1
|
Li Y, Li W, Zhang X, Lin H, Li D, Li Z. Three-dimensional morphological characterization of blood droplets during the dynamic coagulation process. JOURNAL OF BIOPHOTONICS 2024; 17:e202400116. [PMID: 38887206 DOI: 10.1002/jbio.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
In this study, we employed a method integrating optical coherence tomography (OCT) with the U-Net and Visual Geometry Group (VGG)-Net frameworks within a convolutional neural network for quantitative characterization of the three dimensional whole blood during the dynamic coagulation process. VGG-Net architecture for the identification of blood droplets across three distinct coagulation stages including drop, gelation, and coagulation achieves an accuracy of up to 99%. In addition, the U-Net architecture demonstrated proficiency in effectively segmenting uncoagulated and coagulated portions of whole blood, as well as the background. Notably, parameters such as volume of uncoagulated and coagulated segments of the whole blood were successfully employed for the precise quantification of the coagulation process, which indicates well for the potential of future clinical diagnostics and analyses.
Collapse
Affiliation(s)
- Yao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Wangbiao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaoman Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Dezi Li
- Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua University, Huaihua, Hunan, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
- The Internet of Things and Artificial Intelligence College, Fujian Polytechnic of Information Technology, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Miao B, Liu Y, Zhang A, Cao Y, Zhong R, Liu J, Shao Z. An in situ grown ultrathin and robust protein nanocoating for mitigating thromboembolic issues associated with cardiovascular medical devices. Biomater Sci 2023; 11:7655-7662. [PMID: 37850341 DOI: 10.1039/d3bm01188g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Thromboembolism, arising from the utilization of cardiovascular medical devices, remains a prevalent issue entailing substantial morbidity and mortality. Despite the proposal of various surface modification strategies, each approach possesses inherent limitations and drawbacks. Herein, we propose a novel approach for the in situ growth of nanocoatings on various material surfaces through the cooperative assembly of silk fibroin (SF) and lysozyme. The intrinsic in situ growth characteristic enables the nanocoatings to achieve stable and uniform adherence to diverse substrate surfaces, including the inner surface of intravascular catheters, to redefine the surface properties of the material. The features of the hydrophilic and negatively charged nanocoating contribute to its antithrombotic properties, as evidenced by the reduced likelihood of platelet adhesion upon modification of the ultrathin and mechanically robust coating. In vitro assessment confirms a significant reduction in blood clot formation along with the promotion of anticoagulation. Such a SF/Ly nanocoating holds substantial promise as a surface modification strategy to enhance the hemocompatibility of medical devices and other materials that come into contact with blood, particularly in situations where medical-grade materials are temporarily unavailable, thus providing a feasible alternative.
Collapse
Affiliation(s)
- Bianliang Miao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Along Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Ye Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Kasireddy N, Orie JC, Khismatullin DB. Drop-of-sample rheometry of biological fluids by noncontact acoustic tweezing spectroscopy. LAB ON A CHIP 2022; 22:3067-3079. [PMID: 35851909 PMCID: PMC10661770 DOI: 10.1039/d2lc00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Knowledge of rheological properties, such as viscosity and elasticity, is necessary for efficient material processing and transportation as well as biological analysis. Existing rheometers operate with large sample volume and induce sample contact with container or device walls, which are inadequate for rheological analysis of sensitive fluids limited in availability. In this work, we introduce acoustic tweezing spectroscopy (ATS), a novel noncontact rheological technique that operates with a single 4-6 μl drop of fluid sample. In ATS, a sample drop is acoustically levitated and then exposed to a modulated acoustic signal to induce its forced oscillation. The time-dependent sample viscosity and elasticity are measured from the resulting drop response. The ATS measurements of polymeric solutions (dextran, xanthan gum, gelatin) agree well with previously reported data. The ATS predicts that the shear viscosity of blood plasma increases from 1.5 cP at 1.5 min of coagulation onset to 3.35 cP at 9 min, while its shear elastic modulus grows from a negligible value to 10.7 Pa between 3.5 min and 6.5 min. Coagulation increases whole blood viscosity from 5.4 cP to 20.7 cP and elasticity from 0.1 Pa to 19.2 Pa at 15 min. In summary, ATS provides the opportunity for sensitive small-volume rheological analysis in biomedical research and medical, pharmaceutical, and chemical industries.
Collapse
Affiliation(s)
- Nithya Kasireddy
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana, 70118, USA.
| | - Jeremy C Orie
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana, 70118, USA.
| | - Damir B Khismatullin
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana, 70118, USA.
| |
Collapse
|
4
|
Transient Thermal Response of Blood Vessels during Laser Irradiation Monitored by Laser Speckle Contrast Imaging. PHOTONICS 2022. [DOI: 10.3390/photonics9080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Real-time monitoring of blood flow and thrombosis formation induced by laser irradiation is critical to reveal the thermal-damage mechanism and successfully implement vascular-dermatology laser surgery. Laser speckle contrast imaging (LSCI) is a non-invasive technique to visualize perfusion in various tissues. However, the ability of the LSCI to monitor the transient thermal response of blood vessels, especially thrombus formation during laser irradiation, requires further research. In this paper, an LSCI system was constructed and a 632 nm He-Ne laser was employed to illuminate a Sprague Dawley rat dorsal skin chamber model irradiated by a 1064 nm Nd: YAG therapy laser. The anisotropic diffusion filtering (ADF) technique is implemented after temporal LSCI (tLSCI) processing to improve the SNR and temporal resolution. The speckle flow index is used to characterize the blood-flow velocity to reduce the computational cost. The combination of the tLSCI and ADF increases the temporal resolution by five times and the SNR by 17.2 times and 16.14 times, without and with laser therapy, respectively. The laser-induced thrombus formation and vascular damage during laser surgery can be visualized without any exogenous labels, which provides a powerful tool for thrombus monitoring during laser surgery.
Collapse
|
5
|
Gong J, Zhang Y, Zhang H, Li Q, Ren G, Lu W, Wang J. Evaluation of Blood Coagulation by Optical Vortex Tracking. SENSORS (BASEL, SWITZERLAND) 2022; 22:4793. [PMID: 35808290 PMCID: PMC9269077 DOI: 10.3390/s22134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Blood coagulation is a complicated dynamic process that maintains the blood's fluid state and prevents uncontrollable bleeding. The real-time monitoring of coagulation dynamics is critical for blood transfusion guidance, emergency management of trauma-induced coagulopathy, perioperative bleeding, and targeted hemostatic therapy. Here, we utilize optical vortex dynamics to detect the blood coagulation dynamic process in a rapid and non-contact manner. To characterize the temporal changes in viscoelastic properties of blood during coagulation, we track the stochastic motion of optical vortices in the time-varying speckles reflected from 100 blood samples with varied coagulation profiles. The mean square displacement (MSD) of the vortices increases nonlinearly with time lag during blood coagulation reminiscent of the particles in viscoelastic fluids. The MSD curves with coagulation time are similar to the tracings of thromboelastography (TEG) during the blood coagulation. The retrieved coagulation parameters, such as reaction time and activated clotting time measured using the optical vortex method, exhibit a close correlation to those parameters acquired from TEG. These results demonstrate the feasibility of the optical vortex method for monitoring blood coagulation at the point of care. Our method is also applicable to measuring the viscoelasticity of complex fluids and turbid soft matters.
Collapse
Affiliation(s)
- Jiaxing Gong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Yaowen Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Hui Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Qi Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Guangbin Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Wenjian Lu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Jing Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| |
Collapse
|
6
|
Rezabeigi E, Schmitt C, Hadj Henni A, Barkun AN, Nazhat SN. In Vitro Evaluation of Real-Time Viscoelastic and Coagulation Properties of Various Classes of Topical Hemostatic Agents Using a Novel Contactless Nondestructive Technology. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16047-16061. [PMID: 35352550 DOI: 10.1021/acsami.2c01741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hemorrhaging is the main cause of death among combat and civilian injuries and has significant clinical and economic consequences. Despite their vital roles in bleeding management, an optimal topical hemostatic agent (HA) has yet to be developed for a particular scenario. This is partly due to a lack of an overarching quantitative testing technology to characterize the various classes of HAs in vitro. Herein, the feasibility of a novel, contactless, and nondestructive technique to quantitatively measure the shear storage modulus (G') and clotting properties of whole blood in contact with different dosages of eight topical HAs, including particulates and gauze-like and sponge-like systems, was assessed. The real-time G'-time profiles of these blood/HA systems revealed their distinct biomechanical behavior to induce and impact coagulation. These were analyzed to characterize the clot initiation time, clotting rate, clotting time, and apparent stiffness of the formed clots (both immediately and temporally), which were correlated with their reported hemostatic mechanisms of action. Moreover, the HAs that worked independently from the natural blood clotting cascade were identified and quantified through this technology. In sum, this study indicated that the nondestructive nature of the technology may offer a promising tool for accurate, quantitative in vitro measurements of the clotting properties of various classes of HAs, which may be used to better predict their in vivo outcomes.
Collapse
Affiliation(s)
- Ehsan Rezabeigi
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Cédric Schmitt
- Rheolution Inc., 5333 Avenue Casgrain, Suite 601, Montreal, Quebec H2T 1X3, Canada
| | - Anis Hadj Henni
- Rheolution Inc., 5333 Avenue Casgrain, Suite 601, Montreal, Quebec H2T 1X3, Canada
| | - Alan N Barkun
- Division of Gastroenterology, The McGill University Health Center, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
7
|
Hajjarian Z, Nadkarni SK. Technological perspectives on laser speckle micro-rheology for cancer mechanobiology research. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210119-PER. [PMID: 34549559 PMCID: PMC8455299 DOI: 10.1117/1.jbo.26.9.090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The ability to measure the micro-mechanical properties of biological tissues and biomaterials is crucial for numerous fields of cancer research, including tumor mechanobiology, tumor-targeting drug delivery, and therapeutic development. AIM Our goal is to provide a renewed perspective on the mainstream techniques used for micro-mechanical evaluation of biological tissues and biomimetic scaffoldings. We specifically focus on portraying the outlook of laser speckle micro-rheology (LSM), a technology that quantifies the mechanical properties of biomaterials and tissues in a rapid, non-contact manner. APPROACH First, we briefly explain the motivation and significance of evaluating the tissue micro-mechanics in various fields of basic and translational cancer research and introduce the key concepts and quantitative metrics used to explain the mechanical properties of tissue. This is followed by reviewing the general active and passive themes of measuring micro-mechanics. Next, we focus on LSM and elaborate on the theoretical grounds and working principles of this technique. Then, the perspective for measuring the micro-mechanical properties via LSM is outlined. Finally, we draw an overview picture of LSM in cancer mechanobiology research. RESULTS With the continued emergence of new approaches for measuring the mechanical attributes of biological tissues, the field of micro-mechanical imaging is at its boom. As one of these competent innovations, LSM presents a tremendous potential for both technical maturation and prospective applications in cancer biomechanics and mechanobiology research. CONCLUSION By elaborating the current viewpoint of LSM, we expect to accelerate the expansion of this approach to new territories in both technological domains and applied fields. This renewed perspective on LSM may also serve as a road map for other micro-mechanical measurement concepts to be applied for answering mechanobiological questions.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Seemantini K. Nadkarni
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| |
Collapse
|
8
|
Tshikudi DM, Simandoux O, Kang D, Van Cott EM, Andrawes MN, Yelin D, Nadkarni SK. Imaging the dynamics and microstructure of fibrin clot polymerization in cardiac surgical patients using spectrally encoded confocal microscopy. Am J Hematol 2021; 96:968-978. [PMID: 33971046 DOI: 10.1002/ajh.26217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/05/2022]
Abstract
During cardiac surgery with cardiopulmonary bypass (CPB), altered hemostatic balance may disrupt fibrin assembly, predisposing patients to perioperative hemorrhage. We investigated the utility of a novel device termed spectrally-encoded confocal microscopy (SECM) for assessing fibrin clot polymerization following heparin and protamine administration in CPB patients. SECM is a novel, high-speed optical approach to visualize and quantify fibrin clot formation in three dimensions with high spatial resolution (1.0 μm) over a volumetric field-of-view (165 × 4000 × 36 μm). The measurement sensitivity of SECM was first determined using plasma samples from normal subjects spiked with heparin and protamine. Next, SECM was performed in plasma samples from patients on CPB to quantify the extent to which fibrin clot dynamics and microstructure were altered by CPB exposure. In spiked samples, prolonged fibrin time (4.4 ± 1.8 to 49.3 ± 16.8 min, p < 0.001) and diminished fibrin network density (0.079 ± 0.010 to 0.001 ± 0.002 A.U, p < 0.001) with increasing heparin concentration were reported by SECM. Furthermore, fibrin network density was not restored to baseline levels in protamine-treated samples. In CPB patients, SECM reported lower fibrin network density in protaminized samples (0.055 ± 0.01 A.U. [Arbitrary units]) vs baseline values (0.066 ± 0.009 A.U.) (p = 0.03) despite comparable fibrin time (baseline = 6.0 ± 1.3, protamine = 6.4 ± 1.6 min, p = 0.5). In these patients, additional metrics including fibrin heterogeneity, length and straightness were quantified. Note, SECM revealed that following protamine administration with CPB exposure, fibrin clots were more heterogeneous (baseline = 0.11 ± 0.02 A.U, protamine = 0.08 ± 0.01 A.U, p = 0.008) with straighter fibers (baseline = 0.918 ± 0.003A.U, protamine = 0.928 ± 0.0006A.U. p < 0.001). By providing the capability to rapidly visualize and quantify fibrin clot microstructure, SECM could furnish a new approach for assessing clot stability and hemostasis in cardiac surgical patients.
Collapse
Affiliation(s)
- Diane M. Tshikudi
- Wellman Center for Photomedicine, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Olivier Simandoux
- Wellman Center for Photomedicine, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Dongkyun Kang
- Wellman Center for Photomedicine, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- College of Optical Sciences and Department of Biomedical Engineering University of Arizona Tucson Arizona USA
| | - Elizabeth M. Van Cott
- Department of Pathology, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Michael N. Andrawes
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Dvir Yelin
- Faculty of Biomedical Engineering Technion—Israel Institute of Technology Haifa Israel
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
9
|
Louka M, Kaliviotis E. Development of an Optical Method for the Evaluation of Whole Blood Coagulation. BIOSENSORS-BASEL 2021; 11:bios11040113. [PMID: 33918734 PMCID: PMC8069220 DOI: 10.3390/bios11040113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
Blood coagulation is a defense mechanism, which is activated in case of blood loss, due to vessel damage, or other injury. Pathological cases arise from malfunctions of the blood coagulation mechanism, and rapid growth of clots results in partially or even fully blocked blood vessel. The aim of this work is to characterize blood coagulation, by analyzing the time-dependent structural properties of whole blood, using an inexpensive design and robust processing approaches. The methods used in this work include brightfield microscopy and image processing techniques, applied on finger-prick blood samples. The blood samples were produced and directly utilized in custom-made glass microchannels. Color images were captured via a microscopy-camera setup for a period of 35 min, utilizing three different magnifications. Statistical information was extracted directly from the color components and the binary conversions of the images. The main advantage in the current work lies on a Boolean classification approach utilized on the binary data, which enabled to identify the interchange between specific structural elements of blood, namely the red blood cells, the plasma and the clotted regions, as a result of the clotting process. Coagulation indices produced included a bulk coagulation index, a plasma-reduction based index and a clot formation index. The results produced with the inexpensive design and the low computational complexity in the current approach, show good agreement with the literature, and a great potential for a robust characterization of blood coagulation.
Collapse
|
10
|
Hajjarian Z, Toussaint JD, Guerrero JL, Nadkarni SK. In-vivo mechanical characterization of coronary atherosclerotic plaques in living swine using intravascular laser speckle imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:2064-2078. [PMID: 33996217 PMCID: PMC8086462 DOI: 10.1364/boe.418939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 05/13/2023]
Abstract
The ability to evaluate the viscoelastic properties of coronary arteries is crucial for identifying mechanically unstable atherosclerotic plaques. Here, we demonstrate for the first time in living swine, the capability of intravascular laser speckle imaging (ILSI) to measure an index of coronary plaque viscoelasticity, τ, using a human coronary to swine xenograft model. Cardiac motion effects are evaluated by comparing the EKG-non-gated τ ¯ N G , and EKG-gated τ ¯ G among different plaque types. Results show that both τ ¯ N G and τ ¯ G are significantly lower in necrotic-core plaques compared with stable lesions. Discrete-point pullback measurements demonstrate the capability of ILSI for rapid mechanical characterization of coronary segments under physiological conditions, in-vivo.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Authors contributed equally to the manuscript
| | - Jimmy D. Toussaint
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Authors contributed equally to the manuscript
| | - J. Luis Guerrero
- Surgical Cardiovascular Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
11
|
Scala E, Marcucci C. Massive Hemorrhage: The Role of Whole Blood Viscoelastic Assays. Hamostaseologie 2020; 40:515-523. [PMID: 33091949 DOI: 10.1055/a-1227-8050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viscoelastic whole blood tests are increasingly used to guide hemostatic therapy in bleeding patients in the perioperative, trauma, and obstetric settings. Compared with standard laboratory tests of hemostasis, they have a shorter turnaround time and provide simultaneous information on various aspects of clot formation and lysis. The two available brands TEG (thromboelastography) and ROTEM (rotational thromboelastometry) provide devices that are either manually operated or fully automated. The automation allows for the assays to be used as point-of-care tests increasing their usefulness in massively bleeding patients with rapidly changing hemostatic profiles. While the number of research papers on the subject and the number of published treatment algorithms increase rapidly, the influence of the use of these devices on patient outcome needs yet to be established. In this article, we first review the technology of these devices and the parameters provided by the assays. Next, we present the problems encountered when choosing cut-off values that trigger intervention. Furthermore, we discuss the studies examining their influence on clinical outcomes, and finally, we briefly highlight some of the most important limitations and pitfalls inherent to these assays.
Collapse
Affiliation(s)
- Emmanuelle Scala
- Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Carlo Marcucci
- Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
El Cheikh A, Pellen F, Le Jeune B, Le Brun G, Abboud M. Single speckle image analysis for monitoring the hardening kinetics of glass ionomer cements. APPLIED OPTICS 2020; 59:8828-8833. [PMID: 33104567 DOI: 10.1364/ao.403027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we monitor the setting reaction of commercial glass ionomer cements using a laser speckle technique and adopting a spatial approach in the analysis of recorded speckle images. Experimental results showed that spatial contrast and speckle grain size increased as two studied cements underwent their setting reactions. After combining two geometrical configurations to measure the intensities of backscattered and transmitted light, we concluded that the increase in speckle grain size was caused by an increase in size of the scattering centers, since cement components aggregate and hence transition from a Rayleigh to a Mie scattering regime. Finally, two main phases were distinguished in the hardening process, as reported in the literature; however, the technique we propose has the advantage of easily identifying these two phases. The analysis of a single speckle image offers multiple advantages over the temporal analysis of a series of speckle images, in particular due to the low number of images recorded and a far shorter image processing time.
Collapse
|
13
|
Parada G, Yu Y, Riley W, Lojovich S, Tshikudi D, Ling Q, Zhang Y, Wang J, Ling L, Yang Y, Nadkarni S, Nabzdyk C, Zhao X. Ultrathin and Robust Hydrogel Coatings on Cardiovascular Medical Devices to Mitigate Thromboembolic and Infectious Complications. Adv Healthc Mater 2020; 9:e2001116. [PMID: 32940970 DOI: 10.1002/adhm.202001116] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Indexed: 01/10/2023]
Abstract
Thromboembolic and infectious complications stemming from the use of cardiovascular medical devices are still common and result in significant morbidity and mortality. There is no strategy to date that effectively addresses both challenges at the same time. Various surface modification strategies (e.g., silver, heparin, and liquid-impregnated surfaces) are proposed yet each has several limitations and shortcomings. Here, it is shown that the incorporation of an ultrathin and mechanically robust hydrogel layer reduces bacterial adhesion to medical-grade tubing by 95%. It is additionally demonstrated, through a combination of in vitro and in vivo tests, that the hydrogel layer significantly reduces the formation and adhesion of blood clots to the tubing without affecting the blood's intrinsic clotting ability. The adhesion of clots to the tubing walls is reduced by over 90% (in vitro model), which results in an ≈60% increase in the device occlusion time (time before closure due to clot formation) in an in vivo porcine model. The advantageous properties of this passive coating make it a promising surface material candidate for medical devices interfacing with blood.
Collapse
Affiliation(s)
- German Parada
- Chemical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Yan Yu
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
- School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - William Riley
- Perfusion Services Massachusetts General Hospital Boston MA 02114 USA
| | - Sarah Lojovich
- Perfusion Services Massachusetts General Hospital Boston MA 02114 USA
| | - Diane Tshikudi
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA 02114 USA
| | - Qing Ling
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Yefang Zhang
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Jiaxin Wang
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Lei Ling
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Yueying Yang
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
- School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Seemantini Nadkarni
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA 02114 USA
| | - Christoph Nabzdyk
- Department of Anesthesia Critical Care and Pain Medicine Massachusetts General Hospital Boston MA 02114 USA
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester Rochester MN 55902 USA
| | - Xuanhe Zhao
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
14
|
Naseri S, Koushki N, Rezabeigi E, Ehrlicher A, Nazhat SN. A nondestructive contactless technique to assess the viscoelasticity of blood clots in real-time. J Mech Behav Biomed Mater 2020; 110:103921. [PMID: 32957216 DOI: 10.1016/j.jmbbm.2020.103921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 06/06/2020] [Indexed: 11/26/2022]
Abstract
There is a need for reliable and quantitative real-time assessment of blood properties to study and treat a broad spectrum of disorders and cardiovascular diseases as well as to test the efficacy of hemostatic agents. In this study, the real-time changes in viscoelastic/rheological properties of bovine whole blood during coagulation induced by different concentrations of calcium chloride (CaCl2; 15, 25, 35 and 45 mM) was investigated. For this purpose, a novel, contactless technique was used to accurately measure the clotting characteristics under controlled and sterile conditions. It was demonstrated that, increasing the calcium concentration from low values (i.e., 15 and 25 mM), led to shorter reaction time; however, a further increase in calcium concentration (i.e., 35 and 45 mM) favored longer reaction times. Additionally, increasing the CaCl2 concentration resulted in higher shear storage modulus (i.e., stiffer clots). These results were also comparable to those generated by thromboelastrograph, a clinically established technique, as well as a conventional rheometer, which quantitatively verified the high correlation of the shear storage modulus data. In sum, the non-destructive testing technique used in this study is reproducible and sensitive in measuring clot formation kinetics, which could be applied to assess the efficacy of hemostatic agents, and may also contribute to better diagnosing relevant circulatory system diseases and conditions.
Collapse
Affiliation(s)
- Shiva Naseri
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | - Newsha Koushki
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Ehsan Rezabeigi
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | - Allen Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Podlipec R, Arsov Z, Koklič T, Štrancar J. Characterization of blood coagulation dynamics and oxygenation in ex-vivo retinal vessels by fluorescence hyperspectral imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000021. [PMID: 32281304 DOI: 10.1002/jbio.202000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 05/06/2023]
Abstract
Blood coagulation mechanisms forming a blood clot and preventing hemorrhage have been extensively studied in the last decades. Knowing the mechanisms behind becomes very important particularly in the case of blood vessel diseases. Real-time and accurate diagnostics accompanied by the therapy are particularly needed, for example, in diseases related to retinal vasculature. In our study, we employ for the first time fluorescence hyperspectral imaging (fHSI) combined with the spectral analysis algorithm concept to assess physical as well as functional information of blood coagulation in real-time. By laser-induced local disruption of retinal vessels to mimic blood leaking and subsequent coagulation and a proper fitting algorithm, we were able to reveal and quantify the extent of local blood coagulation through direct identification of the change of oxyhemoglobin concentration within few minutes. We confirmed and illuminated the spatio-temporal evolution of the essential role of erythrocytes in the coagulation cascade as the suppliers of oxygenated hemoglobin. By additional optical tweezers force manipulation, we showed immediate aggregation of erythrocytes at the coagulation site. The presented fluorescence-based imaging concept could become a valuable tool in various blood coagulation diagnostics as well as theranostic systems if coupled with the laser therapy.
Collapse
Affiliation(s)
- Rok Podlipec
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
- Helmholtz-Zentrum Dresden-Rossendorf, Ion Beam Center, Bautzner Landstrasse 400, Dresden, Germany
| | - Zoran Arsov
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
| | - Tilen Koklič
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
| | - Janez Štrancar
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
| |
Collapse
|
16
|
Hajjarian Z, Nadkarni SK. Tutorial on laser speckle rheology: technology, applications, and opportunities. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-19. [PMID: 32358928 PMCID: PMC7195443 DOI: 10.1117/1.jbo.25.5.050801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/10/2020] [Indexed: 05/27/2023]
Abstract
SIGNIFICANCE The onset of several diseases is frequently marked with anomalous mechanical alteration of the affected tissue at the intersection of cells and their microenvironment. Therefore, mapping the micromechanical attributes of the tissues could enhance our understanding of the etiology of human disease, improve the diagnosis, and help stratify therapies that target these mechanical aberrations. AIM We review the tremendous opportunities offered through using optics for imaging the micromechanical properties, at length scales inaccessible to other modalities, in both basic research and clinical medicine. We specifically focus on laser speckle rheology (LSR), a technology that quantifies the mechanical properties of tissues in a rapid, noncontact manner. APPROACH In LSR, the shear viscoelastic modulus is measured from the time-variant speckle intensity fluctuations reflected off the tissue. The LSR technology is engineered and configured into several embodiments, including bench-top optical systems, endoscopes for minimally invasive procedures, portable point-of-care devices, and microscopes. RESULTS These technological nuances have primed the LSR for widespread applications in diagnosis and therapeutic monitoring, as demonstrated here, in cardiovascular disease, coagulation disorders, and tumor malignancies. CONCLUSION The fast-paced technological advancements, elaborated here, position the LSR as a competent candidate for many more exciting opportunities in basic research and medicine.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Seemantini K. Nadkarni
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Liu HC, Kijanka P, Urban MW. Optical coherence tomography for evaluating capillary waves in blood and plasma. BIOMEDICAL OPTICS EXPRESS 2020; 11:1092-1106. [PMID: 32206401 PMCID: PMC7041467 DOI: 10.1364/boe.382819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 05/18/2023]
Abstract
Capillary waves are associated with fluid mechanical properties. Optical coherence tomography (OCT) has previously been used to determine the viscoelasticity of soft tissues or cornea. Here we report that OCT was able to evaluate phase velocities of capillary waves in fluids. The capillary waves of water, porcine whole blood and plasma on the interfacial surface, air-fluid in this case, are discussed in theory, and phase velocities of capillary waves were estimated by both our OCT experiments and theoretical calculations. Our experiments revealed highly comparable results with theoretical calculations. We concluded that OCT would be a promising tool to evaluate phase velocities of capillary waves in fluids. The methods described in this study could be applied to determine surface tensions and viscosities of fluids for differentiating hematological diseases in the future potential biological applications.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Piotr Kijanka
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Application of Piezo-Based Measuring System for Evaluation of Nucleic Acid-Based Drugs Influencing the Coagulation. SENSORS 2019; 20:s20010152. [PMID: 31881749 PMCID: PMC6982813 DOI: 10.3390/s20010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 11/16/2022]
Abstract
During open-heart surgery, the status of hemostasis has to be constantly monitored to quickly and reliably detect bleeding or coagulation disorders. In this study, a novel optimized piezo-based measuring system (PIEZ) for rheological monitoring of hemostasis was established. The applicability of the PIEZ for the evaluation of nucleic acid-based drugs influencing coagulation was analyzed. Thrombin aptamers such as NU172 might be used during extracorporeal circulation (ECC) in combination with a reduced heparin concentration or for patients with heparin-induced thrombocytopenia (HIT). Therefore, the effect of the coagulation inhibiting thrombin aptamer NU172 and the abrogation by its complementary antidote sequence (AD) were investigated by this rheological PIEZ system. After the addition of different NU172 concentrations, the coagulation of fresh human blood was analyzed under static conditions and using an in vitro rotation model under dynamic conditions (simulating ECC). The clotting times (CTs) detected by PIEZ were compared to those obtained with a medical reference device, a ball coagulometer. Additionally, after the circulation of blood samples for 30 min at 37 °C, blood cell numbers, thrombin markers (thrombin-antithrombin III (TAT) and fibrinopeptide A (FPA)) and a platelet activation marker (β-thromboglobulin (β-TG)) were analyzed by enzyme-linked immunosorbent assays (ELISAs). The increase of NU172 concentration resulted in prolonged CTs, which were comparable between the reference ball coagulometer and the PIEZ, demonstrating the reliability of the new measuring system. Moreover, by looking at the slope of the linear regression of the viscous and elastic components, PIEZ also could provide information on the kinetics of the coagulation reaction. The shear viscosity at the end of the measurements (after 300 s) was indicative of clot firmness. Furthermore, the PIEZ was able to detect the abrogation of coagulation inhibition after the equimolar addition of NU172 aptamer´s AD. The obtained results showed that the established PIEZ is capable to dynamically measure the hemostasis status in whole blood and can be applied to analyze nucleic acid-based drugs influencing the coagulation.
Collapse
|
19
|
Mohammadi Aria M, Erten A, Yalcin O. Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Front Bioeng Biotechnol 2019; 7:395. [PMID: 31921804 PMCID: PMC6917661 DOI: 10.3389/fbioe.2019.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, blood coagulation monitoring has become crucial to diagnosing causes of hemorrhages, developing anticoagulant drugs, assessing bleeding risk in extensive surgery procedures and dialysis, and investigating the efficacy of hemostatic therapies. In this regard, advanced technologies such as microfluidics, fluorescent microscopy, electrochemical sensing, photoacoustic detection, and micro/nano electromechanical systems (MEMS/NEMS) have been employed to develop highly accurate, robust, and cost-effective point of care (POC) devices. These devices measure electrochemical, optical, and mechanical parameters of clotting blood. Which can be correlated to light transmission/scattering, electrical impedance, and viscoelastic properties. In this regard, this paper discusses the working principles of blood coagulation monitoring, physical and sensing parameters in different technologies. In addition, we discussed the recent progress in developing nanomaterials for blood coagulation detection and treatments which opens up new area of controlling and monitoring of coagulation at the same time in the future. Moreover, commercial products, future trends/challenges in blood coagulation monitoring including novel anticoagulant therapies, multiplexed sensing platforms, and the application of artificial intelligence in diagnosis and monitoring have been included.
Collapse
Affiliation(s)
| | - Ahmet Erten
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozlem Yalcin
- Graduate School of Biomedical Sciences and Engineering, Koc University, Sariyer, Turkey
- Department of Physiology, Koc University School of Medicine, Koc University, Sariyer, Turkey
| |
Collapse
|
20
|
Laser speckle decorrelation time-based platelet function testing in microfluidic system. Sci Rep 2019; 9:16514. [PMID: 31712610 PMCID: PMC6848072 DOI: 10.1038/s41598-019-52953-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
Platelet aggregation and adhesion are critically involved in both normal hemostasis and thrombosis during vascular injury. Before any surgery, it is important to identify the number of platelets and their functionality to reduce the risk of bleeding; therefore, platelet function testing is a requirement. We introduce a novel evaluation method of assessing platelet function with laser speckle contrast imaging. The speckle decorrelation time (SDT) of the blood flowing through a microfluidic channel chip provides a quantitative measure of platelet aggregation. We compared SDTs of whole blood and platelet-poor blood, i.e., whole blood stripped of its buffy coat region, and found a marked reduction in decorrelation time for platelet-poor blood. The measured SDT of platelet-poor blood was 1.04 ± 0.21 ms, while that of whole blood was 2.64 ± 0.83 ms. To further characterize the sensitivity of our speckle decorrelation time-based platelet function testing (SDT-PFT), we added various agonists involved in platelet aggregation, including adenosine diphosphate (ADP), epinephrine (EPI), and arachidonic acid (AA). In this study, the results show that whole blood with ADP resulted in the largest SDT, followed by whole blood with AA, whole blood with EPI, whole blood without agonist, and platelet-poor blood with or without agonist. These findings show that SDT-PFT has the potential for rapid screening of bleeding disorders and monitoring of anti-platelet therapies with only a small volume of blood.
Collapse
|
21
|
Ansari Hosseinzadeh V, Brugnara C, Emani S, Khismatullin D, Holt RG. Monitoring of blood coagulation with non-contact drop oscillation rheometry. J Thromb Haemost 2019; 17:1345-1353. [PMID: 31099102 DOI: 10.1111/jth.14486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Thromboelastography is widely used as a tool to assess the coagulation status of critical-care patients. It allows observation of changes in the material properties of whole blood brought about by clot formation and clot lysis. However, contact activation of the coagulation cascade at surfaces of thromboelastographic systems leads to inherent variability and unreliability in predicting bleeding or thrombosis risks, while also requiring large sample volumes. OBJECTIVES To develop a non-contact drop oscillation rheometry (DOR) method to measure the viscoelastic properties of blood clots and to compare the results with current laboratory standard measurements. METHODS Drops of human blood and plasma (5-10 μL) were acoustically levitated. Acoustic field modulation induced drop shape oscillations, and the viscoelastic properties of the sample were calculated by measuring the resonance frequency and damping ratio. RESULTS DOR showed sensitivity to coagulation parameters. An increase in platelet count resulted in an increase in the maximum clot stiffness. An increase in the calcium ion level enhanced the coagulation rate prior to saturation. An increase in hematocrit resulted in a higher rate of clot formation and increased clot stiffness. Comparison of the results with those obtained with thromboelastography showed that coagulation started sooner with DOR, but with a lower rate and lower maximum stiffness. CONCLUSIONS DOR can be used as a monitoring tool to assess blood coagulation status. The advantages of small sample size, the lack of contact and small strain (linear viscoelasticity) makes this technique unique for real-time monitoring of blood coagulation.
Collapse
Affiliation(s)
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sirisha Emani
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Damir Khismatullin
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - R Glynn Holt
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
22
|
Razavi J, Arbabian A. Chromatic Properties of Blood During Coagulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:4733-4736. [PMID: 31946919 DOI: 10.1109/embc.2019.8856365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper proposes a method of detecting blood clots by analyzing the chromatic properties of blood. Measurements are performed with a Basler camera on blood during coagulation to determine the changes in red, green, and blue (RGB) values. Results show that there is a significant change in the red value that can be exploited for real-time, early detection of blood clots.
Collapse
|
23
|
Nadkarni SK. Comprehensive Coagulation Profiling at the Point-of-Care Using a Novel Laser-Based Approach. Semin Thromb Hemost 2019; 45:264-274. [PMID: 30887486 DOI: 10.1055/s-0039-1683842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Delays in identifying internal bleeding are life-threatening, thus underscoring the need for rapid and comprehensive coagulation profiling at the bedside. The authors review a novel optical coagulation profiler that measures several coagulation metrics including prothrombin time, activated clotting time, clot polymerization rate (α-angle), clot stiffness (maximum amplitude), fibrinolysis (LY), and platelet function, using a single multifunctional instrument. The optical profiler is based on the principles of Laser Speckle Rheology that quantifies tissue viscoelasticity from light scattering patterns called laser speckle. To operate the optical profiler, whole blood (40 μL) is loaded into a disposable cartridge, laser speckle patterns are recorded via a camera, and the viscoelasticity of clotting blood is estimated from speckle intensity fluctuations. By monitoring alterations in viscoelastic moduli over time during clot initiation, thrombin generation, fibrin crosslinking, clot stabilization, and LY, global coagulation parameters are obtained within 10 minutes using a drop of whole blood. Clinical testing in over 500 patients to date has confirmed the accuracy of the optical profiler for comprehensively assessing coagulation status against conventional coagulation tests and thromboelastography. Recent studies have further demonstrated the capability to quantify platelet aggregation induced by adenosine diphosphate in a drop of platelet-rich-plasma in the absence of applied shear stress. Together, these studies demonstrate that global coagulation profiling in addition to platelet function may be accomplished using a single multifunctional device. Thus, by enabling rapid and comprehensive coagulation and platelet function profiling at the bedside, the optical profiler will likely advance the capability to identify and manage patients with an elevated risk for hemorrhage.
Collapse
Affiliation(s)
- Seemantini K Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Xu X, Zhu J, Yu J, Chen Z. Viscosity monitoring during hemodiluted blood coagulation using optical coherence elastography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7200406. [PMID: 31857783 PMCID: PMC6922089 DOI: 10.1109/jstqe.2018.2833455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid and accurate clot diagnostic systems are needed for the assessment of hemodiluted blood coagulation. We develop a real-time optical coherence elastography (OCE) system, which measures the attenuation coefficient of a compressional wave induced by a piezoelectric transducer (PZT) in a drop of blood using optical coherence tomography (OCT), for the determination of viscous properties during the dynamic whole blood coagulation process. Changes in the viscous properties increase the attenuation coefficient of the sample. Consequently, dynamic blood coagulation status can be monitored by relating changes of the attenuation coefficient to clinically relevant coagulation metrics, including the initial coagulation time and the clot formation rate. This system was used to characterize the influence of activator kaolin and the influence of hemodilution with either NaCl 0.9% or hydroxyethyl starch (HES) 6% on blood coagulation. The results show that PZT-OCE is sensitive to coagulation abnormalities and is able to characterize blood coagulation status based on viscosity-related attenuation coefficient measurements. PZT-OCE can be used for point-of-care testing for diagnosis of coagulation disorders and monitoring of therapies.
Collapse
Affiliation(s)
- Xiangqun Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China, and the Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | - Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | - Junxiao Yu
- Department of Biomedical Engineering, and the Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | - Zhongping Chen
- Department of Biomedical Engineering, and the Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| |
Collapse
|
25
|
Funamizu H, Aizu Y. Three-dimensional quantitative phase imaging of blood coagulation structures by optical projection tomography in flow cytometry using digital holographic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-6. [PMID: 30302967 PMCID: PMC6975226 DOI: 10.1117/1.jbo.24.3.031012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 05/30/2023]
Abstract
Blood coagulation is an important role in the hemostasis process. In the observation using microscopies, an aggregation structure of red blood cells indicates the degree of blood coagulation. Recently, it has been proposed that digital holographic microscopy (DHM) is a powerful tool for biomedical cell imaging on the basis of quantitative phase information. DHM has the advantage in that the real-time and three-dimensional (3-D) quantitative phase imaging can be realized in the wide field of view, which means that the 3-D morphological parameters of biological cells without a staining process are obtained in real time. We report the complete 3-D quantitative phase imaging of blood coagulation structures by optical projection tomography in a flow cytometry using DHM.
Collapse
Affiliation(s)
- Hideki Funamizu
- Division of Production Systems Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Yoshihisa Aizu
- Division of Production Systems Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
26
|
Li Z, Wang Y, Xue X, McCracken B, Ward K, Fu J. Carbon Nanotube Strain Sensor Based Hemoretractometer for Blood Coagulation Testing. ACS Sens 2018; 3:670-676. [PMID: 29485284 PMCID: PMC6223013 DOI: 10.1021/acssensors.7b00971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coagulation monitoring is essential for perioperative care and thrombosis treatment. However, existing assays for coagulation monitoring have limitations such as a large footprint and complex setup. In this work, we developed a miniaturized device for point-of-care blood coagulation testing by measuring dynamic clot retraction force development during blood clotting. In this device, a blood drop was localized between a protrusion and a flexible force-sensing beam to measure clot retraction force. The beam was featured with micropillar arrays to assist the deposition of carbon nanotube films, which served as a strain sensor to achieve label-free electrical readout of clot retraction force in real time. We characterized mechanical and electrical properties of the force-sensing beam and optimized its design. We further demonstrated that this blood coagulation monitoring device could obtain results that were consistent with those using an imaging method and that the device was capable of differentiating blood samples with different coagulation profiles. Owing to its low fabrication cost, small size, and low consumption of blood samples, the blood coagulation testing device using carbon nanotube strain sensors holds great potential as a point-of-care tool for future coagulation monitoring.
Collapse
Affiliation(s)
- Zida Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yize Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brendan McCracken
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kevin Ward
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
27
|
Sun CK, Chen HY, Tseng TF, You B, Wei ML, Lu JY, Chang YL, Tseng WL, Wang TD. High Sensitivity of T-Ray for Thrombus Sensing. Sci Rep 2018; 8:3948. [PMID: 29500384 PMCID: PMC5834502 DOI: 10.1038/s41598-018-22060-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/14/2018] [Indexed: 01/21/2023] Open
Abstract
Atherosclerotic plaque rupture or erosion and subsequent development of platelet-containing thrombus formation is the fundamental cause of cardiovascular disease, which is the most common cause of death and disability worldwide. Here we show the high sensitivity of 200-270 GHz T-ray to distinguish thrombus formation at its early stage from uncoagulated blood. A clinical observational study was conducted to longitudinally monitor the T-ray absorption constant of ex-vivo human blood during the thrombus formation from 29 subjects. Compared with the control group (28 subjects) with uncoagulated blood samples, our analysis indicates the high sensitivity of 200-270 GHz T-Ray to detect thrombus with a low p-value < 10-5. Further analysis supports the significant role of platelet-activated thrombotic cascade, which modified the solvation dynamics of blood and occurred during the early coagulation stage, on the measured T-Ray absorption change. The ability to sense the thrombus formation at its early stage would hold promise for timely identification of patients at risk of various atherothrombotic disorders and save billions of lives.
Collapse
Affiliation(s)
- Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Applied Science and Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan.
| | - Hui-Yuan Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Fang Tseng
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Borwen You
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Liang Wei
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Ja-Yu Lu
- Department of Photonics, National Cheng-Kung University, Tainan, 70101, Taiwan
| | - Ya-Lei Chang
- Department of Photonics, National Cheng-Kung University, Tainan, 70101, Taiwan
| | - Wan-Ling Tseng
- Department of Photonics, National Cheng-Kung University, Tainan, 70101, Taiwan
| | - Tzung-Dau Wang
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan.
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
28
|
Dynamic and Quantitative Assessment of Blood Coagulation Status with an Oscillatory Rheometer. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Maji D, Suster MA, Kucukal E, Sekhon UDS, Gupta AS, Gurkan UA, Stavrou EX, Mohseni P. ClotChip: A Microfluidic Dielectric Sensor for Point-of-Care Assessment of Hemostasis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1459-1469. [PMID: 28920906 PMCID: PMC6091230 DOI: 10.1109/tbcas.2017.2739724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper describes the design, fabrication, and testing of a microfluidic sensor for dielectric spectroscopy of human whole blood during coagulation. The sensor, termed ClotChip, employs a three-dimensional, parallel-plate, capacitive sensing structure with a floating electrode integrated into a microfluidic channel. Interfaced with an impedance analyzer, the ClotChip measures the complex relative dielectric permittivity, ϵr , of human whole blood in the frequency range of 40 Hz to 100 MHz. The temporal variation in the real part of the blood dielectric permittivity at 1 MHz features a time to reach a permittivity peak, , as well as a maximum change in permittivity after the peak, , as two distinct parameters of ClotChip readout. The ClotChip performance was benchmarked against rotational thromboelastometry (ROTEM) to evaluate the clinical utility of its readout parameters in capturing the clotting dynamics arising from coagulation factors and platelet activity. exhibited a very strong positive correlation ( r = 0.99, p < 0.0001) with the ROTEM clotting time parameter, whereas exhibited a strong positive correlation (r = 0.85, p < 0.001) with the ROTEM maximum clot firmness parameter. This paper demonstrates the ClotChip potential as a point-of-care platform to assess the complete hemostatic process using <10 μL of human whole blood.
Collapse
|
30
|
Truong VG, Park S, Tran VN, Kang HW. Spatial effect of conical angle on optical-thermal distribution for circumferential photocoagulation. BIOMEDICAL OPTICS EXPRESS 2017; 8:5663-5674. [PMID: 29296495 PMCID: PMC5745110 DOI: 10.1364/boe.8.005663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 05/06/2023]
Abstract
A uniformly diffusing applicator can be advantageous for laser treatment of tubular tissue. The current study investigated various conical angles for diffuser tips as a critical factor for achieving radially uniform light emission. A customized goniometer was employed to characterize the spatial uniformity of the light propagation. An ex vivo model was developed to quantitatively compare the temperature development and irreversible tissue coagulation. The 10-mm diffuser tip with angle at 25° achieved a uniform longitudinal intensity profile (i.e., 0.90 ± 0.07) as well as a consistent thermal denaturation on the tissue. The proposed conical angle can be instrumental in determining the uniformity of light distribution for the photothermal treatment of tubular tissue.
Collapse
Affiliation(s)
- Van Gia Truong
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, South Korea
- These authors contributed equally to this work
| | - Suhyun Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, South Korea
- These authors contributed equally to this work
| | - Van Nam Tran
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, South Korea
| | - Hyun Wook Kang
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| |
Collapse
|
31
|
Yaraş YS, Gündüz AB, Sağlam G, Ölçer S, Civitçi F, Baris İ, Yaralioğlu G, Urey H. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 29127692 DOI: 10.1117/1.jbo.22.11.117001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements.
Collapse
Affiliation(s)
- Yusuf Samet Yaraş
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Ali Bars Gündüz
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Gökhan Sağlam
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Selim Ölçer
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Fehmi Civitçi
- Istanbul Technical University, Department of Electronics and Communication Engineering, Faculty of E, Turkey
| | - İbrahim Baris
- Koc University, College of Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Göksenin Yaralioğlu
- Ozyegin University, Faculty of Engineering, Department of Electrical and Electronics Engineering, Is, Turkey
| | - Hakan Urey
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| |
Collapse
|
32
|
Tripathi MM, Egawa S, Wirth AG, Tshikudi DM, Van Cott EM, Nadkarni SK. Clinical evaluation of whole blood prothrombin time (PT) and international normalized ratio (INR) using a Laser Speckle Rheology sensor. Sci Rep 2017; 7:9169. [PMID: 28835607 PMCID: PMC5569083 DOI: 10.1038/s41598-017-08693-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
Prothrombin time (PT) and the associated international normalized ratio (INR) are routinely tested to assess the risk of bleeding or thrombosis and to monitor response to anticoagulant therapy in patients. To measure PT/INR, conventional coagulation testing (CCT) is performed, which is time-consuming and requires the separation of cellular components from whole blood. Here, we report on a portable and battery-operated optical sensor that can rapidly quantify PT/INR within seconds by measuring alterations in the viscoelastic properties of a drop of whole blood following activation of coagulation with thromboplastin. In this study, PT/INR values were measured in 60 patients using the optical sensor and compared with the corresponding CCT values. Our results report a close correlation and high concordance between PT/INR measured using the two approaches. These findings confirm the accuracy of our optical sensing approach for rapid PT/INR testing in whole blood and highlight the potential for use at the point-of-care or for patient self-testing.
Collapse
Affiliation(s)
- Markandey M Tripathi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Satoru Egawa
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Department of Precision Engineering, University of Tokyo, Tokyo, Japan
| | - Alexandra G Wirth
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Diane M Tshikudi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Elizabeth M Van Cott
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Seemantini K Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
33
|
Tshikudi DM, Tripathi MM, Hajjarian Z, Van Cott EM, Nadkarni SK. Optical sensing of anticoagulation status: Towards point-of-care coagulation testing. PLoS One 2017; 12:e0182491. [PMID: 28771571 PMCID: PMC5542647 DOI: 10.1371/journal.pone.0182491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
Anticoagulant overdose is associated with major bleeding complications. Rapid coagulation sensing may ensure safe and accurate anticoagulant dosing and reduce bleeding risk. Here, we report the novel use of Laser Speckle Rheology (LSR) for measuring anticoagulation and haemodilution status in whole blood. In the LSR approach, blood from 12 patients and 4 swine was placed in disposable cartridges and time-varying intensity fluctuations of laser speckle patterns were measured to quantify the viscoelastic modulus during clotting. Coagulation parameters, mainly clotting time, clot progression rate (α-angle) and maximum clot stiffness (MA) were derived from the clot viscoelasticity trace and compared with standard Thromboelastography (TEG). To demonstrate the capability for anticoagulation sensing in patients, blood samples from 12 patients treated with warfarin anticoagulant were analyzed. LSR clotting time correlated with prothrombin and activated partial thromboplastin time (r = 0.57-0.77, p<0.04) and all LSR parameters demonstrated good correlation with TEG (r = 0.61-0.87, p<0.04). To further evaluate the dose-dependent sensitivity of LSR parameters, swine blood was spiked with varying concentrations of heparin, argatroban and rivaroxaban or serially diluted with saline. We observed that anticoagulant treatments prolonged LSR clotting time in a dose-dependent manner that correlated closely with TEG (r = 0.99, p<0.01). LSR angle was unaltered by anticoagulation whereas TEG angle presented dose-dependent diminution likely linked to the mechanical manipulation of the clot. In both LSR and TEG, MA was largely unaffected by anticoagulation, and LSR presented a higher sensitivity to increased haemodilution in comparison to TEG (p<0.01). Our results establish that LSR rapidly and accurately measures the response of various anticoagulants, opening the opportunity for routine anticoagulation monitoring at the point-of-care or for patient self-testing.
Collapse
Affiliation(s)
- Diane M. Tshikudi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Markandey M. Tripathi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Elizabeth M. Van Cott
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
34
|
Maji D, Suster MA, Kucukal E, Gurkan UA, Stavrou EX, Mohseni P. A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:291-294. [PMID: 28268334 DOI: 10.1109/embc.2016.7590697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper describes the design and construct of a fully biocompatible, microfluidic, dielectric sensor targeted at monitoring human whole blood coagulation at the point-of-care (POC). The sensor assembly procedure involves using sputtered electrodes in a microfluidic channel with a physiologically relevant height of 50μm to create a three-dimensional (3D), parallel-plate, capacitive sensing area. The sensor is constructed with biocompatible materials of polymethyl methacrylate (PMMA) for the substrate and titanium nitride (TiN) for the sensing and floating electrodes. The real part of the complex relative dielectric permittivity of human whole blood is measured from 10kHz to 100MHz using an impedance analyzer and under static conditions. The temporal variation in dielectric permittivity at 1MHz for human whole blood undergoing coagulation shows a peak in permittivity at 5 minutes, which closely matches our previously established results. This sensor can pave the way for monitoring blood coagulation under physiologically relevant shear flow rates in the future.
Collapse
|
35
|
Hajjarian Z, Tshikudi DM, Nadkarni SK. Evaluating platelet aggregation dynamics from laser speckle fluctuations. BIOMEDICAL OPTICS EXPRESS 2017; 8:3502-3515. [PMID: 28717586 PMCID: PMC5508847 DOI: 10.1364/boe.8.003502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/25/2017] [Indexed: 05/16/2023]
Abstract
Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g2(t), from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies.
Collapse
|
36
|
Guzman-Sepulveda JR, Argueta-Morales R, DeCampli WM, Dogariu A. Real-time intraoperative monitoring of blood coagulability via coherence-gated light scattering. Nat Biomed Eng 2017. [DOI: 10.1038/s41551-017-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Wang J, Hosoda M, Tshikudi DM, Hajjarian Z, Nadkarni SK. Intraluminal laser speckle rheology using an omni-directional viewing catheter. BIOMEDICAL OPTICS EXPRESS 2017; 8:137-150. [PMID: 28101407 PMCID: PMC5231287 DOI: 10.1364/boe.8.000137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/27/2023]
Abstract
A number of disease conditions in luminal organs are associated with alterations in tissue mechanical properties. Here, we report a new omni-directional viewing Laser Speckle Rheology (LSR) catheter for mapping the mechanical properties of luminal organs without the need for rotational motion. The LSR catheter incorporates multiple illumination fibers, an optical fiber bundle and a multi-faceted mirror to permit omni-directional viewing of the luminal wall. By retracting the catheter using a motor-drive assembly, cylindrical maps of tissue mechanical properties are reconstructed. Evaluation conducted in a test phantom with circumferentially-varying mechanical properties demonstrates the capability of the LSR catheter for the accurate mechanical assessment of luminal organs.
Collapse
Affiliation(s)
- Jing Wang
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
- Authors contributed equally to this work
| | - Masaki Hosoda
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
- Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, MA 02139, USA
- Authors contributed equally to this work
| | - Diane M. Tshikudi
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
| | - Zeinab Hajjarian
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
| |
Collapse
|
38
|
Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds. Sci Rep 2016; 6:37949. [PMID: 27905494 PMCID: PMC5131361 DOI: 10.1038/srep37949] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022] Open
Abstract
Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10−9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10−7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.
Collapse
|
39
|
Maji D, Suster MA, Stavrou E, Gurkan UA, Mohseni P. Monitoring time course of human whole blood coagulation using a microfluidic dielectric sensor with a 3D capacitive structure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5904-7. [PMID: 26737635 DOI: 10.1109/embc.2015.7319735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper reports on the design, fabrication, and testing of a microfluidic sensor for dielectric spectroscopy (DS) of human whole blood during coagulation. The sensor employs a three-dimensional (3D), parallel-plate, capacitive sensing structure with a floating electrode integrated into a microfluidic channel. Using an impedance analyzer and after a 5-point calibration, the sensor is shown to measure the real part of complex relative dielectric permittivity of human whole blood in a frequency range of 10kHz to 100MHz. The temporal variation of dielectric permittivity at 1MHz for human whole blood from three different healthy donors shows a peak in permittivity at ~ 4 to 5 minutes, which also corresponds to the onset of CaCl2-initiated coagulation of the blood sample verified visually.
Collapse
|
40
|
Nader CA, Pellen F, Roquefort P, Aubry T, Le Jeune B, Le Brun G, Abboud M. Evaluation of low viscosity variations in fluids using temporal and spatial analysis of the speckle pattern. OPTICS LETTERS 2016; 41:2521-2524. [PMID: 27244404 DOI: 10.1364/ol.41.002521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The noninvasive detection of a material's viscoelasticity is of great importance in the medical field. In fact, certain diseases cause changes in tissue structure and biological fluid viscosity; tracking those changes allows for detection of these diseases. Rheological measurements are also imperative in the industrial field, where it is necessary to characterize a material's viscoelasticity for manufacturing purposes. In this Letter, we present a noncontact, noninvasive, and low cost method for determining low viscosity values and variations in fluids. Laser speckle and viscometric measurements are performed on test samples having low scattering coefficients and low viscosities. The speckle spatial analysis proved to be as accurate as the speckle temporal correlation method reported in previous studies. Very low viscosities of the order of 1 mPa.s were retrieved for the first time using speckle images with either a frame rate of 1950 fps or a single acquired image.
Collapse
|
41
|
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography. Sci Rep 2016; 6:24294. [PMID: 27090437 PMCID: PMC4836302 DOI: 10.1038/srep24294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 01/29/2023] Open
Abstract
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.
Collapse
|
42
|
Kell DB, Pretorius E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol (Camb) 2015; 7:24-52. [PMID: 25335120 DOI: 10.1039/c4ib00173g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the two phenomena are usually studied separately, we summarise a considerable body of literature to the effect that a great many diseases involve (or are accompanied by) both an increased tendency for blood to clot (hypercoagulability) and the resistance of the clots so formed (hypofibrinolysis) to the typical, 'healthy' or physiological lysis. We concentrate here on the terminal stages of fibrin formation from fibrinogen, as catalysed by thrombin. Hypercoagulability goes hand in hand with inflammation, and is strongly influenced by the fibrinogen concentration (and vice versa); this can be mediated via interleukin-6. Poorly liganded iron is a significant feature of inflammatory diseases, and hypofibrinolysis may change as a result of changes in the structure and morphology of the clot, which may be mimicked in vitro, and may be caused in vivo, by the presence of unliganded iron interacting with fibrin(ogen) during clot formation. Many of these phenomena are probably caused by electrostatic changes in the iron-fibrinogen system, though hydroxyl radical (OH˙) formation can also contribute under both acute and (more especially) chronic conditions. Many substances are known to affect the nature of fibrin polymerised from fibrinogen, such that this might be seen as a kind of bellwether for human or plasma health. Overall, our analysis demonstrates the commonalities underpinning a variety of pathologies as seen in both hypercoagulability and hypofibrinolysis, and offers opportunities for both diagnostics and therapies.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | | |
Collapse
|
43
|
Wang CW, Perez MJ, Helmke BP, Viola F, Lawrence MB. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement. PLoS One 2015; 10:e0128799. [PMID: 26042775 PMCID: PMC4456080 DOI: 10.1371/journal.pone.0128799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/30/2015] [Indexed: 01/22/2023] Open
Abstract
Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.
Collapse
Affiliation(s)
- Caroline W. Wang
- Department of Biomedical Engineering, School of Engineering and Applied Science and School of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Matthew J. Perez
- Department of Biomedical Engineering, School of Engineering and Applied Science and School of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Brian P. Helmke
- Department of Biomedical Engineering, School of Engineering and Applied Science and School of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Francesco Viola
- HemoSonics, LLC, Charlottesville, Virginia, United States of America
| | - Michael B. Lawrence
- Department of Biomedical Engineering, School of Engineering and Applied Science and School of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
44
|
Xu X, Teng X. Effect of fibrinogen on blood coagulation detected by optical coherence tomography. Phys Med Biol 2015; 60:4185-95. [PMID: 25955503 DOI: 10.1088/0031-9155/60/10/4185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our previous work demonstrated that an optical coherence tomography (OCT) technique and the parameter 1/e light penetration depth (d1/e) were able to characterize the whole blood coagulation process in contrast to existing optical tests that are performed on plasma samples. To evaluate the feasibility of the technique for quantifying the effect of fibrinogen (Fbg) on blood coagulation, a dynamic study of d1/e of blood in various Fbg concentrations was performed in static state. Two groups of blood samples of hematocrit (HCT) in 35, 45, and 55% were reconstituted of red blood cells with: 1) treated plasma with its intrinsic Fbg removed and commercial Fbg added (0-8 g L(-1)); and 2) native plasma with commercial Fbg added (0-8 g L(-1)). The results revealed a typical behavior due to coagulation induced by calcium ions and the clotting time is Fbg concentration-dependent. The clotting time was decreased by the increasing amount of Fbg in both groups. Besides, the blood of lower HCT with various levels of Fbg took shorter time to coagulate than that of higher HCT. Consequently, the OCT method is a useful and promising tool for the detection of blood-coagulation processes induced with different Fbg levels.
Collapse
Affiliation(s)
- Xiangqun Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | |
Collapse
|
45
|
Hajjarian Z, Tripathi MM, Nadkarni SK. Optical Thromboelastography to evaluate whole blood coagulation. JOURNAL OF BIOPHOTONICS 2015; 8:372-81. [PMID: 24700701 PMCID: PMC4605542 DOI: 10.1002/jbio.201300197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/07/2014] [Accepted: 03/15/2014] [Indexed: 05/12/2023]
Abstract
Measurement of blood viscoelasticity during clotting provides a direct metric of haemostatic conditions. Therefore, technologies that quantify blood viscoelasticity at the point-of-care are invaluable for diagnosing coagulopathies. We present a new approach, Optical Thromboelastography (OTEG) that measures the viscoelastic properties of coagulating blood by evaluating temporal laser speckle fluctuations, reflected from a few blood drops. During coagulation, platelet-fibrin clot formation restricts the mean square displacements (MSD) of scatterers and decelerates speckle fluctuations. Cross-correlation analysis of speckle frames provides the speckle intensity temporal autocorrelation, g2 (t), from which MSD is deduced and the viscoelastic modulus of blood is estimated. Our results demonstrate a close correspondence between blood viscoelasticity evaluated by OTEG and mechanical rheometry. Spatio-temporal speckle analyses yield 2-dimensional maps of clot viscoelasticity, enabling the identification of micro-clot formation at distinct rates in normal and coagulopathic specimens. These findings confirm the unique capability of OTEG for the rapid evaluation of patients' coagulation status and highlight the potential for point-of-care use.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Wellman Center For Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Markandey M Tripathi
- Wellman Center For Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seemantini K Nadkarni
- Wellman Center For Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
46
|
Hajjarian Z, Nadkarni SK. Estimation of particle size variations for laser speckle rheology of materials. OPTICS LETTERS 2015; 40:764-7. [PMID: 25723427 PMCID: PMC4605544 DOI: 10.1364/ol.40.000764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Laser speckle rheology (LSR) is an optical technique for assessing the viscoelastic properties of materials with several industrial, biological, and medical applications. In LSR, the viscoelastic modulus, G*(ω), of a material is quantified by analyzing the temporal fluctuations of speckle patterns. However, the size of scattering particles within the material also influences the rate of speckle fluctuations, independent of sample mechanical properties, and complicates the accurate estimation of G*(ω). Here, we demonstrate that the average particle size may be retrieved from the azimuth-angle dependence of time-averaged speckle intensities, permitting the accurate quantification of the viscoelastic moduli of materials with unknown particle size distribution using LSR.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, BAR-7, Boston, Massachusetts 02114, USA
| | - Seemantini K. Nadkarni
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, BAR-7, Boston, Massachusetts 02114, USA
| |
Collapse
|
47
|
Gannavarpu R, Bhaduri B, Tangella K, Popescu G. Spatiotemporal characterization of a fibrin clot using quantitative phase imaging. PLoS One 2014; 9:e111381. [PMID: 25386701 PMCID: PMC4227684 DOI: 10.1371/journal.pone.0111381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022] Open
Abstract
Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents.
Collapse
Affiliation(s)
- Rajshekhar Gannavarpu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Basanta Bhaduri
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Krishnarao Tangella
- Department of Pathology, Christie Clinic, and University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|