LC-MS/MS analysis, 124 proteins were identified, with 2S albumin (lunasin and large-chain subunits) being the fourth most abundant protein (8.9%). Lunasin consists of 44 amino acid residues and an intramolecular disulfide bond. LSE at a low dose (0.0625 mg/mL) reduced ROS production in both H. pylori-infected and non-infected AGS gastric cells. This led to a significant reduction of 6.71% in the levels of pro-inflammatory interleukin (IL)-8. LSE also showed antibacterial activity against H. pylori, which can be attributed to other soybean proteins and phenolic compounds. Our findings suggest that LSE might be a promising alternative in the management of H. pylori infection and its associated symptoms.
Collapse
Affiliation(s)
- Giselle Franca-Oliveira
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Sara Monreal Peinado
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Stephanny Miranda Alves de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Nanobiossistemas, Universidade Federal do Rio de Janeiro, Duque de Caxias 25240-005, Brazil
| | - Dario Eluan Kalume
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil
| | - Theo Luiz Ferraz de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Nanobiossistemas, Universidade Federal do Rio de Janeiro, Duque de Caxias 25240-005, Brazil
| | - Blanca Hernández-Ledesma
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | | |
Collapse
|
2
|
Kim W, Kim S, Mawhinney TP, Krishnan HB. Elemental sulfur concentration can be used as a rapid, reliable, and cost-effective predictor of sulfur amino acid content of soybean seeds. Sci Rep 2024; 14:3093. [PMID: 38326523 PMCID: PMC10850096 DOI: 10.1038/s41598-024-53590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
In this study, we have examined the feasibility of using elemental sulfur content of soybean seeds as a proxy for the overall sulfur amino acid content of soybean seeds. Earlier, we have identified by high throughput ionomic phenotyping several high and low sulfur containing soybean lines from the USDA Soybean Germplasm Collection. Here, we measured the cysteine and methionine content of select soybean lines by high-performance liquid chromatography. Our results demonstrate that those soybean lines which had high elemental sulfur content also had a higher cysteine and methionine content when compared to soybean lines with low elemental sulfur. SDS-PAGE and immunoblot analysis revealed that the accumulation of Bowman Birk protease inhibitor and lunasin in soybean seeds may only be marginally correlated with the elemental sulfur levels. However, we found a positive correlation between the levels of trypsin and chymotrypsin inhibitor activities and elemental sulfur and sulfur amino acid content of the seeds. Thus, elemental sulfur content and/or protease inhibitor activity measurement can be utilized as a rapid and cost-effective method to predict the overall sulfur amino acid content of soybean seeds. Our findings will benefit breeders in their endeavors to develop soybean cultivars with enhanced sulfur amino acid content.
Collapse
Affiliation(s)
- Wonseok Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Sunhyung Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Hari B Krishnan
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
- Plant Genetics Research Unit, USDA, Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
4
|
Kim S, Krishnan HB. A fast and cost-effective procedure for reliable measurement of trypsin inhibitor activity in soy and soy products. Methods Enzymol 2023; 680:195-213. [PMID: 36710011 DOI: 10.1016/bs.mie.2022.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rapid and accurate measurement of trypsin inhibitor is critical for soy processors to assess the quality of soy meal. Currently, trypsin inhibitor activity is measured using the American Oil Chemists' Society (AOCS) and the American Association of Cereal Chemists International (AACCI) approved method. We have modified and improved the AACCI/AOCS approved method resulting in the elimination of several time-consuming steps and drastically reducing the assay volume. By employing our simplified procedure, we have measured trypsin inhibitor activity of several soy and soy products. A side-by side comparison of our simplified procedure with AOCS approved method revealed strikingly similar results indicating that several time-consuming and tedious steps associated with AACCI/AOCS approved methods can be eliminated without sacrificing the accuracy of the assay. Moreover, we demonstrate that our assay can also be carried out in 96-well microplates which will enable high-throughput screening of large number of soy meal samples.
Collapse
Affiliation(s)
- Sunhyung Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Hari B Krishnan
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States; Plant Genetics Research Unit, USDA, Agricultural Research Service, Columbia, MO, United States.
| |
Collapse
|
5
|
Dean EA, Finer JJ. Amino acids induce high seed-specific expression driven by a soybean (Glycine max) glycinin seed storage protein promoter. PLANT CELL REPORTS 2023; 42:123-136. [PMID: 36271177 DOI: 10.1007/s00299-022-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
We characterize GFP expression driven by a soybean glycinin promoter in transgenic soybean. We demonstrate specific amino acid-mediated induction of this promoter in developing soybean seeds in vitro. In plants, gene expression is primarily regulated by promoter regions which are located upstream of gene coding sequences. Promoters allow transcription in certain tissues and respond to environmental stimuli as well as other inductive phenomena. In soybean, seed storage proteins (SSPs) accumulate during seed development and account for most of the monetary and nutritional value of this crop. To better study the regulatory functions of a SSP promoter, we developed a cotyledon culture system where media and media addenda were evaluated for their effects on cotyledon development and promoter activity. Stably transformed soybean events containing a glycinin SSP promoter regulating the green fluorescent protein (GFP) were generated. Promoter activity, as visualized by GFP expression, was only observed in developing in planta seeds and in vitro-cultured isolated embryos and cotyledons from developing seeds when specific media addenda were included. Asparagine, proline, and especially glutamine induced glycinin promoter activity in cultured cotyledons from developing seeds. Other amino acids did not induce the glycinin promoter. Here, we report, for the first time, induction of a reintroduced glycinin SSP promoter by specific amino acids in cotyledon tissues during seed development.
Collapse
Affiliation(s)
- Eric A Dean
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Pairwise, 110 TW Alexander Dr, Research Triangle Park, Durham, NC, 27709, USA.
| | - John J Finer
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Kapnik Center, Florida Gulf Coast University, 4940 Bayshore Dr, Naples, FL, 34112, USA
| |
Collapse
|
6
|
Padalkar G, Mandlik R, Sudhakaran S, Vats S, Kumawat S, Kumar V, Kumar V, Rani A, Ratnaparkhe MB, Jadhav P, Bhat JA, Deshmukh R, Sharma TR, Sonah H. Necessity and challenges for exploration of nutritional potential of staple-food grade soybean. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Krishnan HB, Jurkevich A. Confocal Fluorescence Microscopy Investigation for the Existence of Subdomains within Protein Storage Vacuoles in Soybean Cotyledons. Int J Mol Sci 2022; 23:3664. [PMID: 35409024 PMCID: PMC8999119 DOI: 10.3390/ijms23073664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In legumes, the seed storage proteins accumulate within specialized organelles called protein storage vacuoles (PSVs). In several plant species, PSVs are differentiated into subdomains that accumulate different kinds of proteins. Even though the existence of subdomains is common in cereals and legumes, it has not been reported in soybean PSVs. The two most abundant seed proteins of soybean, 7S and 11S globulins, have different temporal accumulation patterns and exhibit considerable solubility differences that could result in differential accretion of these proteins within the PSVs. Here, we employed confocal fluorescent microscopy to examine the presence or absence of subdomains within the soybean PSVs. Eosin-stained sections of FAA-fixed paraffin embedded soybean seeds, when viewed by confocal fluorescence microscopy, revealed the presence of intricate subdomains within the PSVs. However, fluorescence immunolabeling studies demonstrated that the 7S and 11S globulins were evenly distributed within the PSVs and failed to corroborate the existence of subdomains within the PSVs. Similarly, confocal scanning microscopy examination of free-hand, vibratome and cryostat sections also failed to demonstrate the existence of subdomains within PSVs. The subdomains, which were prominently seen in PSVs of FAA-fixed soybean seeds, were not observed when the seeds were fixed either in glutaraldehyde/paraformaldehyde or glutaraldehyde. Our studies demonstrate that the apparent subdomains observed in FAA-fixed seeds may be a fixation artifact.
Collapse
Affiliation(s)
- Hari B. Krishnan
- Plant Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Columbia, MO 65211, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Alexander Jurkevich
- Advanced Light Microscopy Core, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
8
|
Han X, Li J, Zhao Y, Zhang Z, Jiang H, Wang J, Feng X, Zhang Y, Du Z, Wu X, Chen Q, Qi Z. Integrated transcriptomic and proteomic characterization of a chromosome segment substitution line reveals a new regulatory network controlling the seed storage profile of soybean. Food Energy Secur 2022. [DOI: 10.1002/fes3.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Xue Han
- College of Agriculture Northeast Agricultural University Harbin China
- Heilongjiang Academy of Land Reclamation Sciences Harbin China
| | - Jiapeng Li
- College of Agriculture Northeast Agricultural University Harbin China
| | - Yabin Zhao
- College of Agriculture Northeast Agricultural University Harbin China
| | - Zhanguo Zhang
- College of Agriculture Northeast Agricultural University Harbin China
| | - Hongwei Jiang
- Soybean Research Institute Jilin Academy of Agricultural Sciences Changchun China
| | - Jinxing Wang
- Suihua Branch Institute, HeiLongJiang Academy of Agricultural Sciences Suihua China
| | - Xuezhen Feng
- College of Agriculture Northeast Agricultural University Harbin China
| | - Yu Zhang
- College of Agriculture Northeast Agricultural University Harbin China
| | - Ziyue Du
- College of Agriculture Northeast Agricultural University Harbin China
| | - Xiaoxia Wu
- College of Agriculture Northeast Agricultural University Harbin China
| | - Qingshan Chen
- College of Agriculture Northeast Agricultural University Harbin China
| | - Zhaoming Qi
- College of Agriculture Northeast Agricultural University Harbin China
| |
Collapse
|
9
|
Kim W, Nott J, Kim S, Krishnan HB. Soybean seed proteomics: Methods for the isolation, detection, and identification of low abundance proteins. Methods Enzymol 2022; 676:325-345. [DOI: 10.1016/bs.mie.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Dick K, Pattang A, Hooker J, Nissan N, Sadowski M, Barnes B, Tan LH, Burnside D, Phanse S, Aoki H, Babu M, Dehne F, Golshani A, Cober ER, Green JR, Samanfar B. Human-Soybean Allergies: Elucidation of the Seed Proteome and Comprehensive Protein-Protein Interaction Prediction. J Proteome Res 2021; 20:4925-4947. [PMID: 34582199 DOI: 10.1021/acs.jproteome.1c00138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The soybean crop, Glycine max (L.) Merr., is consumed by humans, Homo sapiens, worldwide. While the respective bodies of literature and -omics data for each of these organisms are extensive, comparatively few studies investigate the molecular biological processes occurring between the two. We are interested in elucidating the network of protein-protein interactions (PPIs) involved in human-soybean allergies. To this end, we leverage state-of-the-art sequence-based PPI predictors amenable to predicting the enormous comprehensive interactome between human and soybean. A network-based analytical approach is proposed, leveraging similar interaction profiles to identify candidate allergens and proteins involved in the allergy response. Interestingly, the predicted interactome can be explored from two complementary perspectives: which soybean proteins are predicted to interact with specific human proteins and which human proteins are predicted to interact with specific soybean proteins. A total of eight proteins (six specific to the human proteome and two to the soy proteome) have been identified and supported by the literature to be involved in human health, specifically related to immunological and neurological pathways. This study, beyond generating the most comprehensive human-soybean interactome to date, elucidated a soybean seed interactome and identified several proteins putatively consequential to human health.
Collapse
Affiliation(s)
- Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Arezo Pattang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Michael Sadowski
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bradley Barnes
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Le Hoa Tan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Daniel Burnside
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ashkan Golshani
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Elroy R Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
11
|
Alaswad AA, Song B, Oehrle NW, Wiebold WJ, Mawhinney TP, Krishnan HB. Development of soybean experimental lines with enhanced protein and sulfur amino acid content. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110912. [PMID: 34034869 DOI: 10.1016/j.plantsci.2021.110912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Accepted: 04/14/2021] [Indexed: 05/13/2023]
Abstract
Soybean is the preferred protein source for both poultry and swine feed. However, this preferred status is being challenged due to competition from alternative feed ingredients. To overcome this, it becomes necessary for breeders to develop soybean cultivars that contain higher protein and better nutritional composition. In this study, we have developed experimental soybean lines that not only contain significantly higher amounts of protein but also improved sulfur amino acid content. This objective was achieved by crossing a O-acetylserine sulfhydrylase (OASS) overexpressing transgenic soybean line with elevated levels of sulfur amino acid content (CS) with a high protein Korean soybean cultivar (Lee 5). Introgression of high protein and overexpression of OASS was monitored in the experimental lines at each successive generation (F2-F6) by measuring protein content and OASS activity. The average protein content of transgenic CS and Lee 5 seeds were 34.8 % and 44.7 %, while in the experimental soybean lines the protein content ranged from 41.3 %-47.7 %, respectively. HPLC and inductively coupled plasma-mass spectrometry analyses revealed that all the experimental lines developed in this study contained significantly higher amounts of sulfur containing amino acids and elemental sulfur in the seeds. The sulfur amino acid (cysteine + methionine) content of the experimental lines ranged from 1.1 % to 1.26 % while the parents Lee 5 and CS had 0.79 % and 1.1 %, respectively. SDS-PAGE and western blot analysis demonstrated that the accumulation of Bowman-Birk protease inhibitor and lunasin, two sulfur amino acid rich peptides, were elevated in experimental soybean lines. High-resolution 2D-gel electrophoresis and Delta2D gel analysis validated that an overall increase in the different subunits of 7S β-conglycinin and 11S glycinin were mainly responsible for the observed increase in the total amount of protein in experimental lines.
Collapse
Affiliation(s)
- Alaa A Alaswad
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Bo Song
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO, 65211, USA
| | - William J Wiebold
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA; Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
O′Flynn TD, Hogan SA, Daly DFM, O′Mahony JA, McCarthy NA. Rheological and Solubility Properties of Soy Protein Isolate. Molecules 2021; 26:molecules26103015. [PMID: 34069343 PMCID: PMC8158727 DOI: 10.3390/molecules26103015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Soy protein isolate (SPI) powders often have poor water solubility, particularly at pH values close to neutral, which is an attribute that is an issue for its incorporation into complex nutritional systems. Therefore, the objective of this study was to improve SPI solubility while maintaining low viscosity. Thus, the intention was to examine the solubility and rheological properties of a commercial SPI powder at pH values of 2.0, 6.9, and 9.0, and determine if heat treatment at acidic or alkaline conditions might positively influence protein solubility, once re-adjusted back to pH 6.9. Adjusting the pH of SPI dispersions from pH 6.9 to 2.0 or 9.0 led to an increase in protein solubility with a concomitant increase in viscosity at 20 °C. Meanwhile, heat treatment at 90 °C significantly improved the solubility at all pH values and resulted in a decrease in viscosity in samples heated at pH 9.0. All SPI dispersions measured under low-amplitude rheological conditions showed elastic-like behaviour (i.e., G′ > G″), indicating a weak “gel-like” structure at frequencies less than 10 Hz. In summary, the physical properties of SPI can be manipulated through heat treatment under acidic or alkaline conditions when the protein subunits are dissociated, before re-adjusting to pH 6.9.
Collapse
Affiliation(s)
- Timothy D. O′Flynn
- Teagasc Food Research Centre, Food Chemistry & Technology Department, Moorepark, Fermoy, P61 C996 Cork, Ireland; (T.D.O.); (S.A.H.)
- School of Food and Nutritional Sciences, University College Cork, T12 YT20 Cork, Ireland;
| | - Sean A. Hogan
- Teagasc Food Research Centre, Food Chemistry & Technology Department, Moorepark, Fermoy, P61 C996 Cork, Ireland; (T.D.O.); (S.A.H.)
| | - David F. M. Daly
- Abbott Nutrition, a Division of Abbott Laboratories, Cootehill, H16 RK50 Cavan, Ireland;
| | - James A. O′Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 YT20 Cork, Ireland;
| | - Noel A. McCarthy
- Teagasc Food Research Centre, Food Chemistry & Technology Department, Moorepark, Fermoy, P61 C996 Cork, Ireland; (T.D.O.); (S.A.H.)
- Correspondence: ; Tel.: +353-(0)25-42202
| |
Collapse
|
13
|
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020; 64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The gastrointestinal tract represents a specialized interface between the organism and the external environment. Because of its direct contact with lumen substances, the modulation of digestive functions by dietary substances is supported by a growing body of evidence. Food-derived bioactive peptides have demonstrated a plethora of activities in the organism with increasing interest toward their impact over the digestive system and related physiological effects. This review updates the biological effects of food proteins, specifically milk and soybean proteins, associated to gastrointestinal health and highlights the study of digestion products and released peptides, the identification of the active form/s, and the evaluation of the mechanisms of action underlying their relationship with the digestive cells and receptors. The approach toward the modifications that food proteins and peptides undergo during gastrointestinal digestion and their bioavailability is a crucial step for current investigations on the field. The recent literature on the regulation of digestive functions by peptides has been mostly considered in terms of their influence on gastrointestinal motility and signaling, oxidative damage and inflammation, and malignant cellular proliferation. A final section regarding the actual challenges and future perspectives in this scientific topic is critically discussed.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Samuel Fernández-Tomé. Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León, 62, 28006, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Blanca Hernández-Ledesma. Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
14
|
Kim WS, Sun-Hyung J, Oehrle NW, Jez JM, Krishnan HB. Overexpression of ATP sulfurylase improves the sulfur amino acid content, enhances the accumulation of Bowman-Birk protease inhibitor and suppresses the accumulation of the β-subunit of β-conglycinin in soybean seeds. Sci Rep 2020; 10:14989. [PMID: 32929147 PMCID: PMC7490426 DOI: 10.1038/s41598-020-72134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023] Open
Abstract
ATP sulfurylase, an enzyme which catalyzes the conversion of sulfate to adenosine 5'-phosphosulfate (APS), plays a significant role in controlling sulfur metabolism in plants. In this study, we have expressed soybean plastid ATP sulfurylase isoform 1 in transgenic soybean without its transit peptide under the control of the 35S CaMV promoter. Subcellular fractionation and immunoblot analysis revealed that ATP sulfurylase isoform 1 was predominantly expressed in the cell cytoplasm. Compared with that of untransformed plants, the ATP sulfurylase activity was about 2.5-fold higher in developing seeds. High-resolution 2-D gel electrophoresis and immunoblot analyses revealed that transgenic soybean seeds overexpressing ATP sulfurylase accumulated very low levels of the β-subunit of β-conglycinin. In contrast, the accumulation of the cysteine-rich Bowman-Birk protease inhibitor was several fold higher in transgenic soybean plants when compared to the non-transgenic wild-type seeds. The overall protein content of the transgenic seeds was lowered by about 3% when compared to the wild-type seeds. Metabolite profiling by LC-MS and GC-MS quantified 124 seed metabolites out of which 84 were present in higher amounts and 40 were present in lower amounts in ATP sulfurylase overexpressing seeds compared to the wild-type seeds. Sulfate, cysteine, and some sulfur-containing secondary metabolites accumulated in higher amounts in ATP sulfurylase transgenic seeds. Additionally, ATP sulfurylase overexpressing seeds contained significantly higher amounts of phospholipids, lysophospholipids, diacylglycerols, sterols, and sulfolipids. Importantly, over expression of ATP sulfurylase resulted in 37-52% and 15-19% increases in the protein-bound cysteine and methionine content of transgenic seeds, respectively. Our results demonstrate that manipulating the expression levels of key sulfur assimilatory enzymes could be exploited to improve the nutritive value of soybean seeds.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Jeong Sun-Hyung
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA
| | - Nathan W Oehrle
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA.
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
15
|
Wei X, Kim WS, Song B, Oehrle NW, Liu S, Krishnan HB. Soybean Mutants Lacking Abundant Seed Storage Proteins Are Impaired in Mobilization of Storage Reserves and Germination. ACS OMEGA 2020; 5:8065-8075. [PMID: 32309716 PMCID: PMC7161034 DOI: 10.1021/acsomega.0c00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Spontaneous and radiation-induced mutants of soybean, despite loss of abundant seed proteins, have been reported to grow and reproduce normally without any apparent physiological abnormalities. Here, we report the development and characterization of a soybean line (BSH-2) that lacks several abundant seed storage proteins. One-dimensional and high-resolution two-dimensional gel electrophoresis revealed the absence of the α' and α subunits of β-conglycinin and G1, G2, G4, and G5 glycinin in the newly developed mutant line (BSH-2). Like our earlier developed soybean mutant line (BSH-3), the seeds of BSH-2 also accumulated high levels of free amino acids as compared with wild-type DN47 seeds. An examination of the germination rates revealed that both BSH-2 and BSH-3 had significantly lower germination rates compared with the parent line DN47. Two-dimensional gel electrophoresis analysis demonstrated that these mutants had slower rates of mobilization of seed storage proteins. The delayed mobilization of storage proteins in BSH-2 and BSH-3 seeds was also correlated with a delayed induction of proteolytic activity in the mutants when compared to DN47. Similarly, qRT-PCR analysis revealed distinct expression pattern of genes involved in proteolytic pathway in the mutants when compared to DN47. Transmission electron microscopy observation of soybean seeds at two germination stages revealed striking differences in the breakdown of protein storage vacuoles and lipid bodies in the mutants. Our study demonstrates that BSH-2 and BSH-3 are compromised in mobilization of storage reserves and the absence of abundant storage proteins may affect the seed germination efficiency and post-germinative seedling establishment.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- Key
Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Plant
Genetics Research, USDA-Agricultural Research
Service, Columbia, Missouri 65211, United
States
| | - Won-Seok Kim
- Plant
Science Division, University of Missouri, Columbia, Missouri 65211, United States
| | - Bo Song
- Key
Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Nathan W. Oehrle
- Plant
Genetics Research, USDA-Agricultural Research
Service, Columbia, Missouri 65211, United
States
| | - Shanshan Liu
- Key
Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hari B. Krishnan
- Plant
Genetics Research, USDA-Agricultural Research
Service, Columbia, Missouri 65211, United
States
- Plant
Science Division, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
16
|
Luthria DL, Maria John KM, Marupaka R, Natarajan S. Recent update on methodologies for extraction and analysis of soybean seed proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5572-5580. [PMID: 29971799 DOI: 10.1002/jsfa.9235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Soybean is one of the best sources of plant protein. Development of improved soybean cultivars through classical breeding and new biotech approaches is important to meet the growing global demand for soybeans. There is a critical need to investigate changes in protein content and profiles to ensure the safety and nutritional quality of new soybean varieties and their food products. A proteomics study begins with an optimal combination of extraction, separation and detection approaches. This review attempts to provide a summary of current updates in the methodologies used for extraction, separation and detection of protein from soybean, the basic foundations for good proteomic research. This information can be effectively used to investigate modifications in protein content and profiles in new varieties of soybeans and other crops. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Devanand L Luthria
- Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | | | - Ramesh Marupaka
- Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | | |
Collapse
|
17
|
Krishnan HB, Jez JM. Review: The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:14-21. [PMID: 29807584 DOI: 10.1016/j.plantsci.2018.03.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Soybeans are an excellent source of protein in monogastric diets and rations with ∼75% of soybeans produced worldwide used primarily for animal feed. Even though soybeans are protein-rich and have a well-balanced amino acid profile, the nutritive quality of this important crop could be further improved by elevating the concentrations of certain amino acids. The levels of the sulfur-containing amino acids cysteine and methionine in soybean seed proteins are inadequate for optimal growth and development of monogastric animals, which necessitates dietary supplementation. Subsequently, concerted efforts have been made to increase the concentrations of cysteine and methionine in soybean seeds by both classical breeding and genetic engineering; however, these efforts have met with only limited success. In this review, we discuss the strengths and weakness of different approaches in elevating the sulfur amino acid content of soybeans. Manipulation of enzymes involved in the sulfur assimilatory pathway appears to be a viable avenue for improving sulfur amino acid content. This approach requires a through biochemical characterization of sulfur assimilatory enzymes in soybean seeds. We highlight recent studies targeting key sulfur assimilatory enzymes and the manipulation of sulfur metabolism in transgenic soybeans to improve the nutritive value of soybean proteins.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, MO 65211, USA.
| | - Joseph M Jez
- Department of Biology,Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
18
|
Song B, Oehrle NW, Liu S, Krishnan HB. Development and Characterization of a Soybean Experimental Line Lacking the α' Subunit of β-Conglycinin and G1, G2, and G4 Glycinin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:432-439. [PMID: 29227096 DOI: 10.1021/acs.jafc.7b05011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A soybean experimental line (BSH-3) devoid of a subset of seed storage proteins was developed by crossing a mutant donor line "HS99B" with a Chinese cultivar "Dongnong47" (DN47). One-dimensional and high-resolution 2-D gel electrophoresis revealed the absence of G1 (A1aB2), G2 (A2B1a), and G4 (A5A4B3) glycinin and the α' subunit of β-conglycinin in BSH-3 seeds. Despite the lack of these abundant seed proteins, BSH-3 seeds still accumulated 38% protein. BSH-3 seeds also accumulated high levels of free amino acids as compared with DN47 seeds, particularly arginine, and the amount of several essential amino acids were significantly elevated in BSH-3 seeds. Elevated accumulation of α and β-subunit of β-conglycinin, G5 glycinin, Kunitz trypsin inhibitor, and Bowman-Birk protease inhibitor indicates seed proteome rebalancing in BSH-3 seeds. Immunoblot analysis using sera from soybean allergic patients demonstrated the complete lack of a major allergen (α' subunit of β-conglycinin) in BSH-3 seeds. However, elevated levels of other allergens were found in BSH-3 seeds due to proteome rebalancing. Transmission electron microscopy observation of mature seeds of BSH-3 revealed striking differences in the appearance of the protein storage vacuoles when compared with DN47.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University , Harbin 150030, China
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Nathan W Oehrle
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Shanshan Liu
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University , Harbin 150030, China
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
- Plant Science Division, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
19
|
Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Shannon GJ, Carter TC, Nguyen HT. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1975-1991. [PMID: 28801731 PMCID: PMC5606949 DOI: 10.1007/s00122-017-2955-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/26/2017] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.
Collapse
Affiliation(s)
- Gunvant Patil
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Rouf Mian
- Soybean and Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC, 27607, USA.
| | - Tri Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996-4561, USA
| | - Qijian Song
- Agricultural Research Service, Department of Agriculture United States, Beltsville, MD, 20705, USA
| | - Pengyin Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grover J Shannon
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tommy C Carter
- Soybean and Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC, 27607, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
20
|
Gillman JD, Kim WS, Song B, Oehrle NW, Tawari NR, Liu S, Krishnan HB. Whole-Genome Resequencing Identifies the Molecular Genetic Cause for the Absence of a Gy5 Glycinin Protein in Soybean PI 603408. G3 (BETHESDA, MD.) 2017; 7:2345-2352. [PMID: 28592556 PMCID: PMC5499141 DOI: 10.1534/g3.117.039347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022]
Abstract
During ongoing proteomic analysis of the soybean (Glycine max (L.) Merr) germplasm collection, PI 603408 was identified as a landrace whose seeds lack accumulation of one of the major seed storage glycinin protein subunits. Whole genomic resequencing was used to identify a two-base deletion affecting glycinin 5 The newly discovered deletion was confirmed to be causative through immunological, genetic, and proteomic analysis, and no significant differences in total seed protein content were found to be due to the glycinin 5 loss-of-function mutation per se In addition to focused studies on this one specific glycinin subunit-encoding gene, a total of 1,858,185 nucleotide variants were identified, of which 39,344 were predicted to affect protein coding regions. In order to semiautomate analysis of a large number of soybean gene variants, a new SIFT 4G (Sorting Intolerant From Tolerated 4 Genomes) database was designed to predict the impact of nonsynonymous single nucleotide soybean gene variants, potentially enabling more rapid analysis of soybean resequencing data in the future.
Collapse
Affiliation(s)
- Jason D Gillman
- United States Department of Agriculture - Agricultural Research Service Plant Genetics Research Unit, Columbia, Missouri
- Plant Science Division, University of Missouri, Columbia, Missouri 65211
| | - Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, Missouri 65211
| | - Bo Song
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Nathan W Oehrle
- United States Department of Agriculture - Agricultural Research Service Plant Genetics Research Unit, Columbia, Missouri
| | - Nilesh R Tawari
- Computational and Systems Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Shanshan Liu
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hari B Krishnan
- United States Department of Agriculture - Agricultural Research Service Plant Genetics Research Unit, Columbia, Missouri
- Plant Science Division, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
21
|
Krishnan HB, Natarajan SS, Oehrle NW, Garrett WM, Darwish O. Proteomic Analysis of Pigeonpea (Cajanus cajan) Seeds Reveals the Accumulation of Numerous Stress-Related Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4572-4581. [PMID: 28532149 DOI: 10.1021/acs.jafc.7b00998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pigeonpea is one of the major sources of dietary protein for more than a billion people living in South Asia. This hardy legume is often grown in low-input and risk-prone marginal environments. Considerable research effort has been devoted by a global research consortium to develop genomic resources for the improvement of this legume crop. These efforts have resulted in the elucidation of the complete genome sequence of pigeonpea. Despite these developments, little is known about the seed proteome of this important crop. Here, we report the proteome of pigeonpea seed. To enable the isolation of maximum number of seed proteins, including those that are present in very low amounts, three different protein fractions were obtained by employing different extraction media. High-resolution two-dimensional (2-D) electrophoresis followed by MALDI-TOF-TOF-MS/MS analysis of these protein fractions resulted in the identification of 373 pigeonpea seed proteins. Consistent with the reported high degree of synteny between the pigeonpea and soybean genomes, a large number of pigeonpea seed proteins exhibited significant amino acid homology with soybean seed proteins. Our proteomic analysis identified a large number of stress-related proteins, presumably due to its adaptation to drought-prone environments. The availability of a pigeonpea seed proteome reference map should shed light on the roles of these identified proteins in various biological processes and facilitate the improvement of seed composition.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Savithiry S Natarajan
- Soybean Genomics and Improvement Laboratory, PSI, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Nathan W Oehrle
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Omar Darwish
- Department of Computer and Information Sciences, Towson University , Towson, Maryland 21252, United States
| |
Collapse
|
22
|
Layek SS, Mohanty TK, Kumaresan A, Parks JE. Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Anim Reprod Sci 2016; 172:1-9. [PMID: 27509873 DOI: 10.1016/j.anireprosci.2016.04.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Since the inception of bovine semen cryopreservation, egg yolk and milk based extenders have been used to protect sperm from the detrimental effects of cooling and freezing. In recent years, demand for alternatives to conventional commercial extenders has arisen as the risk of introducing exotic diseases through transporting egg yolk based products has been recognized. Egg yolk can also interfere with sperm evaluation and the presence of particulate material in the extender may reduce fertility. Soybeans contain lecithin, a phospholipid fraction that can substitute for high molecular weight lipoprotein and phospholipids from egg yolk and prevent or ameliorate damage to the sperm plasma membrane that occurs during extension, cooling, and cryopreservation. Soy lecithin based extenders have been evaluated for processing and freezing bovine semen, although extender from soybean milk has not been studied as extensively. Commercially available soy lecithin based extenders are used increasingly but remain under scrutiny and are not universally accepted. With these observations in mind, this review is intended to examine effects of conventional cryopreservation procedures, methods of assessment, and potential for developing soybean extract as an acceptable alternative to traditional egg yolk and milk based extenders for bull sperm cryopreservation.
Collapse
Affiliation(s)
- S S Layek
- Livestock Research Centre, National Dairy Research Institute, Karnal, 132 001 Haryana, India
| | - T K Mohanty
- Livestock Research Centre, National Dairy Research Institute, Karnal, 132 001 Haryana, India
| | - A Kumaresan
- Livestock Research Centre, National Dairy Research Institute, Karnal, 132 001 Haryana, India
| | - J E Parks
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
23
|
Zhang F, Hua L, Fei J, Wang F, Liao Y, Fang W, Chen F, Teng N. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 2016; 17:585. [PMID: 27506621 PMCID: PMC4979184 DOI: 10.1186/s12864-016-2939-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Background Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. Results In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. Conclusions The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China
| | - Lichun Hua
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangsong Fei
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China.
| |
Collapse
|
24
|
Krishnan HB, Wang TTY. An effective and simple procedure to isolate abundant quantities of biologically active chemopreventive Lunasin Protease Inhibitor Concentrate (LPIC) from soybean. Food Chem 2015; 177:120-6. [PMID: 25660866 DOI: 10.1016/j.foodchem.2015.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/08/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022]
Abstract
Lunasin is a 5-kDa soybean bioactive peptide with demonstrated anti-cancer and anti-inflammatory properties. Recently, purification methods have been developed to obtain gram quantities of lunasin. However, these methods are cumbersome, time consuming and cost-prohibitive. To overcome these constrains we have developed a novel method which involves extraction of soybean flour with 30% ethanol followed by preferential precipitation of lunasin and protease inhibitors by calcium. The calcium precipitated protein fraction, which we termed as Lunasin Protease Inhibitor Concentrate (LPIC), contains three abundant proteins with molecular weights of 21, 14 and 5 kDa. This simple procedure yields 3.2g of LPIC from 100g of soybean flour and the entire isolation procedure can be completed in less than 2h. Treatment of THP-1 human monocyte cell lines with LPIC resulted in suppression of lipopolysaccharide-stimulated cytokine expression, demonstrating that the LPIC isolated by our simple procedure is biologically active.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, USDA, 205 Curtis Hall, Columbia, MO 65211, United States; Plant Science Division, University of Missouri, 1-41 Agriculture Bldg., Columbia, MO 65211, United States.
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| |
Collapse
|
25
|
Kim WS, Jez JM, Krishnan HB. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans. FRONTIERS IN PLANT SCIENCE 2014; 5:633. [PMID: 25426134 PMCID: PMC4227475 DOI: 10.3389/fpls.2014.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/24/2014] [Indexed: 05/11/2023]
Abstract
Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans or due to gene silencing. Proteome rebalancing of seed proteins has been shown to promote the accumulation of foreign proteins. In this study, we have utilized RNAi technology to suppress the expression of the β-conglycinin, the abundant 7S seed storage proteins of soybean. Western blot and 2D-gel analysis revealed that β-conglycinin knockdown line (SAM) failed to accumulate the α', α, and β-subunits of β-conglycinin. The proteome rebalanced SAM retained the overall protein and oil content similar to that of wild-type soybean. We also generated transgenic soybean lines expressing methionine-rich 11 kDa δ-zein under the control of either the glycinin or β-conglycinin promoter. The introgression of the 11 kDa δ-zein into β-conglycinin knockdown line did not enhance the accumulation of the 11 kDa δ-zein. However, when the same plants were grown in sulfur-rich medium, we observed 3- to 16-fold increased accumulation of the 11 kDa δ-zein. Transmission electron microscopy observation revealed that seeds grown in sulfur-rich medium contained numerous endoplasmic reticulum derived protein bodies. Our findings suggest that sulfur availability, not proteome rebalancing, is needed for high-level accumulation of heterologous methionine-rich proteins in soybean seeds.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of MissouriColumbia, MO, USA
| | - Joseph M. Jez
- Department of Biology, Washington UniversitySt. Louis, MO, USA
| | - Hari B. Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of MissouriColumbia, MO, USA
| |
Collapse
|
26
|
|
27
|
Palavalli MH, Natarajan SS, Wang TTY, Krishnan HB. Imbibition of soybean seeds in warm water results in the release of copious amounts of Bowman-Birk protease inhibitor, a putative anticarcinogenic agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3135-43. [PMID: 22372424 DOI: 10.1021/jf205308w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protease inhibitors play a protective role against pathogenic microorganisms and herbivorous insects. The two predominant protease inhibitors of soybean seeds are the Kunitz trypsin inhibitor (KTI) and Bowman-Birk protease inhibitor (BBI). In this study, we report that soybean seeds incubated in warm water release large amounts of proteins into the surrounding media. Two-dimensional gel electrophoresis analysis of the seed exudates resulted in the separation of 93 distinct protein spots out of which 90 spots were identified by LC-MS/MS. The basic 7S globulin and the BBI are the two predominant proteins found in the soybean seed exudates. In addition to 7S and 11S seed storage proteins, others known to protect the seeds against pathogens and pests including KTI, peroxidase, α-galactosidase, and endo-1.3-β-glucanase were also identified in the seed exudates. Soybean seed exudate obtained by incubating the seeds in warm water was also able to inhibit the growth of human breast cancer cell line MCF-7. Since soybean seeds release large amounts of enzymatically active BBI when immersed in warm water, our procedure could be exploited as a simplified alternative method for the preparation of BBI concentrate which is being used as a cancer chemoprotective agent.
Collapse
Affiliation(s)
- Manoj H Palavalli
- Plant Science Division, University of Missouri, 1-41 Agriculture Building, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
28
|
Fan R, Wang H, Wang Y, Yu D. Proteomic analysis of soybean defense response induced by cotton worm (prodenia litura, fabricius) feeding. Proteome Sci 2012; 10:16. [PMID: 22397523 PMCID: PMC3325874 DOI: 10.1186/1477-5956-10-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cotton worm is one of the main insects of soybean in southern China. Plants may acquire defense mechanisms that confer protection from predation by herbivores. Induced responses can lead to increased resistance against herbivores in many species. This study focuses on searching changed proteins in soybean defense response induced by cotton worm feeding. RESULTS Ten protein spots that are changed in abundance in response to cotton worm feeding were identified by Two-dimensional gel electrophoresis (2-DE). A total of 11 unique proteins from these spots were identified by MALDI-TOF MS. The mRNA and protein relative expression levels of most changed proteins were up-regulated. These proteins were mainly involved in physiological processes, including active oxygen removal, defense signal transduction, and metabolism regulation. CONCLUSION This is the first proteomic analysis of the soybean defense response induced by cotton worm. The differentially expressed proteins could work together to play a major role in the induced defense response. PAL and SAMS were up-regulated at both the protein and mRNA levels. These genes can be strongest candidates for further functional research.
Collapse
Affiliation(s)
- Rui Fan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | |
Collapse
|
29
|
Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots. BMC Evol Biol 2012; 12:15. [PMID: 22292855 PMCID: PMC3305549 DOI: 10.1186/1471-2148-12-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/31/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. RESULTS Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots. CONCLUSION Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.
Collapse
|
30
|
Rayhan MU, Van K, Kim DH, Kim SI, Kim MY, Lee YH, Lee SH. Identification of Gy4 nulls and development of multiplex PCR-based co-dominant marker for Gy4 and α’ subunit of β-conglycinin in soybean. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Li C, Zhang YM. Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.). Heredity (Edinb) 2011; 106:633-41. [PMID: 20668431 PMCID: PMC3183897 DOI: 10.1038/hdy.2010.97] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 11/09/2022] Open
Abstract
There are two main classes of multi-subunit seed storage proteins, glycinin (11S) and β-conglycinin (7S), which account for approximately 70% of the total protein in a typical soybean seed. The subunits of these two protein classes are encoded by a number of genes. The genomic organization of these genes follows a complex evolutionary history. This research was designed to describe the origin and maintenance of genes in each of these gene families by analyzing the synteny, phylogenies, selection pressure and duplications of the genes in each gene family. The ancestral glycinin gene initially experienced a tandem duplication event; then, the genome underwent two subsequent rounds of whole-genome duplication, thereby resulting in duplication of the glycinin genes, and finally a tandem duplication likely gave rise to the Gy1 and Gy2 genes. The β-conglycinin genes primarily originated through the more recent whole-genome duplication and several tandem duplications. Purifying selection has had a key role in the maintenance of genes in both gene families. In addition, positive selection in the glycinin genes and a large deletion in a β-conglycinin exon contribute to the diversity of the duplicate genes. In summary, our results suggest that the duplicated genes in both gene families prefer to retain similar function throughout evolution and therefore may contribute to phenotypic robustness.
Collapse
Affiliation(s)
- C Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Y-M Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
32
|
Krishnan HB, Nelson RL. Proteomic analysis of high protein soybean (Glycine max) accessions demonstrates the contribution of novel glycinin subunits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2432-9. [PMID: 21344854 DOI: 10.1021/jf104330n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Limited biochemical information is available on soybean accessions that have seed protein content greater than 45% of the seed dry weight. SDS-PAGE analysis of seed proteins from nine soybean accessions revealed significantly higher amount of seed storage proteins in these accessions when compared with that of soybean cultivar Williams 82. High-resolution two-dimensional gel electrophoretic analysis of seed proteins revealed significant differences among several seed storage protein components in these accessions. A total of 51 protein spots were identified using peptide mass fingerprinting (MALDI-TOF MS). The contribution of these proteins to the overall protein content of the accessions was quantified using Delta2D image analysis software. Results showed that among the majority of the nine accessions, the largest difference in higher protein quantity was within the seed 11S storage globulins. The high protein trait from PI407788A was successfully transferred to an experimental line, LG99-469, demonstrating that this trait was transferable and robust.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 108 Curtis Hall, Columbia, Missouri 65211, United States.
| | | |
Collapse
|
33
|
Novák-Hajós M, Szamos J, Gasztonyi M, Hajós G. Characterization of 2-propanol soluble seed proteins in mutant soybean (Glycine max[L.] Merr.) lines. ACTA ALIMENTARIA 2010. [DOI: 10.1556/aalim.39.2010.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Soybean Allergens Affecting North American Patients Identified by 2D Gels and Mass Spectrometry. FOOD ANAL METHOD 2009. [DOI: 10.1007/s12161-009-9090-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Krishnan HB, Oehrle NW, Natarajan SS. A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max. Proteomics 2009; 9:3174-88. [PMID: 19526550 DOI: 10.1002/pmic.200800875] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/01/2009] [Indexed: 11/06/2022]
Abstract
2-D analysis of plant proteomes containing thousands of proteins has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the non-abundant proteins within seeds is difficult when 60-80% is storage proteins. Resolution can be improved through sample fractionation using separation techniques based upon different physiological or biochemical principles. We have developed a fast and simple fractionation technique using 10 mM Ca(2+) to precipitate soybean (Glycine max) seed storage globulins, glycinin and beta-conglycinin. This method removes 87+/-4% of the highly abundant seed proteins from the extract, allowing for 541 previously inconspicuous proteins present in soybean seed to be more detectable (volume increase of >or=50%) using fluorescent detection. Of those 541 enhanced spots, 197 increased more than 2.5-fold when visualized with Coomassie. The majority of those spots were isolated and identified using peptide mass fingerprinting. Fractionation also provided detection of 63 new phosphorylated protein spots and enhanced the visibility of 15 phosphorylated protein spots, using 2-D electrophoretic separation and an in-gel phosphoprotein stain. Application of this methodology toward other legumes, such as peanut, bean, pea, alfalfa and others, also containing high amounts of storage proteins, was examined, and is reported here.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
36
|
Kim WS, Ho HJ, Nelson RL, Krishnan HB. Identification of several gy4 nulls from the USDA soybean germplasm collection provides new genetic resources for the development of high-quality tofu cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11320-6. [PMID: 18991447 DOI: 10.1021/jf801831w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tofu, a cheese-like food made by curdling soy milk, is a major dietary staple of Asian countries. Consumption of tofu and other soy products is steadily increasing in North America due to its well-known health benefits. Soybean A(5), A(4), and B(3) peptide null lines 'Enrei' and 'Raiden' are commonly utilized in breeding programs to develop high-quality tofu cultivars. To expand the genetic diversity it is desirable to identify and utilize other A(5), A(4), and B(3) null genotypes in the development of improved tofu cultivars that are adapted to North American conditions. In this study were screened diverse soybean accessions from the USDA Soybean Germplasm Collection to identify Gy4 mutants, the locus that controls A(5), A(4), and B(3) peptide production. Analysis of total seed proteins from 485 soybean lines by SDS-PAGE enabled the identification of 38 accessions that lacked the A(5), A(4), and B(3) peptides. These accessions showed marked differences in seed size and seed coat color and represented different maturity groups ranging from 0 to IX. To ascertain the molecular basis for the lack of A(5), A(4), and B(3) peptides in the newly identified Gy4 mutants, the nucleotide sequence of a portion of the Gy4 gene was determined from eight soybean accessions representing different maturity groups. These eight Gy4 mutants revealed a single point mutation that changed the translation initiation codon ATG to ATA, resulting in the A(5), A(4), and B(3) null phenotype. The newly identified Gy4 mutants from this study will enable plant breeders to expand the genetic diversity of North American food-quality soybeans and also aid in the development of hypoallergenic soybeans.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, 65211, USA
| | | | | | | |
Collapse
|
37
|
Krishnan HB. Preparative procedures markedly influence the appearance and structural integrity of protein storage vacuoles in soybean seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2907-12. [PMID: 18410116 DOI: 10.1021/jf0735228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In legumes, vacuoles serve as the final depository for storage proteins. The protein storage vacuoles (PSVs) of soybean contain electron-transparent globoid regions in which phytic acid ( myo-inositol-1,2,3,4,5,6-hexakisphosphate) is sequestered. This paper reports the effect of preparative procedures on the appearance and ultrastructural integrity of PSVs in soybeans. Electron microscopy examination of both developing and mature soybean seeds that were postfixed with osmium tetroxide revealed PSVs that had a homogeneous appearance with very few globoid crystals dispersed in them. Numerous electron-dense lipid bodies were readily seen in these cells. Omission of osmium tetroxide strikingly altered the appearance of PSVs and aided the visualization of the location of the globoids in the PSVs. In contrast to the osmicated tissue, lipid bodies appeared as electron-transparent spheres. The choice of dehydration reagent or staining procedure had little influence on the appearance of the PSVs. The results of this study demonstrate the profound effect of osmium tetroxide on the appearance and structural integrity of PSVs in soybean.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, and Plant Science Division, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
38
|
Assessing Glycinin (11S) and β-Conglycinin (7S) Fractions of Soybean Storage Protein by Near-Infrared Spectroscopy. J AM OIL CHEM SOC 2007. [DOI: 10.1007/s11746-007-1144-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Fu CJ, Jez JM, Kerley MS, Allee GL, Krishnan HB. Identification, characterization, epitope mapping, and three-dimensional modeling of the alpha-subunit of beta-conglycinin of soybean, a potential allergen for young pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:4014-20. [PMID: 17439152 DOI: 10.1021/jf070211o] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Soybean meal (SBM), the major byproduct of soybean oil extraction, is the main protein source for swine diets globally. In the United States, 8.6 million metric tons of SBM was used in swine rations in 2004. The pathological effect and immunological response of SBM feeding have been demonstrated in swine. In this study, we have utilized plasma collected from piglet feed with SBM in immunoblot analysis to detect proteins that elicited antigenic responses. We have identified soybean beta-conglycinin alpha-subunit as being a potential allergen for young piglets. Characterization of this protein indicated that deglycosylation and pepsin digestion did not eliminate immunoreactivity of this protein. Epitope mapping utilizing planar cellulose supports technology (SPOT) showed that three peptides spanning amino acids S185-R231 were critical for the allergenicity. A computer-generated three-dimensional structure model of the alpha-subunit of beta-conglycinin indicated that the antigenic epitopes were located on the surface of the protein. Information from this study may assist in the construction of recombinant nonallergenic soybean protein useable for both immunotherapy and the potential production of hypoallergenic soybean plants.
Collapse
Affiliation(s)
- Chunjiang J Fu
- Division of Animal Science, and Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
40
|
Krishnan HB, Natarajan SS, Mahmoud AA, Nelson RL. Identification of glycinin and beta-conglycinin subunits that contribute to the increased protein content of high-protein soybean lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:1839-45. [PMID: 17266327 DOI: 10.1021/jf062497n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Seed protein concentration of commercial soybean cultivars calculated on a dry weight basis ranges from approximately 37 to 42% depending on genotype and location. A concerted research effort is ongoing to further increase protein concentration. Several soybean plant introductions (PI) are known to contain greater than 50% protein. These PIs are exploited by breeders to incorporate the high-protein trait into commercial North American cultivars. Currently, limited information is available on the biochemical and genetic mechanisms that regulate high-proteins. In this study, we have carried out proteomic and molecular analysis of seed proteins of LG00-13260 and its parental high-protein lines PI 427138 and BARC-6. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed that the high-protein lines accumulated increased amounts of beta-conglycinin and glycinins, when compared with Williams 82. High-resolution two-dimensional electrophoresis utilizing pH 4-7 and pH 6-11 ampholytes enabled improved resolution of soybean seed proteins. A total of 38 protein spots, representing the different subunits of beta-conglycinin and glycinin, were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. High-protein was correlated with an increase in the accumulation of most of the subunits representing beta-conglycinin and glycinin. Comparisons of the amino acid profiles of high-protein soybean lines revealed that the concentration of sulfur amino acids, a reflection of protein quality, was not influenced by the protein concentration. Southern blot analysis showed the presence of genotypic variation at the DNA level between PI 427138 and BARC-6 for the genes encoding group1 glycinin, beta-conglycinin, Bowman-Birk inhibitor (BBI), and the Kunitz trypsin inhibitor (KTI). LG00-13260 inherited the allelic variants of the parental line PI 427138 for glycinin, beta-conglycinin, and KTI, while BBI was inherited from the parental line BARC-6. The results of our study indicate that high-seed protein concentration is attributed to greater accumulation of specific components of beta-conglycinin and glycinin subunits presumably mediated by preferential expression of these genes during seed development.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
41
|
Protein quality and identification of the storage protein subunits of tofu and null soybean genotypes, using amino acid analysis, one- and two-dimensional gel electrophoresis, and tandem mass spectrometry. Food Res Int 2007. [DOI: 10.1016/j.foodres.2006.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Zarkadas CG, Gagnon C, Gleddie S, Khanizadeh S, Cober ER, Guillemette RJ. Assessment of the protein quality of fourteen soybean [Glycine max (L.) Merr.] cultivars using amino acid analysis and two-dimensional electrophoresis. Food Res Int 2007. [DOI: 10.1016/j.foodres.2006.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Krishnan HB, Bennett JO, Kim WS, Krishnan AH, Mawhinney TP. Nitrogen lowers the sulfur amino acid content of soybean (Glycine max [L.] Merr.) by regulating the accumulation of Bowman-Birk protease inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:6347-54. [PMID: 16076117 DOI: 10.1021/jf050510i] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Soybeans in general contain 35-40% protein. Efforts are underway to increase further this protein content, thus enhancing their nutritive value. Even though higher protein is a desirable characteristic, whether such an increase will be accompanied by enhanced protein quality is not known. Soybean protein quality could be significantly improved by increasing the concentration of the sulfur-containing amino acids, cysteine and methionine. To ascertain if a correlation existed between protein quantity and quality, a comparison of the amino acids of soybeans differing in protein content was made. Soybeans with higher protein content had a significantly lower percentage of sulfur amino acids, while those with lower protein exhibited a higher content of cysteine and methionine. Nitrogen application elevated the protein content but lowered that of the sulfur amino acids. Transmission electron microscopy examination of thin sections of low protein soybean seeds revealed several protein storage vacuoles that were partially filled with storage proteins. Fluorescence two-dimensional difference gel electrophoresis of soybean seed proteins revealed that nitrogen application favored the accumulation of the beta-subunit of beta-conglycinin while decreasing the accumulation of Bowman-Birk protease inhibitor (BBI), a protein rich in cysteine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 60% 2-propanol-extracted proteins showed a drastic reduction in the accumulation of BBI with increasing protein content. Northern blot analysis indicated that nitrogen had a negative influence on the expression of the BBI gene. Our results indicate that the negative correlation between total protein and sulfur amino acid content is mostly mediated by the differential accumulation of BBI.
Collapse
Affiliation(s)
- Hari B Krishnan
- Agricultural Research Service, U.S. Department of Agriculture, Columbia, Missouri 65211, USA.
| | | | | | | | | |
Collapse
|
44
|
Panthee DR, Kwanyuen P, Sams CE, West DR, Saxton AM, Pantalone VR. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J AM OIL CHEM SOC 2004. [DOI: 10.1007/s11746-004-1014-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. R. Panthee
- ; Department of Plant Sciences; University of Tennessee; 2431 Joe Johnson Dr. 37996 Knoxville TN
| | | | - C. E. Sams
- ; Department of Plant Sciences; University of Tennessee; 2431 Joe Johnson Dr. 37996 Knoxville TN
| | - D. R. West
- ; Department of Plant Sciences; University of Tennessee; 2431 Joe Johnson Dr. 37996 Knoxville TN
| | - A. M. Saxton
- ; Department of Animal Science; University of Tennessee; 37996 Knoxville Tennessee
| | - V. R. Pantalone
- ; Department of Plant Sciences; University of Tennessee; 2431 Joe Johnson Dr. 37996 Knoxville TN
| |
Collapse
|
45
|
Kim WS, Krishnan HB. Expression of an 11 kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:199-210. [PMID: 17147611 DOI: 10.1111/j.1467-7652.2004.00063.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Soybean (Glycine max (L.) Merr.) is an important protein source in human diets and animal feeds. The sulphur content of soybean seed proteins, however, is not optimal for ration formulations. Thus, increasing the methionine and cysteine content of soybean seed proteins would enhance the nutritional quality of this widely utilized legume. We have earlier reported the isolation of an 11 kDa delta-zein protein rich in methionine from the endosperm of the maize (Zea mays L.) inbred line W23a1 [Kim, W.-S. and Krishnan, H.B. (2003) Allelic variation and differential expression of methionine-rich-delta-zeins in maize inbred lines B73 and W23a1. Planta, 217, 66-74]. Using Agrobacterium-mediated transformation, a construct consisting of the coding region of the cloned delta-zein gene under regulation of the beta-conglycinin alpha'-promoter was introduced into the soybean genome. The 11 kDa delta-zein gene was expressed in the seeds of transgenic soybeans, although low-level expression was also detected in the leaves. In situ hybridization indicated that the 11 kDa delta-zein mRNA was expressed predominantly in transitional cells located between the vascular tissue and storage parenchyma cells. Immunohistochemistry of developing transgenic soybeans revealed that the accumulation of the 11 kDa delta-zein occurred primarily in these transitional cells. Expression of the 11 kDa delta-zein gene in transgenic soybean resulted in the formation of two endoplasmic reticulum-derived protein bodies that were designated as either spherical or complex. Immunocytochemical localization demonstrated that both the spherical and complex protein bodies accumulated the 11 kDa delta-zein. Although expression of the 11 kDa delta-zein gene elevated the methionine content of the alcohol-soluble protein fraction 1.5-1.7-fold above that of the non-transgenic line, the overall methionine content of seed flour was not increased. Our results suggest that the confined expression of the 11 kDa delta-zein gene in transitional cells could be limiting the increase in methionine content in transgenic soybean seeds.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Agronomy, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
46
|
Kim WS, Krishnan HB. Allelic variation and differential expression of methionine-rich delta-zeins in maize inbred lines B73 and W23a1. PLANTA 2003; 217:66-74. [PMID: 12721850 DOI: 10.1007/s00425-002-0971-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 12/05/2002] [Indexed: 05/24/2023]
Abstract
The sulfur-amino-acid-rich delta-zeins of maize ( Zea mays L.) are represented by 18-kDa and 10-kDa proteins. We have cloned a novel 11-kDa methionine-rich delta-zein from developing endosperm of the inbred line W23a1. The nucleotide sequence of this new delta-zein is identical to the published 10-kDa delta-zein, except for an insertion of 18 nucleotides between +316 and +333 bp from the translation start site. Antibodies raised against the recombinant 18-kDa delta-zein recognized both the 18-kDa and 10-kDa delta-zein from total seed protein extracts of different maize inbred lines. Western blot analysis revealed differences in the levels of the delta-zeins in different inbred lines and some of the inbred lines lacked either the 10-kDa or the 18-kDa delta-zeins. Northern blot analysis revealed temporal differences in the RNA transcript levels of the 11-kDa and 18-kDa delta-zeins between B73 and W23a1. Such differences were not evident on Western blot analysis where similar protein accumulation profiles were seen for both lines. Immunostaining of paraffin sections of developing maize endosperm with the 18-kDa delta-zein antibodies revealed specific labeling of protein bodies found in the first few starchy layers from the aleurone layer. Electron-microscopic observation of thin-sections of B73 and W23a1 endosperm cells confirmed the presence of recently discovered novel, vacuole-like structures in these inbred lines. Immunogold labeling studies revealed that the delta-zeins were localized in the endoplasmic-reticulum-derived protein bodies and showed no preferential gold particle labeling over either the light or electron-dense material found in these protein bodies.
Collapse
Affiliation(s)
- Won Seok Kim
- Department of Agronomy, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|