1
|
Abebe L, Phung K, Robinson ME, Waldner R, Carsen S, Smit K, Tice A, Lazier J, Armour C, Page M, Dover S, Rauch F, Koujok K, Ward LM. Burosumab for the treatment of cutaneous-skeletal hypophosphatemia syndrome. Bone Rep 2024; 20:101725. [PMID: 38229908 PMCID: PMC10790024 DOI: 10.1016/j.bonr.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
Cutaneous-skeletal hypophosphatemia syndrome (CSHS) is a rare bone disorder featuring fibroblast growth factor-23 (FGF23)-mediated hypophosphatemic rickets. We report a 2-year, 10-month-old girl with CSHS treated with burosumab, a novel human monoclonal antibody targeting FGF23. This approach was associated with rickets healing, improvement in growth and lower limb deformity, and clinically significant benefit to her functional mobility and motor development. This case report provides evidence for the effective use of FGF23-neutralizing antibody therapy beyond the classic FGF23-mediated disorders of X-linked hypophosphatemia and tumor-induced osteomalacia.
Collapse
Affiliation(s)
- Lillian Abebe
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Kim Phung
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
| | - Marie-Eve Robinson
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Division of Endocrinology and Metabolism, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Richelle Waldner
- Department of Pediatrics, University of Alberta, 116 St & 85 Av, Edmonton, AB T6G 2R3, Canada
| | - Sasha Carsen
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Department of surgery, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Kevin Smit
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Department of surgery, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Andrew Tice
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Department of surgery, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Joanna Lazier
- Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Medical Genetics and Genomics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
| | - Christine Armour
- Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Medical Genetics and Genomics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
| | - Marika Page
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Saunya Dover
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Frank Rauch
- Shriners Hospital for Children, 1003 Decarie Blvd, Montréal, QC H4A 0A9, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, 805 rue Sherbrooke O, Montréal, Quebec H3A 0B9, Canada
| | - Khaldoun Koujok
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Medical Imaging, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Leanne M. Ward
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Division of Endocrinology and Metabolism, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
2
|
Kothandaraman S, Yadav V, Chandrasekhar NH, Sunil HV, Kumar SDG, Kannan S. Oncogenic Osteomalacia: Challenges in Diagnosis. Indian J Surg Oncol 2023; 14:583-588. [PMID: 37900640 PMCID: PMC10611642 DOI: 10.1007/s13193-021-01474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
To report a case of osteomalacia induced by a mesenchymal tumour in the head and neck region, in view of its rarity and classical late diagnosis. To review the literature on the usage of fluorodeoxyglucose-positron emission tomography-computed tomography (FDG PET-CT) and octreotide scanning in the localisation of the culprit tumour. An elderly male presented with a 7-year history of chronic muscle pain and weakness, to the extent of functional disability. FDG PET-CT was done which showed uptake in the region of the right anterior ethmoids. Endoscopic excision of the mass was done. However, the patient did not improve significantly. Subsequently, a DOTA-1-NaI3-octreotide (DOTANOC) scan was done which revealed a tumour in the region of the right medial rectus, excision of which was done. This time, the patient improved clinically and biochemically. The histopathology was phosphaturic mesenchymal tumour. A steady but definitive symptomatic improvement was noted in the postoperative period along with reversal of the deranged biochemical parameters, confirming the diagnosis of oncogenic osteomalacia. Octreotide-based PET-CT seems to be the most sensitive imaging modality in localising the tumours that cause oncogenic osteomalacia. However, FDG-based PET-CT still would be a good choice in centres where SSTR-based imaging facilities are not available.
Collapse
Affiliation(s)
| | - Vishal Yadav
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Cancer Centre, Bengaluru, India
| | - Naveen H. Chandrasekhar
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Cancer Centre, Bengaluru, India
| | - H. V. Sunil
- Department of Nuclear Medicine, Mazumdar Shaw Cancer Centre, Bengaluru, India
| | | | - Subramanian Kannan
- Department of Endocrinology, Mazumdar Shaw Cancer Centre, Bengaluru, India
| |
Collapse
|
3
|
Lee SM, Meyer MB, Benkusky NA, Pike JW. Genome-wide analyses of gene expression profile identify key genes and pathways involved in skeletal response to phosphate and 1,25-dihydroxyvitamin D 3 in vivo. J Steroid Biochem Mol Biol 2023; 232:106335. [PMID: 37245694 PMCID: PMC10527973 DOI: 10.1016/j.jsbmb.2023.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Phosphate (P) is an essential element involved in various biological actions, such as bone integrity, energy production, cell signaling and molecular component. P homeostasis is modulated by 4 main tissues; intestine, kidney, bone, and parathyroid gland, where 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), parathyroid hormone and fibroblast growth factor 23 (FGF23) are produced and/or have an influence. In bone, serum P level modulates the production of FGF23 which then controls not only P excretion but also vitamin D metabolism in kidney in an endocrine manner. The hormonally active form of vitamin D, 1,25(OH)2D3, also has a significant effect on skeletal cells via its receptor, the vitamin D receptor, to control gene expression which mediates bone metabolism as well as mineral homeostasis. In this study, we adopted RNA-seq analysis to understand genome-wide skeletal gene expression regulation in response to P and 1,25(OH)2D3. We examined lumbar 5 vertebrae from the mice that were fed P deficient diet for a week followed by an acute high P diet for 3, 6, and 24 h as well as mice treated with 1,25(OH)2D3 intraperitoneally for 6 h. Further identification and exploration of the genes regulated by P and 1,25(OH)2D3 showed that P dynamically modulates the expression of skeletal genes involved in various biological processes while 1,25(OH)2D3 regulates genes highly related to bone metabolism. Our in vivo data were then compared with in vitro data that we previously obtained, which suggests that the gene expression profiles presented in this report mainly represent those of osteocytes. Interestingly, it was found that even though the skeletal response to P is distinguished from that to 1,25(OH)2D3, both factors have an effect on Wnt signaling pathway to modulate bone homeostasis. Taken together, this report presents genome-wide data that provide a foundation to understand molecular mechanisms by which skeletal cells respond to P and 1,25(OH)2D3.
Collapse
Affiliation(s)
- Seong Min Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Thein OS, Ali NA, Mahida RY, Dancer RCA, Ostermann M, Amrein K, Martucci G, Scott A, Thickett DR, Parekh D. Raised FGF23 Correlates to Increased Mortality in Critical Illness, Independent of Vitamin D. BIOLOGY 2023; 12:biology12020309. [PMID: 36829583 PMCID: PMC9953634 DOI: 10.3390/biology12020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Fibroblast Growth Factor (FGF23) is an endocrine hormone classically associated with the homeostasis of vitamin D, phosphate, and calcium. Elevated serum FGF23 is a known independent risk factor for mortality in chronic kidney disease (CKD) patients. We aimed to determine if there was a similar relationship between FGF23 levels and mortality in critically ill patients. METHODS Plasma FGF23 levels were measured by ELISA in two separate cohorts of patients receiving vitamin D supplementation: critical illness patients (VITdAL-ICU trial, n = 475) and elective oesophagectomy patients (VINDALOO trial, n = 76). Mortality data were recorded at 30 and 180 days or at two years, respectively. FGF23 levels in a healthy control cohort were also measured (n = 27). RESULTS Elevated FGF23 (quartile 4 vs. quartiles 1-3) was associated with increased short-term (30 and 180 day) mortality in critical illness patients (p < 0.001) and long-term (two-year) mortality in oesophagectomy patients (p = 0.0149). Patients who died had significantly higher FGF23 levels than those who survived: In the critical illness cohort, those who died had 1194.6 pg/mL (range 0-14,000), while those who survived had 120.4 pg/mL (range = 15-14,000) (p = 0.0462). In the oesophagectomy cohort, those who died had 1304 pg/mL (range = 154-77,800), while those who survived had 644 pg/mL (range = 179-54,894) (p < 0.001). This was found to be independent of vitamin D or CKD status (critical illness p = 0.3507; oesophagectomy p = 0.3800). FGF23 levels in healthy controls were similar to those seen in oesophagectomy patients (p = 0.4802). CONCLUSIONS Elevated baseline serum FGF23 is correlated with increased mortality in both the post-oesophagectomy cohort and the cohort of patients with critical illness requiring intensive care admission. This was independent of vitamin D status, supplementation, or CKD status, which suggests the presence of vitamin D-independent mechanisms of FGF23 action during the acute and convalescent stages of critical illness, warranting further investigation.
Collapse
Affiliation(s)
- Onn Shaun Thein
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Level 2 Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
- Correspondence:
| | - Naeman Akbar Ali
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Level 2 Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Level 2 Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | | | - Marlies Ostermann
- King’s College London, Guy’s & St Thomas’ Hospital, London SE1 7EH, UK
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Gennaro Martucci
- Department of Anesthesia and Intensive Care, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS-ISMETT), 90133 Palermo, Italy
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Level 2 Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Level 2 Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Level 2 Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| |
Collapse
|
5
|
Lyu Z, Li H, Li X, Wang H, Jiao H, Wang X, Zhao J, Lin H. Fibroblast growth factor 23 inhibits osteogenic differentiation and mineralization of chicken bone marrow mesenchymal stem cells. Poult Sci 2022; 102:102287. [PMID: 36442309 PMCID: PMC9706642 DOI: 10.1016/j.psj.2022.102287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23), a bone-derived hormone, is involved in the reabsorption of phosphate (P) and the production of vitamin D hormones in the kidney. However, whether and how FGF23 regulates chicken bone metabolism remains largely unknown. In the present study, we investigated the effect of FGF23 on osteogenic differentiation and mineralization of chicken bone marrow mesenchymal stem cells (BMSCs). First, we found that the transcription of FGF23 was inhibited by β-glycerophosphate sodium (GPS, 5 mM, 10 mM, 20 mM) and 10-9 M 1, 25-dihydroxyvitamin D3 (1, 25(OH)2D3), but was stimulated by 10-7 M 1, 25(OH)2D3 and parathyroid hormone (PTH, 10-9 M, 10-8 M, 10-7 M). Second, overexpression of FGF23 by the FGF23 adenovirus (Adv-FGF23) suppressed the formation of mineralized nodules (P < 0.001) and alkaline phosphatase (ALP) activity (P < 0.05) in both differentiated and mineralized osteoblasts. Administration of FGF receptor 3 (FGFR3) inhibitor (50 nM) was sufficient to restore the FGF23-decreased ALP activity (P < 0.05), but not for the formation of mineralized nodules. In addition, the phosphorylation of ERK increased considerably with Adv-FGF23 overexpression (P < 0.05). Administration of an ERK-specific inhibitor (10 μM) could down-regulate the phosphorylation of ERK (P-ERK) (P < 0.05) and slightly restored the Adv-FGF23-reduction of ALP activity (P = 0.08). In summary, our data suggest that GPS, 1, 25(OH)2D3, and PTH could regulate FGF23 mRNA expression in vitro. FGF23 is a negative regulator of bone remodeling. FGF23 not only inhibits BMSCs osteogenesis through the FGFR3-ERK signaling pathway but also suppresses the mineralization of mature osteoblasts.
Collapse
Affiliation(s)
- Zhengtian Lyu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Haifang Li
- Department of Life Science, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Xin Li
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Hui Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
6
|
Liu SH, Xiao Z, Mishra SK, Mitchell JC, Smith JC, Quarles LD, Petridis L. Identification of Small-Molecule Inhibitors of Fibroblast Growth Factor 23 Signaling via In Silico Hot Spot Prediction and Molecular Docking to α-Klotho. J Chem Inf Model 2022; 62:3627-3637. [PMID: 35868851 PMCID: PMC10018682 DOI: 10.1021/acs.jcim.2c00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a therapeutic target for treating hereditary and acquired hypophosphatemic disorders, such as X-linked hypophosphatemic (XLH) rickets and tumor-induced osteomalacia (TIO), respectively. FGF23-induced hypophosphatemia is mediated by signaling through a ternary complex formed by FGF23, the FGF receptor (FGFR), and α-Klotho. Currently, disorders of excess FGF23 are treated with an FGF23-blocking antibody, burosumab. Small-molecule drugs that disrupt protein/protein interactions necessary for the ternary complex formation offer an alternative to disrupting FGF23 signaling. In this study, the FGF23:α-Klotho interface was targeted to identify small-molecule protein/protein interaction inhibitors since it was computationally predicted to have a large fraction of hot spots and two druggable residues on α-Klotho. We further identified Tyr433 on the KL1 domain of α-Klotho as a promising hot spot and α-Klotho as an appropriate drug-binding target at this interface. Subsequently, we performed in silico docking of ∼5.5 million compounds from the ZINC database to the interface region of α-Klotho from the ternary crystal structure. Following docking, 24 and 20 compounds were in the final list based on the lowest binding free energies to α-Klotho and the largest number of contacts with Tyr433, respectively. Five compounds were assessed experimentally by their FGF23-mediated extracellular signal-regulated kinase (ERK) activities in vitro, and two of these reduced activities significantly. Both these compounds were predicted to have favorable binding affinities to α-Klotho but not have a large number of contacts with the hot spot Tyr433. ZINC12409120 was found experimentally to disrupt FGF23:α-Klotho interaction to reduce FGF23-mediated ERK activities by 70% and have a half maximal inhibitory concentration (IC50) of 5.0 ± 0.23 μM. Molecular dynamics (MD) simulations of the ZINC12409120:α-Klotho complex starting from in silico docking poses reveal that the ligand exhibits contacts with residues on the KL1 domain, the KL1-KL2 linker, and the KL2 domain of α-Klotho simultaneously, thereby possibly disrupting the regular function of α-Klotho and impeding FGF23:α-Klotho interaction. ZINC12409120 is a candidate for lead optimization.
Collapse
Affiliation(s)
- Shih-Hsien Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Zhousheng Xiao
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee38163, United States
| | - Sambit K Mishra
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - L Darryl Quarles
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee38163, United States
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
7
|
Foroni MZ, Cendoroglo MS, Costa AG, Marin-Mio RV, do Prado Moreira PF, Maeda SS, Bilezikian JP, Lazaretti-Castro M. FGF23 levels as a marker of physical performance and falls in community-dwelling very old individuals. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:333-344. [PMID: 35612845 PMCID: PMC9832858 DOI: 10.20945/2359-3997000000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
Objective The fibroblast growth factor 23 (FGF23) has been related to biological aging, but data in elderly individuals are scant. We determined the profile of serum FGF23 levels in a population of very-old individuals and studied their correlations with parameters of bone metabolism and health markers, as functional performance. Methods This cross-sectional study was performed on 182 community dwellers aged ≥ 80 years. Serum levels of FGF23, PTH, calcium, albumin, phosphorus, creatinine, bone markers, and bone mineral density data were analyzed. Physical performance was evaluated with the stationary march (Step), Flamingo, and functional reach tests, along with questionnaires to assess falls and fractures in the previous year, energy expenditure (MET), and the Charlson index (CI). Physical activity was evaluated with the International Physical Activity Questionnaire (IPAQ). Results Most participants (75%) had FGF23 levels between 30-120 RU/mL (range: 6.0-3,170.0 RU/mL). FGF23 levels correlated with estimated glomerular filtration rate (eGFR; r = -0.335; p = 0.001) and PTH (r = 0.318; p < 0.0001). Individuals with FGF23 in the highest tertile had more falls in the previous year (p = 0.032), worse performance in the Flamingo (p = 0.009) and Step (p < 0.001) tests, worse CI (p = 0.009) and a trend toward sedentary lifestyle (p = 0.056). On multiple regression, FGF23 tertiles remained significant, independently of eGFR, for falls in the previous year, performance in the Flamingo and stationary march tests, lean mass index, and IPAQ classification. Conclusion In a population of very elderly individuals, FGF23 levels were inversely associated with neuromuscular and functional performances. Higher concentrations were related to more falls, lower muscle strength and aerobic capacity, and poorer balance, regardless of renal function, suggesting a potentially deleterious role of high FGF23 concentrations in musculoskeletal health.
Collapse
Affiliation(s)
- Mariana Zuccolotto Foroni
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil,
| | - Maysa Seabra Cendoroglo
- Divisão de Geriatria, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Aline Granja Costa
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Rosangela Villa Marin-Mio
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | | | - Sergio Setsuo Maeda
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Marise Lazaretti-Castro
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| |
Collapse
|
8
|
Ammar YA, Maharem DA, Mohamed AH, Khalil GI, Shams-Eldin RS, Dwedar FI. Fibroblast growth factor-23 rs7955866 polymorphism and risk of chronic kidney disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A missense gain-of-function fibroblast growth factor-23 (FGF23) gene single nucleotide polymorphism (SNP) (rs7955866) has been associated with FGF23 hypersecretion, phosphaturia, and bone disease. Excess circulating FGF23 was linked with atherosclerosis, hypertension, initiation, and progression of chronic kidney disease (CKD).
Methods
The study included 72 CKD stage 2/3 Egyptian patients (27–71 years old, 37 females) and 26 healthy controls matching in age and sex. Repeated measures of blood pressure were used to quantify hypertension on a semiquantitative scale (grades 0 to 5). Fasting serum urea, creatinine, uric acid, total proteins, albumin, calcium, phosphorus, vitamin D3, intact parathyroid hormone (iPTH), and intact FGF23 (iFGF23) were measured. DNA extracted from peripheral blood leucocytes was used for genotyping of FGF23 rs7955866 SNP using the TaqMan SNP genotyping allelic discrimination method.
Results
Major causes of CKD were hypertension, diabetic kidney disease, and CKD of unknown etiology. There was no significant difference in minor allele (A) frequency between the studied groups (0.333 in GI and 0.308 in GII). Median (IQR) serum iFGF23 was significantly higher in GI [729.2 (531.9–972.3)] than in GII [126.1 (88.5–152.4)] pg/mL, P < 0.001. Within GI, the minor allele (A) frequency load, coded for codominant inheritance, had a significant positive correlation with both hypertension grade (r = 0.385, P = 0.001) and serum iFGF23 (r = 0.259, P = 0.028). Hypertension grade had a significant positive correlation with serum phosphorus and iFGF23.
Conclusions
For the first time in an Egyptian cohort, we report a relatively high frequency of the rs7955866 SNP. It may remain dormant or become upregulated in response to some environmental triggers, notably dietary phosphorus excess, leading to increased circulating iFGF23 with ensuing hypertension and/or renal impairment. Subjects with this SNP, particularly in the homozygous form, are at increased risk for CKD of presumably “unknown” etiology, with a tendency for early onset hypertension and increased circulating iFGF23 out of proportion with the degree of renal impairment. Large-scale population studies are needed to confirm these findings and explore the role of blockers of the renin–angiotensin–aldosterone system and sodium chloride cotransporters in mitigating hypertension associated with FGF23 excess.
Collapse
|
9
|
Ying P, Gu M, Jiang X, Xu Y, Tong L, Xue Y, Wang Q, Huang Z, Ding W, Dai X. Serum calcium–phosphorus product for predicting the risk of osteoporotic vertebral compression fractures in elderly patients: a retrospective observational study. J Orthop Surg Res 2022; 17:57. [PMID: 35093148 PMCID: PMC8800191 DOI: 10.1186/s13018-022-02953-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study retrospectively analyzed and evaluated the potential correlations of serum calcium, serum phosphorus, and calcium-phosphorus product (Ca–P product) with the incidence of osteoporotic vertebral compression fractures (OVCFs), with the aim of exploring whether the Ca–P product can be used as a serological indicator to predict the risk of OVCFs.
Methods
This study randomly enrolled 400 elderly patients in our hospital with OVCFs and 400 patients with hip and knee arthroplasty due to femoral head necrosis or osteoarthritis from August 2013 to April 2021. Age, sex, past medical history, and admission biochemical indicators, including albumin, blood urea nitrogen, serum creatinine, serum calcium and serum phosphorus, were collected for statistical analysis.
Results
Albumin, serum calcium, serum phosphorus, Ca–P product, corrected serum calcium and corrected Ca–P product were lower in the OVCF group than in the non-OVCF group (P < 0.05). Multivariate logistic regression analysis showed that low values of serum calcium, serum phosphorus, Ca–P product, corrected blood calcium, and corrected Ca–P product can all be risk factors for OVCF. The ROC curve showed that the Ca–P product and corrected Ca–P product were effective in predicting the risk of OVCFs. The predictive value of the Ca–P product was the best; the cutoff point was 29.88, the sensitivity was 0.72 and the specificity was 0.62. The cutoff point of the corrected Ca–P product was 30.50, the sensitivity was 0.74, and the specificity was 0.62.
Conclusion
The Ca–P product and corrected Ca–P product can be used as serological indicators to predict the risk of OVCFs in elderly individuals. Early clinical interventions targeting this risk factor can further reduce the risk of OVCFs. Also, timely and regular testing of the serum calcium and phosphorus level is recommended and encouraged for this group of people.
Collapse
|
10
|
Eitner F, Richter B, Schwänen S, Szaroszyk M, Vogt I, Grund A, Thum T, Heineke J, Haffner D, Leifheit-Nestler M. Comprehensive Expression Analysis of Cardiac Fibroblast Growth Factor 23 in Health and Pressure-induced Cardiac Hypertrophy. Front Cell Dev Biol 2022; 9:791479. [PMID: 35118076 PMCID: PMC8804498 DOI: 10.3389/fcell.2021.791479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Enhanced fibroblast growth factor 23 (FGF23) is associated with left ventricular hypertrophy (LVH) in patients with chronic kidney and heart disease. Experimentally, FGF23 directly induces cardiac hypertrophy and vice versa cardiac hypertrophy stimulates FGF23. Besides the bone, FGF23 is expressed by cardiac myocytes, whereas its synthesis in other cardiac cell types and its paracrine role in the heart in health and disease is unknown. By co-immunofluorescence staining of heart tissue of wild-type mice, we show that Fgf23 is expressed by cardiac myocytes, fibroblasts and endothelial cells. Cardiac Fgf23 mRNA and protein level increases from neonatal to six months of age, whereas no age-related changes in bone Fgf23 mRNA expression were noted. Cardiac myocyte-specific disruption of Fgf23 using Cre-LoxP system (Fgf23fl/fl/cre+) caused enhanced mortality, but no differences in cardiac function or structure. Although pressure overload-induced cardiac hypertrophy induced by transverse aortic constriction (TAC) resulted in a slightly worse phenotype with a more severe reduced ejection fraction, higher end-systolic volume and more enlarged systolic LV diameter in Fgf23fl/fl/cre+ mice compared to controls, this was not translated to any worse cellular hypertrophy, fibrosis or chamber remodeling. TAC induced Fgf23 mRNA expression in whole cardiac tissue in both genotypes. Interestingly, co-immunofluorescence staining revealed enhanced Fgf23 synthesis in cardiac fibroblasts and endothelial cells but not in cardiac myocytes. RNA sequencing of isolated adult cardiac myocytes, cardiac fibroblasts and endothelial cells confirmed significantly higher Fgf23 transcription in cardiac fibroblasts and endothelial cells after TAC. Our data indicate that Fgf23 is physiologically expressed in various cardiac cell types and that cardiac fibroblasts and endothelial cells might be an important source of FGF23 in pathological conditions. In addition, investigations in Fgf23fl/fl/cre+ mice suggest that cardiac myocyte-derived FGF23 is needed to maintain cardiac function during pressure overload.
Collapse
Affiliation(s)
- Fiona Eitner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Saskia Schwänen
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Isabel Vogt
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
- *Correspondence: Maren Leifheit-Nestler,
| |
Collapse
|
11
|
Honda Y, Ishigami J, Karger AB, Coresh J, Selvin E, Lutsey PL, Matsushita K. The association of fibroblast growth factor 23 at mid-life and late-life with subsequent risk of cardiovascular disease: The Atherosclerosis Risk in Communities (ARIC) Study. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100124. [PMID: 37800091 PMCID: PMC10552649 DOI: 10.1016/j.ahjo.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 10/07/2023]
Abstract
Background Fibroblast growth factor 23 (FGF-23) regulates phosphorus and is associated with cardiovascular disease (CVD), particularly in patients with chronic kidney disease. However, data are limited regarding its contribution to different CVD subtypes across wide age ranges in the general population. Methods Using data from ARIC, we evaluated the associations of FGF-23 with heart failure (HF), coronary heart disease (CHD), stroke, and composite CVD (any CVD event) in 12,039 participants at mid-life (visit 3 [1993-1995], mean age 60.0 [SD 5.7] years) and 5608 of the same participants at late-life (visit 5 [2011-2013], 75.5 [5.1] years). Results During a median of 9.0 years from visit 3 and 6.9 years from visit 5, we observed 1636 and 1137 composite CVD events, respectively. Higher FGF-23 at visit 5, but not necessarily at visit 3, was significantly associated with the risk of CVD independently of potential confounders including kidney function (adjusted HRs for top vs. bottom quartile, 1.56 [95% CI, 1.30-1.87] at visit 5 and 1.10 [95% CI, 0.95-1.27] at visit 3, p-for-difference < 0.001). We observed similar patterns in key demographic and clinical subgroups without interactions. Among CVD subtypes, HF was the only subtype robustly associated with higher FGF-23 at both visits. Conclusion Higher FGF-23 concentrations at late-life but not necessarily at mid-life were independently associated with the risk of CVD. Among CVD subtypes tested, only HF showed robust associations with FGF-23 at both mid-life and late-life.
Collapse
Affiliation(s)
- Yasuyuki Honda
- Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Junichi Ishigami
- Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Josef Coresh
- Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Elizabeth Selvin
- Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
| | - Kunihiro Matsushita
- Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
12
|
Abstract
Apart from its phosphaturic action, the bone-derived hormone fibroblast growth factor-23 (FGF23) is also an essential regulator of vitamin D metabolism. The main target organ of FGF23 is the kidney, where FGF23 suppresses transcription of the key enzyme in vitamin D hormone (1,25(OH)2D) activation, 1α-hydroxylase, and activates transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase, in proximal renal tubules. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in bone, forming a feedback loop between kidney and bone. The importance of FGF23 as regulator of vitamin D metabolism is underscored by the fact that in the absence of FGF23 signaling, the tight control of renal 1α-hydroxylase fails, resulting in overproduction of 1,25(OH)2D in mice and men. During recent years, big strides have been made toward a more complete understanding of the mechanisms underlying the FGF23-mediated regulation of vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. Importantly, the intracellular signaling cascades downstream of FGF receptors regulating transcription of 1α-hydroxylase and 24-hydroxylase in proximal renal tubules still remain unresolved. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the regulation of vitamin D metabolism by FGF23, and to discuss the role of these mechanisms in physiology and pathophysiology. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nejla Latic
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| |
Collapse
|
13
|
Lin X, Li S, Zhang Z, Yue H. Clinical and Genetic Characteristics of 153 Chinese Patients With X-Linked Hypophosphatemia. Front Cell Dev Biol 2021; 9:617738. [PMID: 34141703 PMCID: PMC8204109 DOI: 10.3389/fcell.2021.617738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/16/2021] [Indexed: 11/27/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is caused by inactivating mutations in the phosphate-regulating endopeptidase homolog, X-linked (PHEX) gene, resulting in an excess of circulating intact fibroblast growth factor-23 (iFGF-23) and a waste of renal phosphate. In the present study, we retrospectively reviewed the clinical and molecular features of 153 Chinese patients, representing 87 familial and 66 sporadic cases with XLH. A total of 153 patients with XLH presented with signs or symptoms at a median age of 18.0 months (range, 9.0 months–26.0 years). Lower-limb deformity was the most frequent clinical manifestation, accounting for 79.1% (121/153). Biochemical screening showed increased serum levels of iFGF23 in patients with XLH, with a wide variation ranging from 14.39 to 730.70 pg/ml. Median values of serum iFGF23 in pediatric and adult patients were 94.87 pg/ml (interquartile range: 74.27–151.86 pg/ml) and 72.82 pg/ml (interquartile range: 39.42–136.00 pg/ml), respectively. Although no difference in circulating iFGF23 levels between these two groups was observed (P = 0.062), the proportion of patients with high levels of circulating iFGF23 (>42.2 pg/ml) was greater in the pediatric group than in the adult group (P = 0.026). Eighty-eight different mutations in 153 patients were identified, with 27 (30.7%) being novel. iFGF23 levels and severity of the disease did not correlate significantly with truncating and non-truncating mutations or N-terminal and C-terminal PHEX mutations. This study provides a comprehensive description of the clinical profiles, circulating levels of iFGF23 and gene mutation features of patients with XLH, further enriching the genotypic spectrum of the diseases. The findings show no evident correlation of circulating iFGF23 levels with the age or disease severity in patients with XLH.
Collapse
Affiliation(s)
- Xiaoyun Lin
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Li
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Xiao Z, Liu J, Liu SH, Petridis L, Cai C, Cao L, Wang G, Chin AL, Cleveland JW, Ikedionwu MO, Carrick JD, Smith JC, Quarles LD. Novel Small Molecule Fibroblast Growth Factor 23 Inhibitors Increase Serum Phosphate and Improve Skeletal Abnormalities in Hyp Mice. Mol Pharmacol 2021; 101:408-421. [PMID: 35339985 PMCID: PMC11033927 DOI: 10.1124/molpharm.121.000471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/20/2022] [Indexed: 11/22/2022] Open
Abstract
Excess fibroblast growth factor (FGF) 23 causes hereditary hypophosphatemic rickets, such as X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO). A small molecule that specifically binds to FGF23 to prevent activation of the fibroblast growth factor receptor/α-Klotho complex has potential advantages over the currently approved systemically administered FGF23 blocking antibody. Using structure-based drug design, we previously identified ZINC13407541 (N-[[2-(2-phenylethenyl)cyclopenten-1-yl]methylidene]hydroxylamine) as a small molecule antagonist for FGF23. Additional structure-activity studies developed a series of ZINC13407541 analogs with enhanced drug-like properties. In this study, we tested in a preclinical Hyp mouse homolog of XLH a direct connect analog [(E)-2-(4-(tert-butyl)phenyl)cyclopent-1-ene-1-carbaldehyde oxime] (8n), which exhibited the greatest stability in microsomal assays, and [(E)-2-((E)-4-methylstyryl)benzaldehyde oxime] (13a), which exhibited increased in vitro potency. Using cryo-electron microscopy structure and computational docking, we identified a key binding residue (Q156) of the FGF23 antagonists, ZINC13407541, and its analogs (8n and 13a) in the N-terminal domain of FGF23 protein. Site-directed mutagenesis and bimolecular fluorescence complementation-fluorescence resonance energy transfer assay confirmed the binding site of these three antagonists. We found that pharmacological inhibition of FGF23 with either of these compounds blocked FGF23 signaling and increased serum phosphate and 1,25-dihydroxyvitamin D [1,25(OH)2D] concentrations in Hyp mice. Long-term parenteral treatment with 8n or 13a also enhanced linear bone growth, increased mineralization of bone, and narrowed the growth plate in Hyp mice. The more potent 13a compound had greater therapeutic effects in Hyp mice. Further optimization of these FGF23 inhibitors may lead to versatile drugs to treat excess FGF23-mediated disorders. SIGNIFICANCE STATEMENT: This study used structure-based drug design and medicinal chemistry approaches to identify and optimize small molecules with different stability and potency, which antagonize excessive actions of fibroblast growth factor 23 (FGF23) in hereditary hypophosphatemic rickets. The findings confirmed that these antagonists bind to the N-terminus of FGF23 to inhibit its binding to and activation of the fibroblast growth factor receptors/α-Klotho signaling complex. Administration of these lead compounds improved phosphate homeostasis and abnormal skeletal phenotypes in a preclinical Hyp mouse model.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Jiawang Liu
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Shih-Hsien Liu
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Loukas Petridis
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Chun Cai
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Li Cao
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Guangwei Wang
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Ai Lin Chin
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Jacob W Cleveland
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Munachi O Ikedionwu
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Jesse D Carrick
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Jeremy C Smith
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| | - Leigh Darryl Quarles
- Department of Medicine, College of Medicine (Z.X., C.C., L.C., G.W.W., L.D.Q.) and Department of Pharmaceutical Sciences, College of Pharmacy (J.L.), University of Tennessee Health Science Center, Memphis, Tennessee; University of Tennessee (UT)/Oak Ridge National Laboratory (ORNL) Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (S.H.L., L.P., J.C.S.); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee (L.P., J.C.S.); and Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee (A.L.C., J.W.C., M.O.I., J.D.C.)
| |
Collapse
|
15
|
Fibroblast growth factor 23 is an independent marker of COPD and is associated with impairment of pulmonary function and diffusing capacity. Respir Med 2021; 182:106404. [PMID: 33895626 DOI: 10.1016/j.rmed.2021.106404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone that in recent years has been reported to have significant effects on numerous tissues. Chronic obstructive pulmonary disease (COPD) is associated with hypophosphatemia but the evidence for elevated plasma levels of FGF23 in COPD subjects is ambiguous. Recently, FGF23 has even been shown to be involved in the inflammatory pathways activated in COPD, so FGF23 could be a novel biomarker for COPD and impairment of pulmonary function. The purpose was thus to explore the association of FGF23 with COPD and measures of pulmonary function. This was a cross sectional study of 450 subjects who underwent spirometry, body plethysmography, determination of diffusing capacity (DL,CO) and biomarker analysis of FGF23, interleukin (IL)-1 receptor antagonist, IL-6 and IL-8. Forty-four participants were excluded due to missing data or renal impairment (eGFR <45 mL/min/m2). Spirometry identified 123 subjects with COPD. FGF23 levels were elevated in COPD subjects compared to non COPD subjects, and this remained significant after adjustment for age, sex and smoking habits (OR = 1.6, p = 0.02). Linear regression showed significant relationships between FGF23 and FEV1 (β = -0.15, p = 0.003), RV/TLC (β = 0.09, p = 0.05) and DL, CO (β = -0.24, p < 0.001). In conclusion we found that plasma levels of FGF23 are elevated in COPD subjects even when adjusting for traditional risk factors. Furthermore, FGF23 is associated with impairment in lung function as measured by FEV1 and DL,CO. Further studies are needed to establish whether FGF23 could serve as a novel biomarker of COPD and emphysema development.
Collapse
|
16
|
Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021; 11:506. [PMID: 33800689 PMCID: PMC8066206 DOI: 10.3390/biom11040506] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bones are metabolically active organs. Their reconstruction is crucial for the proper functioning of the skeletal system during bone growth and remodeling, fracture healing, and maintaining calcium-phosphorus homeostasis. The bone metabolism and tissue properties are influenced by trace elements that may act either indirectly through the regulation of macromineral metabolism, or directly by affecting osteoblast and osteoclast proliferation or activity, or through becoming part of the bone mineral matrix. This study analyzes the skeletal impact of macroelements (calcium, magnesium, phosphorus), microelements (fluorine), and heavy metals (lead), and discusses the concentration of each of these elements in the various bone tissues.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland; (Ż.C.); (I.R.)
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland; (Ż.C.); (I.R.)
| |
Collapse
|
17
|
Downs RP, Xiao Z, Ikedionwu MO, Cleveland JW, Lin Chin A, Cafferty AE, Darryl Quarles L, Carrick JD. Design and development of FGF-23 antagonists: Definition of the pharmacophore and initial structure-activity relationships probed by synthetic analogues. Bioorg Med Chem 2021; 29:115877. [PMID: 33232874 PMCID: PMC8007132 DOI: 10.1016/j.bmc.2020.115877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Hereditary hypophosphatemic disorders, TIO, and CKD conditions are believed to be influenced by an excess of Fibroblast Growth Factor-23 (FGF-23) which activates a binary renal FGFRs / α-Klotho complex to regulate homeostatic metabolism of phosphate and vitamin D. Adaptive FGF-23 responses from CKD patients with excess FGF-23 frequently lead to increased mortality from cardiovascular disease. A reversibly binding small molecule therapeutic has yet to emerge from research and development in this area. Current outcomes described in this work highlight efforts related to lead identification and modification using organic synthesis of strategic analogues to probe structure-activity relationships and preliminarily define the pharmacophore of a computationally derived hit obtained from virtual high-throughput screening. Synthetic strategies for the initial hit and analogue preparation, as well as preliminary cellular in vitro assay results highlighting sub micromolar inhibition of the FGF-23 signaling sequence at a concentration well below cytotoxicity are reported herein.
Collapse
Affiliation(s)
- Ryan P Downs
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, USA
| | - Zhousheng Xiao
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Munachi O Ikedionwu
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, USA
| | - Jacob W Cleveland
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, USA
| | - Ai Lin Chin
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, USA
| | - Abigail E Cafferty
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, USA
| | - L Darryl Quarles
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, USA.
| |
Collapse
|
18
|
Fratzl-Zelman N, Gamsjaeger S, Blouin S, Kocijan R, Plasenzotti P, Rokidi S, Nawrot-Wawrzyniak K, Roetzer K, Uyanik G, Haeusler G, Shane E, Cohen A, Klaushofer K, Paschalis EP, Roschger P, Fratzl P, Zwerina J, Zwettler E. Alterations of bone material properties in adult patients with X-linked hypophosphatemia (XLH). J Struct Biol 2020; 211:107556. [PMID: 32619592 DOI: 10.1016/j.jsb.2020.107556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023]
Abstract
X-linked hypophosphatemia (XLH) caused by PHEX mutations results in elevated serum FGF23 levels, renal phosphate wasting and low 1,25-dihydroxyvitamin D. The glycophosphoprotein osteopontin, a potent inhibitor of mineralization normally degraded by PHEX, accumulates within the bone matrix. Conventional therapy consisting of supplementation with phosphate and vitamin D analogs is burdensome and the effects on bone material poorly characterized. We analyzed transiliac bone biopsies from four adult patients, two of them severely affected due to no diagnosis and no treatment until adulthood. We used light microscopy, qBEI and FTIRI to study histology, histomorphometry, bone mineralization density distribution, properties of the organic matrix and size of hypomineralized periosteocytic lesions. Non-treatment resulted in severe osteomalacia, twice the amount of mineralized trabecular volume, multiple osteon-like perforations, continuity of lamellae from mineralized to unmineralized areas and distinctive patches of woven bone. Periosteocytic lesions were larger than in treated patients. The latter had nearly normal osteoid thicknesses, although surface was still elevated. The median calcium content of the matrix was always within normal range, although the percentage of lowly mineralized bone areas was highly increased in non-treated patients, resulting in a marked heterogeneity in mineralization. Divalent collagen cross-links were evident independently of the mineral content of the matrix. Broad osteoid seams lacked measurable pyridinoline, a mature trivalent cross-link and exhibited considerable acidic lipid content, typically found in matrix vesicles. Based on our results, we propose a model that possibly integrates the relationship between the observed mineralization disturbances, FGF23 secretion and the known osteopontin accumulation in XLH.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria; 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | - Stamatia Rokidi
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Kamilla Nawrot-Wawrzyniak
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Katharina Roetzer
- Center for Medical Genetics, Hanusch Hospital, Vienna, Austria; Medical School, Sigmund Freud Private University, Vienna, Austria
| | - Gökhan Uyanik
- Center for Medical Genetics, Hanusch Hospital, Vienna, Austria; Medical School, Sigmund Freud Private University, Vienna, Austria
| | - Gabriele Haeusler
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Elizabeth Shane
- Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Adi Cohen
- Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria; 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Elisabeth Zwettler
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria; Medical Directorate, Hanusch Hospital, Vienna, Austria
| |
Collapse
|
19
|
Block GA, Pergola PE, Fishbane S, Martins JG, LeWinter RD, Uhlig K, Neylan JF, Chertow GM. Effect of ferric citrate on serum phosphate and fibroblast growth factor 23 among patients with nondialysis-dependent chronic kidney disease: path analyses. Nephrol Dial Transplant 2020; 34:1115-1124. [PMID: 30380116 PMCID: PMC6603396 DOI: 10.1093/ndt/gfy318] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background Among patients with nondialysis-dependent chronic kidney disease (NDD-CKD) and iron-deficiency anemia (IDA), ferric citrate increases hemoglobin and iron parameters and reduces serum phosphate and fibroblast growth factor 23 (FGF23), a key phosphate-regulating hormone. We conducted post hoc analyses of a phase 3 trial to explore associations between iron replacement, serum phosphate changes and FGF23 regulation. Methods We employed multivariable regression and longitudinal mixed-effects models to identify and confirm, respectively, whether baseline demographic and laboratory variables were associated with ferric citrate-induced changes in serum phosphate or FGF23 concentrations. We employed path analyses to determine whether changes in FGF23 concentrations were mediated via changes in serum phosphate and/or transferrin saturation (TSAT). Results We analyzed a total of 117 and 115 ferric citrate-treated and placebo-treated patients, respectively. At 16 weeks, ferric citrate significantly reduced serum phosphate versus placebo (P = 0.006) only among patients with elevated baseline serum phosphate (≥4.5 mg/dL) and did not reduce serum phosphate among patients with baseline serum phosphate within the population reference range. Ferric citrate reduced intact FGF23 and C-terminal FGF23 partially via changes in TSAT (for C-terminal FGF23) and serum phosphate (for intact FGF23) and partially via unknown/unmeasured mechanisms. Conclusions Ferric citrate reduced serum FGF23 concentrations (partially via effects on serum phosphate and iron balance) and did not reduce serum phosphate among patients with baseline serum phosphate concentrations within the population reference range.
Collapse
Affiliation(s)
| | | | - Steven Fishbane
- Hofstra North Shore-Long Island Jewish School of Medicine, Great Neck, NY, USA
| | | | | | | | | | | |
Collapse
|
20
|
Takashi Y, Wakino S, Minakuchi H, Ishizu M, Kuroda A, Shima H, Tashiro M, Miya K, Okada K, Minakuchi J, Kawashima S, Matsuhisa M, Matsumoto T, Fukumoto S. Circulating FGF23 is not associated with cardiac dysfunction, atherosclerosis, infection or inflammation in hemodialysis patients. J Bone Miner Metab 2020; 38:70-77. [PMID: 31420749 DOI: 10.1007/s00774-019-01027-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived hormone regulating serum inorganic phosphate (Pi) concentration. FGF23 is also involved in the development of chronic kidney disease (CKD)-mineral and bone disorder. Serum FGF23 concentration begins to increase early in the progression of CKD and can be remarkably high in hemodialysis patients with end-stage renal disease. It has been reported that high FGF23 concentration is a risk factor for cardiac dysfunction, atherosclerosis, infection or systemic inflammation in CKD patients. FGF23 was also shown to induce cardiac hypertrophy directly acting on cardiomyocytes. However, it is still controversial whether high FGF23 is causing cardiac dysfunction, atherosclerosis, infection or systemic inflammation in CKD patients. In the current study, we investigated whether FGF23 concentration is associated with cardiac dysfunction, atherosclerosis, infection or systemic inflammation in Japanese hemodialysis patients. We recruited 119 hemodialysis patients and examined the association between serum FGF23 concentration and several parameters concerning mineral metabolism, cardiac dysfunction, atherosclerosis, infection, and systemic inflammation. Serum FGF23 concentration was independently associated with serum calcium and Pi concentration (β = 0.276, p < 0.001; β = 0.689, p < 0.001). However, serum FGF23 concentration was not associated with parameters of cardiac dysfunction, atherosclerosis, infection, and systemic inflammation, either. Our results do not support the hypothesis that high FGF23 in dialysis patients is the cause of cardiac dysfunction, atherosclerosis, infection or systemic inflammation.
Collapse
Affiliation(s)
- Yuichi Takashi
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Masashi Ishizu
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Akio Kuroda
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hisato Shima
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Manabu Tashiro
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Keiko Miya
- Department of Internal Medicine, Kawashima Hospital, Tokushima, Japan
| | - Kazuyoshi Okada
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Jun Minakuchi
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Shu Kawashima
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
21
|
Lee SM, Carlson AH, Onal M, Benkusky NA, Meyer MB, Pike JW. A Control Region Near the Fibroblast Growth Factor 23 Gene Mediates Response to Phosphate, 1,25(OH)2D3, and LPS In Vivo. Endocrinology 2019; 160:2877-2891. [PMID: 31599948 PMCID: PMC6850268 DOI: 10.1210/en.2019-00622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone involved in the control of phosphate (P) homeostasis and vitamin D metabolism. Despite advances, however, molecular details of this gene's regulation remain uncertain. In this report, we created mouse strains in which four epigenetically marked FGF23 regulatory regions were individually deleted from the mouse genome using CRISPR/Cas9 gene-editing technology, and the consequences of these mutations were then assessed on Fgf23 expression and regulation in vivo. An initial analysis confirmed that bone expression of Fgf23 and circulating intact FGF23 (iFGF23) were strongly influenced by both chronic dietary P treatment and acute injection of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. However, further analysis revealed that bone Fgf23 expression and iFGF23 could be rapidly upregulated by dietary P within 3 and 6 hours, respectively; this acute upregulation was lost in the FGF23-PKO mouse containing an Fgf23 proximal enhancer deletion but not in the additional enhancer-deleted mice. Of note, prolonged dietary P treatment over several days led to normalization of FGF23 levels in the FGF23-PKO mouse, suggesting added complexity associated with P regulation of FGF23. Treatment with 1,25(OH)2D3 also revealed a similar loss of Fgf23 induction and blood iFGF23 levels in this mouse. Finally, normal lipopolysaccharide (LPS) induction of Fgf23 expression was also compromised in the FGF23-PKO mouse, a result that, together with our previous report, indicates that the action of LPS on Fgf23 expression is mediated by both proximal and distal Fgf23 enhancers. These in vivo data provide key functional insight into the genomic enhancers through which Fgf23 expression is mediated.
Collapse
Affiliation(s)
- Seong Min Lee
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Alex H Carlson
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Melda Onal
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
- Correspondence: J. Wesley Pike, PhD, Department of Biochemistry, University of Wisconsin–Madison, Hector F. Deluca Laboratories, Room 543D, 433 Babcock Drive, Madison, Wisconsin 53706. E-mail:
| |
Collapse
|
22
|
Liu C, Zhao Z, Wang O, Li M, Xing X, Hsieh E, Fukumoto S, Jiang Y, Xia W. Earlier Onset in Autosomal Dominant Hypophosphatemic Rickets of R179 than R176 Mutations in Fibroblast Growth Factor 23: Report of 20 Chinese Cases and Review of the Literature. Calcif Tissue Int 2019; 105:476-486. [PMID: 31486862 DOI: 10.1007/s00223-019-00597-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/10/2019] [Indexed: 01/20/2023]
Abstract
Autosomal dominant hypophosphatemic rickets (ADHR) is a rare hereditary disorder characterized by variant onset ages and diverse phenotypes. Our aim is to explore the genotype-phenotype correlations between ADHR patients with R176 and R179 mutations in FGF23 gene. Clinical manifestations, laboratory examinations, and genetic analyses were collected from 20 patients in six Chinese ADHR kindreds in our hospital. Previously published ADHR literatures were reviewed. Among 20 Chinese ADHR mutation carriers, 11 patients revealed overt symptoms. 10/11 (90.9%) of which were females. Patients with R179 mutations presented with earlier onset than those with R176 mutation [1.3 (1.0, 37.0) years vs. 28.5 (19.0, 44.0) years]. More patients with R179 mutations had a history of rickets with lower extremity deformity [3/4 (75%) vs. 1/7 (14.3%), p < 0.05]. The serum phosphate, i-FGF23 and c-FGF23 levels of patients with R179 and R176 mutations were 0.47 ± 0.14 mmol/L versus 0.57 ± 0.17 mmol/L, 79.6 ± 87.0 pg/mL versus 79.9 ± 107.4 pg/mL, and 33.4 ± 3.0 RU/mL versus 121.3 ± 177.6 RU/mL, respectively. 7/11 of patients had iron deficiency at onset of disease. When combined with previously reported seven ADHR families, difference was observed in the age of onset among symptomatic patients with R179 and R176 mutations [1.0 (0.9, 37.0) years vs. 24.5 (1.2, 57.0) years, p < 0.05]. Patients with R179 mutation were more likely to have rickets than R176 mutation (11/13, 84.6% vs. 5/20, 25.0%, p < 0.01) and lower extremity deformity (10/13, 76.9% vs. 6/19, 31.6%, p < 0.01). ADHR patients with R179 mutations had earlier onset age and more rickets compared to those with mutations in R176, which partially explained the clinical heterogeneity of ADHR.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, The Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhen Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology, The Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, The Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, The Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, The Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Evelyn Hsieh
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, USA
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima, Japan
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, The Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, The Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
23
|
FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2019; 16:7-19. [PMID: 31519999 DOI: 10.1038/s41581-019-0189-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) was initially characterized as an important regulator of phosphate and calcium homeostasis. New research advances demonstrate that FGF23 is also linked to iron economy, inflammation and erythropoiesis. These advances have been fuelled, in part, by the serendipitous development of two distinct FGF23 assays that can substitute for invasive bone biopsies to infer the activity of the three main steps of FGF23 regulation in bone: transcription, post-translational modification and peptide cleavage. This 'liquid bone biopsy for FGF23 dynamics' enables large-scale longitudinal studies of FGF23 regulation that would otherwise be impossible in humans. The balance between FGF23 production, post-translational modification and cleavage is maintained or perturbed in different hereditary monogenic conditions and in acquired conditions that mimic these genetic disorders, including iron deficiency, inflammation, treatment with ferric carboxymaltose and chronic kidney disease. Looking ahead, a deeper understanding of the relationships between FGF23 regulation, iron homeostasis and erythropoiesis can be leveraged to devise novel therapeutic targets for treatment of anaemia and states of FGF23 excess, including chronic kidney disease.
Collapse
|
24
|
Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens 2019; 28:16-25. [PMID: 30451736 DOI: 10.1097/mnh.0000000000000467] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The current review examines what is known about the FGF-23/α-Klotho co-dependent and independent pathophysiological effects, and whether FGF-23 and/or α-Klotho are potential therapeutic targets. RECENT FINDINGS FGF-23 is a hormone derived mainly from bone, and α-Klotho is a transmembrane protein. Together they form a trimeric signaling complex with FGFRs in target tissues to mediate the physiological functions of FGF-23. Local and systemic factors control FGF-23 release from osteoblast/osteocytes in bone, and circulating FGF-23 activates FGFR/α-Klotho complexes in kidney proximal and distal renal tubules to regulate renal phosphate excretion, 1,25 (OH)2D metabolism, sodium and calcium reabsorption, and ACE2 and α-Klotho expression. The resulting bone-renal-cardiac-immune networks provide a new understanding of bone and mineral homeostasis, as well as identify other biological effects FGF-23. Direct FGF-23 activation of FGFRs in the absence of α-Klotho is proposed to mediate cardiotoxic and adverse innate immune effects of excess FGF-23, particularly in chronic kidney disease, but this FGF-23, α-Klotho-independent signaling is controversial. In addition, circulating soluble Klotho (sKl) released from the distal tubule by ectodomain shedding is proposed to have beneficial health effects independent of FGF-23. SUMMARY Separation of FGF-23 and α-Klotho independent functions has been difficult in mammalian systems and understanding FGF-23/α-Klotho co-dependent and independent effects are incomplete. Antagonism of FGF-23 is important in treatment of hypophosphatemic disorders caused by excess FGF-23, but its role in chronic kidney disease is uncertain. Administration of recombinant sKl is an unproven therapeutic strategy that theoretically could improve the healt span and lifespan of patients with α-Klotho deficiency.
Collapse
|
25
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
26
|
Li W, Tan L, Li X, Zhang X, Wu X, Chen H, Hu L, Wang X, Luo X, Wang F, Xu C, Chen Q, Jin R, Wang QK. Identification of a p.Trp403* nonsense variant in PHEX causing X-linked hypophosphatemia by inhibiting p38 MAPK signaling. Hum Mutat 2019; 40:879-885. [PMID: 30920082 DOI: 10.1002/humu.23743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/08/2022]
Abstract
X-linked hypophosphatemia (XLH) is the most common hereditary rickets, caused by mutations in PHEX encoding the phosphate regulating endopeptidase homolog X-linked. Here, we report a nonsense variant in exon 11 of PHEX (c.1209G>A p.Trp403*) cosegregating with XLH in a Chinese family with a LOD score of 2.70. Real-time reverse transcription polymerase chain reaction analysis demonstrated that p.Trp403* variant did not cause nonsense-mediated mRNA decay (NMD), but significantly increased the expression level of FGF23 mRNA in the patients. Interestingly, p.Trp403* significantly reduced phosphorylation of p38 mitogen-activated protein kinase (MAPK) but not ERK1/2. Moreover, overexpression of FGF23 significantly decreased phosphorylation of p38 MAPK, whereas knockdown of FGF23 by siRNA significantly increased phosphorylation of p38 MAPK. These data suggest that p.Trp403* may not function via an NMD mechanism, and instead causes XLH via a novel signaling mechanism involving PHEX, FGF23, and p38 MAPK. This finding provides important insights into genetic and molecular mechanisms for the pathogenesis of XLH.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lihua Hu
- Department of Clinical Laboratory, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobei Wang
- Department of Clinical Laboratory, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
27
|
Abstract
Hypophosphatemic rickets, mostly of the X-linked dominant form caused by pathogenic variants of the PHEX gene, poses therapeutic challenges with consequences for growth and bone development and portends a high risk of fractions and poor bone healing, dental problems and nephrolithiasis/nephrocalcinosis. Conventional treatment consists of PO4 supplements and calcitriol requiring monitoring for treatment-emergent adverse effects. FGF23 measurement, where available, has implications for the differential diagnosis of hypophosphatemia syndromes and, potentially, treatment monitoring. Newer therapeutic modalities include calcium sensing receptor modulation (cinacalcet) and biological molecules targeting FGF23 or its receptors. Their long-term effects must be compared with those of conventional treatments.
Collapse
Affiliation(s)
- Martin Bitzan
- Department of Pediatrics, The Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Room B RC.6164, Montreal, Quebec H4A 3J1, Canada.
| | - Paul R Goodyer
- The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Room EM1.2232, Montreal, Quebec H4A3J1, Canada
| |
Collapse
|
28
|
Wheeler JA, Clinkenbeard EL. Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF. ACTA ACUST UNITED AC 2019; 5:8-17. [PMID: 31218207 DOI: 10.1007/s40610-019-0110-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Fibroblast growth factor-23 (FGF23) is the key hormone produced in bone critical for phosphate homeostasis. Elevated serum phosphorus and 1,25dihydroxyvitaminD stimulates FGF23 production to promote renal phosphate excretion and decrease 1,25dihydroxyvitaminD synthesis. Thus completing the feedback loop and suppressing FGF23. Unexpectedly, studies of common and rare heritable disorders of phosphate handling identified links between iron and FGF23 demonstrating novel regulation outside the phosphate pathway. Recent Findings Iron deficiency combined with an FGF23 cleavage mutation was found to induce the autosomal dominant hypophosphatemic rickets phenotype. Physiological responses to iron deficiency, such as erythropoietin production as well as hypoxia inducible factor activation, have been indicated in regulating FGF23. Additionally, specific iron formulations, used to treat iron deficiency, alter post-translational processing thereby shifting FGF23 protein secretion. Summary Molecular and clinical studies revealed that iron deficiency, through several mechanisms, alters FGF23 at the transcriptional and post-translational level. This review will focus upon the novel discoveries elucidated between iron, its regulators, and their influence on FGF23 bioactivity.
Collapse
Affiliation(s)
- Jonathan A Wheeler
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
29
|
The Association of Fibroblast Growth Factor-23 with Mineral Factors (Ca, P, and Mg), Parathyroid Hormone, and 25-Hydroxyvitamin D in Hemodialysis Patients: A Multicenter Study. Nephrourol Mon 2018. [DOI: 10.5812/numonthly.84296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Takashi Y, Fukumoto S. FGF23 beyond Phosphotropic Hormone. Trends Endocrinol Metab 2018; 29:755-767. [PMID: 30217676 DOI: 10.1016/j.tem.2018.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived phosphotropic hormone that regulates phosphate and vitamin D metabolism. FGF23 mainly affects kidney function via the FGF receptor (FGFR)/α-Klotho complex. The physiological roles of FGF23 and α-Klotho in the regulation of mineral homeostasis have been well established. In addition, recent studies have reported that FGF23 has various effects on many other tissues, sometimes in an α-Klotho-independent manner, especially under pathological conditions. However, how FGF23 works in these tissues without α-Klotho is not entirely clear. Here we review the recent reports concerning the actions of FGF23 on various tissues and discuss the remaining questions about FGF23.
Collapse
Affiliation(s)
- Yuichi Takashi
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan.
| |
Collapse
|
31
|
Wu W, Fan H, Jiang Y, Liao L, Li L, Zhao J, Zhang H, Shrestha C, Xie Z. Regulation of 25-hydroxyvitamin D-1-hydroxylase and 24-hydroxylase in keratinocytes by PTH and FGF23. Exp Dermatol 2018; 27:1201-1209. [PMID: 30066343 DOI: 10.1111/exd.13760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Wenlin Wu
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Hong Fan
- Department of Endocrinology and Metabolism; The Peace Hospital Attached to Chang-Zhi Medical College; Chang-Zhi China
| | - Yi Jiang
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Liyan Liao
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Lusha Li
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Juan Zhao
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Huiling Zhang
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Chandrama Shrestha
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Zhongjian Xie
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| |
Collapse
|
32
|
Tanaka K, Salunya T, Motomiya Y, Motomiya Y, Oyama Y, Yamakuchi M, Maruyama I. Decreased Expression of Thrombomodulin in Endothelial Cells by Fibroblast Growth Factor-23/α-Klotho. Ther Apher Dial 2018; 21:395-404. [PMID: 28834363 DOI: 10.1111/1744-9987.12524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) has been known to be a state of excessive fibroblast growth factor-23 (FGF23) and α-Klotho deficiency. Patients undergoing hemodialysis have an increased mortality risk associated with cardiovascular disease and endothelial dysfunction. The mechanism responsible for the relationship of FGF23 to endothelial damage in these patients has been unclear. On the other hands, increasing evidences have demonstrated that thrombomodulin (TM) plays an important role in the endothelial barrier. Here, we report the suppression of membrane TM, in a dose-dependent manner, in human umbilical vein endothelial cells after FGF23 and FGF23/α-Klotho stimulation. In addition, the levels of soluble TM, which reflect endothelial cell injury, were much higher in cell supernatants after FGF23 and FGF23/α-Klotho stimulation than in the control supernatant. This study indicates a possible mechanism by which excessive levels of FGF23 are involved in endothelial TM disruption, which has been implicated as a potential cardiovascular risk factor in patients with CKD, especially in HD patients.
Collapse
Affiliation(s)
| | - Tancharoen Salunya
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Thailand
| | | | | | - Yoko Oyama
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
33
|
Bouksila M, Kaabachi W, Mrad M, Smaoui W, El Kateb EC, Zouaghi MK, Hamzaoui K, Bahlous A. FGF 23, PTH and vitamin D status in end stage renal disease patients affected by VDR Fok I and Bsm I variants. Clin Biochem 2018; 54:42-50. [DOI: 10.1016/j.clinbiochem.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
|
34
|
Hamano T. Vitamin D and renal outcome: the fourth outcome of CKD-MBD? Oshima Award Address 2015. Clin Exp Nephrol 2018; 22:249-256. [PMID: 29270765 PMCID: PMC5838134 DOI: 10.1007/s10157-017-1517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/11/2017] [Indexed: 12/29/2022]
Abstract
Bone fracture, cardiovascular events, and mortality are three outcomes of chronic kidney disease-mineral and bone disorder (CKD-MBD), and the umbrella concept originally described for dialysis patients. The reported association of serum phosphorus or fibroblast growth factor 23 (FGF23) levels with renal outcome suggests that the fourth relevant outcome of CKD-MBD in predialysis patients is renal outcome. We found that proteinuria of 2+ or greater with a dipstick test was associated with low vitamin D status due to urinary loss of 25-hydroxyvitamin D (25D). Moreover, active vitamin D or its analogues decrease proteinuria. Given our finding that maxacalcitol does not repress renin, the reduction of proteinuria by this agent is likely due to direct upregulation of the nephrin and podocin in podocytes. Moreover, this agent downregulates the mesenchymal marker desmin in podocytes and blocks transforming growth factor-beta autoinduction, leading to attenuation of renal fibrosis in a unilateral ureteral obstructive (UUO) model. These facts are reminiscent of the suppression of epithelial-mesenchymal transition (EMT) by vitamin D. EMT blockage may explain our finding that vitamin D prescription in renal transplant recipients is associated with a lower incidence of cancer. We also reported that low vitamin D status and high FGF23 levels predict a worse renal outcome. However, administration of massive doses of 25D exacerbates renal fibrosis in UUO kidneys in 1alpha-hydroxylase knockout mice. Moreover, FGF23 inhibits 1alpha-hydroxylase in proximal tubules and monocytes. Taken together, local 1,25(OH)2D in the kidney tissue but not 25D seems to protect the kidney.
Collapse
Affiliation(s)
- Takayuki Hamano
- Department of Comprehensive Kidney Disease Research (CKDR), Osaka University Graduate School of Medicine, D11, 2-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
35
|
Effects of vitamin D supplementation on FGF23: a randomized-controlled trial. Eur J Nutr 2018; 58:697-703. [PMID: 29602956 PMCID: PMC6437118 DOI: 10.1007/s00394-018-1672-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Purpose Fibroblast growth factor-23 (FGF23) is critical for phosphate homeostasis. Considering the high prevalence of vitamin D deficiency and the association of FGF23 with adverse outcomes, we investigated effects of vitamin D3 supplementation on FGF23 concentrations. Methods This is a post-hoc analysis of the Styrian Vitamin D Hypertension trial, a single-center, double-blind, randomized, placebo-controlled trial, conducted from 2011 to 2014 at the Medical University of Graz, Austria. Two hundred subjects with 25(OH)D concentrations < 30 ng/mL and arterial hypertension were randomized to receive either 2800 IU of vitamin D3 daily or placebo over 8 weeks. Primary outcome was the between-group difference in FGF23 levels at study end while adjusting for baseline values. Results Overall, 181 participants (mean ± standard deviation age, 60.1 ± 11.3; 48% women) with available c-term FGF23 concentrations were considered for the present analysis. Mean treatment duration was 54 ± 10 days in the vitamin D3 group and 54 ± 9 days in the placebo group. At baseline, FGF23 was significantly correlated with serum phosphate (r = 0.135; p = 0.002). Vitamin D3 supplementation had no significant effect on FGF23 in the entire cohort (mean treatment effect 0.374 pmol/L; 95% confidence interval − 0.024 to 0.772 pmol/L; p = 0.065), but increased FGF23 concentrations in subgroups with baseline 25(OH)D concentrations below 20 ng/mL (n = 70; mean treatment effect 0.973 pmol/L; 95% confidence interval − 0.032 to 1.979 pmol/L; p = 0.019) and 16 ng/mL (n = 40; mean treatment effect 0.593 pmol/L; 95% confidence interval 0.076 to 1.109; p = 0.022). Conclusions Vitamin D3 supplementation had no significant effect on FGF23 in the entire study cohort. We did, however, observe an increase of FGF23 concentrations in subgroups with low baseline 25(OH)D.
Collapse
|
36
|
Zamparini JM, Immelman AR, Raal FJ. Fibroblast growth factor-23 in patients with homozygous familial hypercholesterolemia. J Clin Lipidol 2018; 12:767-772. [PMID: 29550495 DOI: 10.1016/j.jacl.2018.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Patients with homozygous familial hypercholesterolemia (HoFH) develop significant vascular calcification early in life, the cause of which is not yet fully understood. Patients with chronic kidney disease have similar vascular calcification, with fibroblast growth factor-23 (FGF23) implicated in these patients. OBJECTIVE To determine whether there was a difference in FGF23 between patients with HoFH and age- and gender-matched controls and whether there is a correlation between FGF23 and serum low-density lipoprotein, total cholesterol, and carotid intima-media thickness in patients with HoFH. METHODS The study was a cross-sectional review involving 30 patients with HoFH attending the Charlotte Maxeke Johannesburg Academic Hospital Lipid Clinic in Parktown, South Africa, as well as 30 age- and gender-matched healthy controls. FGF23, fasting lipid profiles, calcium, and phosphate were measured. B-mode ultrasonography of the carotid arteries was done to assess the extent and severity of arterial calcification. RESULTS There was no difference in mean FGF23 between the patient and control groups (62.07 ± 26.42 pg/mL vs 63.69 ± 19.84 pg/mL; P = .4621) nor was there any correlation between FGF23 and low-density lipoprotein cholesterol (P = .9483 and .8474) or total cholesterol (P = .9261 and .859). In the HoFH patients, FGF23 did not correlate significantly with any cardiovascular disease. CONCLUSIONS Serum FGF23 is not elevated in patients with HoFH when compared to non-familial hypercholesterolemia age- and gender-matched controls, and there is no correlation between serum FGF23 and cardiovascular disease in patients with HoFH. FGF23 does not appear to be a major factor for arterial calcification in HoFH.
Collapse
Affiliation(s)
- Jarrod M Zamparini
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa.
| | - Andrew R Immelman
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa; Carbohydrate & Lipid Metabolism Research Unit, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Frederick J Raal
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa; Carbohydrate & Lipid Metabolism Research Unit, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
37
|
Tsagalis G, Psimenou E, Manios E, Laggouranis A. Fibroblast Growth Factor 23 (FGF23) and the kidney. Int J Artif Organs 2018; 32:232-9. [DOI: 10.1177/039139880903200407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphate homeostasis in humans is a complex phenomenon involving the interplay of several different organs and circulating hormones. Among the latter, parathyroid hormone (PTH), and vitamin D3 (Vit D3) were thought to be the main regulators of serum phosphate concentration since they mediated the intestinal, renal and bone responses that follow fluctuations in serum phosphate levels. The study of three rare disorders – tumor-induced osteomalacia (TIO), autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemic rickets (XLH) – has offered a completely new insight into phosphate metabolism by unraveling the role of a group of peptides that can directly affect serum phosphate concentration by increasing urinary phosphate excretion. Fibroblast growth factor-23 (FGF-23) is the most extensively studied “phosphatonin”. The production, mechanism of action, effects in various target tissues, and its role in common clinical disorders are the focus of this review.
Collapse
Affiliation(s)
| | | | - Efstathios Manios
- Department of Clinical Therapeutics, Alexandra Hospital, Athens - Greece
| | | |
Collapse
|
38
|
CHOI SW, KWEON SS, LEE YH, RYU SY, CHOI JS, NAM HS, PARK KS, KIM SA, SHIN MH. Parathyroid Hormone Levels Are Independently Associated with eGFR and Albuminuria: The Dong-gu Study. J Nutr Sci Vitaminol (Tokyo) 2018; 64:18-25. [DOI: 10.3177/jnsv.64.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Seong-Woo CHOI
- Department of Preventive Medicine, Chosun University Medical School
| | - Sun-Seog KWEON
- Department of Preventive Medicine, Chonnam National University Medical School
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital
| | - Young-Hoon LEE
- Department of Preventive Medicine & Institute of Wonkwang Medical Science, Wonkwang University School of Medicine
| | - So-Yeon RYU
- Department of Preventive Medicine, Chosun University Medical School
| | - Jin-Su CHOI
- Department of Preventive Medicine, Chonnam National University Medical School
| | - Hae-Sung NAM
- Department of Preventive Medicine, Chungnam National University Medical School
| | - Kyeong-Soo PARK
- Department of Preventive Medicine, Seonam University College of Medicine
| | - Sun A KIM
- Department of Preventive Medicine, Chonnam National University Medical School
| | - Min-Ho SHIN
- Department of Preventive Medicine, Chonnam National University Medical School
- Center for Creative Biomedical Scientists, Chonnam National University
| |
Collapse
|
39
|
Andrukhova O, Schüler C, Bergow C, Petric A, Erben RG. Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice. Front Endocrinol (Lausanne) 2018; 9:311. [PMID: 29942284 PMCID: PMC6004378 DOI: 10.3389/fendo.2018.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic disorder of mineral and bone metabolism caused by CKD. Impaired bone mineralization together with increased bony secretion of fibroblast growth factor-23 (FGF23) are hallmarks of CKD-MBD. We recently showed that FGF23 suppresses the expression of tissue nonspecific alkaline phosphatase (TNAP) in bone cells by a Klotho-independent, FGF receptor-3-mediated signaling axis, leading to the accumulation of the mineralization inhibitor pyrophosphate. Therefore, we hypothesized that excessive FGF23 secretion may locally impair bone mineralization in CKD-MBD. To test this hypothesis, we induced CKD by 5/6 nephrectomy in 3-month-old wild-type (WT) mice and Fgf23-/-/VDRΔ/Δ (Fgf23/VDR) compound mutant mice maintained on a diet enriched with calcium, phosphate, and lactose. Eight weeks postsurgery, WT CKD mice were characterized by reduced bone mineral density at the axial and appendicular skeleton, hyperphosphatemia, secondary hyperparathyroidism, increased serum intact Fgf23, and impaired bone mineralization as evidenced by bone histomorphometry. Laser capture microdissection in bone cryosections showed that both osteoblasts and osteocytes contributed to the CKD-induced increase in Fgf23 mRNA abundance. In line with our hypothesis, osteoblastic and osteocytic activity of alkaline phosphatase was reduced, and bone pyrophosphate concentration was ~2.5-fold higher in CKD mice, relative to Sham controls. In Fgf23/VDR compound mice lacking Fgf23, 5/6-Nx induced secondary hyperparathyroidism and bone loss. However, 5/6-Nx failed to suppress TNAP activity, and bone pyrophosphate concentrations remained unchanged in Fgf23/VDR CKD mice. Collectively, our data suggest that elevated Fgf23 production in bone contributes to the mineralization defect in CKD-MBD by auto-/paracrine suppression of TNAP and subsequent accumulation of pyrophosphate in bone. Hence, our study has identified a novel mechanism involved in the pathogenesis of CKD-MBD.
Collapse
Affiliation(s)
- Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Bergow
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra Petric
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
40
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone suppressing phosphate reabsorption and vitamin D hormone synthesis in the kidney. At physiological concentrations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho-dependent, because high-affinity binding of FGF23 to FGF receptors requires the presence of the co-receptor αKlotho on target cells. It is well established that excessive concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with normal kidney function. Based on the importance of diseases associated with gain of FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large body of literature has focused on the pathophysiological consequences of FGF23 excess. Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, during recent years, lessons we have learned from loss-of-function models have shown that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase expression and of apical membrane expression of sodium-phosphate co-transporters in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in the bone microenvironment. At present, there is little evidence for a physiological role of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to highlight the current knowledge about the complex physiological functions of FGF23.
Collapse
|
41
|
Fukumoto S. Targeting Fibroblast Growth Factor 23 Signaling with Antibodies and Inhibitors, Is There a Rationale? Front Endocrinol (Lausanne) 2018. [PMID: 29515522 PMCID: PMC5826173 DOI: 10.3389/fendo.2018.00048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone mainly produced by bone. FGF23 reduces serum phosphate by suppressing intestinal phosphate absorption through reducing 1,25-dihydroxyvitamin D and proximal tubular phosphate reabsorption. Excessive actions of FG23 result in several kinds of hypophosphatemic rickets/osteomalacia including X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia. While neutral phosphate and active vitamin D are standard therapies for child patients with XLH, these medications have several limitations both in their effects and adverse events. Several approaches that inhibit FGF23 actions including anti-FGF23 antibodies and inhibitors of FGF signaling have been shown to improve phenotypes of model mice for FG23-related hypophosphatemic diseases. In addition, clinical trials indicated that a humanized anti-FGF23 antibody increased serum phosphate and improved quality of life in patients with XLH. Furthermore, circulatory FGF23 is high in patients with chronic kidney disease (CKD). Many epidemiological studies indicated the association between high FGF23 levels and various adverse events especially in patients with CKD. However, it is not known whether the inhibition of FGF23 activities in patients with CKD is beneficial for these patients. In this review, recent findings concerning the modulation of FGF23 activities are discussed.
Collapse
Affiliation(s)
- Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- *Correspondence: Seiji Fukumoto,
| |
Collapse
|
42
|
Stöhr R, Schuh A, Heine GH, Brandenburg V. FGF23 in Cardiovascular Disease: Innocent Bystander or Active Mediator? Front Endocrinol (Lausanne) 2018; 9:351. [PMID: 30013515 PMCID: PMC6036253 DOI: 10.3389/fendo.2018.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor-23 (FGF23) is a mainly osteocytic hormone which increases renal phosphate excretion and reduces calcitriol synthesis. These renal actions are mediated via alpha-klotho as the obligate co-receptor. Beyond these canonical "mineral metabolism" actions, FGF23 has been identified as an independent marker for cardiovascular risk in various patient populations. Previous research has linked elevated FGF23 predominantly to left-ventricular dysfunction and consecutive morbidity and mortality. Moreover, some experimental data suggest FGF23 as a direct and causal stimulator for cardiac hypertrophy via specific myocardial FGF23-receptor activation, independent from alpha-klotho. This hypothesis offers fascinating prospects in terms of therapeutic interventions, specifically in patients with chronic kidney disease (CKD) in whom the FGF23 system is strongly stimulated and in whom left-ventricular dysfunction is a major disease burden. However, novel data challenges the previous stand-alone hypothesis about a one-way road which guides unidirectionally skeletal FGF23 toward cardiotoxic effects. In fact, recent data point toward local myocardial production and release of FGF23 in cases where (acute) myocardial damage occurs. The effects of this local production and the physiological meaning are under current examination. Moreover, epidemiologic studies suggest that high FGF-23 may follow, rather than induce, myocardial disease in certain conditions. In summary, while FGF23 is an interesting link between mineral metabolism and cardiac function underlining the meaning of the bone-heart axis, more research is needed before therapeutic interventions may be considered.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany
- *Correspondence: Robert Stöhr
| | - Alexander Schuh
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Gunnar H. Heine
- Department of Nephrology, University Hospital Homburg-Saar, Homburg, Germany
| | - Vincent Brandenburg
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany
| |
Collapse
|
43
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone, mainly produced by osteoblasts and osteocytes in response to increased extracellular phosphate and circulating vitamin D hormone. Endocrine FGF23 signaling requires co-expression of the ubiquitously expressed FGF receptor 1 (FGFR1) and the co-receptor α-Klotho (Klotho). In proximal renal tubules, FGF23 suppresses the membrane expression of the sodium-phosphate cotransporters Npt2a and Npt2c which mediate urinary reabsorption of filtered phosphate. In addition, FGF23 suppresses proximal tubular expression of 1α-hydroxylase, the key enzyme responsible for vitamin D hormone production. In distal renal tubules, FGF23 signaling activates with-no-lysine kinase 4, leading to increased renal tubular reabsorption of calcium and sodium. Therefore, FGF23 is not only a phosphaturic but also a calcium- and sodium-conserving hormone, a finding that may have important implications for the pathophysiology of chronic kidney disease. Besides these endocrine, Klotho-dependent functions of FGF23, FGF23 is also an auto-/paracrine suppressor of tissue-nonspecific alkaline phosphatase transcription via Klotho-independent FGFR3 signaling, leading to local inhibition of mineralization through accumulation of pyrophosphate. In addition, FGF23 may target the heart via an FGFR4-mediated Klotho-independent signaling cascade. Taken together, there is emerging evidence that FGF23 is a pleiotropic hormone, linking bone with several other organ systems.
Collapse
MESH Headings
- Autocrine Communication
- Bone and Bones/physiology
- Calcification, Physiologic
- Cardiovascular System
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/physiology
- Glucuronidase/physiology
- Humans
- Immunomodulation
- Kidney Tubules, Proximal/physiology
- Klotho Proteins
- Paracrine Communication
- Phosphates/physiology
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIc/physiology
Collapse
Affiliation(s)
- Reinhold G Erben
- 1 Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
44
|
Sakurai A, Hasegawa T, Kudo A, Shen Z, Nagai T, Abe M, Yoshida T, Hongo H, Yamamoto T, Yamamoto T, Oda K, Freitas PHLD, Li M, Sano H, Amizuka N. Chronological immunolocalization of sclerostin and FGF23 in the mouse metaphyseal trabecular and cortical bone. Biomed Res 2017; 38:257-267. [PMID: 28794403 DOI: 10.2220/biomedres.38.257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assess the chronological participation of sclerostin and FGF23 in bone metabolism, this study tracked the immunolocalization of sclerostin and FGF23 in the metaphyses of murine long bones from embryonic day 18 (E18) through 1 day after birth, 1 week, 2 weeks, 4 weeks, 8 weeks, and 20 weeks of age. We have selected two regions in the metaphyseal trabeculae for assessing sclerostin and FGF23 localization: close to the chondro-osseous junction, i.e., bone modeling site even in the adult animals, and the trabecular region distant from the growth plate, where bone remodeling takes place. As a consequence, sclerostin-immunopositive osteocytes could not be observed in both close and distant trabecular regions early at the embryonic and young adult stages. However, osteocytes gradually started to express sclerostin in the distant region earlier than in the close region of the trabeculae. Immunoreactivity for FGF23 was observed mainly in osteoblasts in the early stages, but detectable in osteocytes in the later stages of growth in trabecular and cortical bones. Fgf23 was weakly expressed in the embryonic and neonatal stages, while the receptors, Fgfr1c and αKlotho were strongly expressed in femora. At the adult stages, Fgf23 expression became more intense while Fgfr1c and aKlotho were weakly expressed. These findings suggest that sclerostin is secreted by osteocytes in mature bone undergoing remodeling while FGF23 is synthesized by osteoblasts and osteocytes depending on the developmental/growth stage. In addition, it appears that FGF23 acts in an autocrine and paracrine fashion in fetal and neonatal bones.
Collapse
Affiliation(s)
- Atsunaka Sakurai
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Crown and Bridge Prosthodontics, Graduate School of Dental Medicine, Hokkaido University
| | - Zhao Shen
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University
| | - Tomoya Nagai
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Oral Functional Prosthodontics, Graduate School of Dental Medicine, Hokkaido University
| | - Miki Abe
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Taiji Yoshida
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Self- Defense Force Hanshin Hospital
| | - Tsuneyuki Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Kimimitsu Oda
- Biochemistry, Niigata University Graduate School of Medical and Dental Sciences
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University
| | - Hidehiko Sano
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| |
Collapse
|
45
|
Carvalho JTG, Schneider M, Cuppari L, Grabulosa CC, T. Aoike D, Q. Redublo BM, C. Batista M, Cendoroglo M, Maria Moyses R, Dalboni MA. Cholecalciferol decreases inflammation and improves vitamin D regulatory enzymes in lymphocytes in the uremic environment: A randomized controlled pilot trial. PLoS One 2017; 12:e0179540. [PMID: 28665937 PMCID: PMC5493305 DOI: 10.1371/journal.pone.0179540] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
It has been reported that vitamin D regulates the immune system. However, whether vitamin D repletion modulates inflammatory responses in lymphocytes from dialysis patients is unclear. In the clinical trial, thirty-two (32) dialysis patients with 25 vitamin D ≤ 20ng/mL were randomized to receive either supplementation of cholecalciferol 100,000 UI/week/3 months (16 patients) or placebo (16 patients). In the in vitro study, B and T lymphocytes from 12 healthy volunteers (HV) were incubated with or without uremic serum in the presence or absence of 25 or 1,25 vitamin D. We evaluated the intracellular expression of IL-6, IFN-γ TLR7, TLR9, VDR, CYP27b1 and CYP24a1 by flow cytometry. We observed a reduction in the expression of TLR7, TLR9, INF-γ and CYP24a1 and an increase in VDR and CYP27b1 expression in patients which were supplemented with cholecalciferol, whereas no differences were found in the placebo group. Uremic serum increased the intracellular expression of IL-6, IFN-γ, TLR7, TLR9, VDR, CYP27b1 and CYP24a1. Treatment with 25 or 1,25 vitamin D decreased IL-6 and TLR9. CYP24a1 silencing plus treatment with 25 and/or 1,25 vitamin D had an additional reduction effect on IL-6, IFN-γ, TLR7 and TLR9 expression. This is the first study showing that cholecalciferol repletion has an anti-inflammatory effect and improves vitamin D intracellular regulatory enzymes on lymphocytes from dialysis patients.
Collapse
Affiliation(s)
- José Tarcisio G. Carvalho
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
- * E-mail:
| | - Marion Schneider
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Lilian Cuppari
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Caren C. Grabulosa
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Danilo T. Aoike
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Beata Marie Q. Redublo
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Marcelo C. Batista
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Miguel Cendoroglo
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Rosa Maria Moyses
- Post-graduate Program in Medicine, Universidade Nove de Julho/UNINOVE, São Paulo, São Paulo, Brazil
| | - Maria Aparecida Dalboni
- Division of Nephrology- Universidade Federal São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
- Post-graduate Program in Medicine, Universidade Nove de Julho/UNINOVE, São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Shen J, Fu S, Song Y. Relationship of Fibroblast Growth Factor 23 (FGF‐23) Serum Levels With Low Bone Mass in Postmenopausal Women. J Cell Biochem 2017; 118:4454-4459. [DOI: 10.1002/jcb.26101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/28/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Jun Shen
- Department of OrthopaedicsShanghai Eighth People's HospitalShanghai 200235China
| | - Shiping Fu
- Department of OrthopaedicsShanghai Eighth People's HospitalShanghai 200235China
| | - Yuan Song
- Department of OrthopaedicsShanghai Eighth People's HospitalShanghai 200235China
| |
Collapse
|
47
|
Lee JW, Iimura T. Shedding quantitative fluorescence light on novel regulatory mechanisms in skeletal biomedicine and biodentistry. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:2-10. [PMID: 28408963 PMCID: PMC5390335 DOI: 10.1016/j.jdsr.2016.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 10/26/2022] Open
Abstract
Digitalized fluorescence images contain numerical information such as color (wavelength), fluorescence intensity and spatial position. However, quantitative analyses of acquired data and their validation remained to be established. Our research group has applied quantitative fluorescence imaging on tissue sections and uncovered novel findings in skeletal biomedicine and biodentistry. This review paper includes a brief background of quantitative fluorescence imaging and discusses practical applications by introducing our previous research. Finally, the future perspectives of quantitative fluorescence imaging are discussed.
Collapse
Affiliation(s)
- Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Ehime 791-0295, Japan.,Artificial Joint Integrated Center and Translational Research Center, Ehime University Hospital, Ehime 791-0295, Japan
| |
Collapse
|
48
|
Cappariello A, Ponzetti M, Rucci N. The "soft" side of the bone: unveiling its endocrine functions. Horm Mol Biol Clin Investig 2017; 28:5-20. [PMID: 27107839 DOI: 10.1515/hmbci-2016-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/12/2016] [Indexed: 12/27/2022]
Abstract
Bone has always been regarded as a merely structural tissue, a "hard" scaffold protecting all of its "soft" fellows, while they did the rest of the work. In the last few decades this concept has totally changed, and new findings are starting to portray bone as a very talkative tissue that is capable not only of being regulated, but also of regulating other organs. In this review we aim to discuss the endocrine regulation that bone has over whole-body homeostasis, with emphasis on energy metabolism, male fertility, cognitive functions and phosphate (Pi) metabolism. These delicate tasks are mainly carried out by two known hormones, osteocalcin (Ocn) and fibroblast growth factor 23 (FGF23) and possibly other hormones that are yet to be found. The extreme plasticity and dynamicity of bone allows a very fine tuning over the actions these hormones exert, portraying this tissue as a full-fledged endocrine organ, in addition to its classical roles. In conclusion, our findings suggest that bone also has a "soft side", and is daily taking care of our entire organism in ways that were unknown until the last few years.
Collapse
|
49
|
Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández O, Fernández-Iglesias A, Alonso-Durán L, Rodríguez-Rubio E, Santos F. X-linked hypophosphatemia and growth. Rev Endocr Metab Disord 2017; 18:107-115. [PMID: 28130634 DOI: 10.1007/s11154-017-9408-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
X-Linked hypophosphatemia (XLH) is the most common form of hereditary rickets caused by loss-of function mutations in the PHEX gene. XLH is characterized by hypophosphatemia secondary to renal phosphate wasting, inappropriately low concentrations of 1,25 dihydroxyvitamin D and high circulating levels of fibroblast growth factor 23 (FGF23). Short stature and rachitic osseous lesions are characteristic phenotypic findings of XLH although the severity of these manifestations is highly variable among patients. The degree of growth impairment is not dependent on the magnitude of hypophosphatemia or the extent of legs´ bowing and height is not normalized by chronic administration of phosphate supplements and 1α hydroxyvitamin D derivatives. Treatment with growth hormone accelerates longitudinal growth rate but there is still controversy regarding the potential risk of increasing bone deformities and body disproportion. Treatments aimed at blocking FGF23 action are promising, but information is lacking on the consequences of counteracting FGF23 during the growing period. This review summarizes current knowledge on phosphorus metabolism in XLH, presents updated information on XLH and growth, including the effects of FGF23 on epiphyseal growth plate of the Hyp mouse, an animal model of the disease, and discusses growth hormone and novel FGF23 related therapies.
Collapse
Affiliation(s)
- R Fuente
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - H Gil-Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - D Claramunt-Taberner
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - O Hernández
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - A Fernández-Iglesias
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - L Alonso-Durán
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - E Rodríguez-Rubio
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - F Santos
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain.
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
50
|
Georges GT, Nájera O, Sowers K, Sowers JR. Fibroblast Growth Factor 23 and Hypophosphatemia: A Case of Hypophosphatemia along the Rickets-Osteomalacia Spectrum. Cardiorenal Med 2016; 7:60-65. [PMID: 27994603 DOI: 10.1159/000449476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorus is a key component of bone, and a deficiency results in poor mineralization along with other systemic symptoms of hypophosphatemia. Various causes of hypophosphatemia with renal wasting of phosphorus have been identified. These include the Fanconi syndrome, various genetic mutations of fibroblast growth factor 23 (FGF23) handling and the sodium/phosphate cotransporter, and those due to FGF23 secretion by mesenchymal tumors. Depending on the cause, vitamin D metabolism may also be impaired, which may amplify the deficiency in phosphorus and render treatment more challenging. Here, we report a case of hypophosphatemia and multiple stress fractures in a 20-year-old male college student living with chronic bone pain and anxiety about suffering further fractures. We further review the literature regarding this spectrum.
Collapse
Affiliation(s)
- George T Georges
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, Mo., USA
| | - O Nájera
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, Mo., USA
| | - Kurt Sowers
- Department of Medicine, Touro University, Henderson, Nev., USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, Mo., USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Mo., USA; Harry S. Truman VA Hospital, Columbia, Mo., USA
| |
Collapse
|