1
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Okamoto K, Takayanagi H. Effect of T cells on bone. Bone 2023; 168:116675. [PMID: 36638904 DOI: 10.1016/j.bone.2023.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Bone and immune systems mutually influence each other by sharing a variety of regulatory molecules and the tissue microenvironment. The interdisciplinary research field "osteoimmunology" has illuminated the complex and dynamic interactions between the two systems in the maintenance of tissue homeostasis as well as in the development of immune and skeletal disorders. T cells play a central role in the immune response by secreting various immune factors and stimulating other immune cells and structural cells such as fibroblasts and epithelial cells, thereby contributing to pathogen elimination and pathogenesis of immune diseases. The finding on regulation of osteoclastic bone resorption by activated CD4+ T cells in rheumatoid arthritis was one of the driving forces for the development of osteoimmunology. With advances in research on helper T cell subsets and rare lymphoid cells such as γδ T cells in the immunology field, it is becoming clear that various types of T cells exert multiple effects on bone metabolism depending on immune context. Understanding the diverse effects of T cells on bone is essential for deciphering the osteoimmune regulatory network in various biological settings.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Tseng HW, Samuel SG, Schroder K, Lévesque JP, Alexander KA. Inflammasomes and the IL-1 Family in Bone Homeostasis and Disease. Curr Osteoporos Rep 2022; 20:170-185. [PMID: 35567665 PMCID: PMC9209354 DOI: 10.1007/s11914-022-00729-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Inflammasomes are multimeric protein structures with crucial roles in host responses against infections and injuries. The importance of inflammasome activation goes beyond host defense as a dysregulated inflammasome and subsequent secretion of IL-1 family members is believed to be involved in the pathogenesis of various diseases, some of which also produce skeletal manifestations. The purpose of this review is to summarize recent developments in the understanding of inflammasome regulation and IL-1 family members in bone physiology and pathology and current therapeutics will be discussed. RECENT FINDINGS Small animal models have been vital to help understand how the inflammasome regulates bone dynamics. Animal models with gain or loss of function in various inflammasome components or IL-1 family signaling have illustrated how these systems can impact numerous bone pathologies and have been utilized to test new inflammasome therapeutics. It is increasingly clear that a tightly regulated inflammasome is required not only for host defense but for skeletal homeostasis, as a dysregulated inflammasome is linked to diseases of pathological bone accrual and loss. Given the complexities of inflammasome activation and redundancies in IL-1 activation and secretion, targeting these pathways is at times challenging. Ongoing research into inflammasome-mediated mechanisms will allow the development of new therapeutics for inflammasome/IL-1 diseases.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Selwin Gabriel Samuel
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kylie A Alexander
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
4
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Peffers MJ, Goljanek-Whysall K, Collins J, Fang Y, Rushton M, Loughlin J, Proctor C, Clegg PD. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq. PLoS One 2016; 11:e0160517. [PMID: 27533049 PMCID: PMC4988628 DOI: 10.1371/journal.pone.0160517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for 'cell death and survival', 'cell morphology', and 'cell growth and proliferation'. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in 'skeletal system morphogenesis', 'regulation of cell proliferation' and 'regulation of transcription' suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies.
Collapse
Affiliation(s)
- Mandy Jayne Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - Katarzyna Goljanek-Whysall
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - John Collins
- Thurston Arthritis Research Centre, School Of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27599
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, UK, L69 7ZB
| | - Michael Rushton
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - Carole Proctor
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
- Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK, NE4 5PL
| | - Peter David Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| |
Collapse
|
6
|
Smith PC, Martínez C, Cáceres M, Martínez J. Research on growth factors in periodontology. Periodontol 2000 2014; 67:234-50. [DOI: 10.1111/prd.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 12/16/2022]
|
7
|
Wintges K, Beil FT, Albers J, Jeschke A, Schweizer M, Claass B, Tiegs G, Amling M, Schinke T. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res 2013; 28:2070-80. [PMID: 23553711 DOI: 10.1002/jbmr.1937] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 03/01/2013] [Accepted: 03/12/2013] [Indexed: 01/24/2023]
Abstract
Chemokines play crucial roles in the recruitment of specific hematopoietic cell types, and some of them have been suggested to be involved in the regulation of bone remodeling. Because we have previously observed that chemokine (C-C motif) ligand 2 (Ccl2) and Ccl5 are direct target genes of noncanonical Wnt signaling in osteoblasts, we analyzed the skeletal phenotypes of Ccl2-deficient and Ccl5-deficient mice. In line with previous studies, Ccl2-deficient mice display a moderate reduction of osteoclastogenesis at the age of 6 months. In contrast, 6-month-old Ccl5-deficient mice display osteopenia associated with decreased bone formation and increased osteoclastogenesis. Moreover, unlike in wild-type and Ccl2-deficient mice, large areas of their trabecular and endocortical bone surfaces are not covered by osteoblasts or bone-lining cells, and this is associated with a severe reduction of endosteal bone formation. Although this phenotype diminishes with age, it is important that we could further identify a reduced number of osteal macrophages in 6-month-old Ccl5-deficient mice, because this cell type has previously been reported to promote endosteal bone formation. Because Ccl5-deficient mice also display increased osteoclastogenesis, we finally addressed the question of whether osteal macrophages could differentiate into osteoclasts and/or secrete inhibitors of osteoclastogenesis. For that purpose we isolated these cells by CD11b affinity purification from calvarial cultures and characterized them ex vivo. Here we found that they are unable to differentiate into osteoblasts or osteoclasts, but that their conditioned medium mediates an antiosteoclastogenic effect, possibly caused by interleukin-18 (IL-18), an inhibitor of osteoclastogenesis expressed by osteal macrophages. Taken together, our data provide in vivo evidence supporting the previously suggested role of Ccl5 in bone remodeling. Moreover, to the best of our knowledge, Ccl5-deficient mice represent the first model with a spontaneous partial deficiency of osteal macrophages, a recently identified cell type, whose impact on bone remodeling is just beginning to be understood.
Collapse
Affiliation(s)
- Kristofer Wintges
- Department of Osteology and Biomechanics, University Medical Center Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Zupan J, Jeras M, Marc J. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb) 2013; 23:43-63. [PMID: 23457765 PMCID: PMC3900089 DOI: 10.11613/bm.2013.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bone and immune system are functionally interconnected. Immune and bone cells derive from same progenitors in the bone marrow, they share a common microenvironment and are being influenced by similar mediators. The evidence on increased bone resorption associated with inappropriate activation of T cells such as during inflammation, is well established. However, the molecular mechanisms beyond this clinical observation have begun to be intensively studied with the advancement of osteoimmunology. Now days, we have firm evidence on the influence of numerous proinflammatory cytokines on bone cells, with the majority of data focused on osteoclasts, the bone resorbing cells. It has been shown that some proinflammatory cytokines could possess osteoclastogenic and/or anti-osteoclastogenic properties and can target osteoclasts directly or via receptor activator of nuclear factor κB (RANK)/RANK ligand(RANKL)/osteoprotegerin (OPG) system. Several studies have reported opposing data regarding (anti)osteoclastogenic properties of these cytokines. Therefore, the first part of this review is summarizing current evidence on the influence of pro-inflammatory cytokines on osteoclasts and thus on bone resorption. In the second part, the evidence on the role of pro-inflammatory cytokines in osteoporosis and osteoarthritis is reviewed to show that unravelling the mechanisms beyond such complex bone diseases, is almost impossible without considering skeletal and immune systems as an indivisible integrated system.
Collapse
Affiliation(s)
- Janja Zupan
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | | | | |
Collapse
|
10
|
Robertson Remen KM, Gustafsson JÅ, Andersson G. The liver X receptor promotes macrophage differentiation and suppresses osteoclast formation in mouse RAW264.7 promyelocytic leukemia cells exposed to bacterial lipopolysaccharide. Biochem Biophys Res Commun 2012; 430:375-80. [PMID: 23159616 DOI: 10.1016/j.bbrc.2012.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/04/2012] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharide (LPS), the principal component of Gram-negative bacterial cell walls, is a stimulator of osteoclastogenesis and thus a key factor in inflammatory bone loss. We have recently reported that the important cholesterol and inflammatory regulator, liver X receptor (LXRα/β), can potently inhibit osteoclast formation from bone marrow-derived osteoclast precursors in a bacterial/LPS environment. In this manuscript, we further studied the effect of the LXR agonist GW3965 on osteoclast differentiation in RAW264.7 promyelocytic leukemia cells exposed to LPS. We found that not only did activation of the LXR potently inhibit the formation of TRAP-positive osteoclast-like cells, but promoted a population of TRAP-negative mononuclear cells with high phagocytic activity. We observed reduced expression of the osteoclast markers TRAP/Acp5, Ctsk, Calcr and Oscar after 3-4days of GW3965 treatment, coinciding with an increase in the expression of the anti-osteoclastogenic factor Irf8. Expression of the macrophage/phagocytic marker Cd68 was increased, however the "classical" macrophage markers F4/80 and Cd14 and the "alternatively" activated macrophage markers Tgfβ and Il10 were not altered. Further, activation of LXR increased the expression of the macrophage survival gene AIM/SPα, a known LXR target gene, and osteoclast/macrophage-related markers (Mitf, Pu.1, Usf1/2, Ostm1 and Mfr). Although Akt phosphorylation was reduced, GW3965 seemed to act independently of MAPKs (p38, ERK, JNK) and NFκB, and had no inhibitory effect on cytokine expression (Tnfα, Il6, or Il1β). Our results indicate that activation of the LXR not only inhibits the differentiation of osteoclast-like cells from RAW264.7 cells in a bacterial/LPS environment, but is also involved in the fate determination of myeloid progenitor cells into macrophages with high phagocytic capacity.
Collapse
|
11
|
Remen KMR, Henning P, Lerner UH, Gustafsson JÅ, Andersson G. Activation of liver X receptor (LXR) inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in an LXRβ-dependent mechanism. J Biol Chem 2011; 286:33084-94. [PMID: 21784849 DOI: 10.1074/jbc.m111.235937] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone destruction is the major pathological process in many bone metabolic diseases and is a result of increased osteoclast formation and bone resorption. The liver X receptors (α,β), important regulators of cholesterol metabolism and inflammatory signaling, have recently been observed to play a role in both physiological and pathological bone turnover. However, the relationship between liver X receptors (LXR) and osteoclast differentiation/formation remains unknown. Here, we report that the LXR ligand GW3965 is able to clearly and potently inhibit the formation of mature osteoclasts from receptor activator of nuclear factor κB ligand (RANKL)-stimulated human and murine osteoclast precursors. This results in a significant inhibition of bone resorption. We observed that GW3965 significantly inhibited expression of the osteoclast markers tartrate-resistant acid phosphatase, cathepsin K, osteoclast-associated receptor (OSCAR), and calcitonin receptor, appearing to act in an NFATc1/p38/microphthalmia-associated transcription factor (MITF)-dependent mechanism, independently of receptor activator of nuclear factor κB or c-Fos and not directly involving the NFκB pathways. GW3965 was less effective in RAW264.7 monocyte/macrophage cells, which are more committed into the osteoclast lineage. Also, GW3965 seemed to act differently depending on the source of the progenitor cells as it had no effect on calvarial osteoclasts, compared with marrow or blood-derived monocytes. As these effects were abolished in osteoclast precursors derived from LXRβ(-/-) mice, we suggest that GW3965 acts via an LXRβ-dependent mechanism. Taken together, our results suggest that the LXR can act as an important inhibitor of RANKL-mediated osteoclast differentiation.
Collapse
|
12
|
Schulze J, Bickert T, Beil FT, Zaiss MM, Albers J, Wintges K, Streichert T, Klaetschke K, Keller J, Hissnauer TN, Spiro AS, Gessner A, Schett G, Amling M, McKenzie ANJ, Horst AK, Schinke T. Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells. J Bone Miner Res 2011; 26:704-17. [PMID: 20939024 DOI: 10.1002/jbmr.269] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the hematopoetic system is located within the bone marrow, it is not surprising that recent evidence has demonstrated the existence of molecular interactions between bone and immune cells. While interleukin 1 (IL-1) and IL-18, two cytokines of the IL-1 family, have been shown to regulate differentiation and activity of bone cells, the role of IL-33, another IL-1 family member, has not been addressed yet. Since we observed that the expression of IL-33 increases during osteoblast differentiation, we analyzed its possible influence on bone formation and observed that IL-33 did not affect matrix mineralization but enhanced the expression of Tnfsf11, the gene encoding RANKL. This finding led us to analyze the skeletal phenotype of Il1rl1-deficient mice, which lack the IL-33 receptor ST2. Unexpectedly, these mice displayed normal bone formation but increased bone resorption, thereby resulting in low trabecular bone mass. Since this finding suggested a negative influence of IL-33 on osteoclastogenesis, we next analyzed osteoclast differentiation from bone marrow precursor cells and observed that IL-33 completely abolished the generation of TRACP(+) multinucleated osteoclasts, even in the presence of RANKL and macrophage colony-stimulating factor (M-CSF). Although our molecular studies revealed that IL-33 treatment of bone marrow cells caused a shift toward other hematopoetic lineages, we further observed a direct negative influence of IL-33 on the osteoclastogenic differentiation of RAW264.7 macrophages, where IL-33 repressed the expression of Nfatc1, which encodes one of the key transciption factors of osteoclast differentiation. Taken together, these findings have uncovered a previously unknown function of IL-33 as an inhibitor of bone resorption.
Collapse
Affiliation(s)
- Jochen Schulze
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu YCG, Lerner UH, Teng YTA. Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000 2010; 52:163-206. [PMID: 20017801 DOI: 10.1111/j.1600-0757.2009.00321.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Morita Y, Kitaura H, Yoshimatsu M, Fujimura Y, Kohara H, Eguchi T, Yoshida N. IL-18 inhibits TNF-alpha-induced osteoclastogenesis possibly via a T cell-independent mechanism in synergy with IL-12 in vivo. Calcif Tissue Int 2010; 86:242-8. [PMID: 20111957 DOI: 10.1007/s00223-010-9335-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 01/03/2010] [Indexed: 11/25/2022]
Abstract
It has recently been reported that tumor necrosis factor (TNF)-alpha has the ability to accelerate osteoclastogenesis. We previously reported that the proinflammatory cytokine interleukin (IL)-18 inhibits TNF-alpha-mediated osteoclastogenesis in mouse bone marrow cultures. In the present study, the effect of IL-18 on TNF-alpha-mediated osteoclastogenesis was investigated in vivo. We administered TNF-alpha with or without IL-18 into the supracalvaria of mice. The number of osteoclasts in the suture of the calvaria was increased in mice administered TNF-alpha. The number of osteoclasts in mice administered both TNF-alpha and IL-18 was lower than that in mice administered TNF-alpha alone. We previously showed that IL-12 and IL-18 synergistically inhibit TNF-alpha-mediated osteoclastogenesis in vitro. To assess the ability of these two cytokines to synergistically inhibit TNF-alpha-induced osteoclastogenesis in vivo, mice were administered the two cytokines at doses that did not inhibit osteoclast formation. The combination of IL-12 and IL-18 markedly inhibited TNF-alpha-induced osteoclastogenesis in vivo. To evaluate how IL-12 and IL-18 synergistically affect TNF-alpha-induced osteoclastogenesis, the IL-18 receptor (IL-18R) and IL-12R expression levels were analyzed by RT-PCR in bone marrow cells cultured with IL-12 or IL-18. IL-18R mRNA was increased in cells cultured with IL-12, while IL-12R mRNA was increased in cells cultured with IL-18. In addition, IL-18 inhibited TNF-alpha-induced osteoclastogenesis in mice with T-cell depletion caused by anti-CD4 and anti-CD8 antibodies. The present results suggest that IL-18 may inhibit TNF-alpha-mediated osteoclastogenesis in vivo via a T cell-independent mechanism.
Collapse
Affiliation(s)
- Yukiko Morita
- Department of Orthodontics and Dentofacial Orthopedics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Hoshino T, Okamoto M, Sakazaki Y, Kato S, Young HA, Aizawa H. Role of proinflammatory cytokines IL-18 and IL-1beta in bleomycin-induced lung injury in humans and mice. Am J Respir Cell Mol Biol 2009; 41:661-670. [PMID: 19265174 PMCID: PMC10283344 DOI: 10.1165/rcmb.2008-0182oc] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Administration of several chemotherapeutic drugs, such as bleomycin, busulfan, and gefitinib, often induces lethal lung injury. However, the precise mechanisms responsible for this drug-induced lung injury are still unclear. In the present study, we examined the role of the proinflammatory cytokines IL-18 and IL-1beta in the mechanism of bleomycin-induced lung injury. We performed immunohistochemical analysis of IL-18 and IL-18 receptor (R) alpha chain expression in the lungs of five patients with bleomycin-induced lethal lung injury. Enhanced expression of both IL-18 and IL-18Ralpha was observed in the lungs of all five patients with bleomycin-induced lung injury. To support the data obtained from patient samples, the levels of IL-1beta and IL-18 mRNA and protein, pulmonary inflammation, and lung fibrosis were examined in mouse models of bleomycin-induced lung injury. Intravenous administration of bleomycin induced the expression of IL-1beta and IL-18 in the serum and lungs of wild-type C57BL/6 mice. IL-18-producing F4/80(+) neutrophils, but not CD3(+) T cells, were greatly increased in the lungs of treated mice. Moreover, bleomycin-induced lung injury was significantly attenuated in caspase-1(-/-), IL-18(-/-), and IL-18Ralpha(-/-) mice in comparison with control mice. Thus, our results provide evidence for an important role of IL-1beta and IL-18 in chemotherapy-induced lung injury.
Collapse
Affiliation(s)
- Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Quinn JMW, Saleh H. Modulation of osteoclast function in bone by the immune system. Mol Cell Endocrinol 2009; 310:40-51. [PMID: 19056462 DOI: 10.1016/j.mce.2008.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/29/2008] [Accepted: 11/06/2008] [Indexed: 12/27/2022]
Abstract
Osteoclast differentiation and function is regulated by cellular signals and cytokines that also play significant roles in the immune system. There is much scope, therefore, for immune cell influence on osteoclasts and bone metabolism. Many examples of this have been identified and T cells in particular are a source of factors affecting osteoclast formation and activity, a number which have either pro-osteolytic or anti-osteolytic actions depending on the cellular and microenvironmental context. For example, IL-12 and IL-18 participate in inflammatory processes that can lead to highly destructive osteolysis, yet these cytokines potently block osteoclast formation through mediation of T cells. IL-23 participates in chronic inflammatory processes, but lack of this cytokine results in reduced bone mass in mice, pointing to an influence on physiological regulation of bone mass. Such insights suggest that therapies that target immune responses may significantly influence osteolysis. Investigations into links between the immune system and bone metabolism are thus uncovering important information about the functioning of both systems.
Collapse
|
17
|
Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:179-86. [PMID: 18544015 DOI: 10.1089/ten.teb.2008.0038] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proinflammatory cytokines are infamous for their catabolic effects on tissues and joints in both inflammatory diseases and following the implantation of biomedical devices. However, recent studies indicate that many of these same molecules are critical for triggering tissue regeneration following injury. This review will discuss the role of inflammatory signals in regulating bone regeneration and the impact of both immunomodulatory and antiinflammatory pharmacologic agents on fracture healing, to demonstrate the importance of incorporating rational control of inflammation into the design of tissue engineering strategies.
Collapse
|
18
|
Estudio de la relación entre las concentraciones plasmáticas de adiponectina, interleucina 18 y ghrelina y la densidad mineral ósea en mujeres con obesidad mórbida tras bypass gástrico. ACTA ACUST UNITED AC 2009; 56:355-60. [DOI: 10.1016/s1575-0922(09)72454-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/16/2009] [Indexed: 11/22/2022]
|
19
|
Okamoto M, Azuma K, Hoshino T, Imaoka H, Ikeda J, Kinoshita T, Takamori S, Ohshima K, Edakuni N, Kato S, Iwanaga T, Aizawa H. Correlation of decreased survival and IL-18 in bone metastasis. Intern Med 2009; 48:763-73. [PMID: 19443970 DOI: 10.2169/internalmedicine.48.1851] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Previous studies have reported that serum IL-18 levels are increased in some cancers. We investigated whether IL-18 production is increased in sera and cancer cells of patients with non-small cell lung cancer (NSCLC). PATIENTS OR MATERIALS Serum levels of IFN-gamma and IL-18 and thioredoxin 1 (TRX1) were measured in 79 patients (51 males, 28 females, median age 67 years) with advanced NSCLC (57 adenocarcinoma, 22 squamous cell carcinoma; TNM stages IIIA [n=11], IIIB [n=24], and IV [n=44]) and 75 healthy age-matched controls (44 males, 31 females, median age 65 years) by enzyme-linked immunosorbent assay. We examined IL-18 production in the lungs and sites of bone metastasis of adenocarcinoma by immunohistochemistry. RESULTS Serum IL-18, IFN-gamma, and TRX1 levels in NSCLC patients were significantly (p<0.0001, p=0.0031, and p<0.0001, respectively) higher than in control subjects, while serum IFN-gamma levels in NSCLC were slightly increased. Serum IL-18, but not IFN-gamma or TRX1, levels were significantly (p=0.0102) and negatively associated with overall survival in NSCLC. The serum IL-18 level was identified as an independent prognostic factor for overall survival in multivariate survival analysis. Moreover, serum IL-18 levels were significantly (p=0.049) higher in NSCLC with bone metastasis than in NSCLC without bone metastasis. Based on immunohistochemistry, we observed that cancer cells in the lungs and bone metastases markedly produced IL-18. CONCLUSION Our results suggest that elevated serum IL-18 levels may be associated with IL-18 producing cancer cells in advanced NSCLC.
Collapse
Affiliation(s)
- Masaki Okamoto
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
It has become clear that complex interactions underlie the relationship between the skeletal and immune systems. This is particularly true for the development of immune cells in the bone marrow as well as the functions of bone cells in skeletal homeostasis and pathologies. Because these two disciplines developed independently, investigators with an interest in either often do not fully appreciate the influence of the other system on the functions of the tissue that they are studying. With these issues in mind, this review will focus on several key areas that are mediated by crosstalk between the bone and immune systems. A more complete appreciation of the interactions between immune and bone cells should lead to better therapeutic strategies for diseases that affect either or both systems.
Collapse
Affiliation(s)
- Seoung-Hoon Lee
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Tae-Soo Kim
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Yongwon Choi
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Joseph Lorenzo
- The Department of Medicine and the Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| |
Collapse
|
21
|
Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29:403-40. [PMID: 18451259 PMCID: PMC2528852 DOI: 10.1210/er.2007-0038] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/01/2008] [Indexed: 12/20/2022]
Abstract
Bone and the immune system are both complex tissues that respectively regulate the skeleton and the body's response to invading pathogens. It has now become clear that these organ systems often interact in their function. This is particularly true for the development of immune cells in the bone marrow and for the function of bone cells in health and disease. Because these two disciplines developed independently, investigators in each don't always fully appreciate the significance that the other system has on the function of the tissue they are studying. This review is meant to provide a broad overview of the many ways that bone and immune cells interact so that a better understanding of the role that each plays in the development and function of the other can develop. It is hoped that an appreciation of the interactions of these two organ systems will lead to better therapeutics for diseases that affect either or both.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Department of Medicine, The University of Connecticut Health Center, N4054, MC5456, 263 Farmington Avenue, Farmington, Connecticut 06030-5456, USA.
| | | | | |
Collapse
|
22
|
Inoue H, Hiraoka K, Hoshino T, Okamoto M, Iwanaga T, Zenmyo M, Shoda T, Aizawa H, Nagata K. High levels of serum IL-18 promote cartilage loss through suppression of aggrecan synthesis. Bone 2008; 42:1102-10. [PMID: 18374640 DOI: 10.1016/j.bone.2008.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 01/04/2008] [Accepted: 01/27/2008] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is closely related to the function of several inflammatory cytokines. It has been reported that older age is associated with higher serum levels of the inflammatory cytokine IL-18. In the present study, we investigated the long-term role of serum IL-18 in cartilage loss in vivo using a new strain of IL-18 transgenic mouse (Tg) in comparison with wild-type (WT) mice. The IL-18 Tg mouse strain we developed constitutively overproduces soluble mature IL-18 in the lungs but not in other tissues, including joints. These Tg mice showed high levels of serum IL-18, but not IL-1beta. No inflammatory cells, fibrillation or synovitis were observed in the knee joints of either IL-18 Tg or WT mice. However, the cartilage cellularity of the femoral and tibial condyles of IL-18 Tg mice was significantly reduced in comparison with control WT mice. Aggrecan was detected in only a few cells in the deep zone of the articular cartilage of Tg mice. The expression of aggrecan mRNA was also significantly decreased in articular chondrocytes from Tg mice when compared with WT mice. In contrast, endogenous IL-18 mRNA was significantly increased in the chondrocytes of Tg mice in comparison with WT mice. Expression of IFN-gamma was also significantly increased in the Tg mice. Moreover, IL-18 transgene-positive caspase-1-deficient mice showed articular cartilage loss that was independent of endogenous IL-1beta. In cultured chondrocytes isolated from WT mice, the expression of aggrecan mRNA was dosage-dependently suppressed by treatment with recombinant IL-18. In contrast, IL-18 stimulated the expression of mRNA for endogenous IL-18 and IFN-gamma. These results suggest that high levels of serum IL-18 promote the overexpression of endogenous IL-18 in articular chondrocytes, resulting in cartilage loss through suppression of aggrecan synthesis. Thus IL-18 may play an important role in the pathogenesis of articular cartilage loss in osteoarthritis.
Collapse
Affiliation(s)
- Hidetake Inoue
- Department of Orthopedics, Kurume University School of Medicine, 67 Ashahi-machi, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang J, Park O, Lee Y, Jung HM, Woo K, Choi Y. The 4-1BB ligand and 4-1BB expressed on osteoclast precursors enhance RANKL-induced osteoclastogenesis via bi-directional signaling. Eur J Immunol 2008; 38:1598-609. [DOI: 10.1002/eji.200737650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Raggatt LJ, Qin L, Tamasi J, Jefcoat SC, Shimizu E, Selvamurugan N, Liew FY, Bevelock L, Feyen JHM, Partridge NC. Interleukin-18 is regulated by parathyroid hormone and is required for its bone anabolic actions. J Biol Chem 2007; 283:6790-8. [PMID: 18165223 DOI: 10.1074/jbc.m709909200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interleukin-18 (IL-18) can regulate osteoblast and osteoclast function. We have identified, using cDNA microarray technology, that IL-18 expression is increased in UMR 106-01 rat osteoblastic cells in response to parathyroid hormone (PTH) treatment. Confirmation of these data using real-time reverse transcription-PCR showed that steady-state levels of IL-18 mRNA increased by 2 h (3-fold), peaked by 4 h (10-fold), and had diminished after 12 h (4.4-fold) and that this regulation was via the protein kinase A signaling pathway and did not involve activation of the PKC signal cascade. PTH regulation of IL-18 was confirmed at the protein level, and analysis of differentiating primary rat calvarial osteoblasts verified that both IL-18 mRNA and protein are regulated by PTH in primary rat osteoblasts. Promoter reporter assays revealed that PTH regulated the upstream IL-18 promoter and induced the exon 1 containing 1.1-kb IL-18 mRNA transcript in primary osteoblast cells. The in vivo physiological role of IL-18 in the anabolic actions of PTH on bone was then assessed using IL-18 knock-out mice. Female IL-18 null mice and wild-type littermate controls were injected with vehicle or 8 microg/100 g of human 1-38 PTH for 4 weeks. In IL-18 knock-out animals the anabolic effect of PTH (determined by bone mineral density changes in the proximal tibia) was abolished in trabecular bone but not in the cortical component. These data characterize the PTH regulation of IL-18 expression in osteoblastic cells and suggest that this cytokine is involved in the anabolic actions of PTH.
Collapse
Affiliation(s)
- Liza J Raggatt
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nishioka T, Kuroishi T, Sugawara Y, Yu Z, Sasano T, Endo Y, Sugawara S. Induction of serum IL-18 withPropionibacterium acnesand lipopolysaccharide in phagocytic macrophage-inactivated mice. J Leukoc Biol 2007; 82:327-34. [PMID: 17522234 DOI: 10.1189/jlb.1006598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IL-18, an important regulator of immune responses, is expressed in activated macrophages and also in nonimmune cells, such as keratinocytes and epithelial cells. Increased levels of serum IL-18 are reported in patients with a wide variety of diseases, but it is unclear which type of cell is the major source of serum IL-18. Here, we showed that the administration of liposomes encapsulating clodronate (Clo-lip) in mice selectively depleted F4/80(+) phagocytic macrophages in the liver and spleen. Serum levels of mature IL-18 with 18 kDa were increased markedly in mice treated with Propionibacterium acnes and LPS, whereas administration of Clo-lip and gadolinium chloride, another widely used macrophage inactivator, showed no obvious effect on serum IL-18 levels, which were marginal in the liver, lung, and spleen and more pronounced in the intestines, especially in the duodenum. Treatment with P. acnes alone induced IL-18 more than twofold in each organ, and P. acnes and LPS induced a marked increase in IL-18 levels in the liver and spleen but decreased in the intestines. The administration of Clo-lip showed only a marginal effect on the IL-18 levels in these organs. Furthermore, serum levels of liver enzymes and TNF-alpha and liver injury (necrotic change and granuloma formation) induced by P. acnes and LPS were reduced moderately by Clo-lip. These results suggest that phagocytic macrophages do not actively contribute to the induction of serum IL-18 and liver injury in mice treated with P. acnes and LPS.
Collapse
Affiliation(s)
- Takashi Nishioka
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The osteoclast is the principal bone-resorbing cell. Because of its unique ability to efficiently remove both the mineral and the organic matrix of bone, the osteoclast is an important element of the homeostatic mechanisms that maintain skeletal integrity and serum calcium levels. Over the past 30 years, a number of immune cell modulators have been shown to have effects on osteoclast formation and function. This review will briefly summarize the roles that cytokines have in osteoclast regulation. RECENT FINDINGS A large number of cytokines have been shown to regulate osteoclast formation and function. In addition, a number of additional cytokines are now known to have a major influence on the ability of osteoclasts to resorb bone. Interactions of the immune system with bone, which has been recently labeled 'osteoimmunology', appear to be mediated mainly by cytokine signals. Cytokines are known to regulate many of the responses of bone to inflammatory conditions; however, they also may regulate physiologic responses of bone. SUMMARY In the future it is hoped that therapies that target cytokine actions may be used to reduce the effects of inflammatory diseases on bone, as well as to regulate normal bone physiology.
Collapse
Affiliation(s)
- Sun-Kyeong Lee
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-5456, USA
| | | |
Collapse
|
27
|
Matsui K, Tsutsui H, Nakanishi K. Pathophysiological roles for IL-18 in inflammatory arthritis. Expert Opin Ther Targets 2005; 7:701-24. [PMID: 14640907 DOI: 10.1517/14728222.7.6.701] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IL-18 is a unique cytokine with prominently wide spectrum biological actions. Among these, its IFN-gamma/TNF-alpha-inducing activity primarily contributes to the development of various inflammatory diseases including inflammatory arthritis. IL-18 levels correlate with the disease activity of rheumatoid arthritis (RA) and osteoarthritis (OA). IL-18 is spontaneously released from RA synovial cells and OA chondrocytes and seems to participate in the development of the inflammatory and destructive alterations of joints via induction of TNF-alpha, a potent effector molecule. TNF-alpha, in turn, increases IL-18 expression in RA synovial cells. Recent clinical trials have revealed the efficacy of TNF-alpha in RA with a reduction in circulatory IL-18 levels. These may implicate the positive circuit between IL-18 and TNF-alpha for development of RA. As IL-18-deficient mice evade collagen-induced arthritis in a mouse RA model, therapeutics targeting IL-18 may be beneficial against RA/OA. Here, the authors review the possible roles of IL-18 in inflammatory arthritis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibody Formation
- Arthritis, Experimental/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/physiopathology
- Arthritis, Rheumatoid/therapy
- Autoimmune Diseases/immunology
- Autoimmune Diseases/physiopathology
- Autoimmune Diseases/therapy
- Chondrocytes/metabolism
- Cysteine Endopeptidases/physiology
- Cytokines/physiology
- Humans
- Immunity, Cellular
- Infections/immunology
- Inflammation/physiopathology
- Interleukin-18/antagonists & inhibitors
- Interleukin-18/deficiency
- Interleukin-18/genetics
- Interleukin-18/physiology
- Interleukin-18 Receptor alpha Subunit
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/physiology
- Mice
- Mice, Knockout
- Models, Immunological
- Neoplasms/immunology
- Osteoarthritis/immunology
- Osteoarthritis/physiopathology
- Osteoarthritis/therapy
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Interleukin/drug effects
- Receptors, Interleukin/physiology
- Receptors, Interleukin-18
- Signal Transduction/physiology
- Synovial Membrane/metabolism
- Th1 Cells/immunology
- Th2 Cells/immunology
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Kiyoshi Matsui
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | |
Collapse
|