1
|
Fang H, Wang Y, Li L, Qin X, Zhu D, Liu P, Yang Q, Gao Y, Shi Z, Ma X, Zhong C, Chen Y. Microenvironment-responsive living hydrogel containing engineered probiotic for treatment of massive bone defects. Bioact Mater 2025; 50:556-570. [PMID: 40385972 PMCID: PMC12083996 DOI: 10.1016/j.bioactmat.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025] Open
Abstract
Self-activating and microenvironment-responsive biomaterials for tissue regeneration would address the escalating need for bone grafting, but remain challenging. The emergence of microbial living therapeutics offers vast potential in regenerative medicine, as genetically engineered probiotics possess efficient stimuli-responsiveness and tunable biological functions. Here, using elevated endogenous nitric oxide (NO) signals as a biological trigger in bone fracture injuries, a Living Responsive Regenerative Medicine (LRRM) strategy for in situ bone defect repair through real-time controlled release of bone morphogenetic protein-2 (BMP2) is proposed. The Escherichia coli Nissle 1917 (EcN) strain, genetically engineered to sense NO signals and correspondingly produce and secrete BMP2, was firstly encapsulated in gelatin methacryloyl (GelMA) microspheres and then embedded in a bulky hyaluronic acid methacryloyl (HAMA) hydrogel to form a living hydrogel device that circumvents immune attack and prevents bacterial leakage. In vivo multiple bone defect models demonstrated the efficacy of the living hydrogel in enhancing the maturation of bone callus, promoting neovascularization, and facilitating full-thickness bone union. Strategic incorporation of engineered probiotics and the bilayer-structured encapsulation system may emerge as an effective and microenvironment-responsive medicine approach for tissue regeneration.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Li Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaotong Qin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xin Ma
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
2
|
Nauta S, Greven J, Hofman M, Mohren R, Meesters DM, Möckel D, Lammers T, Hildebrand F, Siegel TP, Cuypers E, Heeren RM, Poeze M. Mass Spectrometry Reveals Molecular Effects of Citrulline Supplementation during Bone Fracture Healing in a Rat Model. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1184-1196. [PMID: 38679918 PMCID: PMC11157653 DOI: 10.1021/jasms.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (μCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. μCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with μCT.
Collapse
Affiliation(s)
- Sylvia Nauta
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
- Division
of Traumasurgery, Department of Surgery, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Johannes Greven
- Department
of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martijn Hofman
- Center
of Musculoskeletal Surgery, Bonifatius Hospital
Lingen, 49808 Lingen, Germany
| | - Ronny Mohren
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Dennis M. Meesters
- Department
of Genetics & Cell Biology, Maastricht
University, 6229ER Maastricht, The Netherlands
- NUTRIM, School
for Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Diana Möckel
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Frank Hildebrand
- Department
of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tiffany Porta Siegel
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Eva Cuypers
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Ron M.A. Heeren
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Martijn Poeze
- Division
of Traumasurgery, Department of Surgery, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- NUTRIM, School
for Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Song CS, Zhang P, Lin QR, Hu YY, Pan CQ, Jiang N, Hu YJ. Nitric oxide synthase 2 genetic variation rs2297514 associates with a decreased susceptibility to extremity post-traumatic osteomyelitis in a Chinese Han population. Front Cell Infect Microbiol 2023; 13:1177830. [PMID: 37465758 PMCID: PMC10350522 DOI: 10.3389/fcimb.2023.1177830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Background Previous studies have indicated that nitric oxide synthase 2 (NOS2) genetic variations are involved in delayed fracture healing and fracture non-union. Whether these genetic variants associate with the development of osteomyelitis (OM) remains unclear. Here, we analyzed the potential relationships between NOS2 genetic variations and the risk of developing post-traumatic OM (PTOM) in a Chinese Han population. Methods Altogether 704 participants, including 336 PTOM patients and 368 healthy controls, were genotyped of rs2297514 and rs2248814 of the NOS2 gene using the SNaPshot genotyping method. Results Outcomes showed that the frequency of allele C of rs2297514 in the patient group was significantly lower than that in the control group (48.7% vs. 54.5%, P = 0.029, OR = 0.792, 95% CI 0.642 - 0.976). In addition, significant associations were found between rs2297514 and susceptibility to PTOM by the recessive model (P = 0.007, OR = 0.633, 95% CI 0.453 - 0.884), and the homozygous model (P = 0.039, OR = 0.648, 95% CI 0.429 - 0.979). Moreover, patients with the CC genotype of rs2297514 had lower inflammatory biomarkers levels than the TT genotype, especially for the C-reactive protein (CRP) level (median: 4.1 mg/L vs. 8.9 mg/L, P = 0.027). However, no significant relationship was noted between rs2248814 and the risk of developing PTOM. Conclusion In this Chinese cohort, rs2297514 is correlated with a decreased risk of PTOM development, with genotype CC as a protective factor.
Collapse
Affiliation(s)
- Chen-sheng Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing-rong Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-yu Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hospital Management, Southern Medical University, Guangzhou, China
| | - Chun-qiu Pan
- Department of Emergency Trauma Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-jun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Park KS, Moon JB, Cho SG, Kim J, Song HC. Applying Pix2pix to Translate Hyperemia in Blood Pool Image into Corresponding Increased Bone Uptake in Delayed Image in Three-Phase Bone Scintigraphy. Nucl Med Mol Imaging 2023; 57:103-109. [PMID: 36998587 PMCID: PMC10043061 DOI: 10.1007/s13139-022-00786-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Purpose Delayed images may not be acquired due to severe pain, drowsiness, or worsening vital signs while waiting after blood pool imaging in three-phase bone scintigraphy. If the hyperemia in the blood pool image contains information from which increased uptake on the delayed images can be inferred, the generative adversarial network (GAN) can generate the increased uptake from the hyperemia. We attempted to apply pix2pix, a type of conditional GAN, to transform hyperemia into increased bone uptake. Methods We enrolled 1464 patients who underwent three-phase bone scintigraphy for inflammatory arthritis, osteomyelitis, complex regional pain syndrome (CRPS), cellulitis, and recent bone injury. Blood pool images were acquired 10 min after intravenous injection of Tc-99 m hydroxymethylene diphosphonate, and delayed bone images were obtained after 3 h. The model was based on the open-source code of the pix2pix model with perceptual loss. Increased uptake in the delayed images generated by the model was evaluated using lesion-based analysis by a nuclear radiologist in areas consistent with hyperemia in the blood pool images. Results The model showed sensitivities of 77.8% and 87.5% for inflammatory arthritis and CRPS, respectively. In osteomyelitis and cellulitis, their sensitivities of about 44% were observed. However, in cases of recent bone injury, the sensitivity was only 6.3% in areas consistent with focal hyperemia. Conclusion The model based on pix2pix generated increased uptake in delayed images matching the hyperemia in the blood pool image in inflammatory arthritis and CRPS.
Collapse
Affiliation(s)
- Ki Seong Park
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469 Republic of Korea
| | - Jang Bae Moon
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469 Republic of Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469 Republic of Korea
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469 Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-Gu, Gwangju, 61469 Republic of Korea
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, Republic of Korea
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469 Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-Gu, Gwangju, 61469 Republic of Korea
| |
Collapse
|
5
|
Francisconi CF, Colavite PM, Fonseca AC, Azevedo MDCS, Tabanez AP, Melchiades JL, Vieira AE, Repeke CEP, Claudino M, Garlet GP. Microtomographic, histomorphometric, and molecular features show a normal alveolar bone healing process in iNOS-deficient mice along a compensatory upregulation of eNOS and nNOS isoforms. J Appl Oral Sci 2023; 31:e20220436. [PMID: 36946828 PMCID: PMC10027412 DOI: 10.1590/1678-7757-2022-0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 03/23/2023] Open
Abstract
METHODOLOGY Inducible nitric oxide synthase (iNOS) is one of the enzymes responsible for the synthesis of nitric oxide (NO), which is an important signaling molecule with effects on blood vessels, leukocytes, and bone cells. However, the role of iNOS in alveolar bone healing remains unclear. This study investigated the role of iNOS in alveolar bone healing after tooth extraction in mice. C57Bl/6 wild type (WT) and iNOS genetically deficient (iNOS-KO) mice were subjected to upper incision tooth extraction, and alveolar bone healing was evaluated by micro-computed tomography (μCT) and histological/histomorphometric, birefringence, and molecular methods. RESULTS The expression of iNOS had very low control conditions, whereas a significant increase is observed in healing sites of WT mice, where iNOS mRNA levels peak at 7d time point, followed by a relative decrease at 14d and 21d. Regarding bone healing, both WT and iNOS-KO groups showed the usual phases characterized by the presence of clots, granulation tissue development along the inflammatory cell infiltration, angiogenesis, proliferation of fibroblasts and extracellular matrix synthesis, bone neoformation, and remodeling. The overall micro-computed tomography and histomorphometric and birefringence analyses showed similar bone healing readouts when WT and iNOS-KO strains are compared. Likewise, Real-Time PCR array analysis shows an overall similar gene expression pattern (including bone formation, bone resorption, and inflammatory and immunological markers) in healing sites of WT and iNOS-KO mice. Moreover, molecular analysis shows that nNOS and eNOS were significantly upregulated in the iNOS-KO group, suggesting that other NOS isoforms could compensate the absence of iNOS. CONCLUSION The absence of iNOS does not result in a significant modulation of bone healing readouts in iNOS-KO mice. The upregulation of nNOS and eNOS may compensate iNOS absence, explaining the similar bone healing outcome in WT and iNOS-KO strains.
Collapse
Affiliation(s)
- Carolina Fávaro Francisconi
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Priscila Maria Colavite
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Angélica Cristina Fonseca
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | - André Petenuci Tabanez
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Jéssica Lima Melchiades
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Andreia Espíndola Vieira
- Instituto de Ciências Biológicas e da Saúde, Departamento de Histologia e Embriologia, Maceió, AL, Brasil
| | | | - Marcela Claudino
- Universidade Estadual de Ponta Grossa (UEPG), Departamento de Odontologia, Ponta Grossa, PR, Brasil
| | - Gustavo Pompermaier Garlet
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
6
|
Meesters DM, Wijnands KAP, van Eijk HMH, Hofman M, Hildebrand F, Verbruggen JPAM, Brink PRG, Poeze M. Arginine Availability in Reamed Intramedullary Aspirate as Predictor of Outcome in Nonunion Healing. Biomedicines 2022; 10:biomedicines10102474. [PMID: 36289736 PMCID: PMC9598747 DOI: 10.3390/biomedicines10102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Fracture healing and nonunion development are influenced by a range of biological factors. Adequate amino acid concentrations, especially arginine, are known to be important during normal bone healing. We hypothesize that bone arginine availability in autologous bone marrow grafting, when using the reamer-irrigator-aspirator (RIA) procedure, is a marker of bone healing capacity in patients treated for nonunion. Seventeen patients treated for atrophic long bone nonunion by autologous bone grafting by the RIA procedure were included and divided into two groups, successful treatment of nonunion and unsuccessful, and were compared with control patients after normal fracture healing. Reamed bone marrow aspirate from a site distant to the nonunion was obtained and the amino acids and enzymes relevant to arginine metabolism were measured. Arginine and ornithine concentrations were higher in patients with successful bone healing after RIA in comparison with unsuccessful healing. Ornithine concentrations and arginase-1 expression were lower in all nonunion patients compared to control patients, while citrulline concentrations were increased. Nitric oxide synthase 2 (Nos2) expression was significantly increased in all RIA-treated patients, and higher in patients with a successful outcome when compared with an unsuccessful outcome. The results indicate an influence of the arginine-nitric oxide metabolism in collected bone marrow, on the outcome of nonunion treatment, with indications for a prolonged inflammatory response in patients with unsuccessful bone grafting therapy. The determination of arginine concentrations and Nos2 expression could be used as a predictor for the successful treatment of autologous bone grafting in nonunion treatment.
Collapse
Affiliation(s)
- Dennis M. Meesters
- Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Center +, 6200 MD Maastricht, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433-881-891
| | - Karolina A. P. Wijnands
- Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Center +, 6200 MD Maastricht, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
| | - Hans M. H. van Eijk
- Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Center +, 6200 MD Maastricht, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
| | - Martijn Hofman
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Jan P. A. M. Verbruggen
- Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Center +, 6200 MD Maastricht, The Netherlands
| | - Peter R. G. Brink
- Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Center +, 6200 MD Maastricht, The Netherlands
| | - Martijn Poeze
- Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Center +, 6200 MD Maastricht, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Man MQ, Wakefield JS, Mauro TM, Elias PM. Role of nitric oxide in regulating epidermal permeability barrier function. Exp Dermatol 2022; 31:290-298. [PMID: 34665906 PMCID: PMC8897205 DOI: 10.1111/exd.14470] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), a free radical molecule synthesized by nitric oxide synthases (NOS), regulates multiple cellular functions in a variety of cell types. These NOS, including endothelial NOS (eNOS), inducible NOS (iNOS) and neural NOS (nNOS), are expressed in keratinocytes. Expression levels of both iNOS and nNOS decrease with ageing, and insufficient NO has been linked to the development of a number of disorders such as diabetes and hypertension, and to the severity of atherosclerosis. Conversely, excessive NO levels can induce cellular oxidative stress, but physiological levels of NO are required to maintain the normal functioning of cells, including keratinocytes. NO also regulates cutaneous functions, including epidermal permeability barrier homeostasis and wound healing, through its stimulation of keratinocyte proliferation, differentiation and lipid metabolism. Topical applications of a diverse group of agents which generate nitric oxide (called NO donors) such as S-nitroso-N-acetyl-D,L-penicillamine (SNAP) can delay permeability barrier recovery in barrier-disrupted skin, but iNOS is still required for epidermal permeability barrier homeostasis. This review summarizes the regulatory role that NO plays in epidermal permeability barrier functions and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA,Dermatology Hospital, Southern Medical University, Guangdong 510091, China
| | - Joan S. Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Peter M. Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| |
Collapse
|
8
|
Al-Hamed FS, Rodan R, Ramirez-Garcialuna JL, Elkashty O, Al-Shahrani N, Tran SD, Lordkipanidzé M, Kaartinen M, Badran Z, Tamimi F. The effect of aging on the bone healing properties of blood plasma. Injury 2021; 52:1697-1708. [PMID: 34049703 DOI: 10.1016/j.injury.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Age-related changes in blood composition have been found to affect overall health. Thus, this study aimed to understand the effect of these changes on bone healing by assessing how plasma derived from young and old rats affect bone healing using a rat model. METHODS . Blood plasma was collected from 6-month and 24-month old rats. Differences in elemental composition and metabolome were assessed using optical emission spectrometry and liquid mass spectrometry, respectively. Bilateral tibial bone defects were created in eight rats. Young plasma was randomly applied to one defect, while aged plasma was applied to the contralateral one. Rats were euthanized after two weeks, and their tibiae were analyzed using micro-CT and histology. The proteome of bone marrow was analyzed in an additional group of three rats. RESULTS Bone-defects treated with aged-plasma were significantly bigger in size and presented lower bone volume/tissue volume compared to defects treated with young-plasma. Histomorphometric analysis showed fewer mast cells, macrophages, and lymphocytes in defects treated with old versus young plasma. The proteome analysis showed that young plasma upregulated pathways required for bone healing (e.g. RUNX2, platelet signaling, and crosslinking of collagen fibrils) whereas old plasma upregulated pathways, involved in disease and inflammation (e.g. IL-7, IL-15, IL-20, and GM-CSF signaling). Plasma derived from old rats presented higher concentrations of iron, phosphorous, and nucleotide metabolites as well as lower concentrations of platelets, citric acid cycle, and pentose phosphate pathway metabolites compared to plasma derived from young rats. CONCLUSION bone defects treated with plasma-derived from young rats showed better healing compared to defects treated with plasma-derived from old rats. The application of young and old plasmas has different effects on the proteome of bone defects.
Collapse
Affiliation(s)
| | - Rania Rodan
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Senior specialist in periodontology, Royal Medical Services, Amman, Jordan
| | - Jose Luis Ramirez-Garcialuna
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada
| | - Osama Elkashty
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Marie Lordkipanidzé
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Mari Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Zahi Badran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Periodontology (CHU/Rmes Inserm U1229/UIC11), Faculty of Dental Surgery, University of Nantes, Nantes, France; College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Yousefzadeh N, Jeddi S, Kashfi K, Ghasemi A. Diabetoporosis: Role of nitric oxide. EXCLI JOURNAL 2021; 20:764-780. [PMID: 34121973 PMCID: PMC8192884 DOI: 10.17179/excli2021-3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Diabetoporosis, diabetic-related decreased bone quality and quantity, is one of the leading causes of osteoporotic fractures in subjects with type 2 diabetes (T2D). This is associated with lower trabecular and cortical bone quality, lower bone turnover rates, lower rates of bone healing, and abnormal posttranslational modifications of collagen. Decreased nitric oxide (NO) bioavailability has been reported within the bones of T2D patients and can be considered as one of the primary mechanisms by which diabetoporosis is manifested. NO donors increase trabecular and cortical bone quality, increase the rate of bone formation, accelerate the bone healing process, delay osteoporosis, and decrease osteoporotic fractures in T2D patients, suggesting the potential therapeutic implication of NO-based interventions. NO is produced in the osteoblast and osteoclast cells by three isoforms of NO synthase (NOS) enzymes. In this review, the roles of NO in bone remodeling in the normal and diabetic states are discussed. Also, the favorable effects of low physiological levels of NO produced by endothelial NOS (eNOS) versus detrimental effects of high pathological levels of NO produced by inducible NOS (iNOS) in diabetoporosis are summarized. Available data indicates decreased bone NO bioavailability in T2D and decreased expression of eNOS, and increased expression and activity of iNOS. NO donors can be considered novel therapeutic agents in diabetoporosis.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
- PhD Program in Biology, City University of New York Graduate Center, New York,NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
do Monte FA, Ahuja N, Awad KR, Pan Z, Young S, Kim HKW, Aswath P, Brotto M, Varanasi VG. Silicon Oxynitrophosphide Nanoscale Coating Enhances Antioxidant Marker-Induced Angiogenesis During in vivo Cranial Bone-Defect Healing. JBMR Plus 2021; 5:e10425. [PMID: 33869985 PMCID: PMC8046063 DOI: 10.1002/jbm4.10425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 11/08/2022] Open
Abstract
Critical-sized bone defects are challenging to heal because of the sudden and large volume of lost bone. Fixative plates are often used to stabilize defects, yet oxidative stress and delayed angiogenesis are contributing factors to poor biocompatibility and delayed bone healing. This study tests the angiogenic and antioxidant properties of amorphous silicon oxynitrophosphide (SiONPx) nanoscale-coating material on endothelial cells to regenerate vascular tissue in vitro and in bone defects. in vitro studies evaluate the effect of silicon oxynitride (SiONx) and two different SiONPx compositions on human endothelial cells exposed to ROS (eg, hydrogen peroxide) that simulates oxidative stress conditions. in vivo studies using adult male Sprague Dawley rats (approximately 450 g) were performed to compare a bare plate, a SiONPx-coated implant plate, and a sham control group using a rat standard-sized calvarial defect. Results from this study showed that plates coated with SiONPx significantly reduced cell death, and enhanced vascular tubule formation and matrix deposition by upregulating angiogenic and antioxidant expression (eg, vascular endothelial growth factor A, angiopoetin-1, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2, and catalase 1). Moreover, endothelial cell markers (CD31) showed a significant tubular structure in the SiONPx coating group compared with an empty and uncoated plate group. This reveals that atomic doping of phosphate into the nanoscale coating of SiONx produced markedly elevated levels of antioxidant and angiogenic markers that enhance vascular tissue regeneration. This study found that SiONPx or SiONx nanoscale-coated materials enhance antioxidant expression, angiogenic marker expression, and reduce ROS levels needed for accelerating vascular tissue regeneration. These results further suggest that SiONPx nanoscale coating could be a promising candidate for titanium plate for rapid and enhanced cranial bone-defect healing. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Felipe A do Monte
- Department of BioengineeringUniversity of Texas at ArlingtonArlingtonTXUSA
- Center for Excellence in Hip DisordersTexas Scottish Rite HospitalDallasTXUSA
| | - Neelam Ahuja
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Kamal R Awad
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Zui Pan
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Simon Young
- Department of Oral and Maxillofacial SurgeryThe University of Texas Health Science Center at Houston, School of DentistryHoustonTXUSA
| | - Harry KW Kim
- Center for Excellence in Hip DisordersTexas Scottish Rite HospitalDallasTXUSA
- Department of Orthopedic SurgeryUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Pranesh Aswath
- Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Marco Brotto
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Venu G Varanasi
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonTXUSA
| |
Collapse
|
11
|
Anastasio AT, Paniagua A, Diamond C, Ferlauto HR, Fernandez-Moure JS. Nanomaterial Nitric Oxide Delivery in Traumatic Orthopedic Regenerative Medicine. Front Bioeng Biotechnol 2021; 8:592008. [PMID: 33537289 PMCID: PMC7849904 DOI: 10.3389/fbioe.2020.592008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Achieving bone fracture union after trauma represents a major challenge for the orthopedic surgeon. Fracture non-healing has a multifactorial etiology and there are many risk factors for non-fusion. Environmental factors such as wound contamination, infection, and open fractures can contribute to non-healing, as can patient specific factors such as poor vascular status and improper immunologic response to fracture. Nitric oxide (NO) is a small, neutral, hydrophobic, highly reactive free radical that can diffuse across local cell membranes and exert paracrine functions in the vascular wall. This molecule plays a role in many biologic pathways, and participates in wound healing through decontamination, mediating inflammation, angiogenesis, and tissue remodeling. Additionally, NO is thought to play a role in fighting wound infection by mitigating growth of both Gram negative and Gram positive pathogens. Herein, we discuss recent developments in NO delivery mechanisms and potential implications for patients with bone fractures. NO donors are functional groups that store and release NO, independent of the enzymatic actions of NOS. Donor molecules include organic nitrates/nitrites, metal-NO complexes, and low molecular weight NO donors such as NONOates. Numerous advancements have also been made in developing mechanisms for localized nanomaterial delivery of nitric oxide to bone. NO-releasing aerogels, sol- gel derived nanomaterials, dendrimers, NO-releasing micelles, and core cross linked star (CCS) polymers are all discussed as potential avenues of NO delivery to bone. As a further target for improved fracture healing, 3d bone scaffolds have been developed to include potential for nanoparticulated NO release. These advancements are discussed in detail, and their potential therapeutic advantages are explored. This review aims to provide valuable insight for translational researchers who wish to improve the armamentarium of the feature trauma surgeon through use of NO mediated augmentation of bone healing.
Collapse
Affiliation(s)
| | - Ariana Paniagua
- Duke University School of Medicine, Durham, NC, United States
| | - Carrie Diamond
- Duke University School of Medicine, Durham, NC, United States
| | | | | |
Collapse
|
12
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part II - Modulation of angiogenesis. Clin Hemorheol Microcirc 2020; 73:409-438. [PMID: 31177206 DOI: 10.3233/ch-199103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
13
|
Fahy N, Menzel U, Alini M, Stoddart MJ. Shear and Dynamic Compression Modulates the Inflammatory Phenotype of Human Monocytes in vitro. Front Immunol 2019; 10:383. [PMID: 30891042 PMCID: PMC6411641 DOI: 10.3389/fimmu.2019.00383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Monocytes and their derived macrophages are found at the site of remodeling tissue, such as fracture hematoma, that is exposed to mechanical forces and have been previously implicated in the reparative response. However, the mechanoresponsive of monocytes and macrophages to skeletal tissue-associated mechanical forces and their subsequent contribution to skeletal repair remains unclear. The aim of this study was to investigate the potential of skeletal tissue-associated loading conditions to modulate human monocyte activation and phenotype. Primary human monocytes or the human monocyte reporter cell line, THP1-Blue, were encapsulated in agarose and exposed to a combination of shear and compressive loading for 1 h a day for 3 consecutive days. Exposure of monocytes to mechanical loading conditions increased their pro-inflammatory gene and protein expression. Exposure of undifferentiated monocytes to mechanical loading conditions significantly upregulated gene expression levels of interleukin(IL)-6 and IL-8 compared to free swelling controls. Additionally, multiaxial loading of unstimulated monocytes resulted in increased protein secretion of TNF-α (17.1 ± 8.9 vs. 8 ± 7.4 pg/ml) and MIP-1α (636.8 ± 471.1 vs. 124.1 ± 40.1 pg/ml), as well as IL-13 (42.1 ± 19.8 vs. 21.7 ± 13.6) compared monocytes cultured under free-swelling conditions. This modulatory effect was observed irrespective of previous activation with the M1/pro-inflammatory differentiation stimuli lipopolysaccharide and interferon-γ or the M2/anti-inflammatory differentiation factor interleukin-4. Furthermore, mechanical shear and compression were found to differentially regulate nitric oxide synthase 2 (NOS2) and IL-12B gene expression as well as inflammatory protein production by THP1-Blue monocytes. The findings of this study indicate that human monocytes are responsive to mechanical stimuli, with a modulatory effect of shear and compressive loading observed toward pro-inflammatory mediator production. This may play a role in healing pathways that are mechanically regulated. An in depth understanding of the impact of skeletal tissue-associated mechanical loading on monocyte behavior may identify novel targets to maximize inflammation-mediated repair mechanisms.
Collapse
Affiliation(s)
- Niamh Fahy
- AO Research Institute Davos, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
14
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Circulating Hypoxia Responsive microRNAs (HRMs) and Wound Healing Potentials of Green Tea in Diabetic and Nondiabetic Rat Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9019253. [PMID: 30713578 PMCID: PMC6332961 DOI: 10.1155/2019/9019253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022]
Abstract
Green tea (Camellia sinensis) has many biological activities and may promote diabetic wound healing by regulation of circulating hypoxia responsive microRNAs (HRMs) which triggers the wound repairing process in diabetic and nondiabetic wounds. Thus, in this study, the potential effects of green tea extract (GTE) on the expression of miRNAs; miR-424, miR-199a, miR-210, miR-21, and fibrogenitic markers; hydroxyproline (HPX), fibronectin (FN), and nitric oxide (NO) were evaluated in wounds of diabetic and nondiabetic rats. The animals were topically treated with vaseline, 0.6% GTE, and 5%w/w povidone iodine (standard control). HPX, FN, and NO levels and microRNAs, miR-424, miR-210, miR-199a, and miR-21, were estimated in wound tissues using colorimetric, immunoassay, and molecular PCR analysis. In vitro analysis was performed to estimate active constituents and their antioxidant activities in methanolic green teat extract (GTE). Wounds treated with green tea, a dose of 0.6, healed significantly earlier than those treated with standard vehicle and vaseline treated diabetic wounds. Higher expressions of HRMs, miR-199a, and miR-21, and lower expression of HRMs, miR-424 and miR-210, were significantly reported in tissues following treatment with green tea extract compared to standard control vehicle. The tissues also contained more collagen expressed as measures of HPX, FN, and NO and more angiogenesis, compared to wounds treated with standard control vehicle. Diabetic and nondiabetic wounds treated with green tea (0.6%) for three weeks had lesser scar width and greater re-epithelialization in shorter periods when compared to standard control vehicle. Expression of HRMs, miR-199a, miR-21, and HRMs and miR-424 and miR-210 correlated positively with HPX, fibronectin, NO, better scar formation, and tensile strength and negatively with diabetes. In addition to antidiabetic and antioxidant activities of green tea components, GTE showed angiogenesis promoting activity in diabetic wound healing. In conclusion, Camellia sinensis extracts in a dose of 0.6% significantly promote more collagen and fibronectin deposition with higher expression of NO, promoting angiogenesis process via molecular controlling of circulating hypoxia responsive microRNAs: miR-424, miR-210, miR-199a, and miR-21 in diabetic and nondiabetic wounds. Our results support a functional role of circulating hypoxia responsive microRNAs: miR-424, miR-210, miR-199a, and miR-21 as potential therapeutic targets in angiogenesis and vascular remodeling in diabetic wound healing.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Meesters DM, Wijnands KAP, Brink PRG, Poeze M. Malnutrition and Fracture Healing: Are Specific Deficiencies in Amino Acids Important in Nonunion Development? Nutrients 2018; 10:E1597. [PMID: 30384490 PMCID: PMC6266771 DOI: 10.3390/nu10111597] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
With the increasing incidence of fractures now, and in the future, the absolute number of bone-healing complications such as nonunion development will also increase. Next to fracture-dependent factors such as large bone loss volumes and inadequate stabilization, the nutritional state of these patients is a major influential factor for the fracture repair process. In this review, we will focus on the influence of protein/amino acid malnutrition and its influence on fracture healing. Mainly, the arginine-citrulline-nitric oxide metabolism is of importance since it can affect fracture healing via several precursors of collagen formation, and through nitric oxide synthases it has influences on the bio-molecular inflammatory responses and the local capillary growth and circulation.
Collapse
Affiliation(s)
- Dennis M Meesters
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- NUTRIM School for Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Karolina A P Wijnands
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- NUTRIM School for Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Peter R G Brink
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- NUTRIM School for Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
16
|
Ding ZC, Lin YK, Gan YK, Tang TT. Molecular pathogenesis of fracture nonunion. J Orthop Translat 2018; 14:45-56. [PMID: 30035032 PMCID: PMC6019407 DOI: 10.1016/j.jot.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Fracture nonunion, a serious bone fracture complication, remains a challenge in clinical practice. Although the molecular pathogenesis of nonunion remains unclear, a better understanding may provide better approaches for its prevention, diagnosis and treatment at the molecular level. This review tries to summarise the progress made in studies of the pathogenesis of fracture nonunion. We discuss the evidence supporting the concept that the development of nonunion is related to genetic factors. The importance of several cytokines that regulate fracture healing in the pathogenesis of nonunion, such as tumour necrosis factor-α, interleukin-6, bone morphogenetic proteins, insulin-like growth factors, matrix metalloproteinases and vascular endothelial growth factor, has been proven in vitro, in animals and in humans. Nitric oxide and the Wnt signalling pathway also play important roles in the development of nonunion. We present potential strategies for the prevention, diagnosis and treatment of nonunion, and the interaction between genetic alteration and abnormal cytokine expression warrants further investigation. The translational potential of this article A better understanding of nonunion molecular pathogenesis may provide better approaches for its prevention, diagnosis and treatment in clinical practice.
Collapse
Affiliation(s)
- Zi-Chuan Ding
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Yi-Kai Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Yao-Kai Gan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
17
|
Huang W, Zhang K, Zhu Y, Wang Z, Li Z, Zhang J. Genetic polymorphisms of NOS2 and predisposition to fracture non-union: A case control study based on Han Chinese population. PLoS One 2018. [PMID: 29518099 PMCID: PMC5843262 DOI: 10.1371/journal.pone.0193673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A non-union, especially atrophic non-unions, is a permanent failure of healing following a fracture and can be difficult to treat. Approximately 5–10% of fractures will result in a non-union during the healing process. non-unions can be classified into two types: atrophic non-union which is often due to impaired bone healing with a potential biological mechanism, and hypertrophic non-union which is due to inadequate fixation after fracture. Genetic variations also play an important role in the fracture healing response. Previous studies based on animal models have indicated that NOS2 might be greatly involved in the bone fracture healing process. In this case-control study, 346 nonunion patients were compared to 883 patients with normal fracture healing to investigate the potential genetic association between NOS2 and the fracture healing process using study subjects of Chinese Han ancestry. Twenty-seven single nucleotide polymorphisms (SNPs) covering NOS2 were genotyped in our study subjects and analyzed. In addition to the single marker-based analysis, we performed a gene-by-environment analysis to examine the potential interactions between genetic polymorphisms and some environmental factors. SNP rs2297514 showed significant association with the fracture healing process after adjusting for age and gender (OR = 1.38, P = 0.0005). Our results indicated that the T allele of rs2297514 significantly increased the risk of a non-union during the fracture healing process by 38% compared to the C allele. Further stratification analyses conducted for this SNP using data from subgroups classified by different sites of fracture indicated that significance could only be observed in the tibial diaphysis subgroup (N = 428, OR = 1.77, P = 0.0007) but not other groups including femur diaphysis, humeral shaft, ulnar shaft, and femur neck. Gene-by-environment interaction analyses of the three environmental factors showed no significant results. In this study, rs2297514 was significantly associated with the non-union status of fracture healing using a large Chinese population-based study sample. Our findings replicated those of a previous preliminary study and offered strong evidence linking NOS2 and fracture healing.
Collapse
Affiliation(s)
- Wei Huang
- Department of Trauma Surgery, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kun Zhang
- Department of Trauma Surgery, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yangjun Zhu
- Department of Trauma Surgery, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Zhan Wang
- Department of Trauma Surgery, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Zijun Li
- Department of Trauma Surgery, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jun Zhang
- Department of Trauma Surgery, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|
18
|
Meesters DM, Neubert S, Wijnands KAP, Heyer FL, Zeiter S, Ito K, Brink PRG, Poeze M. Deficiency of inducible and endothelial nitric oxide synthase results in diminished bone formation and delayed union and nonunion development. Bone 2016; 83:111-118. [PMID: 26555548 DOI: 10.1016/j.bone.2015.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Between 5% and 10% of all fractures fail to heal adequately resulting in nonunion of the fracture fragments. This can significantly decrease a patient's quality of life and create associated psychosocial and socio-economic problems. Nitric oxide (NO) and nitric oxide synthases (NOS) have been found to be involved in fracture healing, but until now it is not known if disturbances in these mechanisms play a role in nonunion and delayed union development. In this study, we explored the role of endothelial and inducible NOS deficiency in a delayed union model in mice. MATERIALS AND METHODS A 0.45mm femur osteotomy with periosteal cauterization followed by plate-screw osteosynthesis was performed in the left leg of 20-24week old wild type, Nos2(-/-) and Nos3(-/-) mice. Contralateral unfractured legs were used as a control. Callus volume was measured using micro-computed tomography (μCT) after 28 and 42days of fracture healing. Immuno histochemical myeloperoxidase (MPO) staining was performed on paraffin embedded sections to assess neutrophil influx in callus tissue and surrounding proximal and distal marrow cavities of the femur. After 7 and 28days of fracture healing, femurs were collected for amino acid and RNA analysis to study arginine-NO metabolism. RESULTS With μCT, delayed union was observed in wild type animals, whereas in both Nos2(-/-) and Nos3(-/-) mice nonunion development was evident. Both knock-out strains also showed a significantly increased influx of MPO when compared with wild type mice. Concentrations of amino acids and expression of enzymes related to the arginine-NO metabolism were aberrant in NOS deficient mice when compared to contralateral control femurs and wild type samples. DISCUSSION AND CONCLUSION In the present study we show for the first time that the absence of nitric oxide synthases results in a disturbed arginine-NO metabolism and inadequate fracture healing with the transition of delayed union into a nonunion in mice after a femur osteotomy. Based on these data we suggest that the arginine-NO metabolism may play a role in the prevention of delayed unions and nonunions.
Collapse
Affiliation(s)
- D M Meesters
- Department of Surgery and Trauma surgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - S Neubert
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - K A P Wijnands
- Department of Surgery and Trauma surgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - F L Heyer
- Department of Surgery and Trauma surgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - S Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - K Ito
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - P R G Brink
- Department of Surgery and Trauma surgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - M Poeze
- Department of Surgery and Trauma surgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
19
|
Sathyendra V, Donahue HJ, Vrana KE, Berg A, Fryzel D, Gandhi J, Reid JS. Single Nucleotide Polymorphisms in Osteogenic Genes in Atrophic Delayed Fracture-Healing: A Preliminary Investigation. J Bone Joint Surg Am 2014; 96:1242-1248. [PMID: 25100770 DOI: 10.2106/jbjs.m.00453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED UpdateThis article was updated on September 10, 2014, because of a previous error. On page 1242, in the byline, and on page 1247, in the author addresses, the academic degree for Henry J. Donahue had previously read "MD." The degree now reads "PhD." BACKGROUND We propose that fracture-healing potential is affected by the patient's genome. This genotype is then phenotypically expressed by the patient at the time of injury. We examined the hypothesis that patients who exhibit delayed or impaired fracture-healing may have one or more single nucleotide polymorphisms (SNPs) within a series of genes related to bone formation. METHODS We performed a population-based, case-controlled study of delayed fracture-healing. Sixty-two adults with a long-bone fracture were identified from a surgical database. Thirty-three patients had an atrophic nonunion (delayed healing), and twenty-nine displayed normal fracture-healing. These patients underwent buccal mucosal cell harvesting. SNP genotyping was performed with use of bead array technology. One hundred and forty-four SNPs (selected from HapMap) within thirty genes associated with fracture-healing were investigated. Three SNPs did not segregate in the population and were excluded from the analysis. Eight of the remaining SNPs failed the test for Hardy-Weinberg equilibrium (p value smaller than the Bonferroni-corrected level of 0.05/141 = 0.000355) and were excluded. RESULTS Five SNPs on four genes were found to have a p value of <0.05 in the additive genetic model. Of these five significant SNPs, three had an odds ratio (OR) of >1, indicating that the presence of the allele increased the risk of nonunion. The rs2853550 SNP, which had the largest effect (OR = 5.9, p = 0.034), was on the IL1B gene, which codes for interleukin 1 beta. The rs2297514 SNP (OR = 3.98, p = 0.015) and the rs2248814 SNP (OR = 2.27, p = 0.038) were on the NOS2 gene coding for nitric oxide synthase. The remaining two SNPs had an OR of <1, indicating that the presence of the allele may be protective against nonunion. The rs3819089 SNP (OR = 0.26, p = 0.026) was on the MMP13 gene for matrix metallopeptidase 13, and the rs270393 SNP (OR = 0.30, p = 0.015) was on the BMP6 gene for bone morphogenetic protein 6. CONCLUSIONS Variations in the IL1B and NOS2 genes may contribute to delayed fracture-healing and warrant further investigation. CLINICAL RELEVANCE Impaired fracture union may have genetic contributions.
Collapse
Affiliation(s)
- Vikram Sathyendra
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Henry J Donahue
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Kent E Vrana
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Arthur Berg
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - David Fryzel
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - Jonathan Gandhi
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| | - J Spence Reid
- Departments of Orthopaedics and Rehabilitation (V.S., H.J.D., D.F., J.G., and J.S.R.), Pharmacology (K.E.V.), and Public Health Sciences (A.B.), Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. E-mail address for J.S. Reid:
| |
Collapse
|
20
|
Joiner DM, Tayim RJ, McElderry JD, Morris MD, Goldstein SA. Aged male rats regenerate cortical bone with reduced osteocyte density and reduced secretion of nitric oxide after mechanical stimulation. Calcif Tissue Int 2014; 94:484-94. [PMID: 24370615 PMCID: PMC4791168 DOI: 10.1007/s00223-013-9832-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 12/01/2013] [Indexed: 01/05/2023]
Abstract
Mechanical loading is integral to the repair of bone damage. Osteocytes are mechanosensors in bone and participate in signaling through gap junction channels, which are primarily comprised of connexin 43 (Cx43). Nitric oxide (NO) and prostaglandin E2 (PGE2) have anabolic and catabolic effects on bone, and the secretion of these molecules occurs after mechanical stimulation. The effect of age on the repair of bone tissue after damage and on the ability of regenerated bone to transduce mechanical stimulation into a cellular response is unexplored. The goal of this study was to examine (1) osteocytes and their mineralized matrix within regenerated bone from aged and mature animals and (2) the ability of regenerated bone explants from aged and mature animals to transduce cyclic mechanical loading into a cellular response through NO and PGE2 secretion. Bilateral cortical defects were created in the diaphysis of aged (21-month-old) or mature (6-month-old) male rats, and new bone tissue was allowed to grow into a custom implant of controlled geometry. Mineralization and mineral-to-matrix ratio were significantly higher in regenerated bone from aged animals, while lacunar and osteocyte density and phosphorylated (pCx43) and total Cx43 protein were significantly lower, relative to mature animals. Regenerated bone from mature rats had increased pCx43 protein and PGE2 secretion with loading and greater NO secretion relative to aged animals. Reduced osteocyte density and Cx43 in regenerated bone in aged animals could limit the establishment of gap junctions as well as NO and PGE2 secretion after loading, thereby altering bone formation and resorption in vivo.
Collapse
Affiliation(s)
- Danese M Joiner
- Orthopaedic Research Laboratories, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place Bay 4888, Ann Arbor, MI, 48108, USA,
| | | | | | | | | |
Collapse
|
21
|
Fügl A, Gasser H, Watzak G, Bucher A, Feierfeil J, Jürgens G, Watzek G, Hallström S, Gruber R. S-nitroso albumin enhances bone formation in a rabbit calvaria model. Int J Oral Maxillofac Surg 2014; 43:381-6. [DOI: 10.1016/j.ijom.2013.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/08/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|
22
|
Tomlinson RE, Silva MJ. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res 2013; 1:311-22. [PMID: 26273509 DOI: 10.4248/br201304002] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023] Open
Abstract
Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anatomy, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Department of Orthopaedic Surgery, Washington University in St. Louis , Saint Louis, MO, USA ; Musculoskeletal Research Center, Washington University in St. Louis , Saint Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis , Saint Louis, MO, USA ; Musculoskeletal Research Center, Washington University in St. Louis , Saint Louis, MO, USA
| |
Collapse
|
23
|
de Andrés MC, Kingham E, Imagawa K, Gonzalez A, Roach HI, Wilson DI, Oreffo ROC. Epigenetic regulation during fetal femur development: DNA methylation matters. PLoS One 2013; 8:e54957. [PMID: 23383012 PMCID: PMC3557259 DOI: 10.1371/journal.pone.0054957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/18/2012] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs), adult chondrocytes and STRO-1+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2) and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development, informing and opening new possibilities in development of strategies for bone repair/tissue engineering.
Collapse
Affiliation(s)
- María C. de Andrés
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Emmajayne Kingham
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Kei Imagawa
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- Tohoku University School of Medicine, Sendai, Japan
| | - Antonio Gonzalez
- Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Helmtrud I. Roach
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - David I. Wilson
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
24
|
Wijnands KAP, Brink PRG, Weijers PHE, Dejong CHC, Poeze M. Impaired fracture healing associated with amino acid disturbances. Am J Clin Nutr 2012; 95:1270-7. [PMID: 22492379 DOI: 10.3945/ajcn.110.009209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Five percent to 10% of all fracture patients experience an inadequate healing process that results in a nonunion of fracture parts. Previous experimental studies have indicated the importance of sufficient nitric oxide production from arginine during normal fracture healing. However, during conditions of stress, such as inflammation, arginine availability can become limited, which may lead to a nonunion as a result of insufficient callus formation. OBJECTIVE The aim of this study was to measure callus and plasma amino acid concentrations in patients with and without a fracture nonunion. DESIGN Amino acid concentrations in plasma and callus were measured with HPLC in atrophic nonunions (n = 12) and compared with those in hypertrophic nonunions (n = 12), acute fractures (n = 15), and healed fractures (n = 8). RESULTS Arginine (61 compared with 180 μmol/mg; P < 0.0001), citrulline (13 compared with 44 μmol/mg; P < 0.0001), and ornithine (25 compared with 149 μmol/mg; P < 0.0001) in callus were significantly lower in atrophic-nonunion patients than in healed-fracture patients. In hypertrophic nonunions, arginine was significantly higher and ornithine was lower than in healed fractures. Plasma arginine concentrations were significantly lower in patients with hypertrophic nonunions (62 μmol/L; P < 0.001) and acute-fracture patients (41 μmol/L; P < 0.001) but not in atrophic-nonunion patients. Plasma ornithine concentrations were lower in all groups than in acute-fracture patients. CONCLUSIONS Amino acid concentrations were significantly changed in nonunion patients. Atrophic nonunions had lower concentrations of all amino acids, whereas hypertrophic nonunions had higher arginine and lower ornithine concentrations at fracture sites than did healed-fracture and acute-fracture patients.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
25
|
An in vivo experimental study on osteopenia in diabetic rats. Acta Histochem 2011; 113:619-25. [PMID: 20696468 DOI: 10.1016/j.acthis.2010.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 02/02/2023]
Abstract
Osteopenia is a significant problem associated with Diabetes mellitus. Osteopenia may result in an increased delay in healing of bone fractures and subsequently affect the quality of life. We evaluated the immunohistochemical localization of TRAIL and its receptor DR5 in the femoral bone of 10-week-old Sprague-Dawley male rats treated with sesame oil (control, group 1), streptozotocin (STZ), a diabetes inducer (group 2), L-NAME, a general inhibitor of NOS activity (group 3), L-arginine (group 4), (arginine acts as a NO substrate) and iNOS immunostaining in group 1 and group 4. Histological and histochemical findings showed decreased growth of metaphyseal cartilage (which was thinner), decreased osteoid surface, and reduced mineral apposition rate in STZ- and L-NAME-treated rats. These findings confirm that bone formation is impaired in diabetic osteopenia. L-arginine supplementation seems to prevent diabetes-induced bone alterations and preserve the calcification process, allowing synthesis of new bone matrix. The immunohistochemical study revealed increased immunostaining of TRAIL and DR5 in osteoblastic cells of the diaphysis (pre-metaphysis) and epiphysis treated with STZ and L-NAME, related to activation of osteoblastic apoptotic death, while the group receiving L-arginine was comparable to the control group and the higher indications of iNOS activity that may reflect its induction by L-arginine administration. The action of L-arginine suggests that increased NO synthesis and availability is potentially useful for effective prevention and treatment of diabetic osteopenia.
Collapse
|
26
|
Saini V, McCormick S. Changes in NO, iNOS and eNOS Expression in MLO-Y4 Cells After Low-intensity Pulsed Ultrasound Treatment With or Without Shear Stress Exposure. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Diwan AD, Khan SN, Cammisa FP, Sandhu HS, Lane JM. Nitric oxide modulates recombinant human bone morphogenetic protein-2-induced corticocancellous autograft incorporation: a study in rat intertransverse fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:931-9. [PMID: 20063019 DOI: 10.1007/s00586-009-1263-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/26/2009] [Accepted: 12/23/2009] [Indexed: 11/25/2022]
Abstract
A novel rat model was used to investigate the effect of nitric oxide synthase inhibition in posterior spinal fusion augmented with recombinant human bone morphogenetic protein-2. Nitric oxide (NO) has important physiological functions including the modulation of fracture healing. Recombinant human BMP-2 (rhBMP-2) enhances spinal fusion. It is not known whether nitric oxide has a role in rhBMP-2 enhanced spinal fusion and remodeling. A novel rat intertransverse fusion model was created using a defined volume of bone graft along with a collagen sponge carrier, which was compacted and delivered using a custom jig. The control groups consisted of a sham group (S, n = 20), an autograft + carrier group (A, n = 28) and a group consisting of 43 microg of rhBMP-2 mixed with autograft + carrier (AB, n = 28). Two experimental groups received a nitric oxide synthase (NOS) inhibitor, N (G)-nitro L-arginine methyl ester, in a dose of 1 mg/ml ad lib in the drinking water (AL, n = 28) and one of these experimental groups had rhBMP-2 added to the graft mixture at the time of surgery (ALB, n = 28). Rats were killed at 22 and 44 days, spinal columns subjected to radiology, biomechanics and histology. On a radiographic score (0-4) indicating progressive maturation of bone fusion mass, no difference was found between the A and AL groups, however, there was a significant enhancement of fusion when rhBMP-2 was added when compared to the A group (P < 0.001). However, on day 44, the ALB group showed significantly less fusion progression when compared to the AB group (P < 0.01). There was a 25% (P < 0.05) more fusion-mass-area in day 44 of ALB group when compared to day 44 of the AB group indicating that NOS inhibition delayed the remodeling of the fusion mass. Biomechanically, the rhBMP-2 groups were stiffer at all time points compared to the NOS inhibited groups. Decalcified histology demonstrated that there was a delay in graft incorporation whenever NOS was inhibited (AL and ALB groups) as assessed by a 5 point histological maturation score. In a novel model of rat intertransverse process fusion, nitric oxide synthase modulates rhBMP-2 induced corticocancellous autograft incorporation.
Collapse
Affiliation(s)
- Ashish D Diwan
- Spinal Surgical Service, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, USA
| | | | | | | | | |
Collapse
|
28
|
Vendégh Z, Melly A, Tóth B, Wolf K, Farkas T, Józan J, Hamar J, Kádas I. Effects of neuropeptides and vasoactive substances on microcirculation of the callus after tibial osteotomy in rabbits. Acta Vet Hung 2009; 57:427-39. [PMID: 19635715 DOI: 10.1556/avet.57.2009.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated a dynamic ingrowth of vessels into the developing callus. In this study, maturation and development of the regulation of microcirculation were followed in the callus of rabbits. In the first series, the effects of vasoactive substances on blood flow velocity, perfusion pressure, duration of effects and peripheral vascular resistance of the bone marrow in the femur and tibia were compared. In the second series, the same parameters were measured in the femur and in the developing callus 10 and 15 days following gap osteotomy of the tibia. There were no significant differences between the microcirculatory reactions of the intact femur and tibia. Basal blood flow could be verified in the callus on the 10th postoperative day. No vascular reactions could be elicited. Basal blood flow velocity was higher on the 15th day, when compared to the measurements on the 10th day. The substances elicited statistically significant differences in flow velocity, resistance and 50% recovery time in the callus on the 15th day. Blood flow reactions of the ipsilateral femoral and tibial bone marrow are identical, thus the femur can serve as a reference site for blood flow measurements in the callus. Regulation and maturation of callus microcirculation develop rapidly between the 10th and 15th days.
Collapse
Affiliation(s)
- Zsolt Vendégh
- 1 National Institute of Traumatology and Emergency Medicine Trauma Centre, Péterfy Hospital, former Department of Experimental Surgery Fiumei út 17 H-1081 Budapest Hungary
| | - András Melly
- 1 National Institute of Traumatology and Emergency Medicine Trauma Centre, Péterfy Hospital, former Department of Experimental Surgery Fiumei út 17 H-1081 Budapest Hungary
| | - Balázs Tóth
- 1 National Institute of Traumatology and Emergency Medicine Trauma Centre, Péterfy Hospital, former Department of Experimental Surgery Fiumei út 17 H-1081 Budapest Hungary
| | - Konrad Wolf
- 2 Krankenhaus München-Schwabing Munich Germany
| | - Tamás Farkas
- 1 National Institute of Traumatology and Emergency Medicine Trauma Centre, Péterfy Hospital, former Department of Experimental Surgery Fiumei út 17 H-1081 Budapest Hungary
| | - Jolán Józan
- 1 National Institute of Traumatology and Emergency Medicine Trauma Centre, Péterfy Hospital, former Department of Experimental Surgery Fiumei út 17 H-1081 Budapest Hungary
| | - János Hamar
- 1 National Institute of Traumatology and Emergency Medicine Trauma Centre, Péterfy Hospital, former Department of Experimental Surgery Fiumei út 17 H-1081 Budapest Hungary
| | - István Kádas
- 1 National Institute of Traumatology and Emergency Medicine Trauma Centre, Péterfy Hospital, former Department of Experimental Surgery Fiumei út 17 H-1081 Budapest Hungary
| |
Collapse
|
29
|
Pennisi P, Clementi G, Prato A, Luca T, Martinez G, Mangiafico RA, Pulvirenti I, Muratore F, Fiore CE. L-arginine supplementation normalizes bone turnover and preserves bone mass in streptozotocin-induced diabetic rats. J Endocrinol Invest 2009; 32:546-51. [PMID: 19494718 DOI: 10.1007/bf03346505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Osteopenia, an important complication of diabetes mellitus, is responsible of an increase in bone fracture and of a delay in fracture healing. The pathogenesis of this complication is unclear, however decreased availability and synthesis of nitric oxide (NO) may be regarded as a possible cause of disregulation of bone turnover. The aim of our study was to evaluate the effect of streptozotocin (STZ)-induced diabetes in the rat on bone mineral density (BMD) and bone turnover. We also examined whether supplementation of L-arginine (which acts as a NO substrate) could be beneficial for bone. After 6 weeks of STZ treatment, diabetic rats showed a significant decrease of BMD in the whole body, at the spine, at the pelvis, and at the femur. Bone turnover evaluation revealed a significant decrease in the serum levels of osteocalcin (a marker of bone formation), and an increase of the serum levels of the C-terminal telopeptide of type I collagen (RatLaps; a marker of bone resorption). L-arginine supplementation prevented the diabetes-induced reduction of BMD and osteocalcin, and the increase of RatLaps. These pharmacological actions of L-arginine produce a new suggestion that increase of NO synthesis and availability is potentially useful for effective prevention and treatment of osteopenia associated with diabetes.
Collapse
MESH Headings
- Alkaline Phosphatase/blood
- Animals
- Arginine/administration & dosage
- Bone Density/physiology
- Bone Diseases, Metabolic/blood
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/pathology
- Bone Diseases, Metabolic/prevention & control
- Bone Remodeling/drug effects
- Calcium/blood
- Collagen Type I/blood
- Creatinine/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Male
- Nitric Oxide Donors/administration & dosage
- Osteocalcin/blood
- Peptides/blood
- Rats
- Rats, Sprague-Dawley
- Statistics, Nonparametric
Collapse
Affiliation(s)
- P Pennisi
- Department of Internal Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sinha S, Goel SC. Effect of amino acids lysine and arginine on fracture healing in rabbits: A radiological and histomorphological analysis. Indian J Orthop 2009; 43:328-34. [PMID: 19838381 PMCID: PMC2762560 DOI: 10.4103/0019-5413.55972] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Amino acids like arginine and lysine have been suggested to hasten the process of fracture healing by improving the local blood supply, supplementing growth factors, and improving collagen synthesis. We studied the role of lysine and arginine in the fracture repair process with regard to the rate of healing, probable mechanisms involved in the process, and mutual synergism between these agents. MATERIALS AND METHODS In an experimental study, 40 rabbits were subjected to ulnar osteotomy. They were distributed in control (14) and test groups (26). Twenty-six animals in the test group were fed with a diet rich in lysine and arginine. Both the groups were followed radiologically and histologically till union. RESULTS There was better healing of osteotomy in terms of better vascularization, callus formation, and mineralization in the test group. The time of healing in the test group was reduced by a period of 2 weeks. CONCLUSION We conclude that amino acids like arginine and lysine may hasten fracture healing.
Collapse
Affiliation(s)
- Shivam Sinha
- Department of Orthopaedics, IPGMER, Kolkata, India,Address for correspondence: Dr. Shivam Sinha, B-2, Brij Enclave, Sunderpur, Varanasi, India. E-mail:
| | | |
Collapse
|
31
|
Rahnert J, Fan X, Case N, Murphy TC, Grassi F, Sen B, Rubin J. The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells. Bone 2008; 43:48-54. [PMID: 18440890 PMCID: PMC2532985 DOI: 10.1016/j.bone.2008.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 02/20/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Both mechanical loading and nitric oxide (NO) have positive influences on bone mass. NO production is induced by mechanical strain via upregulation of eNOS mRNA and protein, the predominant NOS in adult bone. At the same time, strain causes decreased expression of RANKL, a factor critical for osteoclastogenesis. In this study, we harvested primary stromal cells from wild-type (WT) and eNOS(-/-) mice to test whether induction of NO by mechanical strain was necessary for transducing mechanical inhibition of RANKL. We found that strain inhibition of RANKL expression was prevented by NOS inhibitors (L-NAME and L-NMMA) in WT stromal cells. Surprisingly, stromal cells from eNOS(-/-) mice showed significant mechanical repression of RANKL expression (p<0.05). Mechanical strain still increased NO production in the absence of eNOS, and was abolished by SMTC, a specific nNOS inhibitor. nNOS mRNA and protein expression were increased by strain in eNOS(-/-) but not in WT cells, revealing that nNOS was mechanically sensitive. When NO synthesis was blocked with either SMTC or siRNA targeting nNOS in eNOS(-/-) cells however, strain still was able to suppress RANKL expression by 34%. This indicated that strain suppression of RANKL can also occur through non-NO dependent pathways. While our results confirm the importance of NO in the mechanical control of skeletal remodeling, they also suggest alternative signaling pathways by which mechanical force can produce anti-catabolic effects on the skeleton.
Collapse
Affiliation(s)
- Jill Rahnert
- Applied Physiology, Georgia Institute of Technology College of Sciences, Atlanta GA 30332, USA
| | - Xian Fan
- Veterans Affairs Medical Center, Atlanta GA 30033, USA.
| | - Natasha Case
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Tamara C Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Francesco Grassi
- Laboratory of Immunology and Genetics, Istituti Ortopedici Rizzoli, Bologna, Italy
| | - Buer Sen
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Cho K, Demissie S, Dupuis J, Cupples LA, Kathiresan S, Beck TJ, Karasik D, Kiel DP. Polymorphisms in the endothelial nitric oxide synthase gene and bone density/ultrasound and geometry in humans. Bone 2008; 42:53-60. [PMID: 17980690 PMCID: PMC2386517 DOI: 10.1016/j.bone.2007.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/18/2007] [Accepted: 09/19/2007] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), produced by endothelial cells, is a signaling molecule synthesized from l-arginine by nitric oxide synthases (NOS). NO is known to reduce the ratio of receptor activator of nuclear factor KappaB (RANKL)/osteoprotegerin (OPG), leading to decreased osteoclastogenesis and a reduction in bone resorption. Endothelial nitric oxide synthase (eNOS or NOS3) is the predominant constitutive isoform of nitric NOS within bone. Recently, a NOS3 polymorphism, Glu298Asp, previously implicated in osteoporosis, failed to demonstrate an association with bone mineral density (BMD), although there was some indication of an association with selected geometry indices. Since a single polymorphism does not capture all of the potential variants in a given gene, we investigated a broader coverage of the NOS3 gene with bone density/ultrasound and geometry indices in a sample of unrelated individuals from the Framingham Offspring Study. Our results indicated that the Glu298Asp polymorphism was not associated with BMD but suggested some haplotype-based associations in the linkage disequilibrium (LD) region that included the Glu298Asp polymorphism with several geometry indices. Although our findings exhibited several associations with selected bone density/ultrasound and geometry indices, the nominally significant associations are regarded as primarily hypothesis generating and suggest that replication in other samples is needed. Thus, NOS3 genetic variation does not appear to be a major contributor to adult bone density/ultrasound and geometry in our sample.
Collapse
Affiliation(s)
- K Cho
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Murrell GAC. Oxygen free radicals and tendon healing. J Shoulder Elbow Surg 2007; 16:S208-14. [PMID: 17509903 DOI: 10.1016/j.jse.2007.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/23/2007] [Accepted: 03/13/2007] [Indexed: 02/01/2023]
Abstract
Nitric oxide is a small free radical generated by a family of enzymes, the nitric oxide synthases (NOSs). In a series of experiments performed over the last 15 years, we showed that nitric oxide is induced by all 3 isoforms of NOS during tendon healing and that it plays a crucial beneficial role in restoring tendon function. In normal tendons, very little NOS activity was found, whereas in injured rat and human tendons, NOS activity was expressed in healing fibroblasts in a temporal fashion. In healing rat Achilles tendon fibroblasts, the first isoform to be expressed was endothelial NOS, followed by inducible NOS and then brain or neuronal NOS. Systemic inhibition of NOS activity decreased the cross-sectional area and mechanical properties of the healing rodent Achilles tendons. The addition of nitric oxide via nitric oxide-flurbiprofen enhanced rat Achilles tendon healing. The addition of nitric oxide to cultured human tendon cells via chemical means and via adenoviral transfection enhanced collagen synthesis, suggesting that one mechanism for the beneficial effect of nitric oxide on tendon healing might be via matrix synthesis. Most recently, 3 randomized, double-blind clinical trials evaluated the efficacy of nitric oxide donation via a patch in the management of the tendinopathy. In all 3 clinical trials, there was a significant positive beneficial effect of nitric oxide donation to the clinical symptoms and function of patients with Achilles tendinopathy, tennis elbow, and supraspinatus tendinitis.
Collapse
Affiliation(s)
- George A C Murrell
- Orthopaedic Research Institute, St George Hospital Campus, University of New South Wales, Sydney, Australia.
| |
Collapse
|
34
|
Zaragoza C, López-Rivera E, García-Rama C, Saura M, Martínez-Ruíz A, Lizarbe TR, Martín-de-Lara F, Lamas S. Cbfa-1 mediates nitric oxide regulation of MMP-13 in osteoblasts. J Cell Sci 2007; 119:1896-902. [PMID: 16636074 DOI: 10.1242/jcs.02895] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During bone development, osteoblast differentiation requires remodeling of the extracellular matrix. Although underlying mechanisms have not been elucidated, evidence points to the participation of the nitric oxide (NO) and cyclic guanosine 3',5'-monophosphate (cGMP) system. Here, we detected increased matrix metalloproteinase (MMP)-13 mRNA, protein and activity, as well as increased inducible NO synthase (iNOS) and NO production during the differentiation of MC3T3-E1 osteoblasts. Transcriptional activity of the MMP-13 promoter was augmented by NO, 8-bromo-cGMP (8-Br-cGMP), and by a dominant-positive form of protein kinase G (PKG1-alpha). The stimulatory effect on the MMP-13 promoter was partially inhibited by mutation of the osteoblast-specific element 2 (OSE-2) binding site. Core binding factor-1 (Cbfa-1) expression peaked at 7 days of differentiation, and was phosphorylated by PKG in vitro. Cbfa-1 was localized to cell nuclei, and its translocation was inhibited by the iNOS inhibitor 1400W. Immunohistological examination revealed that MMP-13 and Cbfa-1 expression levels are both reduced in 17-day-old embryos of iNOS-deficient mice. Silencing of Cbfa-1 mRNA blocked MMP-13 expression without interfering with endogenous NO production, confirming its role in NO-induced MMP-13 expression by MC3T3-E1 cells. The results described here suggest a mechanism by which NO regulates osteogenesis.
Collapse
Affiliation(s)
- Carlos Zaragoza
- Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Grassi F, Fan X, Rahnert J, Weitzmann MN, Pacifici R, Nanes MS, Rubin J. Bone re/modeling is more dynamic in the endothelial nitric oxide synthase(-/-) mouse. Endocrinology 2006; 147:4392-9. [PMID: 16763060 DOI: 10.1210/en.2006-0334] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitric oxide is a ubiquitous estrogen-regulated signaling molecule that has been implicated in the regulation of bone maturation and remodeling. To better understand the role that bone-cell-secreted nitric oxide plays in ovariectomy-induced modifications of bone turnover, we examined the expression of endothelial NO synthase (eNOS) in bone cells and bone progenitor cells at regular intervals up to 10 wk after acute estrogen deprivation. Ovariectomy led to an anticipated initial decline in bone cell eNOS production, but surprisingly, 17 d after ovariectomy, eNOS expression by bone and marrow stromal cells dramatically rebounded and was maintained at high levels for at least 10 wk after surgery. We examined the long-term consequences of eNOS in the process of ovariectomy-induced bone loss by prospectively analyzing bone mineral density in wild-type and eNOS(-/-) mice for 10 wk after ovariectomy. Ovariectomized eNOS(-/-) mice were observed to undergo an exaggerated state of estrogen-deficiency-induced bone remodeling compared with wild-type controls, suggesting that eNOS may act to mitigate this process. Furthermore, we found that whereas bone formation in estrogen-replete wild-type mice slowed between 14 and 20 wk of age, eNOS knockout mice continued to accrue basal bone mass at a high rate and showed no sign of entering a remodeling stage. Our data suggest that eNOS may play an important role in limiting ovariectomy-induced bone remodeling as well as regulating the transition from basal modeling to remodeling.
Collapse
Affiliation(s)
- F Grassi
- Division of Endocrinology, Metabolism and Lipids, Emory University, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 2006; 207:454-60. [PMID: 16419041 DOI: 10.1002/jcp.20581] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical strain inhibits osteoclastogenesis by regulating osteoblast functions: We have shown that strain inhibits receptor activator of NF-kappaB ligand (RANKL) expression and increases endothelial nitric oxide synthase (eNOS) and nitric oxide levels through ERK1/2 signaling in primary bone stromal cells. The primary stromal culture system, while contributing greatly to understanding of how the microenvironment regulates bone remodeling is limited in use for biochemical assays and studies of other osteoprogenitor cell responses to mechanical strain: Stromal cells proliferate poorly and lose aspects of the strain response after a relatively short time in culture. In this study, we used the established mouse osteoblast cell line, conditionally immortalized murine calvarial (CIMC-4), harvested from mouse calvariae conditionally immortalized by insertion of the gene coding for a temperature-sensitive mutant of SV40 large T antigen (TAg) and support osteoclastogenesis. Mechanical strain (0.5-2%, 10 cycles per min, equibiaxial) caused magnitude-dependent decreases in RANKL expression to less than 50% those of unstrained cultures. Overnight strains of 2% also increased osterix (OSX) and RUNX2 expression by nearly twofold as measured by RT-PCR. Importantly, the ERK1/2 inhibitor, PD98059, completely abrogated the strain effects bringing RANKL, OSX, and RUNX2 gene expression completely back to control levels. These data indicate that the strain effects on CIMC-4 cells require activation of ERK1/2 pathway. Therefore, the CIMC-4 cell line is a useful alternative in vitro model which effectively recapitulates aspects of the primary stromal cells and adds an extended capacity to study osteoblast control of bone remodeling in a mechanically active environment.
Collapse
Affiliation(s)
- Xian Fan
- Department of Medicine, Emory University School of Medicine and the Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Tsiridis E, Giannoudis PV. Transcriptomics and proteomics: advancing the understanding of genetic basis of fracture healing. Injury 2006; 37 Suppl 1:S13-9. [PMID: 16616752 DOI: 10.1016/j.injury.2006.02.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fracture healing is a complex physiological post-natal process, which involves the coordination of several different cell types. Exploring the orchestration of events and the simultaneous activation of osteogenesis and chondrogenesis that recapitulates mammalian embryological skeletal development seems to be not only sophisticated but also challenging. A large number of genes involved in the above process are known, but many more remain to be discovered. The functional characterisation of these genes promises to elucidate the repair process as well as skeletal abnormalities and aging. We here review the current knowledge on early and late gene expression during fracture healing, the genes so far associated with osteoblast and osteoclast differentiation, the BMP antagonists, and the Wnts signalling pathway.
Collapse
Affiliation(s)
- Eleftherios Tsiridis
- Trauma & Orthopaedic Surgery, School of Medicine, University of Leeds, and St. James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | |
Collapse
|
39
|
Abstract
Tendon disorders with a chronic nature, including the rotator cuff, are extremely common, and represent a major clinical problem. Mechanical overload has been proposed as an important etiologic factor in tendinopathies. Nitric oxide (NO), a free radical produced by nitric oxide synthases (NOSs), is a potent regulator and stimulator of biological processes including tendon degeneration and healing. It is also involved in response to mechanical stimuli in different tissues. In an animal model of acutely injured tendon healing temporal and differential expression of NOS isoforms has been demonstrated, suggesting that different patterns of NOSs expression may have different biological functions. Therefore, we hypothesized that tendon overuse may result in a differential upregulation of NOSs, particularly iNOS. An animal model of supraspinatus tendon overuse was utilized, which consisted of treadmill running. A group of animals of the same strain and age subjected to normal cage activity were used as controls. Following a 4-week exercise protocol supraspinatus tendons were harvested, RNA was extracted, and subjected to competitive reverse transcription and polymerase chain reaction (RT-PCR) to determine the expression levels of inducible-, endothelial-, and neuronal-NOS isoforms (i-, e-, and nNOS). The mRNA expression of all three NOS isoforms increased in the supraspinatus tendons as a result of overuse exercise. iNOS and eNOS mRNA expression increased fourfold (p < 0.01), and there was an increase, but statistically not significant, in nNOS mRNA expression in the overused tendons when compared with the controls. This study is the first to show that NOS isoforms are upregulated in rotator cuff tendon as a result of chronic overuse, and suggests the involvement of nitric oxide in the response of tendon tissue to increased mechanical stress.
Collapse
Affiliation(s)
- Z L Szomor
- Orthopaedic Research Institute, St. George Hospital Campus, University of New South Wales, 4-10 South Street, Kogarah, Sydney, NSW 2217, Australia
| | | | | |
Collapse
|
40
|
Baldik Y, Diwan AD, Appleyard RC, Fang ZM, Wang Y, Murrell GAC. Deletion of iNOS gene impairs mouse fracture healing. Bone 2005; 37:32-6. [PMID: 15894526 DOI: 10.1016/j.bone.2004.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Revised: 09/24/2004] [Accepted: 10/04/2004] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is a signaling molecule synthesized from l-arginine by nitric oxide synthases (NOSs). NOS isoforms are either constitutive (endothelial NOS [eNOS] and neuronal NOS [nNOS]) or inducible NOS (iNOS). Previously, our group has reported that NO is expressed during and modulates fracture healing. In this study, we evaluated the specific contribution of iNOS to fracture healing by using iNOS gene therapy in iNOS-deficient mice. Twelve-week-old female wild-type mice and iNOS-KO mice had a right femoral midshaft osteotomy fixed with an intramedullary 0.5-mm-diameter needle. A gelatine sponge was implanted across the fracture site. The gelatine sponge received either Ad5-CMViNOS (in iNOS-deficient mice; n=16) or Ad5-CMVempty (in wild-type mice; n=15, and iNOS-deficient mice; n=15) at a dose of 10(7) pfu. Mice were sacrificed at day 14, and their right and left hind limbs were harvested. Cross-sectional area (CSA) was determined by measuring the callus diameter across the mediolateral and anteroposterior plane using a vernier caliper. Specimens were loaded to failure torsionally in a biaxial INSTRON testing system, and maximum torque, torsional stiffness, and maximal and total energy were determined. Deletion of the iNOS gene decreased the total and maximum energy absorption of the healing femoral fracture by 30% and by 70% (P<0.01), respectively, in comparison to the wild-type mice. This reduction in energy absorption was reversed by iNOScDNA administration via adenovirus vector. Furthermore, iNOScDNA caused an increase in torsional failure by 20% (P=0.01) in comparison to iNOS(-/-) mice that did not receive the iNOScDNA. There were no significant differences in the biomechanical properties of intact femora. These data indicate that iNOS is important in mouse fracture healing. However, the clinical utility of NOS gene therapy to enhance fracture healing will need further evaluation.
Collapse
Affiliation(s)
- Yasemin Baldik
- Orthopaedic Research Institute, St George Hospital, 4-10 South Street, University of New South Wales, Kogarah, Sydney, NSW 2217, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Nitric oxide has important effects on bone cell function. To verify that nitric oxide can protect against bone loss associated with estrogen deficiency, which is dependent on different concentrations of nitric oxide, we applied different doses of nitric oxide to ovariectomized rats. Fifty 12-week-old Sprague-Dawley female rats had ovariectomies, and 10 rats had sham operations. The ovariectomized rats were randomized into five groups: ovariectomized only; 17-beta-estradiol; low-dose nitroglycerin; middle-dose nitroglycerin; and high-dose nitroglycerin. After 12 weeks, the bone mineral density, dry weight, ash weight, calcium content, and nitric oxide concentration were determined. Compared with these same measurements in the sham-operated group, the bone mineral density, dry weight, ash weight, calcium content, and nitric oxide concentration decreased in the control group. Treatment with low-dose nitroglycerin, middle-dose nitroglycerin, and 17-beta-estradiol maintained bone mineral density and reversed the effects of ovariectomy on dry weight, ash weight and calcium content when compared with those in the control group. There were no differences in the bone mineral density, dry weight, ash weight, or calcium concentration between the ovariectomized-only rats and the rats treated with high-dose nitroglycerin. Results of this study suggest that nitric oxide treatment can counteract bone loss in ovariectomized rats. Furthermore, supplementation with a similar or slightly greater than physiologic concentration of nitric oxide has a potentially positive impact on osteoporosis.
Collapse
Affiliation(s)
- Ying-Jie Hao
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | |
Collapse
|
42
|
Caballero-Alías AM, Loveridge N, Pitsillides A, Parker M, Kaptoge S, Lyon A, Reeve J. Osteocytic expression of constitutive NO synthase isoforms in the femoral neck cortex: a case-control study of intracapsular hip fracture. J Bone Miner Res 2005; 20:268-73. [PMID: 15647821 DOI: 10.1359/jbmr.041103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 08/02/2004] [Accepted: 09/14/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED NO is an osteocytic signaling molecule that can inhibit osteoclasts. The NO synthases eNOS and nNOS were expressed by >50% of osteonal osteocytes in controls. Hip fracture cases showed +NOS osteocytes only in deep osteonal bone, and 25-35% reduced expression overall. These data are consistent with increased osteonal vulnerability to deep osteoclastic attack. INTRODUCTION Osteocytes may regulate the response to mechanical stimuli in bone through the production of local signaling molecules such as NO derived from the NO synthase eNOS. Because NO is inhibitory to osteoclastic resorption, it has been suggested that osteocytes expressing eNOS act as sentinels, confining resorption within single osteons. Recently, nNOS has been shown to be present in osteocytes of adult human bone. MATERIALS AND METHODS Cross-sections of the femoral neck (eight female cases of intracapsular hip fracture and seven postmortem controls; age, 68-91 years) were analyzed by immunohistochemistry. The percentages of osteocytes expressing each of these two isoforms were calculated, and their distances to the nearest canal surface were measured. RESULTS The percentage of +nNOS osteocytes was lower in the fracture cases than in the controls (cases: 43.12 +/- 1.49, controls: 56.68 +/- 1.45; p < 0.0001). Compared with nNOS, eNOS expression was further reduced (p = 0.009) in the cases but was not different in the controls (cases: 36.41 +/- 1.53, controls: 56.47 +/- 2.41; p < 0.0001). The minimum distance of +eNOS or +nNOS osteocytes to a canal surface was higher in the cases compared with controls (eNOS: controls; 44.4 +/- 2.2 microm, cases: 61.7 +/- 2.0 microm; p < 0.0001; nNOS: controls: 52.4 +/- 1.7 microm, cases: 60.2 +/- 2.1 microm; p = 0.0039). +eNOS osteocytes were closer to the canal surfaces than +nNOS osteocytes in the controls by 8.00 +/- 4.0 microm (p = 0.0012). CONCLUSION The proportions of osteocytes expressing nNOS and eNOS were both reduced in the fracture cases, suggesting that the capacity to generate NO might be reduced. Furthermore, the reduction in NOS expression occurs in those osteocytes closest to the canal surface, suggesting that the ability of NO to minimize resorption depth might be impaired. Further studies are needed on the regulation of the expression and activity of these distinct NOS isoforms.
Collapse
Affiliation(s)
- Ana Maria Caballero-Alías
- Bone Research Group (MRC), Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
43
|
van't Hof RJ, Macphee J, Libouban H, Helfrich MH, Ralston SH. Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 2004; 145:5068-74. [PMID: 15297441 DOI: 10.1210/en.2004-0205] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) is produced by NO synthase (NOS) and plays an important role in the regulation of bone cell function. The endothelial NOS isoform is essential for normal osteoblast function, whereas the inducible NOS isoform acts as a mediator of cytokine effects in bone. The role of the neuronal isoform of NOS (nNOS) in bone has been studied little thus far. Therefore, we investigated the role of nNOS in bone metabolism by studying mice with targeted inactivation of the nNOS gene. Bone mineral density (BMD) was significantly higher in nNOS knockout (KO) mice compared with wild-type controls, particularly the trabecular BMD (P < 0.01). The difference in BMD between nNOS KO and control mice was confirmed by histomorphometric analysis, which showed a 67% increase in trabecular bone volume in nNOS KO mice when compared with controls (P < 0.001). This was accompanied by reduced bone remodeling, with a significant reduction in osteoblast numbers and bone formation surfaces and a reduction in osteoclast numbers and bone resorption surfaces. Osteoblasts from nNOS KO mice, however, showed increased levels of alkaline phosphatase and no defects in proliferation or bone nodule formation in vitro, whereas osteoclastogenesis was increased in nNOS KO bone marrow cultures. These studies indicate that nNOS plays a hitherto unrecognized but important physiological role as a stimulator of bone turnover. The low level of nNOS expression in bone and the in vitro behavior of nNOS KO bone cells indicate that these actions are indirect and possibly mediated by a neurogenic relay.
Collapse
Affiliation(s)
- Robert J van't Hof
- Bone Research Group, Institute of Medical Sciences, Department of Medicine and Therapeutics, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Caballero-Alías AM, Loveridge N, Lyon A, Das-Gupta V, Pitsillides A, Reeve J. NOS isoforms in adult human osteocytes: multiple pathways of NO regulation? Calcif Tissue Int 2004; 75:78-84. [PMID: 15148557 DOI: 10.1007/s00223-003-0161-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Until now, eNOS has been considered to be the predominant osteocytic nitric oxide synthase (NOS) isoform in bone. We previously studied the distribution of eNOS protein expression in the human femoral neck because of its possible involvement in the response to load. Studies in rat and human fracture callus have shown that nNOS mRNA is expressed sometime after fracture, but no study has yet immunolocalized NOS isoforms in mature adult human bone. In this study, we have examined the distribution of NOS isoforms in iliac osteocytes. Frozen sections (10 microm) were cut from transiliac biopsies from 8 female osteoporotic patients (range, 56-80 years) and from 7 female postmortem femoral neck biopsies (range, 65-90 years). Sections were incubated overnight in antiserum for eNOS, nNOS, or iNOS followed by peroxidase/VIP substrate detection. We used eNOS and iNOS antisera directed against the C-terminus. For nNOS, three different antisera were used, two binding to different C-terminal epitopes and one binding to N-terminal epitope. Sections were then incubated in propidium iodide or methyl green to detect all osteocytes. eNOS antibody was able to detect eNOS epitopes in osteocytes. All three nNOS antibodies detected nNOS epitopes in osteocytes, but those directed against the C-terminus had higher detection rates. iNOS was rarely seen. In the iliac crest, the percentage of osteocytes positive for nNOS was higher than that for eNOS (cortical: nNOS 84.04%, eNOS 61.78%, P < 0.05; cancellous: nNOS 82.33%, eNOS 65.21%, P < 0.05). In the femoral neck, the percentage of osteocytes positive for nNOS (60.98%) was also higher than that for eNOS (40.41%), although this difference was not statistically significant. In conclusion, both eNOS and nNOS isoforms are present in osteocytes in the iliac crest and femoral neck.
Collapse
Affiliation(s)
- A M Caballero-Alías
- Bone Research Group (MRC), Department of Medicine, University of Cambridge Addenbrookes Hospital, Hills Road, Cambridge, CB2 2QQ, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 2002; 277:30177-82. [PMID: 12055193 DOI: 10.1074/jbc.m203171200] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The healing of skeletal fractures is essentially a replay of bone development, involving the closely regulated, interdependent processes of chondrogenesis and osteogenesis. Using a rat femur model of bone healing to determine the degree of transcriptional complexity of these processes, suppressive subtractive hybridization (SSH) was performed between RNA isolated from intact bone to that of callus from post-fracture (PF) days 3, 5, 7, and 10 as a means of identifying up-regulated genes in the regenerative process. Analysis of 3,635 cDNA clones revealed 588 known genes (65.8%, 2392 clones) and 821 expressed sequence tags (ESTs) (31%, 1,127). The remaining 116 cDNAs (3.2%) yielded no homology and presumably represent novel genes. Microarrays were then constructed to confirm induction of expression and determine the temporal profile of all isolated cDNAs during fracture healing. These experiments confirmed that approximately 90 and approximately 80% of the subtracted known genes and ESTs are up-regulated (> or = 2.5-fold) during the repair process, respectively. Clustering analysis revealed subsets of genes, both known and unknown, that exhibited distinct expression patterns over 21 days (PF), indicating distinct roles in the healing process. Additionally, this transcriptional profiling of bone repair revealed a host of activated signaling molecules and even pathways (i.e. Wnt). In summary, the data demonstrate, for the fist time, that the healing process is exceedingly complex, involves thousands of activated genes, and indicates that groups of genes rather than individual molecules should be considered if the regeneration of bone is to be accelerated exogenously.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York 11794, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhu W, Murrell GAC, Lin J, Gardiner EM, Diwan AD. Localization of nitric oxide synthases during fracture healing. J Bone Miner Res 2002; 17:1470-7. [PMID: 12162501 DOI: 10.1359/jbmr.2002.17.8.1470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, we have reported that nitric oxide synthases (NOSs), which generate NO, modulate fracture healing. However, the cellular sources of the NOS isoforms during the course of fracture healing have not been studied systematically. The purpose of this study was to localize the cellular distribution of NOS isoforms (inducible NOS [iNOS], endothelial NOS [eNOS], and neuronal NOS [bNOS]) by in situ hybridization and immunohistology after femoral fractures in rats. The iNOS signal was detected during the initial stages (on day 4 and day 7) of fracture healing in 52 +/- 2% (mean +/- SE, n = 7) of cells within the intramembranous region, along the edge of the periosteal callus. The iNOS signal in callus cells declined to an undetectable level on day 14. eNOS was detected during the middle stages (on day 7 and day 14) of fracture healing in cells lining the blood vessels and also in 49 +/- 3% of cells in the chondral region. The bNOS signal was found to be increased at the later stages (day 14 and day 21) of fracture healing in 51 +/- 3% of cells at the junction between fibrous tissue and cartilage within the fibrochondral region. In summary, the,expression of NOS isoforms during fracture healing was time dependent and cellular distinctive.
Collapse
Affiliation(s)
- Wei Zhu
- Orthopedic Research Institute, St George Hospital Campus, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|