1
|
Spinelli P, Fields AM, Falcone S, Mesaros C, Susiarjo M. Susceptibility to Low Vitamin B6 Diet-induced Gestational Diabetes Is Modulated by Strain Differences in Mice. Endocrinology 2023; 164:bqad130. [PMID: 37624591 PMCID: PMC10686696 DOI: 10.1210/endocr/bqad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Gestational diabetes is a common pregnancy complication that adversely influences the health and survival of mother and child. Pancreatic islet serotonin signaling plays an important role in β-cell proliferation in pregnancy, and environmental and genetic factors that disrupt serotonin signaling are associated with gestational diabetes in mice. Our previous studies show that pregnant C57BL/6J mice fed a diet that is low in vitamin B6, a critical co-factor in serotonin synthesis, develop hyperglycemia and glucose intolerance, phenotypes that are consistent with gestational diabetes in humans. The current study shows that, unlike in the C57BL/6J mice, low vitamin B6 diet does not alter glucose tolerance and insulin secretion in pregnant DBA/2J mice. The hypothesis to be tested in the current study is that pregnant DBA/2J mice are protected against low vitamin B6-induced gestational diabetes due to their higher expression and enzymatic activities of tissue nonspecific alkaline phosphatase (ALPL) relative to C57BL/6J. ALPL is a rate-limiting enzyme that regulates vitamin B6 bioavailability. Interestingly, treating pregnant DBA/2J mice with 7.5 mg/kg/day of the ALPL inhibitor SBI-425 is associated with glucose intolerance in low vitamin B6-fed mice, implying that inhibition of ALPL activity is sufficient to modulate resilience to low vitamin B6-induced metabolic impairment.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ashley M Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Migotsky N, Brodt MD, Cheverud JM, Silva MJ. Cortical bone relationships are maintained regardless of sex and diet in a large population of LGXSM advanced intercross mice. Bone Rep 2022; 17:101615. [PMID: 36091331 PMCID: PMC9449555 DOI: 10.1016/j.bonr.2022.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/25/2022] Open
Abstract
Introduction Knowledge of bone structure-function relationships in mice has been based on relatively small sample sets that limit generalizability. We sought to investigate structure-function relationships of long bones from a large population of genetically diverse mice. Therefore, we analyzed previously published data from the femur and radius of male and female mice from the F34 generation of the Large-by-Small advanced intercross line (LGXSM AI), which have over a two-fold continuous spread of bone and body sizes (Silva et al. 2019 JBMR). Methods Morphological traits, mechanical properties, and estimated material properties were collected from the femur and radius from 1113 LGXSM AI adult mice (avg. age 25 wks). Males and females fed a low-fat or high-fat diet were evaluated to increase population variation. The data were analyzed using principal component analysis (PCA), Pearson's correlation, and multivariate linear regression. Results Using PCA groupings and hierarchical clustering, we identified a reduced set of traits that span the population variation and are relatively independent of each other. These include three morphometry parameters (cortical area, medullary area, and length), two mechanical properties (ultimate force and post-yield displacement), and one material property (ultimate stress). When comparing traits of the femur to the radius, morphological traits are moderately well correlated (r2: 0.18-0.44) and independent of sex and diet. However, mechanical and material properties are weakly correlated or uncorrelated between the long bones. Ultimate force can be predicted from morphology with moderate accuracy for both long bones independent of variations due to genetics, sex, or diet; however, predictions miss up to 50 % of the variation in the population. Estimated material properties in the femur are moderately to strongly correlated with bone size parameters, while these correlations are very weak in the radius. Discussion Our results indicate that variation in cortical bone phenotype in the F34 LGXSM AI mouse population can be adequately described by a reduced set of bone traits. These traits include cortical area, medullary area, bone length, ultimate force, post-yield displacement, and ultimate stress. The weak correlation of mechanical and material properties between the femur and radius indicates that the results from routine three-point bending tests of one long bone (e.g., femur) may not be generalizable to another long bone (e.g., radius). Additionally, these properties could not be fully predicted from bone morphology alone, confirming the importance of mechanical testing. Finally, material properties of the femur estimated based on beam theory equations showed a strong dependence on geometry that was not seen in the radius, suggesting that differences in femur size within a study may confound interpretation of estimated material properties.
Collapse
Affiliation(s)
- Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States of America
- Corresponding author at: Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America.
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America
| | - James M. Cheverud
- Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660, United States of America
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States of America
| |
Collapse
|
3
|
Genetics of Skeletal Evolution in Unusually Large Mice from Gough Island. Genetics 2016; 204:1559-1572. [PMID: 27694627 DOI: 10.1534/genetics.116.193805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Organisms on islands often undergo rapid morphological evolution, providing a platform for understanding mechanisms of phenotypic change. Many examples of evolution on islands involve the vertebrate skeleton. Although the genetic basis of skeletal variation has been studied in laboratory strains, especially in the house mouse Mus musculus domesticus, the genetic determinants of skeletal evolution in natural populations remain poorly understood. We used house mice living on the remote Gough Island-the largest wild house mice on record-to understand the genetics of rapid skeletal evolution in nature. Compared to a mainland reference strain from the same subspecies (WSB/EiJ), the skeleton of Gough Island mice is considerably larger, with notable expansions of the pelvis and limbs. The Gough Island mouse skeleton also displays changes in shape, including elongations of the skull and the proximal vs. distal elements in the limbs. Quantitative trait locus (QTL) mapping in a large F2 intercross between Gough Island mice and WSB/EiJ reveals hundreds of QTL that control skeletal dimensions measured at 5, 10, and/or 16 weeks of age. QTL exhibit modest, mostly additive effects, and Gough Island alleles are associated with larger skeletal size at most QTL. The QTL with the largest effects are found on a few chromosomes and affect suites of skeletal traits. Many of these loci also colocalize with QTL for body weight. The high degree of QTL colocalization is consistent with an important contribution of pleiotropy to skeletal evolution. Our results provide a rare portrait of the genetic basis of skeletal evolution in an island population and position the Gough Island mouse as a model system for understanding mechanisms of rapid evolution in nature.
Collapse
|
4
|
Xiang R, Lee AMC, Eindorf T, Javadmanesh A, Ghanipoor-Samami M, Gugger M, Fitzsimmons CJ, Kruk ZA, Pitchford WS, Leviton AJ, Thomsen DA, Beckman I, Anderson GI, Burns BM, Rutley DL, Xian CJ, Hiendleder S. Widespread differential maternal and paternal genome effects on fetal bone phenotype at mid-gestation. J Bone Miner Res 2014; 29:2392-404. [PMID: 24753181 DOI: 10.1002/jbmr.2263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/09/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022]
Abstract
Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p < 0.0001) and limb length (PC3, p < 0.05). Partitioning of variation explained by parental genomes revealed strong maternal genome effects on bone wet weight (74.1%, p < 0.0001) and axial skeletal growth (93.5%, p < 0.001), whereas paternal genome controlled limb ossification (95.1%, p < 0.0001). Histomorphometric data revealed strong maternal genome effects on growth plate height (98.6%, p < 0.0001) and trabecular thickness (85.5%, p < 0.0001) in distal femur. Parental genome effects on fetal bone were mirrored by maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p < 0.001) and paternal genome effects on alkaline phosphatase (90.0%, p < 0.001) and their correlations with maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p < 0.0001) and negatively with muscle H19 expression (r = -0.34 and -0.31, p < 0.01). Because imprinted maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors.
Collapse
Affiliation(s)
- Ruidong Xiang
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia; JS Davies Epigenetics and Genetics Group, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Smith LM, Bigelow EMR, Nolan BT, Faillace ME, Nadeau JH, Jepsen KJ. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice. Bone 2014; 67:130-8. [PMID: 25003813 PMCID: PMC4413452 DOI: 10.1016/j.bone.2014.06.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/19/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J-Chr(A/J)/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i=the substituted chromosome) showed changes in mechanical function on the order of -26.6 to +11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function.
Collapse
Affiliation(s)
- Lauren M Smith
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | - Bonnie T Nolan
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | | | | | - Karl J Jepsen
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA.
| |
Collapse
|
6
|
Ozcivici E, Zhang W, Donahue LR, Judex S. Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading. Bone 2014; 64:25-32. [PMID: 24698783 DOI: 10.1016/j.bone.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/01/2014] [Accepted: 03/22/2014] [Indexed: 01/23/2023]
Abstract
Genetic makeup of an individual is a strong determinant of the morphologic and mechanical properties of bone. Here, in an effort to identify quantitative trait loci (QTLs) for changes in the simulated mechanical parameters of trabecular bone during altered mechanical demand, we subjected 352 second generation female adult (16 weeks old) BALBxC3H mice to 3 weeks of hindlimb unloading followed by 3 weeks of reambulation. Longitudinal in vivo microcomputed tomography (μCT) scans tracked trabecular changes in the distal femur. Tomographies were directly translated into finite element (FE) models and subjected to a uniaxial compression test. Apparent trabecular stiffness and components of the Von Mises (VM) stress distributions were computed for the distal metaphysis and associated with QTLs. At baseline, five QTLs explained 20% of the variation in trabecular peak stresses across the mouse population. During unloading, three QTLs accounted for 14% of the variability in peak stresses. During reambulation, one QTL accounted for 5% of the variability in peak stresses. QTLs were also identified for mechanically induced changes in stiffness, median stress values and skewness of stress distributions. There was little overlap between QTLs identified for baseline and QTLs for longitudinal changes in mechanical properties, suggesting that distinct genes may be responsible for the mechanical response of trabecular bone. Unloading related QTLs were also different from reambulation related QTLs. Further, QTLs identified here for mechanical properties differed from previously identified QTLs for trabecular morphology, perhaps revealing novel gene targets for reducing fracture risk in individuals exposed to unloading and for maximizing the recovery of trabecular bone's mechanical properties during reambulation.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey.
| | | | | | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Abstract
The etiology of skeletal disease is driven by genetic and environmental factors. Genome-wide association studies (GWAS) of osteoporotic phenotypes have identified novel candidate genes, but have only uncovered a small proportion of the trait variance explained. This "missing heritability" is caused by several factors, including the failure to consider gene-by-environmental (G*E) interactions. Some G*E interactions have been investigated, but new approaches to integrate environmental data into genomic studies are needed. Advances in genotyping and meta-analysis techniques now allow combining genotype data from multiple studies, but the measurement of key environmental factors in large human cohorts still lags behind, as do the statistical tools needed to incorporate these measures in genome-wide association meta-studies. This review focuses on discussing ways to enhance G*E interaction studies in humans and how the use of rodent models can inform genetic studies. Understanding G*E interactions will provide opportunities to effectively target intervention strategies for individualized therapy.
Collapse
|
8
|
Nielson CM, Zmuda JM, Carlos AS, Wagoner WJ, Larson EA, Orwoll ES, Klein RF. Rare coding variants in ALPL are associated with low serum alkaline phosphatase and low bone mineral density. J Bone Miner Res 2012; 27:93-103. [PMID: 21956185 PMCID: PMC3810303 DOI: 10.1002/jbmr.527] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/12/2011] [Accepted: 09/22/2011] [Indexed: 12/17/2022]
Abstract
Alkaline phosphatase (ALP) plays an essential role in the regulation of tissue mineralization, and its activity is highly heritable. Guided by genetic associations discovered in a murine model, we hypothesized a role for rare coding variants in determining serum ALP level and bone mineral density (BMD) in humans. We sequenced the coding regions of the ALP gene (ALPL) in men with low and normal serum ALP activity levels. Single-nucleotide ALPL variants, including 19 rare nonsynonymous variants (minor allele frequency <1%), were much more frequent among the low ALP group (33.8%) than the normal group (1.4%, p = 1 × 10(-11)). Within the low ALP group, men with a rare, nonsynonymous variant had 11.2% lower mean serum ALP (p = 3.9 × 10(-4)), 6.7% lower BMD (p = 0.03), and 11.1% higher serum phosphate (p = 0.002) than those without. In contrast, common nonsynonymous variants had no association with serum ALP, phosphate, or BMD. Multiple rare ALPL coding variants are present in the general population, and nonsynonymous coding variants may be responsible for heritable differences in mineralization and thus BMD.
Collapse
Affiliation(s)
- Carrie M Nielson
- Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy S Carlos
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wendy J Wagoner
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Emily A Larson
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Eric S Orwoll
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Robert F Klein
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
- Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
9
|
Abstract
BACKGROUND The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. QUESTIONS/PURPOSES We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? METHODS We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. RESULTS Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. CONCLUSIONS Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.
Collapse
|
10
|
Saless N, Litscher SJ, Vanderby R, Demant P, Blank RD. Linkage mapping of principal components for femoral biomechanical performance in a reciprocal HCB-8 × HCB-23 intercross. Bone 2011; 48:647-53. [PMID: 20969983 PMCID: PMC3073517 DOI: 10.1016/j.bone.2010.10.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 12/16/2022]
Abstract
Studies of bone genetics have addressed an array of related phenotypes, including various measures of biomechanical performance, bone size, bone, shape, and bone mineral density. These phenotypes are not independent, resulting in redundancy of the information they provide. Principal component (PC) analysis transforms multiple phenotype data to a new set of orthogonal "synthetic" phenotypes. We performed PC analysis on 17 femoral biomechanical, anatomic, and body size phenotypes in a reciprocal intercross of HcB-8 and HcB-23, accounting for 80% of the variance in 4 PCs. Three of the 4 PCs were mapped in the cross. The linkage analysis revealed a quantitative trait locus (QTL) with LOD = 4.7 for PC2 at 16 cM on chromosome 19 that was not detected using the directly measured phenotypes. The chromosome 19 QTL falls within a ~10 megabase interval, with Osf1 as a positional candidate gene. PC QTLs were also found on chromosomes 1, 2, 4, 6, and 10 that coincided with those identified for directly measured or calculated material property phenotypes. The novel chromosome 19 QTL illustrates the power advantage that attends use of PC phenotypes for linkage mapping. Constraint of the chromosome 19 candidate interval illustrates an important advantage of experimental crosses between recombinant congenic mouse strains.
Collapse
Affiliation(s)
- Neema Saless
- Cellular and Molecular Biology Program, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
The medaka fish, Oryzias latipes, is an emerging vertebrate model and now has a high quality draft genome and a number of unique mutants. The long history of medaka research in Japan has provided medaka with unique features, which are complementary to other vertebrate models. A large collection of spontaneous mutants collected over a century, the presence of highly polymorphic inbred lines established over decades, and the recently completed genome sequence all give the medaka a big boost. This review focuses on the state of the art in medaka genetics and genomics, such as the first isolation of active transposons in vertebrates, the influence of chromatin structure on sequence variation, fine quantitative trait locus (QTL) analysis, and versatile mutants as human disease models.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
12
|
Lagerholm S, Park HB, Luthman H, Nilsson M, McGuigan F, Swanberg M, Akesson K. Genetic loci for bone architecture determined by three-dimensional CT in crosses with the diabetic GK rat. Bone 2010; 47:1039-47. [PMID: 20699128 DOI: 10.1016/j.bone.2010.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/30/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The F344 rat carries alleles contributing to bone fragility while the GK rat spontaneously develops type-2 diabetes. These characteristics make F344×GK crosses well suited for the identification of genes related to bone size and allow for future investigation on the association with type-2 diabetes. The aim of this study was to identify quantitative trait loci (QTLs) for bone size phenotypes measured by a new application of three-dimensional computed tomography (3DCT) and to investigate the effects of sex- and reciprocal cross. Tibia from male and female GK and F344 rats, representing the parental, F1 and F2 generations, were examined with 3DCT and analyzed for: total and cortical volumetric BMD, straight and curved length, peri- and endosteal area at mid-shaft. F2 progeny (108 male and 98 female) were genotyped with 192 genome-wide microsatellite markers (average distance 10 cM). Sex- and reciprocal cross-separated QTL analyses were performed for the identification of QTLs linked to 3DCT phenotypes and true interactions were confirmed by likelihood ratio analysis in all F2 animals. Several genome-wide significant QTLs were found in the sex- and reciprocal cross-separated progeny on chromosomes (chr) 1, 3, 4, 9, 10, 14, and 17. Overlapping QTLs for both males and females in the (GK×F344)F2 progeny were located on chr 1 (39-67 cM). This region confirms previously reported pQCT QTLs and overlaps loci for fasting glucose. Sex separated linkage analysis confirmed a male specific QTL on chr 9 (67-82 cM) for endosteal area at the fibula site. Analyses separating the F2 population both by sex and reciprocal cross identified cross specific QTLs on chr 14 (males) and chr 3 and 4 (females). Two loci, chr 4 and 6, are unique to 3DCT and separate from pQCT generated loci. The 3DCT method was highly reproducible and provided high precision measurements of bone size in the rat enabling identification of new sex- and cross-specific loci. The QTLs on chr 1 indicate potential genetic association between bone-related phenotypes and traits affecting type-2 diabetes. The results illustrate the complexity of the genetic architecture of bone size phenotypes and demonstrate the importance of complementary methods for bone analysis.
Collapse
Affiliation(s)
- Sofia Lagerholm
- Lund University, Department of Clinical Sciences-Malmö, Clinical and Molecular Osteoporosis Unit, Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jepsen KJ, Courtland HW, Nadeau JH. Genetically determined phenotype covariation networks control bone strength. J Bone Miner Res 2010; 25:1581-93. [PMID: 20200957 PMCID: PMC3154000 DOI: 10.1002/jbmr.41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 08/26/2009] [Accepted: 01/12/2010] [Indexed: 12/31/2022]
Abstract
To identify genes affecting bone strength, we studied how genetic variants regulate components of a phenotypic covariation network that was previously shown to accurately characterize the compensatory trait interactions involved in functional adaptation during growth. Quantitative trait loci (QTLs) regulating femoral robustness, morphologic compensation, and mineralization (tissue quality) were mapped at three ages during growth using AXB/BXA Recombinant Inbred (RI) mouse strains and adult B6-i(A) Chromosome Substitution Strains (CSS). QTLs for robustness were identified on chromosomes 8, 12, 18, and 19 and confirmed at all three ages, indicating that genetic variants established robustness postnatally without further modification. A QTL for morphologic compensation, which was measured as the relationship between cortical area and body weight, was identified on chromosome 8. This QTL limited the amount of bone formed during growth and thus acted as a setpoint for diaphyseal bone mass. Additional QTLs were identified from the CSS analysis. QTLs for robustness and morphologic compensation regulated bone structure independently (ie, in a nonpleiotropic manner), indicating that each trait may be targeted separately to individualize treatments aiming to improve strength. Multiple regression analyses showed that variation in morphologic compensation and tissue quality, not bone size, determined femoral strength relative to body weight. Thus an individual inheriting slender bones will not necessarily inherit weak bones unless the individual also inherits a gene that impairs compensation. This systems genetic analysis showed that genetically determined phenotype covariation networks control bone strength, suggesting that incorporating functional adaptation into genetic analyses will advance our understanding of the genetic basis of bone strength.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
14
|
Saless N, Lopez Franco GE, Litscher S, Kattappuram RS, Houlihan MJ, Vanderby R, Demant P, Blank RD. Linkage mapping of femoral material properties in a reciprocal intercross of HcB-8 and HcB-23 recombinant mouse strains. Bone 2010; 46:1251-9. [PMID: 20102754 PMCID: PMC2854180 DOI: 10.1016/j.bone.2010.01.375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 01/27/2023]
Abstract
Skeletal fragility is an important health problem with a large genetic component. We performed a 603 animal F2 reciprocal intercross of the recombinant congenic strains HcB-8 and HcB-23 to genetically map quantitative trait loci (QTLs) for tissue-level femoral biomechanical performance. These included elastic and post-yield strain, Young's modulus, elastic and maximum stress, and toughness and were calculated from 3-point bend testing of femora by the application of standard beam equations. We mapped these with R/qtl and QTL Cartographer and established significance levels empirically by permutation testing. Significant QTLs for at least one trait are present on chromosomes 1, 6, and 10 in the full F2 population, with additional QTLs evident in subpopulations defined by sex and cross direction. On chromosome 10, we find a QTL for post-yield strain and toughness, phenotypes that have not been mapped previously. Notably, the HcB-8 allele at this QTL increases post-yield strain and toughness, but decreases bone mineral density (BMD), while the material property QTLs on chromosomes 1, 6, and at a second chromosome 10 QTL are independent of BMD. We find significant sex x QTL and cross direction x QTL interactions. A robust, pleiotropic chromosome 4 QTL that we previously reported at the whole-bone level showed no evidence of linkage at the tissue-level, supporting our interpretation that modeling capacity is its primary phenotype. Our data demonstrate an inverse relationship between femoral perimeter and Young's modulus, with R(2)=0.27, supporting the view that geometric and material bone properties are subject to an integrated set of regulatory mechanisms. Mapping QTLs for tissue-level biomechanical performance advances understanding of the genetic basis of bone quality.
Collapse
Affiliation(s)
- Neema Saless
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
| | - Gloria E. Lopez Franco
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
| | - Suzanne Litscher
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
| | | | | | | | | | - Robert D. Blank
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
- Corresponding author at: Robert D. Blank, MD, PhD, H4/556 CSC (5148), 600 Highland Ave., Madison, WI 53792-5148, USA, 608-262-5586 (phone), 608-263-9983 (fax),
| |
Collapse
|
15
|
Moisan MP. Genotype-phenotype associations in understanding the role of corticosteroid-binding globulin in health and disease animal models. Mol Cell Endocrinol 2010; 316:35-41. [PMID: 19643164 DOI: 10.1016/j.mce.2009.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Corticosteroid-binding globulin (CBG) is a plasma glycoprotein discovered more than 60 years ago for its high-affinity for glucocorticoids. Although its molecular structure and its biochemical properties have been described, its various biological roles and its importance are not yet fully understood. This review focuses first on studies that have used no-hypothesis-driven genetic approaches in animal models to reveal the higher than expected importance of CBG in particular in glucocorticoid stress responses. Then the dissection of some CBG physiological roles in an animal model of genetic CBG deficiency is reported. Finally, studies on the role of CBG genetic variability in human obesity traits are reviewed and discussed.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- INRA, UMR 1286 PsyNuGen, CNRS 5226, Universite de Bordeaux 2, Bordeaux, France.
| |
Collapse
|
16
|
Middleton KM, Goldstein BD, Guduru PR, Waters JF, Kelly SA, Swartz SM, Garland T. Variation in within-bone stiffness measured by nanoindentation in mice bred for high levels of voluntary wheel running. J Anat 2010; 216:121-31. [PMID: 20402827 PMCID: PMC2807980 DOI: 10.1111/j.1469-7580.2009.01175.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 12/17/2022] Open
Abstract
The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n = 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13-14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (microCT)-based morphometric traits were measured, and reduced elastic modulus (E(r)) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the microCT level than in conventional morphometrics of whole bones. Both line type (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a approximately 50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of line type (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P < 0.0001) than medial and lateral quadrants (32.67 and 33.09 GPa vs. 29.78 and 30.46 GPa, respectively). Our findings of no significant difference in compressive stiffness in the anterior and posterior quadrants agree with previous results for mice, but differ from those for large mammals. Integrating these results with others from ongoing research on these mice, we hypothesize that the skeletons of female HR mice may be less sensitive to the effects of chronic exercise, due to decreased circulating leptin levels and potentially altered endocannabinoid signaling.
Collapse
Affiliation(s)
- Kevin M Middleton
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Manjubala I, Liu Y, Epari DR, Roschger P, Schell H, Fratzl P, Duda GN. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 2009; 45:185-92. [PMID: 19414072 DOI: 10.1016/j.bone.2009.04.249] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/24/2009] [Accepted: 04/24/2009] [Indexed: 11/28/2022]
Abstract
After bone fracture, various cellular activities lead to the formation of different tissue types, which form the basis for the process of secondary bone healing. Although these tissues have been quantified by histology, their material properties are not well understood. Thus, the aim of this study is to correlate the spatial and temporal variations in the mineral content and the nanoindentation modulus of the callus formed via intramembranous ossification over the course of bone healing. Midshaft tibial samples from a sheep osteotomy model at time points of 2, 3, 6 and 9 weeks were employed. PMMA embedded blocks were used for quantitative back scattered electron imaging and nanoindentation of the newly formed periosteal callus near the cortex. The resulting indentation modulus maps show the heterogeneity in the modulus in the selected regions of the callus. The indentation modulus of the embedded callus is about 6 GPa at the early stage. At later stages of mineralization, the average indentation modulus reaches 14 GPa. There is a slight decrease in average indentation modulus in regions distant to the cortex, probably due to remodelling of the peripheral callus. The spatial and temporal distribution of mineral content in the callus tissue also illustrates the ongoing remodelling process observed from histological analysis. Most interestingly the average indentation modulus, even at 9 weeks, remains as low as 13 GPa, which is roughly 60% of that for cortical sheep bone. The decreased indentation modulus in the callus compared to cortex is due to the lower average mineral content and may be perhaps also due to the properties of the organic matrix which might be different from normal bone.
Collapse
Affiliation(s)
- I Manjubala
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14424 Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Foreman JE, Lionikas A, Lang DH, Gyekis JP, Krishnan M, Sharkey NA, Gerhard GS, Grant MD, Vogler GP, Mack HA, Stout JT, Griffith JW, Lakoski JM, Hofer SM, McClearn GE, Vandenbergh DJ, Blizard DA. Genetic architecture for hole-board behaviors across substantial time intervals in young, middle-aged and old mice. GENES BRAIN AND BEHAVIOR 2009; 8:714-27. [PMID: 19671078 DOI: 10.1111/j.1601-183x.2009.00516.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A quantitative trait locus (QTL) analysis of behaviors across the life span was conducted in F(2) mice from a C57BL/6J x DBA/2J cross and 22 BXD recombinant inbred (RI) strains. Mice of three age groups were tested in a hole-board apparatus for 3 min on three occasions approximately 1 month apart (average age at test 150, 450 and 750 days, approximately 400 mice per group, divided equally by sex). Quantitative trait loci with small effect size were found on 11 chromosomes for hole-board activity (Hbact) and hole-board rearing (Hbrear). Analysis of 22 RI strains tested at 150 and 450 days of age found only suggestive linkage, with four QTL for Hbact overlapping with those from the F(2) analysis. There was a significant phenotypic correlation between Hbact and Hbrear (approximately 0.55-0.69) and substantial commonality among QTL for the two behaviors. QTL analyses of head-pokes (HP) and fecal boli (FB) only identified QTL at the suggestive level of significance. Age accounted for approximately 15% of the phenotypic variance (sex approximately 3%), and there were genotype by age interactions at approximately 25% of the Hbact and Hbrear QTL. Quantitative trait loci for Hbrear were relatively stable across the three measurement occasions (those for Hbact somewhat less so), although mean levels of each index declined markedly comparing the first to subsequent trials. Considered as a whole, the polygenic system influencing exploratory behaviors accounts for approximately the same amount of phenotypic variance as age (within the range studied), is stable across substantial periods of time, and acts, for the most part, independently of age and sex.
Collapse
Affiliation(s)
- J E Foreman
- Center for Developmental and Health Genetics, The Pennsylvania State University, University Park, PA 16802-2317, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Norgard EA, Jarvis JP, Roseman CC, Maxwell TJ, Kenney-Hunt JP, Samocha KE, Pletscher LS, Wang B, Fawcett GL, Leatherwood CJ, Wolf JB, Cheverud JM. Replication of long-bone length QTL in the F9-F10 LG,SM advanced intercross. Mamm Genome 2009; 20:224-35. [PMID: 19306044 DOI: 10.1007/s00335-009-9174-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Quantitative trait locus (QTL) mapping techniques are frequently used to identify genomic regions associated with variation in phenotypes of interest. However, the F(2) intercross and congenic strain populations usually employed have limited genetic resolution resulting in relatively large confidence intervals that greatly inhibit functional confirmation of statistical results. Here we use the increased resolution of the combined F(9) and F(10) generations (n = 1455) of the LG,SM advanced intercross to fine-map previously identified QTL associated with the lengths of the humerus, ulna, femur, and tibia. We detected 81 QTL affecting long-bone lengths. Of these, 49 were previously identified in the combined F(2)-F(3) population of this intercross, while 32 represent novel contributors to trait variance. Pleiotropy analysis suggests that most QTL affect three to four long bones or serially homologous limb segments. We also identified 72 epistatic interactions involving 38 QTL and 88 novel regions. This analysis shows that using later generations of an advanced intercross greatly facilitates fine-mapping of confidence intervals, resolving three F(2)-F(3) QTL into multiple linked loci and narrowing confidence intervals of other loci, as well as allowing identification of additional QTL. Further characterization of the biological bases of these QTL will help provide a better understanding of the genetics of small variations in long-bone length.
Collapse
Affiliation(s)
- Elizabeth A Norgard
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics 2008; 178:2275-88. [PMID: 18430949 DOI: 10.1534/genetics.107.084434] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Quantitative trait locus (QTL) studies of a skeletal trait or a few related skeletal components are becoming commonplace, but as yet there has been no investigation of pleiotropic patterns throughout the skeleton. We present a comprehensive survey of pleiotropic patterns affecting mouse skeletal morphology in an intercross of LG/J and SM/J inbred strains (N = 1040), using QTL analysis on 70 skeletal traits. We identify 798 single-trait QTL, coalescing to 105 loci that affect on average 7-8 traits each. The number of traits affected per locus ranges from only 1 trait to 30 traits. Individual traits average 11 QTL each, ranging from 4 to 20. Skeletal traits are affected by many, small-effect loci. Significant additive genotypic values average 0.23 standard deviation (SD) units. Fifty percent of loci show codominance with heterozygotes having intermediate phenotypic values. When dominance does occur, the LG/J allele tends to be dominant to the SM/J allele (30% vs. 8%). Over- and underdominance are relatively rare (12%). Approximately one-fifth of QTL are sex specific, including many for pelvic traits. Evaluating the pleiotropic relationships of skeletal traits is important in understanding the role of genetic variation in the growth and development of the skeleton.
Collapse
|
21
|
Identification of quantitative trait loci affecting murine long bone length in a two-generation intercross of LG/J and SM/J Mice. J Bone Miner Res 2008; 23:887-95. [PMID: 18435578 PMCID: PMC2677087 DOI: 10.1359/jbmr.080210] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Study of mutations with large phenotypic effects has allowed the identification of key players in skeletal development. However, the molecular nature of variation in large, phenotypically normal populations tends to be characterized by smaller phenotypic effects that remain undefined. MATERIALS AND METHODS We use interval mapping and quantitative trait locus (QTL) mapping techniques in the combined F2-F3 populations (n = 2111) of an LG/J x SM/J mouse intercross to detect QTLs associated with the lengths of the humerus, ulna, femur, and tibia. RESULTS Seventy individual trait QTLs affecting long bone lengths were detected, with several chromosomes harboring multiple QTLs. The genetic architecture suggests mainly small, additive effects on long bone length, with roughly one third of the QTLs displaying dominance. Sex interactions were common, and four sex-specific QTLs were observed. Pleiotropy could not be rejected for most of the QTLs identified. Thirty-one epistatic interactions were detected, almost all affecting regions including or immediately adjacent to QTLs. CONCLUSIONS A complex regulatory network with many gene interactions modulates bone growth, possibly with integrated skeletal modules that allow fine-tuning of developmental processes present. Candidate genes in the QTL CIs include many genes known to affect endochondral bone growth and genes that have not yet been associated with bone growth or body size but have a strong potential to influence these traits.
Collapse
|
22
|
Abstract
Common diseases result from the complex relationship between genetic and environmental factors. The aim of this review is to provide perspective for a conceptual framework aimed at studying the interplay of gender-specific genetic and environmental factors in the etiology of complex disease, using osteoporosis as an example. In recent years, gender differences in the heritability of the osteoporosis-related phenotypes have been reported and sex-specific quantitative-trait loci were discovered by linkage studies in humans and mice. Results of numerous allelic association studies also differed by gender. In most cases, it was not clear whether or not this phenomenon should be attributed to the effect of sex-chromosomes, sex hormones, or other intrinsic or extrinsic differences between the genders, such as the level of bioavailable estrogen and of physical activity. We conclude that there is need to consider gender-specific genetic and environmental factors in the planning of future association studies on the etiology of osteoporosis and other complex diseases prevalent in the general population.
Collapse
Affiliation(s)
- D Karasik
- Hebrew SeniorLife/IFAR and Harvard Medical School, Boston, MA 02131, USA.
| | | |
Collapse
|
23
|
Abstract
Family and twin studies suggest that a substantial genetic component underlies individual differences in craniofacial morphology. In the current study, we quantified 444 craniofacial traits in 100 individuals from two inbred medaka (Oryzias latipes) strains, HNI and Hd-rR. Relative distances between defined landmarks were measured in digital images of the medaka head region. A total of 379 traits differed significantly between the two strains, indicating that many craniofacial traits are controlled by genetic factors. Of these, 89 traits were analyzed via interval mapping of 184 F(2) progeny from an intercross between HNI and Hd-rR. We identified quantitative trait loci for 66 craniofacial traits. The highest logarithm of the odds score was 6.2 for linkage group (LG) 9 and 11. Trait L33, which corresponds to the ratio of head length to head height at eye level, mapped to LG9; trait V15, which corresponds to the ratio of snout length to head width measured behind the eyes, mapped to LG11. Our initial results confirm the potential of the medaka as a model system for the genetic analysis of complex traits such as craniofacial morphology.
Collapse
|
24
|
O'Neill MC, Dobson SD. The degree and pattern of phylogenetic signal in primate long-bone structure. J Hum Evol 2008; 54:309-22. [DOI: 10.1016/j.jhevol.2007.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 04/09/2007] [Accepted: 08/25/2007] [Indexed: 11/24/2022]
|
25
|
Sabsovich I, Clark JD, Liao G, Peltz G, Lindsey DP, Jacobs CR, Yao W, Guo TZ, Kingery WS. Bone microstructure and its associated genetic variability in 12 inbred mouse strains: microCT study and in silico genome scan. Bone 2008; 42:439-51. [PMID: 17967568 PMCID: PMC2704123 DOI: 10.1016/j.bone.2007.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 12/21/2022]
Abstract
UNLABELLED MicroCT analysis of 12 inbred strains of mice identified 5 novel chromosomal regions influencing skeletal phenotype. Bone morphology varied in a compartment- and site-specific fashion across strains and genetic influences contributed to the morphometric similarities observed in femoral and vertebral bone within the trabecular bone compartment. INTRODUCTION Skeletal development is known to be regulated by both heritable and environmental factors, but whether genetic influence on peak bone mass is site- or compartment-specific is unknown. This study examined the genetic variation of cortical and trabecular bone microarchitecture across 12 strains of mice. MATERIALS AND METHODS MicroCT scanning was used to measure trabecular and cortical bone morphometry in the femur and vertebra of 12 strains of 4-month-old inbred male mice. A computational genome mapping technique was used to identify chromosomal intervals associated with skeletal traits. RESULTS Skeletal microarchitecture varied in a compartment- and site-specific fashion across strains. Genome mapping identified 13 chromosomal intervals associated with skeletal traits and 5 of these intervals were novel. Trabecular microarchitecture in different bone sites correlated across strains and most of the chromosomal intervals associated with these trabecular traits were shared between skeletal sites. Conversely, no chromosomal intervals were shared between the trabecular and cortical bone compartments in the femur, even though there was a strong correlation for these different bone compartments across strains, suggesting site-specific regulation by environmental or intrinsic factors. CONCLUSION In summary, these data confirm that there are distinct genetic determinants that define the skeletal phenotype at the time when peak bone mass is being acquired, and that genomic regulation of bone morphology is specific for skeletal compartment.
Collapse
Affiliation(s)
- Ilya Sabsovich
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, and Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, and Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Guochun Liao
- Department of Genetics & Genomics, Roche Bioscience, Palo Alto, California
| | - Gary Peltz
- Department of Genetics & Genomics, Roche Bioscience, Palo Alto, California
| | - Derek P. Lindsey
- Rehabilitation Research and Development Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Christopher R. Jacobs
- Rehabilitation Research and Development Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California
| | - Wei Yao
- Department of Medicine, University of California at Davis, Sacramento, California
| | - Tian-Zhi Guo
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wade S. Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
- Corresponding author: Wade S. Kingery, M.D., Physical Medicine and Rehabilitation Service (117), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94304, Tel: 650-493-5000 ext 64768 Fax: 650-852-3470
| |
Collapse
|
26
|
Mohan S, Chest V, Chadwick RB, Wergedal JE, Srivastava AK. Chemical mutagenesis induced two high bone density mouse mutants map to a concordant distal chromosome 4 locus. Bone 2007; 41:860-8. [PMID: 17884746 DOI: 10.1016/j.bone.2007.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/28/2022]
Abstract
Phenotype-driven mutagenesis approach in the mouse holds much promise as a method for revealing gene function. Earlier, we have described an N-ethyl-N-nitrosourea (ENU) mutagenesis screen to create genome-wide dominant mutations in the mouse model. Using this approach, we describe identification of two high bone density mutants in C57BL/6J (B6) background. The mutants, named as 12184 and 12137, have been bred more than five generations with wild-type B6 mice, each producing >200 backcross progeny. The average total body areal bone mineral density (aBMD) was 13-17% higher in backcrossed progeny from both mutant lines between 6 and 10 weeks of age, as compared to wild-type (WT) B6 mice (n=60-107). At 3 weeks of age the aBMD of mutant progeny was not significantly affected as compared to WT B6 mice. Data from 10- and 16-week old progeny show that increased aBMD was mainly related to a 14-20% higher bone mineral content, whereas bone size was marginally increased. In addition, the average volumetric BMD (vBMD) was 5-15% higher at the midshaft tibia or femur, as compared to WT mice. Histomorphometric analysis revealed that bone resorption was 23-34% reduced in both mutant mice. Consistent with histomorphometry data, the mRNA expression of genes that regulate osteoclast differentiation and survival were altered in the 12137 mutant mice. To determine the chromosomal location of the ENU mutation, we intercrossed both mutant lines with C3H/HeJ (C3H) mice to generate B6C3H F2 mice (n=164 for line 12137 and n=137 F2 for line 12184). Interval mapping using 60 microsatellite markers and aBMD phenotype revealed only one significant or suggestive linkage on chromosome 4. Since body weight was significantly higher in mutant lines, we also used body weight as additive and interactive covariate for interval mapping; both analyses showed higher LOD scores for both 12137 and 12184 mutants without affecting the chromosomal location. The large phenotype in the mutant mice compared to generally observed QTL effects (<5%) would increase the probability of identifying the mutant gene.
Collapse
Affiliation(s)
- S Mohan
- Musculoskeletal Disease Center (151), Loma Linda VA Healthcare Systems, Loma Linda, CA 92357, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Fracture resistance is a complex trait dictated by bone volume, shape, internal architecture, and material performance of the calcified tissue itself, all of which may be influenced by a large number of different genetic and environmental processes. Quantitative Trait Loci analyses provide a sobering picture of this system and illustrate the importance of considering genes in context.
Collapse
Affiliation(s)
- Neil A Sharkey
- Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
28
|
Karasik D, Dupuis J, Cupples LA, Beck TJ, Mahaney MC, Havill LM, Kiel DP, Demissie S. Bivariate linkage study of proximal hip geometry and body size indices: the Framingham study. Calcif Tissue Int 2007; 81:162-73. [PMID: 17674073 PMCID: PMC2376749 DOI: 10.1007/s00223-007-9052-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/13/2007] [Indexed: 02/05/2023]
Abstract
Femoral geometry and body size are both characterized by substantial heritability. The purpose of this study was to discern whether hip geometry and body size (height and body mass index, BMI) share quantitative trait loci (QTL). Dual-energy X-ray absorptiometric scans of the proximal femur from 1,473 members in 323 pedigrees (ages 31-96 years) from the Framingham Osteoporosis Study were studied. We measured femoral neck length, neck-shaft angle, subperiosteal width (outer diameter), cross-sectional bone area, and section modulus, at the narrowest section of the femoral neck (NN), intertrochanteric (IT), and femoral shaft (S) regions. In variance component analyses, genetic correlations (rho ( G )) between hip geometry traits and height ranged 0.30-0.59 and between hip geometry and BMI ranged 0.11-0.47. In a genomewide linkage scan with 636 markers, we obtained nominally suggestive linkages (bivariate LOD scores > or =1.9) for geometric traits and either height or BMI at several chromosomes (4, 6, 9, 15, and 21). Two loci, on chr. 2 (80 cM, BMI/shaft section modulus) and chr. X (height/shaft outer diameter), yielded bivariate LOD scores > or =3.0; although these loci were linked in univariate analyses with a geometric trait, neither was linked with either height or BMI. In conclusion, substantial genetic correlations were found between the femoral geometric traits, height and BMI. Linkage signals from bivariate linkage analyses of bone geometric indices and body size were similar to those obtained in univariate linkage analyses of femoral geometric traits, suggesting that most of the detected QTL primarily influence geometry of the hip.
Collapse
Affiliation(s)
- D Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, 1200 Centre Street, Boston, MA 02131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kesavan C, Baylink DJ, Kapoor S, Mohan S. Novel loci regulating bone anabolic response to loading: expression QTL analysis in C57BL/6JXC3H/HeJ mice cross. Bone 2007; 41:223-30. [PMID: 17543594 DOI: 10.1016/j.bone.2007.04.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/30/2007] [Accepted: 04/17/2007] [Indexed: 11/22/2022]
Abstract
Variations in the expression levels of bone marker genes among the inbred strains of mice in response to mechanical loading (ML) are largely determined by genetic factors. To explore this, we performed four-point bending on tibiae of 10-week female F2 mice of B6XC3H cross using 9N at 2 Hz, 36 cycles, once per day for 12 days. We collected tibiae from these mice for RNA extraction. We then measured the expression changes of bone marker genes, bone sialoprotein (BSP), alkaline phosphatase (ALP) and housekeeping genes, beta-actin and peptidylprolyl isomerase A (PPIA), by using real-time PCR in both the loaded and the non-loaded tibiae of F2 mice (n=241). A genome-wide scan was performed using 111 micro satellite markers in DNA sample collected from these mice. Mean increase in gene expression, expressed as fold change, ranges from 2.8 to 3.0 for BSP and 2.7 to 2.8 for ALP. Both showed a skewed distribution with a heritability response of 87 to 91%. Absence of significant correlation between the increased gene expression vs. body weight (BW) and bone size (BS) suggests that bone response to loading is independent of BS or BW. Non-parametric mapping (MapQTL program 5) revealed that BSP and ALP expression in response to bending was regulated by several significant and suggestive QTL: Loci regulating both BSP and ALP were located on Chr 8 (60.1 cM), 16 (45.9 cM), 17 (14.2 cM), 18 (38.0 cM) and Chr 19 (3.3 cM); Loci specific to BSP were found on Chrs 1 (LOD score 10.4 at 91.8 cM), 5 (5.2 at 73.2 cM) and 9 (7.0 at 13.1 cM); Loci regulating only ALP were found on Chrs 1 (7.6 at 46 and 75.4 cM), 3 (8.3 at 47 cM) and 4 (5.6 at 54.6 cM). QTLs on Chrs 1, 3, 8, 9, 17 and 18 correspond to QTLs we previously reported by pQCT measurements, thus validating these findings. In addition, we found that the QTL associated with non-loaded tibiae for BSP and ALP on Chrs 4, 16 and 18 was identical to the QTLs associated with ML. This finding suggests that regions on these chromosomes are responsible for natural variation in expression of BSP and ALP as well as for ML. This is the first expression study to provide evidence for the presence of multiple genetic loci regulating bone anabolic response to loading in the B6XC3H intercross and will lead to a better understanding of how exercise improves the skeletal mass.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| | | | | | | |
Collapse
|
30
|
Christians JK, Senger LK. Fine mapping dissects pleiotropic growth quantitative trait locus into linked loci. Mamm Genome 2007; 18:240-5. [PMID: 17541685 DOI: 10.1007/s00335-007-9018-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/12/2007] [Indexed: 12/22/2022]
Abstract
A recurring issue in studies of quantitative trait loci (QTLs) is whether QTLs that appear to have pleiotropic effects are indeed caused by pleiotropy at single loci or by linked QTLs. Previous work identified a QTL that affected tail length in mice and the lengths of various bones, including the humerus, ulna, femur, tibia, and mandible. The effect of this QTL on tail length has since been found to be due to multiple linked QTLs and so its apparently pleiotropic effects may have been due to linked QTLs with distinct effects. In the present study we examined a line of mice segregating only for a 0.94-Mb chromosomal region known to contain a subset of the QTLs influencing tail length. We measured a number of skeletal dimensions, including the lengths of the skull, mandible, humerus, ulna, femur, tibia, calcaneus, metatarsus, and a tail bone. The QTL region was found to have effects on the size of the mandible and length of the tail bone, with little or no effect on the other traits. Using a randomization approach, we rejected the null hypothesis that the QTL affected all traits equally, thereby demonstrating that the pleiotropic effects reported earlier were due to linked loci with distinct effects. This result underlines the possibility that seemingly pleiotropic effects of QTLs may frequently be due to linked loci and that high-resolution mapping will often be required to distinguish between pleiotropy and linkage.
Collapse
Affiliation(s)
- Julian K Christians
- Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | | |
Collapse
|
31
|
Otsuki B, Matsumura T, Shimizu M, Mori M, Okudaira S, Nakanishi R, Higuchi K, Hosokawa M, Tsuboyama T, Nakamura T. Quantitative trait locus that determines the cross-sectional shape of the femur in SAMP6 and SAMP2 mice. J Bone Miner Res 2007; 22:675-85. [PMID: 17295603 DOI: 10.1359/jbmr.070206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We segregated a QTL on chromosome 11 that affects femoral cross-sectional shape during growth by generating a congenic strain and an additional 16 subcongenic strains of the senescence-accelerated mouse strain, SAMP6. The QTL region was narrowed down to a 10.0-Mbp region. INTRODUCTION Genetic background is known to affect bone characteristics. However, little is known about how polymorphic genes modulate bone shape. In a previous study using SAMP2 and SAMP6 mice, we reported a quantitative trait locus (QTL) on chromosome (Chr) 11 that had significant linkage to peak relative bone mass in terms of cortical thickness index (CTI) in male mice. We named it Pbd1. Here we aimed to clarify the effects of Pbd1 on skeletal phenotype in male mice and to narrow down the QTL region. MATERIALS AND METHODS We generated a congenic strain named P6.P2-Pbd1(b), carrying a 39-cM SAMP2-derived Chr11 interval on a SAMP6 genetic background. Sixteen subcongenic strains with smaller overlapping intervals on the SAMP6 background were generated from P6.P2-Pbd1(b) to narrow the region of interest. The effects of Pbd1 on bone properties were determined. Gene expression analysis of all candidate genes in Pbd1 was performed using real-time RT-PCR. RESULTS The CTI of strain P6.P2-Pbd1(b) at 16 wk was higher than that of SAMP6. This was not caused by differences in cortical thickness but by cross-sectional shape. Morphological analysis by microCT revealed that the femoral cross-sectional shape of P6.P2-Pbd1(b) (and the other subcongenic strains with higher CTI or bone area fraction [BA/TA]) was more compressed anteroposteriorly than that of SAMP6, which was associated with superior mechanical properties. This feature was formed during bone modeling up to 16 wk of age. Subcongenic strains with a higher CTI showed significant increases in endocortical mineral apposition rate and significant reductions in periosteal mineral apposition rate at 8 wk compared with those of the SAMP6. The Pbd1 locus was successfully narrowed down to a 10.0-Mbp region, and the expression analysis suggested a candidate gene, Cacng4. CONCLUSIONS The Pbd1 affects femoral cross-sectional shape by regulating the rate of endocortical and periosteal bone formation of the femur during postnatal growth.
Collapse
Affiliation(s)
- Bungo Otsuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Demissie S, Dupuis J, Cupples LA, Beck TJ, Kiel DP, Karasik D. Proximal hip geometry is linked to several chromosomal regions: genome-wide linkage results from the Framingham Osteoporosis Study. Bone 2007; 40:743-50. [PMID: 17079199 PMCID: PMC1952180 DOI: 10.1016/j.bone.2006.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/19/2006] [Accepted: 09/23/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Femoral geometry contributes to bone strength and predicts hip fracture risk. The purpose of this study was to evaluate heritability (h(2)) of geometric indices of the proximal hip and to perform whole-genome linkage analyses of these traits, adjusted for body size. METHODS DXA scans of the proximal femur from 1473 members of 323 pedigrees (age range 31-96 years) from the population-based Framingham Osteoporosis Study were obtained. Using the hip structural analysis program, we measured femoral neck length (FNL, cm) and neck-shaft angle (NSA); subperiosteal width (WID, cm), cross-sectional area (CSA, cm(2)); and section modulus (Z, cm(3)) at the narrowest section of the neck (NN), intertrochanteric (IT) and femoral shaft (S) regions. Linkage analyses were performed for the above indices with a set of 636 markers using variance components maximum likelihood method. RESULTS Substantial genetic influences were found for all geometric phenotypes, with h(2) values between 0.28 (NSA) and 0.70 (IT_WID). Adjustment for height and BMI did not alter h(2) of NSA and FNL but decreased h(2) of the cross-sectional indices. We obtained substantial linkage (multipoint LOD >3.0) for S_Z at 2p21 and 21q11 and S_WID at Xq25-q26. Inclusion of height and BMI as covariates resulted in much lower LOD scores for S_Z, whereas linkage signals for S_Z at 4q25, S_CSA at 4q32 and S_CSA and S_Z at 15q21 increased after the adjustment. Linkage of FNL at 1q and 13q, NSA at 2q and NN_WID at 16q did not change after the adjustment. CONCLUSION Suggestive linkages of bone geometric indices were found at 1q, 2p, 4q, 13q, 15q and Xq. The identification of significant linkage regions after adjustment for BMI and height may point to QTLs influencing femoral bone geometry independent of body size.
Collapse
Affiliation(s)
- S Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Rubin CJ, Brändström H, Wright D, Kerje S, Gunnarsson U, Schutz K, Fredriksson R, Jensen P, Andersson L, Ohlsson C, Mallmin H, Larsson S, Kindmark A. Quantitative trait loci for BMD and bone strength in an intercross between domestic and wildtype chickens. J Bone Miner Res 2007; 22:375-84. [PMID: 17181401 DOI: 10.1359/jbmr.061203] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED With chicken used as a model species, we used QTL analysis to examine the genetic contribution to bone traits. We report the identification of four QTLs for femoral traits: one for bone strength, one for endosteal circumference, and two affecting mineral density of noncortical bone. INTRODUCTION BMD is a highly heritable phenotype, governed by elements at numerous loci. In studies examining the genetic contribution to bone traits, many loci have been identified in humans and in other species. The goal of this study was to identify quantitative trait loci (QTLs) controlling BMD and bone strength in an intercross between wildtype and domestic chickens. MATERIALS AND METHODS A set of 164 markers, covering 30 chromosomes (chr.), were used to genotype 337 F2-individuals from an intercross of domesticated white Leghorn and wildtype red junglefowl chicken. DXA and pQCT were used to measure BMD and bone structure. Three-point bending tests and torsional strength tests were performed to determine the biomechanical strength of the bone. QTLs were mapped using forward selection for loci with significant marginal effects. RESULTS Four QTLs for femoral bone traits were identified in QTL analysis with body weight included as a covariate. A QTL on chr. 1 affected female noncortical BMD (LOD 4.6) and is syntenic to human 12q21-12q23. Also located on chr. 1, a locus with synteny to human 12q13-14 affected endosteal circumference (LOD 4.6). On chr. 2, a QTL corresponding to human 5p13-p15, 7p12, 18q12, 18q21, and 9q22-9q31 affected BMD in females; noncortical (LOD 4.0) and metaphyseal (LOD 7.0) BMD by pQCT and BMD by DXA (LOD 5.9). A QTL located on chr. 20 (LOD 5.2) affected bone biomechanical strength and had sex-dependent effects. In addition to the significant QTLs, 10 further loci with suggestive linkage to bone traits were identified. CONCLUSIONS Four QTLs were identified: two for noncortical BMD, one for endosteal circumference, and one affecting bone biomechanical strength. The future identification of genes responsible for these QTLs will increase the understanding of vertebrate skeletal biology.
Collapse
Affiliation(s)
- Carl-Johan Rubin
- Department of Medical Sciences, Uppsala University, and Department of Internal Medicine, The Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vitarius JA, Sehayek E, Breslow JL. Identification of quantitative trait loci affecting body composition in a mouse intercross. Proc Natl Acad Sci U S A 2006; 103:19860-5. [PMID: 17179051 PMCID: PMC1750913 DOI: 10.1073/pnas.0609232103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gravimetric analysis and dual energy x-ray absorptiometry densitometry were used to determine lean, fat, and bone tissue traits in a F(2) mouse population from a C57BL/6J and CASA/Rk intercross (B6CASAF2). These traits were used in a linkage analysis to identify quantitative trait loci that affect body composition. Linkage mapping showed that body weight (BW) loci on proximal chromosome 2 occurred in the same region as body length, lean tissue mass, and bone mineral content and on chromosome 13 in the same region as lean tissue mass, bone mineral density, and bone mineral content. Fat-related loci occurring on mid-chromosome 2 near 60 cM, proximal chromosome 6, and mid-chromosome 10 were distinct from BW, lean tissue, and bone tissue loci. In B6CASAF2 females, heterozygotes and CASA/Rk homozygotes at the chromosome 6 locus marker had higher body fat percentages, and this locus was responsible for 11% of the variance for body fat percentage. Female heterozygotes and C57BL/6J homozygotes at the chromosome 15 locus marker had higher bone mineral densities, and this locus could explain 8% of that trait's variance. A survey of the literature did not reveal any previous reports of fat-specific loci in the chromosomal 10 region near 42 cM reported in this study. The results of this study indicate that BW and BMI have limited usefulness as phenotypes in linkage or association studies when used as obesity phenotypes.
Collapse
Affiliation(s)
- James A. Vitarius
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Ephraim Sehayek
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Jan L. Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
McDaniel AH, Li X, Tordoff MG, Bachmanov AA, Reed DR. A locus on mouse Chromosome 9 (Adip5) affects the relative weight of the gonadal but not retroperitoneal adipose depot. Mamm Genome 2006; 17:1078-92. [PMID: 17103052 PMCID: PMC1698868 DOI: 10.1007/s00335-006-0055-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/28/2006] [Indexed: 11/27/2022]
Abstract
To identify the gene or genes on mouse Chromosome 9 that contribute to strain differences in fatness, we conducted an expanded mapping analysis to better define the region where suggestive linkage was found, using the F(2 )generation of an intercross between the C57BL/6ByJ and 129P3/J mouse strains. Six traits were studied: the summed weight of two adipose depots, the weight of each depot, analyzed individually (the gonadal and retroperitoneal depot), and the weight of each depot (summed and individual) relative to body size. We found significant linkage (LOD = 4.6) that accounted for the relative weight of the summed adipose depots, and another for the relative weight of the gonadal (LOD = 5.3) but not retroperitoneal (LOD = 0.9) adipose depot. This linkage is near marker rs30280752 (61.1 Mb, Build 34) and probably is equivalent to the quantitative trait locus (QTL) Adip5. Because the causal gene is unknown, we identified and evaluated several candidates within the confidence interval with functional significance to the body fatness phenotype (Il18, Acat1, Cyp19a1, Crabp1, Man2c1, Neil1, Mpi1, Csk, Lsm16, Adpgk, Bbs4, Hexa, Thsd4, Dpp8, Anxa2, and Lipc). We conclude that the Adip5 locus is specific to the gonadal adipose depot and that a gene or genes near the linkage peak may account for this QTL.
Collapse
Affiliation(s)
- Amanda H. McDaniel
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Xia Li
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Michael G. Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Alexander A. Bachmanov
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Danielle R. Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| |
Collapse
|
36
|
Reed DR, McDaniel AH, Li X, Tordoff MG, Bachmanov AA. Quantitative trait loci for individual adipose depot weights in C57BL/6ByJ x 129P3/J F2 mice. Mamm Genome 2006; 17:1065-77. [PMID: 17103053 PMCID: PMC1702371 DOI: 10.1007/s00335-006-0054-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/28/2006] [Indexed: 10/23/2022]
Abstract
To understand how genotype influences fat patterning and obesity, we conducted an autosomal genome scan using male and female F(2) hybrids between the C57BL/6ByJ and 129P3/J parental mouse strains. Mice were studied in middle-adulthood and were fed a low-energy, low-fat diet during their lifetime. We measured the weight of the retroperitoneal adipose depot (near the kidney) and the gonadal adipose depot (near the epididymis in males and ovaries in females). An important feature of the analysis was the comparison of linkage results for absolute adipose depot weight and depot weight adjusted for body size, i.e., relative weight. We detected 67 suggestive linkages for six phenotypes, which fell into one of three categories: those specific to absolute but not relative depot weight (Chr 5, 11, and 14), those specific to relative but not absolute depot weight (Chr 9, 15, and 16), and those involving both (Chr 2 and 7). Some quantitative trait loci (QTLs) affected one adipose depot more than another: Retroperitoneal depot weight was linked to Chr 8, 11, 12, and 17, but the linkage effects for the gonadal depot were stronger for Chr 5, 7, and 9. Several linkages were specific to sex; for instance, the absolute weight of gonadal fat was linked to Chromosome 7 in male (LOD = 3.4) but not female mice (LOD = 0.2). Refining obesity as a phenotype may uncover clues about gene function that will assist in positional cloning efforts.
Collapse
Affiliation(s)
- Danielle R Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
37
|
Kesavan C, Mohan S, Srivastava AK, Kapoor S, Wergedal JE, Yu H, Baylink DJ. Identification of genetic loci that regulate bone adaptive response to mechanical loading in C57BL/6J and C3H/HeJ mice intercross. Bone 2006; 39:634-43. [PMID: 16713414 DOI: 10.1016/j.bone.2006.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 03/14/2006] [Accepted: 03/20/2006] [Indexed: 11/15/2022]
Abstract
Strain-dependent differences in bone adaptive responses to loading among inbred mouse strains suggest that genetic background contributes significantly to adaptation to exercise. To explore the genetic regulation of response to loading, we performed a genome-wide search for linkage in a cross between two strains, a good responder, C57BL6/J (B6), and a poor responder, C3H/HeJ (C3H). Using a four-point bending model, the right tibia was loaded by applying 9 N force for 36 cycles for 12 days in 10-week-old female B6xC3H F2 mice. Changes in bone density (BMD) and bone size were evaluated in vivo by pQCT. Measurements from non-loaded left tibia were used as an internal control to calculate loading-induced percent increase in BMD and bone size, thus excluding the possibility of identifying background QTL(s) due to natural allelic variation in mapping strains. A genome-wide scan was performed using 111 microsatellite markers in DNA samples collected from 329 F2 mice. Heritability of bone adaptive response to loading was between 70 and 80%. The mean increase, expressed as percent of unloaded tibia, was 5% for BMD, 9% for periosteal circumference (PC), and 14% for cortical thickness in F2 mice (n = 329). All these phenotypes showed normal distributions. Absence of significant correlation between BMD response to four-point bending and body weight or bone size suggested that the bone adaptive response was independent of bone size. Interval mapping revealed that BMD response to four-point bending was influenced by three significant loci on Chrs 1 (log-of-odds ratio score (LOD) 3.4, 91.8 cM), 3 (LOD 3.6, 50.3 cM), and 8 (LOD 4.2, 60.1 cM) and one suggestive QTL on Chr 9 (LOD 2.5, 33.9 cM). Loading-induced increases in PC and Cth were influenced by four significant loci on Chrs 8 (LOD 3.0, 68.9 cM), 9 (LOD 3.0, 13.1 cM), 17 (LOD 3.0, 39.3 cM), and 18 (LOD 3.0, 0 cM) and two suggestive loci on Chr 9 (LOD 2.2, 24 cM) and 11 (LOD 2.1, 69.9 cM). Pairwise analysis showed the presence of several significant and suggestive interactions between loci on Chrs 1, 3, 8, and 13 for BMD trait. This is the first study that provides evidence for the presence of multiple genetic loci regulating bone anabolic responses to loading in the B6xC3H intercross. Knowledge of the genes underlying these loci could provide novel approaches to improve skeletal mass.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bower AL, Lang DH, Vogler GP, Vandenbergh DJ, Blizard DA, Stout JT, McClearn GE, Sharkey NA. QTL analysis of trabecular bone in BXD F2 and RI mice. J Bone Miner Res 2006; 21:1267-75. [PMID: 16869725 DOI: 10.1359/jbmr.060501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED A sample of 693 mice was used to identify regions of the mouse genome associated with trabecular bone architecture as measured using microCT. QTLs for bone in the proximal tibial metaphysis were identified on several chromosomes indicating regions containing genes that regulate properties of trabecular bone. INTRODUCTION Age-related osteoporosis is a condition of major concern because of the morbidity and mortality associated with osteoporotic fractures in humans. Osteoporosis is characterized by reduced bone density, strength, and altered trabecular architecture, all of which are quantitative traits resulting from the actions of many genes working in concert with each other and the environment over the lifespan. microCT gives accurate measures of trabecular bone architecture providing phenotypic data related to bone volume and trabecular morphology. The primary objective of this research was to identify chromosomal regions called quantitative trait loci (QTLs) that contain genes influencing trabecular architecture as measured by microCT. MATERIALS AND METHODS The study used crosses between C57BL/6J (B6) and DBA/2J (D2) as progenitor strains of a second filial (F2) generation (n = 141 males and 148 females) and 23 BXD recombinant inbred (RI) strains (n approximately 9 of each sex per strain). The proximal tibial metaphyses of the 200-day-old mice were analyzed by microCT to assess phenotypic traits characterizing trabecular bone, including bone volume fraction, trabecular connectivity, and quantitative measures of trabecular orientation and anisotropy. Heritabilities were calculated and QTLs were identified using composite interval mapping. RESULTS A number of phenotypes were found to be highly heritable. Heritability values for measured phenotypes using RI strains ranged from 0.15 for degree of anisotropy in females to 0.51 for connectivity density in females and total volume in males. Significant and confirmed QTLs, with LOD scores 4.3 in the F2 cohort and 1.5 in the corresponding RI cohort were found on chromosomes 1 (43 cM), 5 (44 cM), 6 (20 cM), and 8 (49 cM). Other QTLs with LOD scores ranging from 2.8 to 6.9 in the F2 analyses were found on chromosomes 1, 5, 6, 8, 9, and 12. QTLs were identified using data sets comprised of both male and female quantitative traits, suggesting similar genetic action in both sexes, whereas others seemed to be associated exclusively with one sex or the other, suggesting the possibility of sex-dependent effects. CONCLUSIONS Identification of the genes underlying these QTLs may lead to improvements in recognizing individuals most at risk for developing osteoporosis and in the design of new therapeutic interventions.
Collapse
Affiliation(s)
- Abbey L Bower
- The Biomechanics Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-5702, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 2006; 54:1215-28. [PMID: 16864894 DOI: 10.1369/jhc.6a6959.2006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat and mouse femur and tibia fracture calluses were collected over various time increments of healing. Serial sections were produced at spatial segments across the fracture callus. Standard histological methods and in situ hybridization to col1a1 and col2a1 mRNAs were used to define areas of cartilage and bone formation as well as tissue areas undergoing remodeling. Computer-assisted reconstructions of histological sections were used to generate three-dimensional images of the spatial morphogenesis of the fracture calluses. Endochondral bone formation occurred in an asymmetrical manner in both the femur and tibia, with cartilage tissues seen primarily proximal or distal to the fractures in the respective calluses of these bones. Remodeling of the calcified cartilage proceeded from the edges of the callus inward toward the fracture producing an inner-supporting trabecular structure over which a thin outer cortical shell forms. These data suggest that the specific developmental mechanisms that control the asymmetrical pattern of endochondral bone formation in fracture healing recapitulated the original asymmetry of development of a given bone because femur and tibia grow predominantly from their respective distal and proximal physis. These data further show that remodeling of the calcified cartilage produces a trabecular bone structure unique to fracture healing that provides the rapid regain in weight-bearing capacity to the injured bone.
Collapse
Affiliation(s)
- Louis C Gerstenfeld
- Orthopaedic Research Laboratory, Boston University Medical Center, 715 Albany Street, R-205, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun X, Lei SF, Deng FY, Wu S, Papacian C, Hamilton J, Recker RR, Deng HW. Genetic and environmental correlations between bone geometric parameters and body compositions. Calcif Tissue Int 2006; 79:43-9. [PMID: 16868663 DOI: 10.1007/s00223-006-0041-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/08/2006] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to determine the genetic and environmental correlations between weight, lean mass and bone geometric parameters (sub-periosteal diameter, W; cross-sectional area, CSA; cortical thickness, CT; section modulus, Z; and buckling ratio, BR) of femoral neck. The sample was composed of 512 Caucasian pedigrees, including 2667 females and 1822 males. Bivariate quantitative genetic analyses were performed to evaluate the genetic (rho(G)), environmental (rho(E)) and phenotypic (rho(P)) correlations between the study traits. Univariate genetic analyses showed that the heritabilities (h(2)) for bone geometric parameters were significant (P < 0.001) ranging from 0.50 to 0.60. The significant common household effects indicated the common environment shared by household members for W, CSA, CT, Z and BR (P < 0.05), but the magnitude was small compared with heritabilities. rho(E), rho(G) and rho(P) between bone geometric parameters and weight, lean mass were generally significant. Interestingly, lean mass showed both stronger genetic and environmental correlations with the bone geometric parameters than weight. In addition, according to the magnitude of correlation coefficients, the rho(G) between body compositions and bone geometric parameters were generally stronger than rho(E) (except for that between BR and body compositions). These data suggested that the geometric parameters of femoral neck are under strong genetic control. Furthermore, some common genetic and environmental factors are shared by bone geometric parameters and weight, lean mass. The results may help understand the intertwined relationships between bone metabolisms, mechanical loading and body compositions.
Collapse
Affiliation(s)
- Xiao Sun
- Laboratory of Molecular and Statistical Genetics, Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Carrier DR, Chase K, Lark KG. Genetics of canid skeletal variation: size and shape of the pelvis. Genome Res 2006; 15:1825-30. [PMID: 16339381 PMCID: PMC1356121 DOI: 10.1101/gr.3800005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mammalian skeleton presents an ideal system in which to study the genetic architecture of a set of related polygenic traits and the skeleton of the domestic dog (Canis familiaris) is arguably the best system in which to address the relationship between genes and anatomy. We have analyzed the genetic basis for skeletal variation in a population of >450 Portuguese Water Dogs. At this stage of this ongoing project, we have identified >40 putative quantitative trait loci (QTLs) for heritable skeletal phenotypes located on 22 different chromosomes, including the "X." A striking aspect of these is the regulation of suites of traits representing bones located in different parts of the skeleton but related by function. Here we illustrate this by describing genetic variation in postcranial morphology. Two suites of traits are involved. One regulates the size of the pelvis relative to dimensions of the limb bones. The other regulates the shape of the pelvis. Both are examples of trade-offs that may be prototypical of different breeds. For the size of the pelvis relative to limb bones, we describe four QTLs located on autosome CFA 12, 30, 31, and X. For pelvic shape we describe QTLs on autosome CFA 2, 3, 22, and 36. The relation of these polygenic systems to musculoskeletal function is discussed.
Collapse
Affiliation(s)
- David R Carrier
- University of Utah, Department of Biology, Salt Lake City, Utah 84112-0840, USA
| | | | | |
Collapse
|
42
|
|
43
|
Xu H, Long JR, Yang YJ, Deng FY, Deng HW. Genetic determination and correlation of body weight and body mass index (BMI) and cross-sectional geometric parameters of the femoral neck. Osteoporos Int 2006; 17:1602-7. [PMID: 16951910 DOI: 10.1007/s00198-006-0141-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 04/06/2006] [Indexed: 02/01/2023]
Abstract
INTRODUCTION This study aimed to examine the genetic determination of body weight, body mass index (BMI) and cross-sectional geometric parameters of the femoral neck including cross-sectional area (CSA), cortical thickness (CT), sectional modulus (Z), and buckling ratio (BR), and to test the genetic correlation between body weight/BMI and the femoral neck geometric parameters. METHODS A total of 929 healthy subjects from 292 Chinese nuclear families was included. Femoral neck geometric parameters were estimated from bone mineral density (BMD) and bone area which were measured by dual energy X-ray absorptiometry (DXA). RESULTS The heritability (h(2)) estimate values were 0.643, 0.626, 0.626, 0.674, 0.405, and 0.615 for body weight, BMI, CSA, CT, Z, and BR, respectively. Body weight was significantly correlated with bone geometric parameters (p</=0.001) with genetic correlation (rho(G)) values of 0.551, 0.457, 0.571, and -0.385, and bivariate heritability (rho2G) values of 0.304, 0.209, 0.326, and 0.148 for CSA, CT, Z, and BR, respectively. Similar correlations (p</=0.001) were observed between BMI and bone geometric parameters, with rho(G) values of 0.446, 0.432, 0.334, and -0.362, and (rho2G) values of 0.199, 0.187, 0.112, and 0.131 for CSA, CT, Z, and BR, respectively. CONCLUSION In summary, our study suggested that body weight, BMI, and femoral neck geometry were under strong genetic determination. The strong genetic correlations suggested that the genetic factors of bone geometry may be overlapped with those of body weight and BMI.
Collapse
Affiliation(s)
- Hong Xu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Kelly SA, Czech PP, Wight JT, Blank KM, Garland T. Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice. J Morphol 2006; 267:360-74. [PMID: 16380968 DOI: 10.1002/jmor.10407] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies of rodents have shown that both forced and voluntary chronic exercise cause increased hindlimb bone diameter, mass, and strength. Among species of mammals, "cursoriality" is generally associated with longer limbs as well as relative lengthening of distal limb segments, resulting in an increased metatarsal/femur (MT/F) ratio. Indeed, we show that phylogenetic analyses of previously published data indicate a positive correlation between body mass-corrected home range area and both hindlimb length and MT/F in a sample of 19 species of Carnivora, although only the former is statistically significant in a multiple regression. Therefore, we used an experimental evolution approach to test for possible adaptive changes (in response to selective breeding and/or chronic exercise) in hindlimb bones of four replicate lines of house mice bred for high voluntary wheel running (S lines) for 21 generations and in four nonselected control (C) lines. We examined femur, tibiafibula, and longest metatarsal of males housed either with or without wheel access for 2 months beginning at 25-28 days of age. As expected from previous studies, mice from S lines ran more than C (primarily because the former ran faster) and were smaller in body size (both mass and length). Wheel access reduced body mass (but not length) of both S and C mice. Analysis of covariance (ANCOVA) revealed that body mass was a statistically significant predictor of all bone measures except MT/F ratio; therefore, all results reported are from ANCOVAs. Bone lengths were not significantly affected by either linetype (S vs. C) or wheel access. However, with body mass as a covariate, S mice had significantly thicker femora and tibiafibulae, and wheel access also significantly increased diameters. Mice from S lines also had heavier feet than C, and wheel access increased both foot and tibiafibula mass. Thus, the directions of evolutionary and phenotypic adaptation are generally consistent. Additionally, S-line individuals with the mini-muscle phenotype (homozygous for a Mendelian recessive allele that halves hindlimb muscle mass [Garland et al., 2002, Evolution 56:1,267-1,275]) exhibited significantly longer and thinner femora and tibiafibulae, with no difference in bone masses. Two results were considered surprising. First, no differences were found in the MT/F ratio (the classic indicator of cursoriality). Second, we did not find a significant interaction between linetype and wheel access for any trait, despite the higher running rate of S mice.
Collapse
Affiliation(s)
- Scott A Kelly
- Department of Biology, University of California, Riverside, Riverside, 92521, USA
| | | | | | | | | |
Collapse
|
45
|
Lang DH, Sharkey NA, Lionikas A, Mack HA, Larsson L, Vogler GP, Vandenbergh DJ, Blizard DA, Stout JT, Stitt JP, McClearn GE. Adjusting data to body size: a comparison of methods as applied to quantitative trait loci analysis of musculoskeletal phenotypes. J Bone Miner Res 2005; 20:748-57. [PMID: 15824847 PMCID: PMC1201530 DOI: 10.1359/jbmr.041224] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 11/30/2004] [Accepted: 12/14/2004] [Indexed: 01/07/2023]
Abstract
UNLABELLED The aim of this study was to compare three methods of adjusting skeletal data for body size and examine their use in QTL analyses. It was found that dividing skeletal phenotypes by body mass index induced erroneous QTL results. The preferred method of body size adjustment was multiple regression. INTRODUCTION Many skeletal studies have reported strong correlations between phenotypes for muscle, bone, and body size, and these correlations add to the difficulty in identifying genetic influence on skeletal traits that are not mediated through overall body size. Quantitative trait loci (QTL) identified for skeletal phenotypes often map to the same chromosome regions as QTLs for body size. The actions of a QTL identified as influencing BMD could therefore be mediated through the generalized actions of growth on body size or muscle mass. MATERIALS AND METHODS Three methods of adjusting skeletal phenotypes to body size were performed on morphologic, structural, and compositional measurements of the femur and tibia in 200-day-old C57BL/6J x DBA/2 (BXD) second generation (F(2)) mice (n = 400). A common method of removing the size effect has been through the use of ratios. This technique and two alternative techniques using simple and multiple regression were performed on muscle and skeletal data before QTL analyses, and the differences in QTL results were examined. RESULTS AND CONCLUSIONS The use of ratios to remove the size effect was shown to increase the size effect by inducing spurious correlations, thereby leading to inaccurate QTL results. Adjustments for body size using multiple regression eliminated these problems. Multiple regression should be used to remove the variance of co-factors related to skeletal phenotypes to allow for the study of genetic influence independent of correlated phenotypes. However, to better understand the genetic influence, adjusted and unadjusted skeletal QTL results should be compared. Additional insight can be gained by observing the difference in LOD score between the adjusted and nonadjusted phenotypes. Identifying QTLs that exert their effects on skeletal phenotypes through body size-related pathways as well as those having a more direct and independent influence on bone are equally important in deciphering the complex physiologic pathways responsible for the maintenance of bone health.
Collapse
Affiliation(s)
- Dean H Lang
- Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|