1
|
De Silva WGM, Han JZR, Yang C, Tongkao-On W, McCarthy BY, Ince FA, Holland AJA, Tuckey RC, Slominski AT, Abboud M, Dixon KM, Rybchyn MS, Mason RS. Evidence for Involvement of Nonclassical Pathways in the Protection From UV-Induced DNA Damage by Vitamin D-Related Compounds. JBMR Plus 2021; 5:e10555. [PMID: 34950826 PMCID: PMC8674768 DOI: 10.1002/jbm4.10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/26/2023] Open
Abstract
The vitamin D hormone, 1,25dihydroxyvitamin D3 (1,25(OH)2D3), and related compounds derived from vitamin D3 or lumisterol as a result of metabolism via the enzyme CYP11A1, have been shown, when applied 24 hours before or immediately after UV irradiation, to protect human skin cells and skin from DNA damage due to UV exposure, by reducing both cyclobutane pyrimidine dimers (CPD) and oxidative damage in the form of 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐OHdG). We now report that knockdown of either the vitamin D receptor or the endoplasmic reticulum protein ERp57 by small, interfering RNA (siRNA) abolished the reductions in UV‐induced DNA damage with 20‐hydroxyvitamin D3 or 24‐hydroxylumisterol3, as previously shown for 1,25(OH)2D3. Treatment with 1,25(OH)2D3 reduced oxygen consumption rates in UV‐exposed and sham‐exposed human keratinocytes and reduced phosphorylation of cyclic AMP response binding element protein (CREB). Both these actions have been shown to inhibit skin carcinogenesis after chronic UV exposure, consistent with the anticarcinogenic activity of 1,25(OH)2D3. The requirement for a vitamin D receptor for the photoprotective actions of 1,25(OH)2D3 and of naturally occurring CYP11A1‐derived vitamin D–related compounds may explain why mice lacking the vitamin D receptor in skin are more susceptible to UV‐induced skin cancers, whereas mice lacking the 1α‐hydroxylase and thus unable to make 1,25(OH)2D3 are not more susceptible. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Jeremy Zhuo Ru Han
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Chen Yang
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Wannit Tongkao-On
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Bianca Yuko McCarthy
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Furkan Akif Ince
- Anatomy & Histology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Andrew J A Holland
- Department of Paediatric Surgery, The Children's Hospital at Westmead University of Sydney Sydney NSW Australia
| | | | - Andrzej T Slominski
- Department of Dermatology University of Alabama at Birmingham Birmingham AL USA
| | | | - Katie Marie Dixon
- Anatomy & Histology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Mark Stephen Rybchyn
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia.,School of Chemical Engineering University of NSW Sydney NSW Australia
| | - Rebecca Sara Mason
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia.,School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
2
|
Lin Z, McClure MJ, Zhao J, Ramey AN, Asmussen N, Hyzy SL, Schwartz Z, Boyan BD. MicroRNA Contents in Matrix Vesicles Produced by Growth Plate Chondrocytes are Cell Maturation Dependent. Sci Rep 2018; 8:3609. [PMID: 29483516 PMCID: PMC5826934 DOI: 10.1038/s41598-018-21517-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/06/2018] [Indexed: 01/01/2023] Open
Abstract
Chondrocytes at different maturation states in the growth plate produce matrix vesicles (MVs), membrane organelles found in the extracellular matrix, with a wide range of contents, such as matrix processing enzymes and receptors for hormones. We have shown that MVs harvested from growth zone (GC) chondrocyte cultures contain abundant small RNAs, including miRNAs. Here, we determined whether RNA also exists in MVs produced by less mature resting zone (RC) chondrocytes and, if so, whether it differs from the RNA in MVs produced by GC cells. Our results showed that RNA, small RNA specifically, was present in RC-MVs, and it was well-protected from RNase by the phospholipid membrane. A group of miRNAs was enriched in RC-MVs compared RC-cells, suggesting that miRNAs are selectively packaged into MVs. High throughput array and RNA sequencing showed that ~39% miRNAs were differentially expressed between RC-MVs and GC-MVs. Individual RT-qPCR also confirmed that miR-122-5p and miR-150-5p were expressed at significantly higher levels in RC-MVs compared to GC-MVs. This study showed that growth plate chondrocytes at different differentiation stages produce different MVs with different miRNA contents, further supporting extracellular vesicle miRNAs play a role as "matrisomes" that mediate the cell-cell communication in cartilage and bone development.
Collapse
Affiliation(s)
- Zhao Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael J McClure
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Junjun Zhao
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- General Dentistry, 9th People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Allison N Ramey
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Niels Asmussen
- School of Integrated Life Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Hegde V, Jo JE, Andreopoulou P, Lane JM. Effect of osteoporosis medications on fracture healing. Osteoporos Int 2016; 27:861-871. [PMID: 26419471 DOI: 10.1007/s00198-015-3331-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/17/2015] [Indexed: 01/19/2023]
Abstract
Antiosteoporotic medications are often used to concurrently treat a patient's fragility fractures and underlying osteoporosis. This review evaluates the existing literature from animal and clinical models to determine these drugs' effects on fracture healing. The data suggest that these medications may enhance bone healing, yet more thorough prospective studies are warranted. Pharmacologic agents that influence bone remodeling are an essential component of osteoporosis management. Because many patients are first diagnosed with osteoporosis when presenting with a fragility fracture, it is critical to understand how osteoporotic medications influence fracture healing. Vitamin D and its analogs are essential for the mineralization of the callus and may also play a role in callus formation and remodeling that enhances biomechanical strength. In animal models, antiresorptive medications, including bisphosphonates, denosumab, calcitonin, estrogen, and raloxifene, do not impede endochondral fracture healing but may delay repair due to impaired remodeling. Although bisphosphonates and denosumab delay callus remodeling, they increase callus volume and result in unaltered biomechanical properties. Calcitonin increases cartilage formation and callus maturation, resulting in improved biomechanical properties. Parathyroid hormone, an anabolic agent, has demonstrated promise in animal models, resulting in accelerated healing with increased callus volume and density, more rapid remodeling to mature bone, and improved biomechanical properties. Clinical data with parathyroid hormone have demonstrated enhanced healing in distal radius and pelvic fractures as well as postoperatively following spine surgery. Strontium ranelate, which may have both antiresorptive and anabolic properties, affects fracture healing differently in normal and osteoporotic bone. While there is no effect in normal bone, in osteoporotic bone, strontium ranelate increases callus bone formation, maturity, and mineralization; forms greater and denser trabeculae; and improves biomechanical properties. Further clinical studies with these medications are needed to fully understand their effects on fracture healing in order to simultaneously treat fragility fractures and underlying osteoporosis.
Collapse
Affiliation(s)
- V Hegde
- Department of Orthopaedic Surgery, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 755, Los Angeles, CA, 90095, USA
| | - J E Jo
- Weill Cornell Medical College, 445 E 69th St, New York, NY, 10021, USA.
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 475 East 72nd Street, Ground Floor, New York, NY, 10021, USA.
- , 2900 Main St. Apt 332, Bridgeport, CT, 06606, USA.
| | - P Andreopoulou
- Department of Endocrinology, Hospital for Special Surgery, 519 East 72nd St, Suite 202, New York, NY, 10021, USA
| | - J M Lane
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 475 East 72nd Street, Ground Floor, New York, NY, 10021, USA
| |
Collapse
|
4
|
Doroudi M, Plaisance MC, Boyan BD, Schwartz Z. Membrane actions of 1α,25(OH)2D3 are mediated by Ca(2+)/calmodulin-dependent protein kinase II in bone and cartilage cells. J Steroid Biochem Mol Biol 2015; 145:65-74. [PMID: 25263660 DOI: 10.1016/j.jsbmb.2014.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
1α,25(OH)2D3 regulates osteoblasts and chondrocytes via its membrane-associated receptor, protein disulfide isomerase A3 (Pdia3) in caveolae. 1α,25(OH)2D3 binding to Pdia3 leads to phospholipase-A2 (PLA2)-activating protein (PLAA) activation, stimulating cytosolic PLA2 and resulting in prostaglandin E2 (PGE2) release and PKCα activation, subsequently stimulating differentiation. However, how PLAA transmits the signal to cPLA2 is unknown. Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) activation is required for PLA2 activation in vascular smooth muscle cells, suggesting a similar role in 1α,25(OH)2D3-dependent signaling. The aim of the present study is to evaluate the roles of CaM and CaMKII as mediators of 1α,25(OH)2D3-stimulated PLAA-dependent activation of cPLA2 and PKCα, and downstream biological effects. The results indicated that 1α,25(OH)2D3 and PLAA-peptide increased CaMKII activity within 9 min. Silencing Cav-1, Pdia3 or Plaa in osteoblasts suppressed this effect. Similarly, antibodies against Plaa or Pdia3 blocked 1α,25(OH)2D3-dependent CaMKII. Caveolae disruption abolished activation of CaMKII by 1α,25(OH)2D3 or PLAA. CaMKII-specific and CaM-specific inhibitors reduced cPLA2 and PKC activities, PGE2 release and osteoblast maturation markers in response to 1α,25(OH)2D3. Camk2a-silenced but not Camk2b-silenced osteoblasts showed comparable effects. Immunoprecipitation showed increased interaction of CaM and PLAA in response to 1α,25(OH)2D3. The results indicate that membrane actions of 1α,25(OH)2D3 via Pdia3 triggered the interaction between PLAA and CaM, leading to dissociation of CaM from caveolae, activation of CaMKII, and downstream PLA2 activation, and suggest that CaMKII plays a major role in membrane-mediated actions of 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Maryam Doroudi
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Marc C Plaisance
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Barbara D Boyan
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA 30332, USA; Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Doroudi M, Boyan BD, Schwartz Z. Rapid 1α,25(OH)₂D ₃ membrane-mediated activation of Ca²⁺/calmodulin-dependent protein kinase II in growth plate chondrocytes requires Pdia3, PLAA and caveolae. Connect Tissue Res 2014; 55 Suppl 1:125-8. [PMID: 25158196 DOI: 10.3109/03008207.2014.923882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1α,25-Dihydroxy vitamin D3 [1α,25(OH)2D3] regulates growth zone chondrocytes (GC) via classical steroid hormone receptor-mediated gene transcription and by initiating rapid membrane-mediated signaling pathways. 1α,25(OH)2D3 initiates its membrane effects via its specific membrane-associated receptor (Pdia3) in caveolae. 1α,25(OH)2D3 binding to Pdia3 leads to phospholipase-A2 (PLA2)-activating protein (PLAA) activation, stimulating PLA2, resulting in prostaglandin E2 (PGE2) release and protein kinase C activation. Recently, we reported that 1α,25(OH)2D3 rapidly activates Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in GC cells. However, the roles of Pdia3, PLAA and caveolae in 1α,25(OH)2D3-dependent rapid activation of CaMKII are not clear. The aim of the present study was to evaluate the roles of Pdia3, PLAA and caveolae in 1α,25(OH)2D3 membrane-stimulated CaMKII activation. Pre-treating chondrocytes from the growth zone of the rat costochondral cartilage with antibodies against PLAA or Pdia3 blocked activation of CaMKII by 1α,25(OH)2D3. PLAA peptide rapidly activated CaMKII in GC cells. Caveolae disruption abolished CaMKII activation in response to 1α,25(OH)2D3 or PLAA peptide treatment. Immunoprecipitation studies showed increased CaM binding to PLAA in response to 1α,25(OH)2D3. The results indicated that Pdia3, PLAA and caveolae are required for rapid 1α,25(OH)2D3 membrane-mediated activation of CaMKII. 1α,25(OH)2D3 signaling via Pdia3 receptor triggered the interaction between PLAA and CaM suggesting that CaM may play a major role linking PLAA to CaMKII in membrane-mediated actions of 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Maryam Doroudi
- School of Biology, Georgia Institute of Technology , Atlanta, GA , USA and
| | | | | |
Collapse
|
6
|
Doroudi M, Olivares-Navarrete R, Hyzy SL, Boyan BD, Schwartz Z. Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2365-75. [PMID: 24946135 DOI: 10.1016/j.bbamcr.2014.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
Abstract
Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral ossification. In osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its calcium-dependent effects via intracellular calcium release, activating PKC and CaMKII. We investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated PKC in caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 1α,25(OH)2D3 reduced stimulatory effects of Wnt5a on PKC in a dose-dependent manner. In contrast, Wnt5a had a biphasic effect on 1α,25(OH)2D3-stimulated PKC activation; 50ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-stimulated PKC activation. Western blots showed that Wnt receptors Frizzled2 (FZD2) and Frizzled5 (FZD5), and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were localized to caveolae. Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via similar receptor components and suggests that these pathways may interact.
Collapse
Affiliation(s)
- Maryam Doroudi
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara D Boyan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78284, USA
| |
Collapse
|
7
|
Curtis KM, Aenlle KK, Roos BA, Howard GA. 24R,25-dihydroxyvitamin D3 promotes the osteoblastic differentiation of human mesenchymal stem cells. Mol Endocrinol 2014; 28:644-58. [PMID: 24597546 DOI: 10.1210/me.2013-1241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is considered the most biologically active vitamin D3 metabolite, the vitamin D3 prohormone, 25-hydroxyvitamin D3 [25(OH)D3], is metabolized into other forms, including 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3]. Herein we show that 24R,25(OH)2D3 is fundamental for osteoblastic differentiation of human mesenchymal stem cells (hMSCs). Our approach involved analyses of cell proliferation, alkaline phosphatase activity, and pro-osteogenic genes (collagen 1A1, osteocalcin, vitamin D receptor [VDR], vitamin D3-hydroxylating enzymes [cytochrome P450 hydroxylases: CYP2R1, CYP27A1, CYP27B1 and CYP24A1]) and assessment of Ca(2+) mineralization of extracellular matrix. 24R,25(OH)2D3 inhibited hMSC proliferation, decreased 1α-hydroxylase (CYP27B) expression, thereby reducing the ability of hMSCs to convert 25(OH)D3 to 1α,25(OH)2D3, and promoted osteoblastic differentiation through increased alkaline phosphatase activity and Ca(2+) mineralization. 24R,25(OH)2D3 decreased expression of the 1α,25(OH)2D3 receptor, VDR. 24R,25(OH)2D3 but not 1α,25(OH)2D3 induced Ca(2+) mineralization dependent on the absence of the glucocorticoid analog, dexamethasone. To elucidate the mechanism(s) for dexamethasone-independent 1α,25(OH)2D3 inhibition/24R,25(OH)2D3 induction of Ca(2+) mineralization, we demonstrated that 1α,25(OH)2D3 increased whereas 24R,25(OH)2D3 decreased reactive oxygen species (ROS) production. 25(OH)D3 also decreased ROS production, potentially by conversion to 24R,25(OH)2D3. Upon inhibition of the vitamin D3-metabolizing enzymes (cytochrome P450s), 25(OH)D3 increased ROS production, potentially due to its known (low) affinity for VDR. We hypothesize that vitamin D3 actions on osteoblastic differentiation involve a regulatory relationship between 24R,25(OH)2D3 and 1α,25(OH)2D3. These results implicate 24R,25(OH)2D3 as a key player during hMSC maturation and bone development and support the concept that 24R,25(OH)2D3 has a bioactive role in the vitamin D3 endocrine system.
Collapse
Affiliation(s)
- Kevin M Curtis
- Geriatric Research, Education, and Clinical Center and Research Service (K.M.C., K.K.A., B.A.R., G.A.H.), Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida 33125; and Departments of Biochemistry and Molecular Biology (K.M.C., G.A.H.), Medicine (B.A.R., G.A.H.), and Neurology (B.A.R.), University of Miami Miller School of Medicine, Miami, Florida 33101
| | | | | | | |
Collapse
|
8
|
Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1α,25(OH)2D3. Cell Signal 2013; 25:2362-73. [DOI: 10.1016/j.cellsig.2013.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/19/2013] [Indexed: 12/29/2022]
|
9
|
Proszkowiec-Weglarz M, Angel R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00743] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Chen J, Lobachev KS, Grindel BJ, Farach-Carson MC, Hyzy SL, El-Baradie KB, Olivares-Navarrete R, Doroudi M, Boyan BD, Schwartz Z. Chaperone properties of pdia3 participate in rapid membrane actions of 1α,25-dihydroxyvitamin d3. Mol Endocrinol 2013; 27:1065-77. [PMID: 23660595 DOI: 10.1210/me.2012-1277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protein disulfide isomerase family A, member 3 (Pdia3) mediates many of the plasma membrane (PM)-associated rapid responses to 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3). It is not well understood how Pdia3, which is an endoplasmic reticulum (ER) chaperone, functions as a PM receptor for 1α,25(OH)2D3. We mutated 3 amino acids (K214 and R282 in the calreticulin interaction site and C406 in the isomerase catalytic site), which are important for Pdia3's ER chaperone function, and examined their role in responses to 1α,25(OH)2D3. Pdia3 constructs with and without the ER retention signal KDEL were used to investigate the PM requirement for Pdia3. Finally, we determined whether palmitoylation and/or myristoylation were required for Pdia3-mediated responses to 1α,25(OH)2D3. Overexpressing the Pdia3 R282A mutant in MC3T3-E1 cells increased PM phospholipase A2-activating protein, Rous sarcoma oncogene (c-Src), and caveolin-1 but blocked increases in 1α,25(OH)2D3-stimulated protein kinase C (PKC) seen in cells overexpressing wild-type Pdia3 (Pdia3Ovr cells). Cells overexpressing Pdia3 with K214A and C406S mutations had PKC activity comparable to untreated controls, indicating that the native response to 1α,25(OH)2D3 also was blocked. Overexpressing Pdia3[-KDEL] increased PM localization and augmented baseline PKC, but the stimulatory effect of 1α,25(OH)2D3 was comparable to that seen in wild-type cultures. In contrast, 1α,25(OH)2D3 increased prostaglandin E2 in Pdia3[±KDEL] cells. Although neither palmitoylation nor myristoylation was required for PM association of Pdia3, myristoylation was needed for PKC activation. These data indicate that both the chaperone functional domains and the subcellular location of Pdia3 control rapid membrane responses to 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
A potential influence of vitamin D on HIV infection and bone disease in HIV-positive patients. HIV & AIDS REVIEW 2013. [DOI: 10.1016/j.hivar.2013.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Doroudi M, Schwartz Z, Boyan BD. Phospholipase A2 activating protein is required for 1α,25-dihydroxyvitamin D3 dependent rapid activation of protein kinase C via Pdia3. J Steroid Biochem Mol Biol 2012; 132:48-56. [PMID: 22484374 DOI: 10.1016/j.jsbmb.2012.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/12/2012] [Accepted: 03/06/2012] [Indexed: 11/25/2022]
Abstract
1α,25-Dihydroxyvitamin D(3) (1,25D3) regulates musculoskeletal cells via two different mechanisms: vitamin D receptor (VDR)-dependent gene transcription and rapid membrane-signaling via VDR as well as protein disulfide isomerase, family A, member 3 (Pdia3). In chondrocytes from the costochondral cartilage growth zone (GC), ligand binding to Pdia3 causes a rapid increase in phospholipase A(2) (PLA(2)) activity leading to release of arachidonic acid and formation of lysophospholipid (LPL). LPL activates phospholipase C (PLC), and resulting inositol trisphosphate (IP(3)) and diacylglycerol contribute to PKCα activation and downstream activation of ERK1/2. PLA(2) activating protein (PLAA) is increased in the growth zone of rat growth plates suggesting that it mediates the 1,25D3-dependent pathway. This study examined the role of PLAA in mediating 1,25D3-dependent PKC activation using GC cells and MC3T3-E1 wild-type and PLAA-silenced osteoblasts as models. PLAA, Pdia3, and caveolin-1 (Cav-1) were detected in plasma membranes and caveolae of GC and MC3T3-E1 cells. Pdia3-immunoprecipitated samples were positive for PLAA only after 1,25D3 treatment. Cav-1 was detected when immunoprecipitated with anti-Pdia3 and anti-PLAA in both vehicle and 1,25D3 treated cells. These observations were confirmed by immunohistochemistry. 1,25D3 failed to activate PLA(2) and PKC or cause PGE(2) release in PLAA-silenced cells. PLAA-antibody successfully blocked the PLAA protein and consequently suppressed PKC activity in GC and MC3T3-E1 cells. Crosslinking studies confirmed the localization of PLAA on the extracellular face on the plasma membrane in untreated MC3T3-E1 cells. Taken together, our results suggest that PLAA is an important mediator of 1α,25(OH)(2)D(3) rapid membrane mediated signaling. 1α,25(OH)(2)D(3) likely causes conformational changes bringing Pdia3 into proximity with PLAA, and aiding in transducing the signal from caveolae to the plasma membrane.
Collapse
Affiliation(s)
- Maryam Doroudi
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
13
|
Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, Murad MH, Kovacs CS. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 2012; 33:456-92. [PMID: 22596255 PMCID: PMC3365859 DOI: 10.1210/er.2012-1000] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/18/2012] [Indexed: 12/18/2022]
Abstract
Significant controversy has emerged over the last decade concerning the effects of vitamin D on skeletal and nonskeletal tissues. The demonstration that the vitamin D receptor is expressed in virtually all cells of the body and the growing body of observational data supporting a relationship of serum 25-hydroxyvitamin D to chronic metabolic, cardiovascular, and neoplastic diseases have led to widespread utilization of vitamin D supplementation for the prevention and treatment of numerous disorders. In this paper, we review both the basic and clinical aspects of vitamin D in relation to nonskeletal organ systems. We begin by focusing on the molecular aspects of vitamin D, primarily by examining the structure and function of the vitamin D receptor. This is followed by a systematic review according to tissue type of the inherent biological plausibility, the strength of the observational data, and the levels of evidence that support or refute an association between vitamin D levels or supplementation and maternal/child health as well as various disease states. Although observational studies support a strong case for an association between vitamin D and musculoskeletal, cardiovascular, neoplastic, and metabolic disorders, there remains a paucity of large-scale and long-term randomized clinical trials. Thus, at this time, more studies are needed to definitively conclude that vitamin D can offer preventive and therapeutic benefits across a wide range of physiological states and chronic nonskeletal disorders.
Collapse
|
14
|
Abstract
All cells comprising the skeleton-chondrocytes, osteoblasts, and osteoclasts-contain both the vitamin D receptor and the enzyme CYP27B1 required for producing the active metabolite of vitamin D, 1,25 dihydroxyvitamin D. Direct effects of 25 hydroxyvitamin D and 1,25 dihydroxyvitamin D on these bone cells have been demonstrated. However, the major skeletal manifestations of vitamin D deficiency or mutations in the vitamin D receptor and CYP27B1, namely rickets and osteomalacia, can be corrected by increasing the intestinal absorption of calcium and phosphate, indicating the importance of indirect effects. On the other hand, these dietary manipulations do not reverse defects in osteoblast or osteoclast function that lead to osteopenic bone. This review discusses the relative importance of the direct versus indirect actions of vitamin D on bone, and provides guidelines for the clinical use of vitamin D to prevent/treat bone loss and fractures.
Collapse
Affiliation(s)
- Daniel D Bikle
- University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Donkena KV, Young CYF. Vitamin d, sunlight and prostate cancer risk. Adv Prev Med 2011; 2011:281863. [PMID: 21991434 PMCID: PMC3170721 DOI: 10.4061/2011/281863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR), and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention.
Collapse
Affiliation(s)
- Krishna Vanaja Donkena
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Charles Y. F. Young
- Departments of Urology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Wang Y, Chen J, Lee CSD, Nizkorodov A, Riemenschneider K, Martin D, Hyzy S, Schwartz Z, Boyan BD. Disruption of Pdia3 gene results in bone abnormality and affects 1alpha,25-dihydroxy-vitamin D3-induced rapid activation of PKC. J Steroid Biochem Mol Biol 2010; 121:257-60. [PMID: 20576531 DOI: 10.1016/j.jsbmb.2010.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 11/27/2022]
Abstract
1,25-dihydroxy-vitamin D3 [1alpha,25(OH)2D3] is a critical regulator of bone development. Protein disulfide isomerase A3 (Pdia3) is a multifunctional protein that has been associated with rapid membrane-initiated signalling by 1alpha,25(OH)2D3 in several cell types. To identify the physiological roles of Pdia3 in skeletal development, we generated Pdia3-deficient mice. No homozygous mice were observed at birth, indicating that the targeted disruption of the Pdia3 gene resulted in embryonic lethality. Pdia3 deficiency also resulted in skeletal manifestations as revealed by muCT analysis of femurs from 15-week-old heterozygous mice. The Pdia3+/- mice had increased metaphyseal bone volume and trabeculae compared to Pdia3+/+ mice. In contrast, the area and thickness of cortical bone at the femoral mid-diaphysis of Pdia3+/+ mice significantly exceeded that of Pdia3+/- mice. In vitro studies in osteoblast-like MC3T3-E1 cells showed that silencing of Pdia3 abolished 1alpha,25(OH)2D3-induced rapid activation of protein kinase C (PKC) while overexpression of Pdia3 resulted in augmentation of PKC activity by 1alpha,25(OH)2D3. Taken together, these data indicated that Pdia3 plays a crucial role in 1alpha,25(OH)2D3-regulated bone formation and the Pdia3-PKC signalling pathway might be involved in this process.
Collapse
Affiliation(s)
- Yun Wang
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
25-Hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand. J Steroid Biochem Mol Biol 2009; 118:162-70. [PMID: 19944755 DOI: 10.1016/j.jsbmb.2009.11.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 12/22/2022]
Abstract
25-Hydroxyvitamin D(3) 1alpha-hydroxylase encoded by CYP27B1 converts 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), a vitamin D receptor ligand. 25-Hydroxyvitamin D(3) has been regarded as a prohormone. Using Cyp27b1 knockout cells and a 1alpha-hydroxylase-specific inhibitor we provide in four cellular systems, primary mouse kidney, skin, prostate cells and human MCF-7 breast cancer cells, evidence that 25-hydroxyvitamin D(3) has direct gene regulatory properties. The high expression of megalin, involved in 25-hydroxyvitamin D(3) internalisation, in Cyp27b1(-/-) cells explains their higher sensitivity to 25-hydroxyvitamin D(3). 25-Hydroxyvitamin D(3) action depends on the vitamin D receptor signalling supported by the unresponsiveness of the vitamin D receptor knockout cells. Molecular dynamics simulations show the identical binding mode for both 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) with the larger volume of the ligand-binding pocket for 25-hydroxyvitamin D(3). Furthermore, we demonstrate direct anti-proliferative effects of 25-hydroxyvitamin D(3) in human LNCaP prostate cancer cells. The synergistic effect of 25-hydroxyvitamin D(3) with 1alpha,25-dihydroxyvitamin D(3) in Cyp27b1(-/-) cells further demonstrates the agonistic action of 25-hydroxyvitamin D(3) and suggests that a synergism between 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) might be physiologically important. In conclusion, 25-hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand with gene regulatory and anti-proliferative properties.
Collapse
|
18
|
Peery SL, Nemere I. Contributions of pro-oxidant and anti-oxidant conditions to the actions of 24,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on phosphate uptake in intestinal cells. J Cell Biochem 2007; 101:1176-84. [PMID: 17226781 DOI: 10.1002/jcb.21238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly stimulates the uptake of phosphate in isolated chick intestinal cells, while the steroid 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] inhibits the rapid stimulation by 1,25(OH)2D3. Earlier work in this laboratory has indicated that a cellular binding protein for 24,25(OH)2D3 is the enzyme catalase. Since binding resulted in decreased catalase activity and increased H2O2 production, studies were undertaken to determine if pro-oxidant conditions mimicked the inhibitory actions of 24,25(OH)2D3, and anti-oxidant conditions prevented the inhibitory actions of 24,25(OH)2D3. An antibody against the 24,25(OH)2D3 binding protein was found to neutralize the inhibitory effect of the steroid on 1,25(OH)2D3-mediated 32P uptake. Incubation of cells in the presence of 50 nM catalase was also found to alleviate inhibition. In another series of experiments, isolated intestinal epithelial cells were incubated as controls or with 1,25(OH)2D3, each in the presence of the catalase inhibitor 3-amino-1,2,4-triazole, or with 1,25(OH)2D3 alone. Cells exposed to hormone alone again showed an increased accumulation of 32P, while cells treated with catalase inhibitor and hormone had uptake levels that were indistinguishable from controls. We tested whether inactivation of protein kinase C (PKC), the signaling pathway for 32P uptake, occurred. Incubation of cells with phorbol-13-myristate (PMA) increased 32P uptake, while cells pretreated with 50 microM H2O2 prior to PMA did not exhibit increased uptake. Likewise, PMA significantly increased PKC activity while cells exposed to H2O2 prior to PMA did not. It is concluded that catalase has a central role in mediating rapid responses to steroid hormones.
Collapse
Affiliation(s)
- Sven L Peery
- Department of Nutrition and Food Sciences and the Center for Integrated BioSystems, Utah State University, Logan, Utah 84322-8700, USA
| | | |
Collapse
|
19
|
Boyan BD, Wong KL, Wang L, Yao H, Guldberg RE, Drab M, Jo H, Schwartz Z. Regulation of growth plate chondrocytes by 1,25-dihydroxyvitamin D3 requires caveolae and caveolin-1. J Bone Miner Res 2006; 21:1637-47. [PMID: 16995819 DOI: 10.1359/jbmr.060713] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We examined the role of caveolae and caveolin-1 in the mechanism of 1alpha,25(OH)(2)D(3) action in growth plate chondrocytes. We found that caveolae are required for rapid 1alpha,25(OH)(2)D(3)-dependent PKC signaling, and caveolin-1 must be present based on studies using chondrocytes from Cav-1(-/-) mice. INTRODUCTION 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] regulates endochondral ossification in part through membrane-associated mechanisms, including protein kinase C (PKC) signaling activated by a membrane-associated 1alpha,25(OH)(2)D(3)-binding protein, ERp60. We tested the hypothesis that caveolae are required for 1alpha,25(OH)(2)D(3) action and play an important role in regulating chondrocyte biology and growth plate physiology. MATERIALS AND METHODS Rat costochondral chondrocytes were examined for caveolae by transmission electron microscopy of cultured cells and of cells in situ. Western blots and confocal microscopy were used to detect caveolae proteins including caveolin-1 (Cav-1) and 1alpha,25(OH)(2)D(3) receptors. Caveolae cholesterol was depleted with beta-cyclodextrin (CD) and effects of 1alpha,25(OH)(2)D(3) on PKC, DNA synthesis, alkaline phosphatase, and proteoglycan production determined. Chondrocytes from Cav-1(-/-) and C57BL/6 wildtype mice were also treated with 1alpha,25(OH)(2)D(3). Epiphyses and costochondral junctions of 8-week-old male Cav-1(-/-) and wildtype mice (N = 8) were compared by histomorphometry and microCT. Data were analyzed by ANOVA and Bonferroni for posthoc comparisons. RESULTS Growth zone chondrocytes had caveolae and Cav-1, -2, and -3. Resting zone chondrocytes, which do not exhibit a rapid 1alpha,25(OH)(2)D(3)-dependent increase in PKC activity, also had these caveolins, but caveolae were larger and fewer in number. ERp60 but not VDR co-localized with Cav-1 in plasma membranes and in lipid rafts. CD-treatment blocked 1alpha,25(OH)(2)D(3) effects on all parameters tested. The Cav-1(-/-) cells did not respond to 1alpha,25(OH)(2)D(3), although 1alpha,25(OH)(2)D(3) increased PKC, alkaline phosphatase, and [(35)S]-sulfate incorporation in wildtype C57BL/6 cells. Histology and microCT showed that Cav-1(-/-) growth plates were longer and had more hypertrophic cells in each column. Growth plate changes were reflected in the metaphysis. CONCLUSIONS The membrane-mediated effects of 1alpha,25(OH)(2)D(3) require caveolae and Cav-1, and Cav-1 deficiency results in altered growth plate physiology.
Collapse
Affiliation(s)
- Barbara D Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Boyan BD, Wang L, Wong KL, Jo H, Schwartz Z. Plasma membrane requirements for 1alpha,25(OH)2D3 dependent PKC signaling in chondrocytes and osteoblasts. Steroids 2006; 71:286-90. [PMID: 16325216 DOI: 10.1016/j.steroids.2005.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] acts on chondrocytes and osteoblasts through traditional nuclear Vitamin D receptor (VDR) mechanisms as well as through rapid actions on plasma membranes that initiate intracellular signaling pathways. We have investigated the mechanisms involved in activation of protein kinase C (PKC) and downstream biological responses that depend on the latter pathway. These studies show that PKC activation depends on presence of a membrane receptor ERp60 and rapid increases in phospholipase A(2) (PLA(2)) activity. Cells that are responsive to 1alpha,25(OH)(2)D(3) express PLA(2) activating protein (PLAA), suggesting a link between ERp60 and PLA(2). Increased PLA(2) results in increased arachidonic acid release and formation of lysophospholipid, which then activates phospholipase C beta (PLCbeta), leading to rapid formation of inositol-trisphosphate (IP3) and diacylglycerol (DAG). PLA(2), PLC, and DAG are all associated with lipid rafts including caveolae in many cells, suggesting that the caveolar environment may be an important mediator of PKC activation by 1alpha,25(OH)(2)D(3). Here, we use the VDR(-/-) mouse costochondral cartilage growth plate to examine the expression of ERp60 and PLAA in vivo in 1alpha,25(OH)(2)D(3)-responsive hypertrophic chondrocytes (growth zone cells) and in resting zone cells that do not respond to this Vitamin D metabolite in vitro. In addition, we determined if intact lipid rafts are required for the response of rat costochondral cartilage growth zone cells to 1alpha,25(OH)(2)D(3). The results show that ERp60 and PLAA are localized to 1alpha,25(OH)(2)D(3)-responsive growth zone cells and metaphyseal osteoblasts, even in VDR(-/-) mice. Disruption of lipid rafts using beta-cyclodextrin blocks the activation of PKC by 1alpha,25(OH)(2)D(3) and reduces the ability of 1alpha,25(OH)(2)D(3) to regulate [(35)S]-sulfate incorporation.
Collapse
Affiliation(s)
- Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia, Tech and Emory University, Georgia Institute of Technology, Atlanta, 30332-0363, USA.
| | | | | | | | | |
Collapse
|
21
|
van Driel M, Koedam M, Buurman CJ, Roelse M, Weyts F, Chiba H, Uitterlinden AG, Pols HAP, van Leeuwen JPTM. Evidence that both 1α,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. J Cell Biochem 2006; 99:922-35. [PMID: 16741965 DOI: 10.1002/jcb.20875] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitamin D plays a major role in the regulation of mineral homeostasis and affects bone metabolism. So far, detailed knowledge on the vitamin D endocrine system in human bone cells is limited. Here we investigated the direct effects of 1alpha,25-(OH)2D3 on osteoblast differentiation and mineralization. Also, we studied the impact of 24-hydroxylation, generally considered as the first step in the degradation pathway of vitamin D, as well as the role of the nuclear and presumed membrane vitamin D receptor (VDR). For this we used a human osteoblast cell line (SV-HFO) that has the potency to differentiate during culture forming a mineralized extracellular matrix in a 3-week period. Transcriptional analyses demonstrated that both 1alpha,25-(OH)2D3 and the 24-hydroxylated metabolites 24R,25-(OH)2D3 and 1alpha,24R,25-(OH)3D3 induced gene transcription. All metabolites dose-dependently increased alkaline phosphatase (ALP) activity and osteocalcin (OC) production (protein and RNA), and directly enhanced mineralization. 1Alpha,24R,25-(OH)3D3 stimulated ALP activity and OC production most potently, while for mineralization it was equipotent to 1alpha,25-(OH)2D3. The nuclear VDR antagonist ZK159222 almost completely blocked the effects of all metabolites. Interestingly, 1beta,25-(OH)2D3, an inhibitor of membrane effects of 1alpha,25-(OH)2D3 in the intestine, induced gene transcription and increased ALP activity, OC expression and mineralization. In conclusion, not only 1alpha,25-(OH)2D3, but also the presumed 24-hydroxylated "degradation" products stimulate differentiation of human osteoblasts. 1Alpha,25-(OH)2D3 as well as the 24-hydroxylated metabolites directly enhance mineralization, with the nuclear VDR playing a central role. The intestinal antagonist 1beta,25-(OH)2D3 acts in bone as an agonist and directly stimulates mineralization in a nuclear VDR-dependent way.
Collapse
Affiliation(s)
- M van Driel
- Department of Internal Medicine, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Larsson D, Anderson D, Smith NM, Nemere I. 24,25-dihydroxyvitamin D3 binds to catalase. J Cell Biochem 2006; 97:1259-66. [PMID: 16552753 DOI: 10.1002/jcb.20717] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is increasing evidence that the vitamin D metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) has endocrine actions. In the current work, we report that an endogenous binding protein for 24,25(OH)2D3 is catalase, based on sequence analysis of the isolated protein. An antibody (Ab 365) generated against equivalent protein recognized bovine catalase and a 64 kDa band in subcellular fractions of chick intestine. A commercially available anti-catalase antibody reduced specific [3H]24,25(OH)2D3 binding in subcellular fractions of chick intestine by greater than 65%, relative to the same fractions treated with an unrelated antibody (Ab 099). The same commercially available anti-catalase was able to block the inhibitory actions of 24,25(OH)2D3 on 32P uptake in isolated intestinal epithelial cell suspensions. We subsequently characterized binding of steroid to commercially available catalase, and found that between 0 and 5 nM of enzyme added to subcellular fraction P2 (20,000g, 10-min post-nuclear pellet) resulted in a linear increase in the amount of [3H]24,25(OH)2D3 specifically bound. Additional studies indicated that 25(OH)D3 was an effective competitor for binding, whereas 1,25(OH)2D3 only poorly displaced [3H]24,25(OH)2D3. Saturation analyses with added catalase yielded a physiologically relevant affinity constant (KD=5.6+/-2.7 nM) and a Bmax=209+/-34 fmols/mg protein, comparable to previous studies using purified basal lateral membranes or vesicular fractions. Moreover, in a study on subcellular fractions isolated from chickens of varying ages, we found that in females, both specific [3H]24,25(OH)2D3 binding and catalase activity increased from 7- to 58-week-old birds, whereas in males, elevated levels of both parameters were expressed in preparations of 7- and 58-week-old birds. The data suggest that signal transduction may occur through modulation of hydrogen peroxide production.
Collapse
Affiliation(s)
- Dennis Larsson
- Department of Nutrition and Food Sciences and the Center for Integrated Biosystems, Utah State University, Logan, Utah 84322, USA
| | | | | | | |
Collapse
|
23
|
Sutherland SK, Nemere I, Benishin CG. Regulation of parathyroid hypertensive factor secretion by vitamin D3 analogs in parathyroid cells derived from spontaneously hypertensive rats. J Cell Biochem 2005; 96:97-108. [PMID: 15988762 DOI: 10.1002/jcb.20528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parathyroid hypertensive factor (PHF) is a novel substance secreted by the parathyroid gland (PTG), which is elevated in 30-40% of all hypertensive patients; specifically, the low-renin subset. However, very little is known about the regulation of PHF secretion. Since the classical parathyroid regulator, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), may be elevated concurrent with or preceding the development of low-renin hypertension and elevated plasma PHF, we hypothesized that 1,25-(OH)2D3 would stimulate PHF release. To test this hypothesis, PTG organ and cell cultures, derived from spontaneously hypertensive rats (SHR) and the normotensive genetic control Wistar Kyoto (WKY) rats, were exposed to various vitamin D3 metabolites and PHF release measured by ELISA. 1,25-(OH)2D3 rapidly stimulated PHF release with enhanced sensitivity in SHR versus WKY cultures indicated by a leftward shift in the dose-response curve, whereas 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) had the converse effect. Vitamin D3 analog "BT," an agonist for the classical nuclear vitamin D receptor (1,25VDR(nuc)), was without effect suggesting a 1,25VDR(nuc)-independent mechanism and potential involvement of the plasma membrane-bound vitamin D receptor (1,25 D3-MARRS). Interestingly, protein expression of the 1,25 D3-MARRS was increased in SHR versus WKY parathyroid cells. In conclusion, these results support the idea that 1,25-(OH)2D3 may contribute to elevated plasma PHF in the SHR.
Collapse
Affiliation(s)
- S K Sutherland
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
24
|
Teillaud C, Nemere I, Boukhobza F, Mathiot C, Conan N, Oboeuf M, Hotton D, Macdougall M, Berdal A. Modulation of 1alpha,25-dihydroxyvitamin D3-membrane associated, rapid response steroid binding protein expression in mouse odontoblasts by 1alpha,25-(OH)2D3. J Cell Biochem 2005; 94:139-52. [PMID: 15523675 DOI: 10.1002/jcb.20275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid, nongenomic effects of 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3 have been related to a 1,25D3-membrane associated, rapid response steroid binding protein or 1,25D3-[MARRS]bp, with a molecular weight of 65 kDa, in several tissues and species. Currently, no information is available concerning the nongenomic responses to 1alpha,25-(OH)2D3 in dental tissues. In order to investigate the expression of 1,25D3-[MARRS]bp in dental cells, in the presence or absence of 1alpha,25-(OH)2D3, we have used rabbit polyclonal antibodies directed against the N-terminus of the 1,25D3-[MARRS]bp (Ab099) that recognizes the 1alpha,25-(OH)2D3 binding protein in chick intestinal basolateral membranes and a mouse odontoblast-like cell line (MO6-G3). Western blotting and flow cytometric analyses with Ab099 specifically detected 1,25D3-[MARRS]bp in MO6-G3 cells. Moreover, 1,25D3-[MARRS]bp was up-regulated, in vivo, in differentiated dental cells. Electron microscopic analysis confirmed the plasma membrane localization of this binding protein and also showed its intracellular presence. Incubation of MO6-G3 cells with different doses of 1alpha,25-(OH)2D3 for 36 h resulted in an inhibition of 1,25D3-[MARRS]bp expression with a maximal effect at 50 nM steroid. In addition, the culture media of MO6-G3 cells contains immunoreactive 1,25D3-[MARRS]bp. Immunogold positive membrane vesicle-like structures are present in the extracellular matrix of MO6-G3 cells. Altogether, these results indicate that the 1,25D3-[MARRS]bp expression in MO6-G3 cells is modulated by 1alpha,25-(OH)2D3. In conclusion, this 1alpha,25-(OH)2D3 binding protein could play an important role in the rapid, nongenomic responses to 1alpha,25-(OH)2D3 in dental cells.
Collapse
Affiliation(s)
- Christophe Teillaud
- Laboratoire de Biologie-Oro-Faciale et Pathologie, INSERM EMI-U 0110-IFR 58, Université Paris 7, Centre de Recherches Biomédicales des Cordeliers, Escalier E, Paris Cedex 06, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schwartz Z, Graham EJ, Wang L, Lossdörfer S, Gay I, Johnson-Pais TL, Carnes DL, Sylvia VL, Boyan BD. Phospholipase A2 activating protein (PLAA) is required for 1alpha,25(OH)2D3 signaling in growth plate chondrocytes. J Cell Physiol 2005; 203:54-70. [PMID: 15368540 DOI: 10.1002/jcp.20212] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phospholipase A2 (PLA2) is pivotal in the rapid membrane-mediated actions of 1,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Microarray analysis indicated that PLA2 activating protein (PLAA) mRNA is upregulated 6-fold before rat growth plate cells exhibit 1alpha,25(OH)2D3-dependent protein kinase C (PKC) increases, suggesting that it plays an important role in 1alpha,25(OH)2D3's mechanism of action. PLAA mRNA was confirmed in 1alpha,25(OH)2D3-responsive growth zone (prehypertrophic and upper hypertrophic cell zones) chondrocytes by RT-PCR and Northern blot in vitro and by in situ hybridization in vivo. PLAA protein was shown by Western blot and immunohistochemistry. PLAAs role in 1alpha,25(OH)2D3 signaling was evaluated in growth zone cell cultures using PLAA peptide. Arachidonic acid release was increased as was PLA2-specific activity in plasma membranes and matrix vesicles. PKCalpha, but not PKCbeta, PKCepsilon, or PKCzeta, was increased. PLAAs effect was comparable to that of 1alpha,25(OH)2D3 and was additive with 1alpha,25(OH)2D3. PLA2 inhibitors quinacrine and AACOCF3, and cyclooxygenase inhibitor indomethacin blocked the effect of PLAA peptide on PKC, indicating arachidonic acid and its metabolites were involved. This was confirmed using exogenous arachidonic acid. Prostaglandin acted via EP1 based on inhibition by SC19220 and not via EP2 since AH6809 had no effect. Like 1alpha,25(OH)2D3, PLAA peptide also increased activity of phospholipase C-specific activity via beta-1 and beta-3 isoforms, but not delta-1 or gamma-1; the effect of PLAA was via lysophospholipid but not via arachidonic acid. PLAA peptide decreased [3H]-thymidine incorporation to 50% of the decrease caused by 1alpha,25(OH)2D3. In contrast, PLAA peptide increased alkaline phosphatase-specific activity and proteoglycan production in a manner similar to 1alpha,25(OH)2D3. This indicates that PLAA is a specific activator of PLA2 in growth plate chondrocytes, and suggests that it mediates the membrane effect of 1alpha,25(OH)2D3, thereby modulating physiological response.
Collapse
Affiliation(s)
- Z Schwartz
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gay I, Schwartz Z, Sylvia VL, Boyan BD. Lysophospholipid regulates release and activation of latent TGF-beta1 from chondrocyte extracellular matrix. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1684:18-28. [PMID: 15450206 DOI: 10.1016/j.bbalip.2004.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 04/20/2004] [Accepted: 04/26/2004] [Indexed: 10/26/2022]
Abstract
Transforming growth factor beta-1 (TGF-beta1) is released from the extracellular matrix of rat growth plate chondrocytes and activated by stromelysin-1 (matrix metalloproteinase 3, MMP-3), an enzyme that is stored in matrix vesicles. MMP-3 is released from these extracellular organelles by the direct action of 1alpha,25(OH)2D3 via activation of phospholipase A2 (PLA2), resulting in local production of lysophospholipids and matrix vesicle membrane destabilization. This effect of 1alpha,25(OH)2D3 is greater in matrix vesicles from growth zone chondrocyte cultures and PLA2 activity is higher in the growth zone in vivo, suggesting that it may depend on chondrocyte maturation state in the endochondral lineage. Previous studies have shown that latent TGF-beta1 can be activated by mild detergents in vitro, suggesting that lysophospholipids may act in vivo in a similar manner. To test this hypothesis, we determined if rat costochondral growth plate cartilage cells produce lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) in a maturation state-dependent manner and if LPC or LPE could release and activate latent TGF-beta1 from the extracellular matrix produced by these cells. Rat growth plate chondrocytes produced both lysophospholipids, with growth zone cells producing higher levels of LPE via PLA1, and resting zone cells producing higher levels of LPC via PLA2. LPC and LPE directly increased activation of recombinant human latent TGF-beta1 in a biphasic manner with a peak at 2 microg/ml. Phosphatidylcholine, phosphatidylethanolamine, and LPE plasmalogen (LPEP), but not choline, also activated TGF-beta1. Latent TGF-beta1 incubated with LPC or LPE, but neither lysophospholipid alone, stimulated [3H]-thymidine incorporation of resting zone cells, indicating the TGF-beta1 released was biologically active. LPC and LPE also released TGF-beta1 in a dose- and time-dependent manner when incubated with cell-free extracellular matrices produced by the cells. These results indicate that LPC and LPE have important roles as regulators of rat growth plate chondrocytes by directly and indirectly activating TGF-beta1 stored in the extracellular matrix.
Collapse
Affiliation(s)
- I Gay
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | |
Collapse
|
27
|
Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004; 18:2660-71. [PMID: 15272054 DOI: 10.1210/me.2004-0116] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The steroid hormone 1 alpha,25(OH)(2)-vitamin D(3) (1,25D) regulates gene transcription through a nuclear receptor [vitamin D receptor (VDR)] and initiation of rapid cellular responses through a putative plasma membrane-associated receptor (VDR(mem)). This study characterized the VDR(mem) present in a caveolae-enriched membrane fraction (CMF), a site of accumulation of signal transduction agents. Saturable and specific [(3)H]-1,25D binding in vitro was found in CMF of chick, rat, and mouse intestine; mouse lung and kidney; and human NB4 leukemia and rat ROS 17/2.8 osteoblast-like cells; in all cases the 1,25D K(D) binding dissociation constant = 1-3 nM. Our data collectively support the classical VDR being the VDR(mem) in caveolae: 1) VDR antibody immunoreactivity was detected in CMF of all tissues tested; 2) competitive binding of [(3)H]-1,25D by eight analogs of 1,25D was significantly correlated between nuclei and CMF (r(2) = 0.95) but not between vitamin D binding protein (has a different ligand binding specificity) and CMF; 3) confocal immunofluorescence microscopy of ROS 17/2.8 cells showed VDR in close association with the caveolae marker protein, caveolin-1, in the plasma membrane region; 4) in vivo 1,25D pretreatment reduced in vitro [(3)H]-1,25D binding by 30% in chick and rat intestinal CMF demonstrating in vivo occupancy of the CMF receptor by 1,25D; and 5) comparison of [(3)H]-1,25D binding in VDR KO and WT mouse kidney tissue showed 85% reduction in VDR KO CMF and 95% reduction in VDR KO nuclear fraction. This study supports the presence of VDR as the 1,25D-binding protein associated with plasma membrane caveolae.
Collapse
Affiliation(s)
- Johanna A Huhtakangas
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
28
|
Lossdörfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A 2004; 70:361-9. [PMID: 15293309 DOI: 10.1002/jbm.a.30025] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Titanium implant surfaces with rough microtopographies exhibit increased pullout strength in vivo suggesting increased bone-to-implant contact. This is supported by in vitro studies showing that as surface microroughness increases, osteoblast proliferation decreases whereas differentiation increases. Differentiation is further enhanced on microrough surfaces by factors stimulating osteogenesis including 1alpha,25(OH)2D3. Levels of PGE2 and TGF-beta1 are increased in cultures grown on rough microtopographies; this surface effect is enhanced synergistically by 1alpha,25(OH)2D3-treatment. PGE2 and TGF-beta1 regulate osteoclasts as well as osteoblasts, suggesting that surface microtopography may modulate release of other factors from osteoblasts that regulate osteoclasts. To test this hypothesis, we examined the effects of substrate microarchitecture on production of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL), which have been identified as a key regulatory system of bone remodeling. We also examined the production of 1alpha,25(OH)2D3, which regulates osteoblast differentiation and osteoclastogenesis. MG63 osteoblast-like cells were grown on either tissue culture plastic or titanium disks of different surface microtopographies: PT (Ra < 0.2 microm), SLA (Ra = 4 microm), and TPS (Ra = 5 microm). At confluence, cultures were treated for 24 h with 0, 10(-8) M or 10(-7) M 1alpha,25(OH)2D3. RANKL and OPG were determined at the transcriptional level by RT-PCR and real time PCR and soluble RANKL, OPG and 1alpha,25(OH)2D3 in the conditioned media were measured using immunoassay kits. Cell number was reduced on SLA and TPS surfaces and 1alpha,25(OH)2D3 caused further decreases. OPG mRNA levels increased on rougher surfaces and 1alpha,25(OH)2D3 treatment caused a further synergistic increase. While the cells expressed RANKL mRNA, levels were low and independent of surface microtopography. OPG protein was greater when cells were grown on SLA and TPS. 1alpha,25(OH)2D3 increased OPG by 50% on the smooth Ti surface but on SLA, 10(-8) M 1alpha,25(OH)2D3 caused a 100% increase and 10(-7) M 1alpha,25(OH)2D3 increased OPG by 200%. On TPS 10(-7) M 1alpha,25(OH)2D3 increased OPG 350%. Soluble RANKL was not detected in the conditioned media of any of the cultures. 1alpha,25(OH)2D3 was produced endogenously and levels were positively correlated with surface roughness. Thus, on surfaces with rough microtopographies, osteoblasts secrete factors that enhance osteoblast differentiation while decreasing osteoclast formation and activity.
Collapse
Affiliation(s)
- S Lossdörfer
- Department of Orthodontics, University of Bonn, 5311, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Boyan BD, Jennings EG, Wang L, Schwartz Z. Mechanisms regulating differential activation of membrane-mediated signaling by 1alpha,25(OH)2D3 and 24R,25(OH)2D3. J Steroid Biochem Mol Biol 2004; 89-90:309-15. [PMID: 15225791 DOI: 10.1016/j.jsbmb.2004.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin D metabolites 1alpha,25(OH)(2)D(3) and 24R,25(OH)(2)D(3) regulate endochondral ossification in a cell maturation-dependent manner via membrane-mediated mechanisms. 24R,25(OH)(2)D(3) stimulates PKC activity in chondrocytes from the growth plate resting zone, whereas 1alpha,25(OH)(2)D(3) stimulates PKC in growth zone chondrocytes. We used the rat costochondral growth plate cartilage cell model to study how these responses are differentially regulated. 1alpha,25(OH)(2)D(3) acts on PKC, MAP kinase, and downstream physiological responses via phosphatidylinositol-specific PLC-beta; 24R,25(OH)(2)D(3) acts via PLD. In both cases, diacylglycerol (DAG) is increased, activating PKC. Both cell types possess membrane and nuclear receptors for 1alpha,25(OH)(2)D(3), but the mechanisms that render the 1alpha,25(OH)(2)D(3) pathway silent in resting zone cells or the 24R,25(OH)(2)D(3) pathway silent in growth zone cells are unclear. PLA(2) is pivotal in this process. 1alpha,25(OH)(2)D(3) stimulates PLA(2) activity in growth zone cells and 24R,25(OH)(2)D(3) inhibits PLA(2) activity in resting zone cells. Both processes result in PKC activation. To understand how negative regulation of PLA(2) results in increased PKC activity in resting zone cells, we used PLA(2) activating peptide to stimulate PLA(2) activity and examined cell response. PLAP is not expressed in resting zone cells in vivo, supporting the hypothesis that PLA(2) activation is inhibitory to 24R,25(OH)(2)D(3) action in these cells.
Collapse
Affiliation(s)
- B D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive NW, Atlanta, GE 30332, USA.
| | | | | | | |
Collapse
|
30
|
Mizwicki MT, Bishop JE, Olivera CJ, Huhtakangas J, Norman AW. Evidence that annexin II Is not a putative membrane receptor for 1?,25(OH)2-vitamin D3. J Cell Biochem 2004; 91:852-63. [PMID: 14991775 DOI: 10.1002/jcb.10783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The seco-steroid hormone 1alpha,25(OH)(2)-vitamin D(3) (1,25-D(3)) is known to generate biological responses via both genomic and non-genomic rapid signal transduction pathways. The calcium regulated annexin II/p11 heterotetramer (AII(2)/p11(2)] was proposed by Baran and co-authors to be the membrane receptor responsible for mediating non-genomic, rapid actions of 1,25-D(3), based on ligand affinity labeling, competition, and saturation analysis experiments. Given the cytosolic presence of both the monomeric and heterotetrameric form of AII and their functional regulation by intracellular calcium concentrations, which are known to be affected by 1,25-D(3) rapid, non-genomic activities, we investigated in vitro the affinity of [(3)H]1,25-D(3) for the AII monomer and AII(2)/p11(2) in the absence and presence of calcium using saturation analysis and gel-filtration chromatography. Using two different techniques for separating bound from free ligand (perchlorate and hydroxylapatite (HAP)) over a series of 30 experiments, no evidence for specific binding of [(3)H]1,25-D(3) was obtained with or without the presence of 700 nM exogenous calcium, using either the AII monomer or AII(2)/p11(2). However saturable binding of [(3)H]1,25-D(3) to the lipid raft/caveolae enriched rat intestinal fraction was consistently observed (K(d) = 3.0 nM; B(max) = 45 fmols/mg total protein). AII was detected in lipid raft/caveolae enriched fractions from rat and mouse intestine and ROS 17/2.8 and NB4 cells by Western blot, but incubation in the presence of exogenous calcium did not ablate 1,25-D(3) binding as reported by Baran et al. Our results suggest that AII does not bind 1,25-D(3) in a physiologically relevant manner; however, recent studies linking AII(2)/p11(2) phosphorylation to vesicle fusion and its calcium regulated localization may make AII a possible down-stream substrate for 1,25-D(3) induced rapid cellular effects.
Collapse
Affiliation(s)
- Mathew T Mizwicki
- Department of Biochemistry, University of California, Riverside California 92521, USA
| | | | | | | | | |
Collapse
|
31
|
Boyan BD, Sylvia VL, McKinney N, Schwartz Z. Membrane actions of vitamin D metabolites 1?,25(OH)2D3 and 24R,25(OH)2D3 are retained in growth plate cartilage cells from vitamin D receptor knockout mice. J Cell Biochem 2003; 90:1207-23. [PMID: 14635194 DOI: 10.1002/jcb.10716] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.
Collapse
|
32
|
Boyan BD, Sylvia VL, Dean DD, Del Toro F, Schwartz Z. Differential regulation of growth plate chondrocytes by 1alpha,25-(OH)2D3 and 24R,25-(OH)2D3 involves cell-maturation-specific membrane-receptor-activated phospholipid metabolism. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 13:143-54. [PMID: 12097357 DOI: 10.1177/154411130201300205] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review discusses the regulation of growth plate chondrocytes by vitamin D(3). Over the past ten years, our understanding of how two vitamin D metabolites, 1alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3), exert their effects on endochondral ossification has undergone considerable advances through the use of cell biology and signal transduction methodologies. These studies have shown that each metabolite affects a primary target cell within the endochondral developmental lineage. 1alpha,25-(OH)(2)D(3) affects primarily growth zone cells, and 24R,25-(OH)(2)D(3) affects primarily resting zone cells. In addition, 24R,25-(OH)(2)D(3) initiates a differentiation cascade that results in down-regulation of responsiveness to 24R,25-(OH)(2)D(3) and up-regulation of responsiveness to 1alpha,25-(OH)(2)D(3). 1alpha,25-(OH)(2)D(3) regulates growth zone chondrocytes both through the nuclear vitamin D receptor, and through a membrane-associated receptor that mediates its effects via a protein kinase C (PKC) signal transduction pathway. PKCalpha is increased via a phosphatidylinositol-specific phospholipase C (PLC)-dependent mechanism, as well as through the stimulation of phospholipase A(2) (PLA(2)) activity. Arachidonic acid and its downstream metabolite prostaglandin E(2) (PGE(2)) also modulate cell response to 1alpha,25-(OH)(2)D(3). In contrast, 24R,25-(OH)(2)D(3) exerts its effects on resting zone cells through a separate, membrane-associated receptor that also involves PKC pathways. PKCalpha is increased via a phospholipase D (PLD)-mediated mechanism, as well as through inhibition of the PLA(2) pathway. The target-cell-specific effects of each metabolite are also seen in the regulation of matrix vesicles by vitamin D(3). However, the PKC isoform involved is PKCzeta, and its activity is inhibited, providing a mechanism for differential autocrine regulation of the cell and events in the matrix by these two vitamin D(3) metabolites.
Collapse
Affiliation(s)
- B D Boyan
- Departments of Orthopaedics, Periodontics, Biochemistry, and Orthodontics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MS-7774, San Antonio, TX 78229-3900, USA.
| | | | | | | | | |
Collapse
|
33
|
St-Arnaud R, Dardenne O, Prud'homme J, Hacking SA, Glorieux FH. Conventional and tissue-specific inactivation of the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). J Cell Biochem 2003; 88:245-51. [PMID: 12520522 DOI: 10.1002/jcb.10348] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the human 25-hydroxyvitamin-D(3)-1alpha-hydroxylase (CYP27B1) gene cause pseudo vitamin D deficiency rickets (PDDR). The kidney is the main site of expression of the CYP27B1 gene, but expression has been documented in other cell types, including chondrocytes. We engineered a tissue-specific and a conventional knockout of CYP27B1 in mice. The conventional knockout strain reproduced the PDDR phenotype. Homozygote mutant animals were treated with 1,25(OH)(2)D(3) or fed a high-calcium diet (2% calcium, 1.25% phosphate, 20% lactose) for 5 weeks post-weaning. Blood biochemistry revealed that both rescue treatments corrected the hypocalcemia and secondary hyperparathyroidism. Bone histomorphometry confirmed that rickets were cured. The rescue regimen restored the biomechanical properties of the bone tissue. Mice carrying the loxP-bearing allele were bred to transgenic animals expressing the Cre recombinase in chondrocytes under the control of the collagen type II promoter. Genotyping confirmed excision of exon 8 in chondrocytes. Serum biochemistry revealed that mineral ion homeostasis is normal in mutant animals. Preliminary observation of bone tissue from mutant mice did not reveal major changes to the growth plate. Precise histomorphometric analysis will be required to assess the impact of chondrocyte-specific inactivation of CYP27B1 on the maturation and function of growth plate cells in vivo.
Collapse
Affiliation(s)
- René St-Arnaud
- Genetics Unit, Shriners Hospital for Children, Montreal (Quebec), Canada H3G 1A6.
| | | | | | | | | |
Collapse
|
34
|
Pizauro Junior JM, Ciancaglini P, Macari M. Discondroplasia tibial: mecanismos de lesão e controle. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2002. [DOI: 10.1590/s1516-635x2002000300001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A discondroplasia tibial (DT) é atribuída a uma assincronia no processo de diferenciação dos condrócitos, levando à formação de uma camada de condrócitos pré-hipertróficos e de uma cartilagem na tíbia proximal que não é calcificada, mas é resistente à invasão vascular. Além disso, tem sido proposto que, na discondroplasia tíbial, a etapa final do processo de calcificação não ocorre devido ao fato de que os efetores de alguns genes, relacionados com o mecanismo de calcificação do disco de crescimento podem apresentar algumas de suas propriedades químicas ou biológicas alteradas e/ou não serem expressos. Nesse sentido, a compreensão do mecanismo de ação e o papel das biomoléculas e dos minerais relacionados com a discondroplasia tibial poderão contribuir para o conhecimento de doenças do tecido ósseo e estabelecer estratégias de prevenção e tratamento.
Collapse
|
35
|
Norman AW, Okamura WH, Bishop JE, Henry HL. Update on biological actions of 1alpha,25(OH)2-vitamin D3 (rapid effects) and 24R,25(OH)2-vitamin D3. Mol Cell Endocrinol 2002; 197:1-13. [PMID: 12431790 DOI: 10.1016/s0303-7207(02)00273-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All biologic responses to vitamin D are now known to arise as a consequence of the metabolism of this seco-steroid into its two principal biologically active metabolites 1alpha,25(OH)(2)-vitamin D(3) (1ALPHA;,25(OH)(2)D(3)) and 24R,25(OH)(2)-vitamin D(3) (24R,25(OH)(2)D(3)). 1alpha,25(OH)(2)D(3) is the dominant metabolite and produces a wide array of biological responses via interacting both with the classical vitamin D nuclear receptor (VDR(nuc)) that regulates gene transcription in over 30 target organs and with a putative cell membrane receptor (VDR(mem1,25)) that mediates rapid (within seconds to minutes) biological responses. Ligand occupancy of VDR(mem1,25) is linked to signal transduction systems that can mediate the opening of Ca(2+) and chloride voltage gated channels as well as activation of MAP-kinase. MAP-kinase activation in some cells containing VDR(mem1,25)+VDR(nuc) then results in "cross-talk" from VDR(mem1,25) to VDR(nuc) which modulates transactivation of 1alpha,25(OH)(2)D(3) responsive gene promoters. The 24R,25(OH)(2)D(3) metabolite has been shown to be an essential hormone for the process of bone fracture healing. The activity of the enzyme responsible for the production of 24R,25(OH)(2)D(3), the renal 25(OH)D-24-hydroxylase, becomes elevated within 4-11 days after imposition of a tibial fracture, thereby increasing the blood concentrations of 24R,25(OH)(2)D(3) by threefold. The 24R,25(OH)(2)D(3) likely initiates its biological responses via binding to the ligand binding domain of a second cell membrane receptor, the VDR(mem24,25), which is stereospecific for 24R,25(OH)(2)D(3) in comparison with 24S,25(OH)(2)D(3) and 1alpha,25(OH)(2)D(3). This report summarizes the status of several current research frontiers in this arena of the vitamin D endocrine system.
Collapse
Affiliation(s)
- Anthony W Norman
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
36
|
Mesbah M, Nemere I, Papagerakis P, Nefussi JR, Orestes-Cardoso S, Nessmann C, Berdal A. Expression of a 1,25-dihydroxyvitamin D3 membrane-associated rapid-response steroid binding protein during human tooth and bone development and biomineralization. J Bone Miner Res 2002; 17:1588-96. [PMID: 12211428 DOI: 10.1359/jbmr.2002.17.9.1588] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The calciotropic hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] has been established to control skeletal tissue formation and biomineralization via the regulation of gene expression. This action involves the well-characterized nuclear 1,25(OH)2D3 receptor. However, it has been recognized that several cellular responses to 1,25(OH)2D3 may not to be related to the exclusive nuclear receptor. Indeed, this secosteroid is able to generate rapid responses that have been proposed to be mediated by interactions of the ligand, which is a putative cell membrane-associated rapid-response steroid (MARRS) binding protein for 1,25(OH)2D3 [1,25D3-MARRS]. The nongenomic pathway of 1,25(OH)2D3 was studied here in detail by immunolocalization of the 1,25D3-MARRS during the specific context of human prenatal development. Western blotting with proteins extracted from 4 week- to 27-week-old embryos was performed, evidencing a 65-kDa molecular species recognized by antibody Ab 099 generated against synthetic peptides corresponding to the N terminus of the 1,25D3-MARRS from chick intestinal basolateral membranes. Based on this biochemical conservation of protein in the human species, the temporospatial expression patterns were established in the craniofacial skeleton at the same ages. Comparative analysis was performed in teeth and bones from early morphogenesis to terminal cell differentiation and extracellular biomineralization. The data show the potential implication of 1,25D3-MARRS in the heterogeneous cell population including ameloblasts, odontoblasts, osteoblasts, and osteoclasts. The epithelial-mesenchymal cascade related to odontogenesis was coincident with a sequence of up- and down-regulation of immunoreactive 1,25D3-MARRS. Biomineralization was associated with a striking up-regulation in the adjoining secretory cells in all tissues. Finally, osteoclasts appeared also to express the 1,25D3-MARRS during these early phases of bone modeling. Previously obtained data of the nuclear vitamin D receptor (VDR) expression and this study on 1,25D3-MARRS suggest the existence of cross-talk between the genomic and nongenomic pathways during human development.
Collapse
Affiliation(s)
- Mohand Mesbah
- Laboratoire de Biologie Oro-faciale et Pathologie, INSERM E0110, Institut Biomédicale des Cordeliers, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Schwartz Z, Ehland H, Sylvia VL, Larsson D, Hardin RR, Bingham V, Lopez D, Dean DD, Boyan BD. 1alpha,25-dihydroxyvitamin D(3) and 24R,25-dihydroxyvitamin D(3) modulate growth plate chondrocyte physiology via protein kinase C-dependent phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. Endocrinology 2002; 143:2775-86. [PMID: 12072413 DOI: 10.1210/endo.143.7.8889] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane-mediated increases in protein kinase C (PKC) activity and PKC-dependent physiological responses of growth plate chondrocytes to vitamin D metabolites depend on the state of endochondral maturation; 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)] regulates growth zone (GC) cells, whereas 24R,25-(OH)(2)D(3) regulates resting zone (RC) cells. Different mechanisms, including protein kinase A signaling, mediate the effects of 1alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) on PKC, suggesting that different mechanisms may also regulate any MAPK involvement in the physiological responses. This study used confluent cultures of rat costochondral chondrocytes as a model. 1alpha,25-(OH)(2)D(3) stimulated MAPK specific activity in GC in a time- and dose-dependent manner, evident within 9 min. 24R,25-(OH)(2)D(3) stimulated MAPK in RC; increases were dose dependent, occurred after 9 min, and were greatest at 90 min. In both cells the effect was due to ERK1/2 activation (p42 > p44 in GC; p42 = p44 in RC). MAPK activation was dependent on PKC, but not protein kinase A. The effect of 1alpha,25-(OH)(2)D(3) required phospholipase C, and the effect of 24R,25-(OH)(2)D(3) required phospholipase D. Inhibition of cyclooxygenase activity reduced the effect of 1alpha,25-(OH)(2)D(3) on MAPK in GC and enhanced the effect of 24R,25-(OH)(2)D(3) in RC. Based on MAPK inhibition with PD98059, ERK1/2 MAPK mediated the effect of 24R,25-(OH)(2)D(3) on [(3)H]thymidine incorporation and [(35)S]sulfate incorporation by RC, but only partially mediated the effect of 1alpha,25-(OH)(2)D(3) on GC. ERK1/2 was not involved in the regulation of alkaline phosphatase specific activity by either metabolite. This paper supports the hypothesis that 1alpha,25-(OH)(2)D(3) regulates the physiology of GC via rapid membrane-mediated signaling pathways, and some, but not all, of the response to 1alpha,25-(OH)(2)D(3) is via the ERK family of MAPKs. In contrast, 24R,25-(OH)(2)D(3) exerts its effects on RC via PKC-dependent MAPK. Whereas 1alpha,25-(OH)(2)D(3) increases MAPK activity via phospholipase C and increased prostaglandin production, 24R,25-(OH)(2)D(3) increases MAPK via phospholipase D and decreased prostaglandin production. The cell specificity, metabolite stereospecificity, and the dependence on PKC argue for the participation of membrane receptors for 1alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) in the regulation of ERK1/2 in the growth plate.
Collapse
Affiliation(s)
- Z Schwartz
- Department of Orthopedics, University of Texas Health Science Center, San Antonio 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Norman AW, Bishop JE, Bula CM, Olivera CJ, Mizwicki MT, Zanello LP, Ishida H, Okamura WH. Molecular tools for study of genomic and rapid signal transduction responses initiated by 1 alpha,25(OH)(2)-vitamin D(3). Steroids 2002; 67:457-66. [PMID: 11960621 DOI: 10.1016/s0039-128x(01)00167-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The steroid hormone 1 alpha,25(OH)(2)-vitamin D(3) [1 alpha,25(OH)(2)D(3)] mediates through its widely distributed nuclear receptor (VDR(nuc)) regulation of gene transcription (genomic responses) and through a putative membrane receptor (VDR(mem)) a variety of rapid responses. Rapid responses studied in our laboratories include opening of voltage-gated calcium and chloride channels in ROS 17/2.8 osteoblast cells, activation of MAP-kinase in human leukemia NB4 cells and chick intestinal cells, release of insulin by rat pancreatic beta-cells, and in chick duodena transcaltachia (the rapid hormonal stimulation of intestinal Ca(2+) transport). 1 alpha,25(OH)(2)D(3) is conformationally flexible (side chain, seco B-ring and A-ring) and accordingly is able to generate a large array of different shapes to serve as ligands for available receptors (VDR(nuc) and VDR(mem)) in the vitamin D endocrine system. Our laboratories have utilized a number of conformationally restricted analogs of 1 alpha,25(OH)(2)D(3) (from a library of several hundred analogs) to evaluate the preferred shape of the ligands for rapid and genomic responses. The determination of the X-ray structure of the 1 alpha,25(OH)(2)D(3)-occupied VDR(nuc) revealed that the preferred ligand shape was a twisted 6-s-trans bowl shape [Molecular Cell 5 (2000) 173-179]. Optimal agonists for genomic responses include 1 alpha,25(OH)(2)D(3) and other side chain conformationally flexible analogs such as 20-epi-1 alpha,25(OH)(2)D(3) [approximately equal to 200-500-fold more potent than 1 alpha,25(OH)(2)D(3)] and 21-(3'-hydroxy-3-methylbutyl)-1 alpha,25(OH)(2)D(3) [an analog with two side chains] all which can achieve the preferred VDR(nuc) shape. In contrast, rapid responses require a 6-s-cis shape of the agonist ligand such as can be achieved by the natural hormone 1 alpha,25(OH)(2)D(3) or by analogs permanently locked in the 6-s-cis shape such as 1 alpha,25(OH)(2)lumisterol(3) or 1 alpha,25(OH)(2)-7-dehydrocholesterol. Additionally, we have discovered analogs that are specific in their antagonist properties for either rapid or genomic responses. Thus, 1 beta,25(OH)(2)D(3) is an antagonist of only rapid responses [via the VDR(mem)], while 23S-25-dehydro-1 alpha,25(OH)D(3)-26,23-lactone is an antagonist of only nuclear responses [via the VDR(nuc)]. In conclusion, we have presented evidence that 1 alpha,25(OH)(2)D(3) mediated rapid response and genomic response signal transduction pathways utilize differing shapes of ligand, both as agonists and antagonists.
Collapse
Affiliation(s)
- Anthony W Norman
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Boyan BD, Sylvia VL, Dean DD, Schwartz Z. Membrane mediated signaling mechanisms are used differentially by metabolites of vitamin D(3) in musculoskeletal cells. Steroids 2002; 67:421-7. [PMID: 11960617 DOI: 10.1016/s0039-128x(01)00178-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1 alpha,25(OH)(2)D(3) and 24R,25(OH)(2)D(3) mediate their effects on chondrocytes and osteoblasts in part through increased activity of protein kinase C (PKC). For both cell types, 1 alpha,25(OH)(2)D(3) exerts its effects primarily on more mature cells within the lineage, whereas 24R,25(OH)(2)D(3) exerts its effects primarily on relatively immature cells. Studies using the rat costochondral cartilage growth plate as a model indicate that the two metabolites increase PKC activity by different mechanisms. In growth zone cells (prehypertrophic/upper hypertrophic cell zones), 1 alpha,25(OH)(2)D(3) causes a rapid increase in PKC that does not involve new gene expression. 1 alpha,25(OH)(2)D(3) binds its membrane receptor (1,25-mVDR), resulting in activation of phospholipase A(2) and the rapid release of arachidonic acid, as well as activation of phosphatidylinositol-specific phospholipase C, resulting in formation of diacylglycerol and inositol-1,4,5-tris phosphate (IP(3)). IP(3) leads to release of intracellular Ca(2+) from the rough endoplasmic reticulum, and together with diacylglycerol, the increased Ca(2+) activates PKC. PKC is then translocated to the plasma membrane, where it initiates a phosphorylation cascade, ultimately phosphorylating the extracellular signal-regulated kinase-1 and -2 (ERK1/2) family of MAP kinases (MAPK). PKC increases are maximal at 9 min, and MAPK increases are maximal at 90 min in these cells. By contrast, 24R,25(OH)(2)D(3) increases PKC through activation of phospholipase D in resting zone cells. Peak production of diacylglycerol via phospholipase D2 is at 90 min, as are peak increases in PKC. Some of the effect is direct on existing plasma membrane PKC, but most is due to new PKC expression; translocation is not involved. Arachidonic acid and its metabolites also play differential roles in the mechanisms, stimulating PKC in growth zone cells and inhibiting PKC in resting zone cells. 24R,25(OH)(2)D(3) decreases phospholipase A(2) activity and prostaglandin production, thereby overcoming this potential inhibitory component, which may account for the delay in the PKC response. Ultimately, ERK1/2 is phosphorylated. PKC-dependent MAPK activity transduces some, but not all, of the physiological responses of each cell type to its respective vitamin D metabolite, suggesting that the membrane receptor(s) and nuclear receptor(s) may function interdependently to regulate proliferation and differentiation of musculoskeletal cells, but different pathways are involved at different stages of phenotypic maturation.
Collapse
Affiliation(s)
- Barbara D Boyan
- Department of Orthopaedics, MC7774, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
40
|
Schwartz Z, Sylvia VL, Larsson D, Nemere I, Casasola D, Dean DD, Boyan BD. 1alpha,25(OH)2D3 regulates chondrocyte matrix vesicle protein kinase C (PKC) directly via G-protein-dependent mechanisms and indirectly via incorporation of PKC during matrix vesicle biogenesis. J Biol Chem 2002; 277:11828-37. [PMID: 11805100 DOI: 10.1074/jbc.m110398200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix vesicles are extracellular organelles involved in mineral formation that are regulated by 1alpha,25(OH)(2)D(3). Prior studies have shown that protein kinase C (PKC) activity is involved in mediating the effects of 1alpha,25(OH)(2)D(3) in both matrix vesicles and plasma membranes. Here, we examined the regulation of matrix vesicle PKC by 1alpha,25(OH)(2)D(3) during biogenesis and after deposition in the matrix. When growth zone costochondral chondrocytes were treated for 9 min with 1alpha,25(OH)(2)D(3), PKCzeta in matrix vesicles was inhibited, while PKCalpha in plasma membranes was increased. In contrast, after treatment for 12 or 24 h, PKCzeta in matrix vesicles was increased, while PKCalpha in plasma membranes was unchanged. The effect of 1alpha,25(OH)(2)D(3) was stereospecific and metabolite-specific. Monensin blocked the increase in matrix vesicle PKC after 24 h, suggesting the secosteroid-regulated packaging of PKC. In addition, the 1alpha,25(OH)(2)D(3) membrane vitamin D receptor (1,25-mVDR) was involved, since a specific antibody blocked the 1alpha,25(OH)(2)D(3)-dependent changes in PKC after both long and short treatment times. In contrast, antibodies to annexin II had no effect, and there was no evidence for the presence of the nuclear VDR on Western blots. To investigate the signaling pathways involved in regulating matrix vesicle PKC activity after biosynthesis, matrix vesicles were isolated and then treated for 9 min with 1alpha,25(OH)(2)D(3) in the presence and absence of specific inhibitors. Inhibition of phosphatidylinositol-phospholipase C, phospholipase D, or G(i)/G(s) had no effect. However, inhibition of G(q) blocked the effect of 1alpha,25(OH)(2)D(3). The rapid effect of 1alpha,25(OH)(2)D(3) also involved the 1,25-mVDR. Moreover, arachidonic acid was found to stimulate PKC when added directly to isolated matrix vesicles. These results indicate that matrix vesicle PKC is regulated by 1alpha,25(OH)(2)D(3) at three levels: 1) during matrix vesicle biogenesis; 2) through direct action on the membrane; and 3) through production of other factors such as arachidonic acid.
Collapse
|
41
|
Boyan BD, Bonewald LF, Sylvia VL, Nemere I, Larsson D, Norman AW, Rosser J, Dean DD, Schwartz Z. Evidence for distinct membrane receptors for 1 alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) in osteoblasts. Steroids 2002; 67:235-46. [PMID: 11856547 DOI: 10.1016/s0039-128x(01)00160-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1 alpha,25-(OH)(2)D(3) exerts its effects on chondrocytes and enterocytes via nuclear receptors (1,25-nVDR) and a separate membrane receptor (1,25-mVDR) that activates protein kinase C (PKC). 24R,25-(OH)(2)D(3) also stimulates PKC in chondrocytes, but through other membrane mechanisms. This study examined the hypothesis that osteoblasts possess distinct membrane receptors for 1 alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) that are involved in the activation of PKC and that receptor expression varies as a function of cell maturation state. 1 alpha,25-(OH)(2)D(3) stimulated PKC in well differentiated (UMR-106, MC-3T3-E1) and moderately differentiated (ROS 17/2.8) osteoblast-like cells, and in cultures of fetal rat calvarial (FRC) cells and 2T3 cells treated with rhBMP-2 to promote differentiation. 24R,25-(OH)(2)D(3) stimulated PKC in FRC and 2T3 cultures that had not been treated to induce differentiation, and in ROS 17/2.8 cells. MG63 cells, a relatively undifferentiated osteoblast-like cell line, had no response to either metabolite. Ab99, a polyclonal antibody generated to the chick enterocyte 1,25-mVDR, but not a specific antibody to the 1,25-nVDR, inhibited response to 1 alpha,25-(OH)(2)D(3). 1 alpha,25-(OH)(2)D(3) exhibited specific binding to plasma membrane preparations from cells demonstrating a PKC response to this metabolite that is typical of positive cooperativity. Western blots of these membrane proteins reacted with Ab99, and the Ab99-positive protein had an Mr of 64 kDa. There was no cross-reaction with antibodies to the C- or N-terminus of annexin II. The effect of 24,25-(OH)(2)D(3) on PKC was stereospecific; 24S,25-(OH)(2)D(3) had no effect. These results demonstrate that response to 1 alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) depends on osteoblast maturation state and suggest that specific and distinct membrane receptors are involved.
Collapse
Affiliation(s)
- Barbara D Boyan
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Thierry-Palmer M, Tewolde TK, Forté C, Wang M, Bayorh MA, Emmett NL, White J, Griffin K. Plasma 24,25-dihydroxyvitamin D concentration of Dahl salt-sensitive rats decreases during high salt intake. J Steroid Biochem Mol Biol 2002; 80:315-21. [PMID: 11948016 DOI: 10.1016/s0960-0760(02)00029-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.
Collapse
Affiliation(s)
- Myrtle Thierry-Palmer
- Department of Biochemistry, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA 30310-1495, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sylvia VL, Del Toro F, Dean DD, Hardin RR, Schwartz Z, Boyan BD. Effects of 1alpha,25-(OH)(2)D(3) on rat growth zone chondrocytes are mediated via cyclooxygenase-1 and phospholipase A(2). JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:32-45. [PMID: 11455568 DOI: 10.1002/jcb.1072] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
1alpha,25-(OH)(2)D(3) mediates its effects on growth zone chondrocytes via rapid membrane-associated events as well as through traditional nuclear receptor mechanisms. The membrane-associated signaling pathways include rapid production of diacylglycerol and activation of protein kinase C (PKC), as well as activation of phospholipase A(2) (PLA(2)), increased production of arachidonic acid, and increased production of prostaglandins. This study examined the roles of PLA(2) and cyclooxygenase (Cox) in the mechanism of action of 1alpha,25-(OH)(2)D(3) in these cells to determine whether one or both enzymes catalyze the rate limiting step and whether constitutive or inducible Cox is involved. Cultures were incubated with 1alpha,25-(OH)(2)D(3) for 9 min to measure PKC or for 24 h to measure physiological responses ([(3)H]-thymidine incorporation, alkaline phosphatase specific activity, [(35)S]-sulfate incorporation). Based on RT-PCR and Northern blot analysis, growth zone chondrocytes expressed mRNAs for both Cox-1 and Cox-2 and neither Cox was modulated by 1alpha,25-(OH)(2)D(3). To examine the role of Cox, the cultures were also treated with resveratrol (a specific inhibitor of Cox-1), NS-398 (a specific inhibitor of Cox-2), or indomethacin (a general Cox inhibitor). The results showed that Cox-1 inhibition reduced the 1alpha,25-(OH)(2)D(3)-dependent effects on proliferation, differentiation, and matrix production, whereas inhibition of Cox-2 only had an effect on proliferation. The effects of Cox inhibition were not rate limiting, based on experiments in which PLA(2) was activated with melittin or inhibited with quinacrine. However, at least part of the action of 1alpha,25-(OH)(2)D(3) was regulated by metabolism of arachidonic acid to prostaglandins. This supports the hypothesis that 1alpha,25-(OH)(2)D(3) exerts its effects via more than one signaling pathway and that these pathways are interrelated via the modulation of PLA(2) as a rate-limiting step. PKC regulation may occur at multiple stages in the signal transduction cascade. J. Cell. Biochem. Suppl. 36: 32-45, 2001.
Collapse
Affiliation(s)
- V L Sylvia
- Department of Orthopaedics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
44
|
Schwartz Z, Sylvia VL, Luna MH, DeVeau P, Whetstone R, Dean DD, Boyan BD. The effect of 24R,25-(OH)(2)D(3) on protein kinase C activity in chondrocytes is mediated by phospholipase D whereas the effect of 1alpha,25-(OH)(2)D(3) is mediated by phospholipase C. Steroids 2001; 66:683-94. [PMID: 11546556 DOI: 10.1016/s0039-128x(01)00100-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1alpha,25-(OH)(2)D(3) regulates protein kinase C (PKC) activity in growth zone chondrocytes by stimulating increased phosphatidylinositol-specific phospholipase C (PI-PLC) activity and subsequent production of diacylglycerol (DAG). In contrast, 24R,25-(OH)(2)D(3) regulates PKC activity in resting zone (RC) cells, but PLC does not appear to be involved, suggesting that phospholipase D (PLD) may play a role in DAG production. In the present study, we examined the role of PLD in the physiological response of RC cells to 24R,25-(OH)(2)D(3) and determined the role of phospholipases D, C, and A(2) as well as G-proteins in mediating the effects of vitamin D(3) metabolites on PKC activity in RC and GC cells. Inhibition of PLD with wortmannin or EDS caused a dose-dependent inhibition of basal [3H]-thymidine incorporation by RC cells and further increased the inhibitory effect of 24R,25-(OH)(2)D(3). Wortmannin also inhibited basal alkaline phosphatase activity and [35]-sulfate incorporation and decreased the stimulatory effect of 24R,25-(OH)(2)D(3). This inhibitory effect of wortmannin was not seen in cultures treated with the PI-3-kinase inhibitor LY294002, verifying that wortmannin affected PLD. Wortmannin also inhibited basal PKC activity and partially blocked the stimulatory effect of 24R,25-(OH)(2)D(3) on this enzyme activity. Neither inhibition of PI-PLC with U73122, nor PC-PLC with D609, modulated PKC activity. Wortmannin had no effect on basal PLD in GC cells, nor on 1alpha,25-(OH)(2)D(3)-dependent PKC. Inhibition of PI-PLC blocked the 1alpha,25-(OH)(2)D(3)-dependent increase in PKC activity but inhibition of PC-PLC had no effect. Activation of PLA(2) with melittin inhibited basal and 24R,25-(OH)(2)D(3)-stimulated PKC in RC cells and stimulated basal and 1alpha,25-(OH)(2)D(3)-stimulated PKC in GC cells, but wortmannin had no effect on the melittin-induced changes in either cell type. Pertussis toxin modestly increased the effect of 24R,25-(OH)(2)D(3) on PKC, whereas GDPbetaS had no effect, suggesting that PLD2 is the isoform responsible. This indicates that 1alpha,25-(OH)(2)D(3) regulates PKC in GC cells via PI-PLC and PLA(2), but not PC-PLC or PLD, whereas 24R,25-(OH)(2)D(3) regulates PKC in RC cells via PLD2.
Collapse
Affiliation(s)
- Z Schwartz
- Department of Orthopaedics, The University of Texas Health Science Center at San Antonio, 78284, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Larsson D, Nemere I, Sundell K. Putative basal lateral membrane receptors for 24,25-dihydroxyvitamin D(3) in carp and Atlantic cod enterocytes: characterization of binding and effects on intracellular calcium regulation. J Cell Biochem 2001; 83:171-86. [PMID: 11573235 DOI: 10.1002/jcb.1229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vitamin D metabolite, 24R,25-dihydroxyvitamin D(3) (24R,25(OH)(2)D(3)), was tested for its ability to specifically bind to basal lateral membranes isolated from intestinal epithelium of Atlantic cod (a seawater fish), carp (a freshwater fish), and chicken. Specific saturable binding was demonstrated in membranes from all three species. Membranes from Atlantic cod, carp, and chicken revealed K(d)'s of 7.3 +/- 0.9, 12.5 +/- 0.9 and 7.8 +/- 0.1 nM, and a B(max) for each species estimated to 57.9 +/- 2.9, 195.1 +/- 8.4 and 175 +/- 0.8 fmol/mg protein, respectively. Scatchard analyses indicated a convex curvature and Hill analyses revealed apparent Hill coefficients of 1.84 +/- 0.28, 1.80 +/- 0.29, and 1.78 +/- 0.27 for Atlantic cod, carp and chicken, suggesting a positive cooperative binding in all three species. Basal lateral membranes from Atlantic cod and carp were used to further characterize the binding moiety. In competition studies, basal lateral membranes from Atlantic cod or carp did not discriminate between 24R,25(OH)(2)D(3) and the 24S,25(OH)(2)D(3) isomer, whereas, 1,25(OH)(2)D(3) and 25(OH)D(3), were less effective in competing with [(3)H]24R,25(OH)(2)D(3) for binding to basal lateral membranes in Atlantic cod and carp. In both the Atlantic cod and carp enterocyte basal lateral membranes, the binding activity could be extracted equally well with high salt as with detergent, indicating a peripheral membrane protein rather than an integral membrane binding protein. Finally, isolated Atlantic cod and carp enterocytes were chosen for analyses of signal transduction events mediated by the putative receptor. In both species, 24R,25(OH)(2)D(3) but not 24S,25(OH)(2)D(3), suppressed Ca(2+)-uptake by enterocytes in a dose-dependent manner. Enterocytes from Atlantic cod and carp, acclimated to Ca(2+)-free media, responded by an intracellular Ca(2+)-release within seconds after addition of 24R,25(OH)(2)D(3) or 24S,25(OH)(2)D(3). The effects on intracellular Ca(2+)-release were dose-dependent for both metabolites. 24S,25(OH)(2)D(3) was effective at lower concentrations and triggered a higher response compared to 24R,25(OH)(2)D(3). These results suggest that the binding molecule(s) for 24R,25(OH)(2)D(3) and 24S,25(OH)(2)D(3) is/are capable of acting as a receptor, mediating rapid, non-genomic responses in intestinal cells.
Collapse
Affiliation(s)
- D Larsson
- Department of Zoology, Fish Endocrinology Laboratory, Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|
46
|
Norman AW, Silva FR. Structure function studies: identification of vitamin D analogs for the ligand-binding domains of important proteins in the vitamin D-endocrine system. Rev Endocr Metab Disord 2001; 2:229-38. [PMID: 11705328 DOI: 10.1023/a:1010067030049] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A W Norman
- Department of Biochemistry, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
47
|
Sela J, Gross UM, Kohavi D, Shani J, Dean DD, Boyan BD, Schwartz Z. Primary mineralization at the surfaces of implants. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 11:423-36. [PMID: 11132764 DOI: 10.1177/10454411000110040301] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteogenesis around implants is affected by the physical and chemical characteristics of the biomaterials used. The osteoprogenitor cells must migrate to the implant site and synthesize and secrete a mineralizable extracellular matrix. Because this is neo-bone formation, the mechanism by which the cells calcify their matrix involves extracellular organelles called matrix vesicles in a process termed "primary mineralization". Two different methods for assessing the effects of implant materials on primary mineralization are presented in this report. In the first approach, different implant materials used in dentistry and orthopedic surgery were placed in rat tibial bones after marrow ablation. Two groups of implants were used, bone-bonding and non-bonding materials. We examined the effects of the materials on calcification morphometrically by quantitating changes in matrix vesicle morphology and distribution in endosteal tissue around implants as compared with normal endosteal bone healing. In addition, matrix vesicles were isolated from the endosteal tissue around the implant as well as from the contralateral limb and were examined biochemically. The results demonstrated that bone-bonding materials induced a greater increase in matrix vesicle enzyme activity than did non-bonding materials. However, all materials caused changes in matrix vesicles that were different from those seen in normal endosteal bone formation following injury. The effects of implant materials on biochemical markers of mineralization, including specific activities of matrix vesicle alkaline phosphatase and phospholipase A2 and phosphatidylserine content, demonstrated a high correlation with the morphometric observations with regard to enhancement and/or delay of primary mineralization. In the other approach, we used a radioisotopic method to evaluate the effects of implant materials on primary mineralization. This analysis revealed that implants alter bone healing, as shown by the differential uptake of 99mTc and 32P in different bone compartments. Decreased 32P uptake by the organic phase in the presence of bone-bonding implants suggests that cleavage of 99mTcMD32P into its technetium and methylene diphosphonate moieties was inhibited by the presence of the implants. In summary, these approaches to evaluating the effects of materials on primary mineralization demonstrate that the marrow ablation model can easily distinguish between bone-bonding and non-bonding materials. The use of this model can be valuable in the development of new materials.
Collapse
Affiliation(s)
- J Sela
- Division of Oral Pathology, Biomineralization Laboratory, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
48
|
Farach-Carson MC. Bioactive analogs that simulate subsets of biological activities of 1alpha,25(OH)(2)D(3) in osteoblasts. Steroids 2001; 66:357-61. [PMID: 11179744 DOI: 10.1016/s0039-128x(00)00161-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] treatment of osteoblastic cells elicits a series of measurable responses that include both rapid, membrane-initiated effects and longer-term nuclear receptor-mediated effects. Structural analogs have been identified and characterized that selectively activate subsets of these pathways. Two analogs from over 35 that have been tested were chosen for this comparison because they activate non-overlapping response pathways, presumably representing either membrane-initiated or nuclear receptor-initiated activities. Compound AT [25(OH)-16ene-23yne-D(3)] lacks the 1-hydroxyl essential for interacting with the nuclear receptor, but triggers Ca(2+) influx through plasma membrane Ca(2+) channels, augments parathyroid hormone (PTH)-induced Ca(2+) signals, dephosphorylates the matrix protein osteopontin (OPN), and along with PTH stimulates release of calcium from calvaria in organ culture. Compound BT [1alpha,24(OH)(2)-22ene-24cyclopropyl-D(3)] does not elicit any of the rapid responses or enhance PTH-induced bone resorption, but binds to the nuclear receptor for 1alpha,25(OH)(2)D(3) and increases steady state mRNA levels of both OPN and osteocalcin over a 48 h period. Together, these two analogs recapitulate all of the known actions of 1alpha,25(OH)(2)D(3) on osteoblasts. Based on these findings, we conclude that Ca(2+) release from bone stimulated by 1alpha,25(OH)(2)D(3) and PTH is related to the rapid, membrane-initiated actions and is not likely to involve binding to the nuclear receptor for 1alpha,25(OH)(2)D(3). Longer term stimulation of bone formation by 1alpha,25(OH)(2)D(3), however, appears to involve solely the nuclear receptor-mediated effects. These findings support our model of 1alpha,25(OH)(2)D(3) as a coupling factor for bone resorption and formation during bone remodeling.
Collapse
Affiliation(s)
- M C Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark 19716, USA
| |
Collapse
|
49
|
Abstract
The 1alpha-hydroxylated metabolite of 25-hydroxyvitamin D(3), 1,25-dihydroxyvitamin D(3), is the biologically most active metabolite of vitamin D. The 24-hydroxylated metabolites were generally considered as degradation products of a catabolic pathway finally leading to excretion of calcitroic acid. Studies with analogues fluorinated at the C-24 position did not indicate a physiological function for 24R,25(OH)(2)D(3). Nevertheless throughout the years various studies showed biologic effects of other metabolites than 1alpha,25(OH)(2)D(3). In particular the metabolite 24R,25(OH)(2)D(3) has been functionally analyzed, e.g. with respect to a role in normal chicken egg hatchability and effects on chondrocytes in the resting zone of cartilage. Numerous studies have shown the presence of the vitamin D receptor in bone cells and effects of 1alpha,25(OH)(2)D(3) on bone and bone cells. Also for 24R,25(OH)(2)D(3) studies have been performed focusing on effects on bone and bone cells. The purpose of this review is to summarize the data regarding 24R,25(OH)(2)D(3) and bone and to evaluate its role in bone biology.
Collapse
Affiliation(s)
- J P van Leeuwen
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Boyan BD, Sylvia VL, Dean DD, Schwartz Z. 24,25-(OH)(2)D(3) regulates cartilage and bone via autocrine and endocrine mechanisms. Steroids 2001; 66:363-74. [PMID: 11179745 DOI: 10.1016/s0039-128x(00)00162-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this paper is to summarize recent advances in our understanding of the physiological role of 24(R),25(OH)(2)D(3) in bone and cartilage and its mechanism of action. With the identification of a target cell, the growth plate resting zone (RC) chondrocyte, we have been able to use cell biology methodology to investigate specific functions of 24(R),25(OH)(2)D(3) and to determine how 24(R),25(OH)(2)D(3) elicits its effects. These studies indicate that there are specific membrane-associated signal transduction pathways that mediate both rapid, nongenomic and genomic responses of RC cells to 24(R),25(OH)(2)D(3). 24(R),25(OH)(2)D(3) binds RC chondrocyte membranes with high specificity, resulting in an increase in protein kinase C (PKC) activity. The effect is stereospecific; 24R,25(OH)(2)D(3), but not 24S,25-(OH)(2)D(3), causes the increase, indicating a receptor-mediated response. Phospholipase D-2 (PLD2) activity is increased, resulting in increased production of diacylglycerol (DAG), which in turn activates PKC. 24(R),25(OH)(2)D(3) does not cause translocation of PKC to the plasma membrane, but activates existing PKCalpha. There is a rapid decrease in Ca(2+) efflux, and influx is stimulated. 24(R),25(OH)(2)D(3) also reduces arachidonic acid release by decreasing phospholipase A(2) (PLA(2)) activity, thereby decreasing available substrate for prostaglandin production via the action of cyclooxygenase-1. PGE(2) that is produced acts on the EP1 and EP2 receptors expressed by RC cells to downregulate PKC via protein kinase A, but the reduction in PGE(2) decreases this negative feedback mechanism. Both pathways converge on MAP kinase, leading to new gene expression. One consequence of this is production of new matrix vesicles containing PKCalpha and PKCzeta and an increase in PKC activity. The chondrocytes also produce 24(R),25(OH)(2)D(3), and the secreted metabolite acts directly on the matrix vesicle membrane. Only PKCzeta is directly affected by 24(R),25(OH)(2)D(3) in the matrix vesicles, and activity of this isoform is inhibited. This effect may be involved in the control of matrix maturation and turnover. 24(R),25(OH)(2)D(3) causes RC cells to mature along the endochondral developmental pathway, where they become responsive to 1alpha,25(OH)(2)D(3) and lose responsiveness to 24(R),25(OH)(2)D(3), a characteristic of more mature growth zone (GC) chondrocytes. 1alpha,25(OH)(2)D(3) elicits its effects on GC through different signal transduction pathways than those used by 24(R),25(OH)(2)D(3). These studies indicate that 24(R),25(OH)(2)D(3) plays an important role in endochondral ossification by regulating less mature chondrocytes and promoting their maturation in the endochondral lineage.
Collapse
Affiliation(s)
- B D Boyan
- University of Texas Health Science Center at San Antonio, 78229-3900, USA.
| | | | | | | |
Collapse
|