1
|
Muriel J, Lukyanenko V, Kwiatkowski TA, Li Y, Bhattacharya S, Banford KK, Garman D, Bulgart HR, Sutton RB, Weisleder N, Bloch RJ. Nanodysferlins support membrane repair and binding to TRIM72/MG53 but do not localize to t-tubules or stabilize Ca 2+ signaling. Mol Ther Methods Clin Dev 2024; 32:101257. [PMID: 38779337 PMCID: PMC11109471 DOI: 10.1016/j.omtm.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Mutations in the DYSF gene, encoding the protein dysferlin, lead to several forms of muscular dystrophy. In healthy skeletal muscle, dysferlin concentrates in the transverse tubules and is involved in repairing the sarcolemma and stabilizing Ca2+ signaling after membrane disruption. The DYSF gene encodes 7-8 C2 domains, several Fer and Dysf domains, and a C-terminal transmembrane sequence. Because its coding sequence is too large to package in adeno-associated virus, the full-length sequence is not amenable to current gene delivery methods. Thus, we have examined smaller versions of dysferlin, termed "nanodysferlins," designed to eliminate several C2 domains, specifically C2 domains D, E, and F; B, D, and E; and B, D, E, and F. We also generated a variant by replacing eight amino acids in C2G in the nanodysferlin missing domains D through F. We electroporated dysferlin-null A/J mouse myofibers with Venus fusion constructs of these variants, or as untagged nanodysferlins together with GFP, to mark transfected fibers We found that, although these nanodysferlins failed to concentrate in transverse tubules, three of them supported membrane repair after laser wounding while all four bound the membrane repair protein, TRIM72/MG53, similar to WT dysferlin. By contrast, they failed to suppress Ca2+ waves after myofibers were injured by mild hypoosmotic shock. Our results suggest that the internal C2 domains of dysferlin are required for normal t-tubule localization and Ca2+ signaling and that membrane repair does not require these C2 domains.
Collapse
Affiliation(s)
- Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A. Kwiatkowski
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Yi Li
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kassidy K. Banford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hannah R. Bulgart
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Roger B. Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
3
|
Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca 2+ Elevation via PDCD6 and FKBP8. Int J Mol Sci 2023; 24:4707. [PMID: 36902136 PMCID: PMC10002499 DOI: 10.3390/ijms24054707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.
Collapse
Affiliation(s)
- Dennis G. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marian J. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neeraja P. Annam
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Yasa J, Reed CE, Bournazos AM, Evesson FJ, Pang I, Graham ME, Wark JR, Nijagal B, Kwan KH, Kwiatkowski T, Jung R, Weisleder N, Cooper ST, Lemckert FA. Minimal expression of dysferlin prevents development of dysferlinopathy in dysferlin exon 40a knockout mice. Acta Neuropathol Commun 2023; 11:15. [PMID: 36653852 PMCID: PMC9847081 DOI: 10.1186/s40478-022-01473-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.
Collapse
Affiliation(s)
- Joe Yasa
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia
| | - Claudia E. Reed
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Adam M. Bournazos
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Frances J. Evesson
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Ignatius Pang
- grid.414235.50000 0004 0619 2154Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Mark E. Graham
- grid.414235.50000 0004 0619 2154Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Jesse R. Wark
- grid.1013.30000 0004 1936 834XOperations, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Brunda Nijagal
- grid.1008.90000 0001 2179 088XMetabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Kim H. Kwan
- grid.1008.90000 0001 2179 088XMetabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Thomas Kwiatkowski
- grid.268132.c0000 0001 0701 2416West Chester University, West Chester, PA 19383 USA
| | - Rachel Jung
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210-1252 USA
| | - Noah Weisleder
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210-1252 USA
| | - Sandra T. Cooper
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Frances A. Lemckert
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
5
|
Lloyd EM, Pinniger GJ, Grounds MD, Murphy RM. Dysferlin Deficiency Results in Myofiber-Type Specific Differences in Abundances of Calcium-Handling and Glycogen Metabolism Proteins. Int J Mol Sci 2022; 24:ijms24010076. [PMID: 36613515 PMCID: PMC9820290 DOI: 10.3390/ijms24010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by a genetic deficiency of the membrane-associated protein dysferlin, which usually manifest post-growth in young adults. The disease is characterized by progressive skeletal muscle wasting in the limb-girdle and limbs, inflammation, accumulation of lipid droplets in slow-twitch myofibers and, in later stages, replacement of muscles by adipose tissue. Previously we reported myofiber-type specific differences in muscle contractile function of 10-month-old dysferlin-deficient BLAJ mice that could not be fully accounted for by altered myofiber-type composition. In order to further investigate these findings, we examined the impact of dysferlin deficiency on the abundance of calcium (Ca2+) handling and glucose/glycogen metabolism-related proteins in predominantly slow-twitch, oxidative soleus and fast-twitch, glycolytic extensor digitorum longus (EDL) muscles of 10-month-old wild-type (WT) C57BL/6J and dysferlin-deficient BLAJ male mice. Additionally, we compared the Ca2+ activation properties of isolated slow- and fast-twitch myofibers from 3-month-old WT and BLAJ male mice. Differences were observed for some Ca2+ handling and glucose/glycogen metabolism-related protein levels between BLAJ soleus and EDL muscles (compared with WT) that may contribute to the previously reported differences in function in these BLAJ muscles. Dysferlin deficiency did not impact glycogen content of whole muscles nor Ca2+ activation of the myofilaments, although soleus muscle from 10-month-old BLAJ mice had more glycogen than EDL muscles. These results demonstrate a further impact of dysferlin deficiency on proteins associated with excitation-contraction coupling and glycogen metabolism in skeletal muscles, potentially contributing to altered contractile function in dysferlinopathy.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin J. Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| | - Robyn M. Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
6
|
Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice. Cell Death Dis 2022; 13:975. [PMID: 36402750 PMCID: PMC9675822 DOI: 10.1038/s41419-022-05416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy.
Collapse
|
7
|
Lukyanenko V, Muriel J, Garman D, Breydo L, Bloch RJ. Elevated Ca 2+ at the triad junction underlies dysregulation of Ca 2+ signaling in dysferlin-null skeletal muscle. Front Physiol 2022; 13:1032447. [PMID: 36406982 PMCID: PMC9669649 DOI: 10.3389/fphys.2022.1032447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Dysferlin-null A/J myofibers generate abnormal Ca2+ transients that are slightly reduced in amplitude compared to controls. These are further reduced in amplitude by hypoosmotic shock and often appear as Ca2+ waves (Lukyanenko et al., J. Physiol., 2017). Ca2+ waves are typically associated with Ca2+-induced Ca2+ release, or CICR, which can be myopathic. We tested the ability of a permeable Ca2+ chelator, BAPTA-AM, to inhibit CICR in injured dysferlin-null fibers and found that 10-50 nM BAPTA-AM suppressed all Ca2+ waves. The same concentrations of BAPTA-AM increased the amplitude of the Ca2+ transient in A/J fibers to wild type levels and protected transients against the loss of amplitude after hypoosmotic shock, as also seen in wild type fibers. Incubation with 10 nM BAPTA-AM led to intracellular BAPTA concentrations of ∼60 nM, as estimated with its fluorescent analog, Fluo-4AM. This should be sufficient to restore intracellular Ca2+ to levels seen in wild type muscle. Fluo-4AM was ∼10-fold less effective than BAPTA-AM, however, consistent with its lower affinity for Ca2+. EGTA, which has an affinity for Ca2+ similar to BAPTA, but with much slower kinetics of binding, was even less potent when introduced as the -AM derivative. By contrast, a dysferlin variant with GCaMP6fu in place of its C2A domain accumulated at triad junctions, like wild type dysferlin, and suppressed all abnormal Ca2+ signaling. GCaMP6fu introduced as a Venus chimera did not accumulate at junctions and failed to suppress abnormal Ca2+ signaling. Our results suggest that leak of Ca2+ into the triad junctional cleft underlies dysregulation of Ca2+ signaling in dysferlin-null myofibers, and that dysferlin's C2A domain suppresses abnormal Ca2+ signaling and protects muscle against injury by binding Ca2+ in the cleft.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States
| | - Leonid Breydo
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Muriel J, Lukyanenko V, Kwiatkowski T, Bhattacharya S, Garman D, Weisleder N, Bloch RJ. The C2 domains of dysferlin: roles in membrane localization, Ca 2+ signalling and sarcolemmal repair. J Physiol 2022; 600:1953-1968. [PMID: 35156706 PMCID: PMC9285653 DOI: 10.1113/jp282648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in limb girdle muscular dystrophy 2B and Miyoshi myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domain C2A or C2B inhibits membrane repair completely, whereas deletion of C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signalling after hypo-osmotic shock. Our data suggest that (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signalling; (iii) transverse tubule localization is insufficient for normal Ca2+ signalling; and (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signalling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. KEY POINTS: Dysferlin, a transmembrane protein containing seven C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signalling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signalling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signalling and sarcolemmal membrane repair.
Collapse
Affiliation(s)
- Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tom Kwiatkowski
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
10
|
Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. Neuroscience 2019; 439:80-105. [PMID: 31351140 DOI: 10.1016/j.neuroscience.2019.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
A new mammalian neuromuscular preparation is introduced for physiology and microscopy of all sorts: the intrinsic muscle of the mouse ear. The great utility of this preparation is demonstrated by illustrating how it has permitted us to develop a wholly new technique for staining muscle T-tubules, the critical conductive-elements in muscle. This involves sequential immersion in dilute solutions of osmium and ferrocyanide, then tannic acid, and then uranyl acetate, all of which totally blackens the T-tubules but leaves the muscle pale, thereby revealing that the T-tubules in mouse ear-muscles become severely distorted in several pathological conditions. These include certain mouse-models of muscular dystrophy (specifically, dysferlin-mutations), certain mutations of muscle cytoskeletal proteins (specifically, beta-tubulin mutations), and also in denervation-fibrillation, as observed in mouse ears maintained with in vitro tissue-culture conditions. These observations permit us to generate the hypothesis that T-tubules are the "Achilles' heel" in several adult-onset muscular dystrophies, due to their unique susceptibility to damage via muscle lattice-dislocations. These new observations strongly encourage further in-depth studies of ear-muscle architecture, in the many available mouse-models of various devastating human muscle-diseases. Finally, we demonstrate that the delicate and defined physical characteristics of this 'new' mammalian muscle are ideal for ultrastructural study, and thereby facilitate the imaging of synaptic vesicle membrane recycling in mammalian neuromuscular junctions, a topic that is critical to myasthenia gravis and related diseases, but which has, until now, completely eluded electron microscopic analysis. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
11
|
Haynes VR, Keenan SN, Bayliss J, Lloyd EM, Meikle PJ, Grounds MD, Watt MJ. Dysferlin deficiency alters lipid metabolism and remodels the skeletal muscle lipidome in mice. J Lipid Res 2019; 60:1350-1364. [PMID: 31203232 DOI: 10.1194/jlr.m090845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Defects in the gene coding for dysferlin, a membrane-associated protein, affect many tissues, including skeletal muscles, with a resultant myopathy called dysferlinopathy. Dysferlinopathy manifests postgrowth with a progressive loss of skeletal muscle function, early intramyocellular lipid accumulation, and a striking later replacement of selective muscles by adipocytes. To better understand the changes underpinning this disease, we assessed whole-body energy homeostasis, skeletal muscle fatty acid metabolism, lipolysis in adipose tissue, and the skeletal muscle lipidome using young adult dysferlin-deficient male BLAJ mice and age-matched C57Bl/6J WT mice. BLAJ mice had increased lean mass and reduced fat mass associated with increased physical activity and increased adipose tissue lipolysis. Skeletal muscle fatty acid metabolism was remodeled in BLAJ mice, characterized by a partitioning of fatty acids toward storage rather than oxidation. Lipidomic analysis identified marked changes in almost all lipid classes examined in the skeletal muscle of BLAJ mice, including sphingolipids, phospholipids, cholesterol, and most glycerolipids but, surprisingly, not triacylglycerol. These observations indicate that an early manifestation of dysferlin deficiency is the reprogramming of skeletal muscle and adipose tissue lipid metabolism, which is likely to contribute to the progressive adverse histopathology in dysferlinopathies.
Collapse
Affiliation(s)
- Vanessa R Haynes
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Stacey N Keenan
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Jackie Bayliss
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Erin M Lloyd
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart Institute, Melbourne, Australia
| | - Miranda D Grounds
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Dysferlin-deficiency has greater impact on function of slow muscles, compared with fast, in aged BLAJ mice. PLoS One 2019; 14:e0214908. [PMID: 30970035 PMCID: PMC6457631 DOI: 10.1371/journal.pone.0214908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/24/2019] [Indexed: 12/26/2022] Open
Abstract
Dysferlinopathies are a form of muscular dystrophy caused by gene mutations resulting in deficiency of the protein dysferlin. Symptoms manifest later in life in a muscle specific manner, although the pathomechanism is not well understood. This study compared the impact of dysferlin-deficiency on in vivo and ex vivo muscle function, and myofibre type composition in slow (soleus) and fast type (extensor digitorum longus; EDL) muscles using male dysferlin-deficient (dysf-/-) BLAJ mice aged 10 months, compared with wild type (WT) C57Bl/6J mice. There was a striking increase in muscle mass of BLAJ soleus (+25%) (p<0.001), with no strain differences in EDL mass, compared with WT. In vivo measures of forelimb grip strength and wheel running capacity showed no strain differences. Ex vivo measures showed the BLAJ soleus had faster twitch contraction (-21%) and relaxation (-20%) times, and delayed post fatigue recovery (ps<0.05); whereas the BLAJ EDL had a slower relaxation time (+11%) and higher maximum rate of force production (+25%) (ps<0.05). Similar proportions of MHC isoforms were evident in the soleus muscles of both strains (ps>0.05); however, for the BLAJ EDL, there was an increased proportion of type IIx MHC isoform (+5.5%) and decreased type IIb isoform (-5.5%) (ps<0.01). This identification of novel differences in the impact of dysferlin-deficiency on slow and fast twitch muscles emphasises the importance of evaluating myofibre type specific effects to provide crucial insight into the mechanisms responsible for loss of function in dysferlinopathies; this is critical for the development of targeted future clinical therapies.
Collapse
|
13
|
Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, Peterson EL, Lehtimäki KK, Windish HP, Mittal PJ, Albrecht DE, Mendell JR, Rodino-Klapac LR. Systemic Delivery of Dysferlin Overlap Vectors Provides Long-Term Gene Expression and Functional Improvement for Dysferlinopathy. Hum Gene Ther 2018; 29:749-762. [PMID: 28707952 PMCID: PMC6066196 DOI: 10.1089/hum.2017.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Dysferlinopathies comprise a family of disorders caused by mutations in the dysferlin (DYSF) gene, leading to a progressive dystrophy characterized by chronic muscle fiber loss, fat replacement, and fibrosis. To correct the underlying histopathology and function, expression of full-length DYSF is required. Dual adeno-associated virus vectors have been developed, defined by a region of homology, to serve as a substrate for reconstitution of the full 6.5 kb dysferlin cDNA. Previous work studied the efficacy of this treatment through intramuscular and regional delivery routes. To maximize clinical efficacy, dysferlin-deficient mice were treated systemically to target all muscles through the vasculature for efficacy and safety studies. Mice were evaluated at multiple time points between 4 and 13 months post treatment for dysferlin expression and functional improvement using magnetic resonance imaging and magnetic resonance spectroscopy and membrane repair. A systemic dose of 6 × 1012 vector genomes resulted in widespread gene expression in the muscles. Treated muscles showed a significant decrease in central nucleation, collagen deposition, and improvement of membrane repair to wild-type levels. Treated gluteus muscles were significantly improved compared to placebo-treated muscles and were equivalent to wild type in volume, intra- and extramyocellular lipid accumulation, and fat percentage using magnetic resonance imaging and magnetic resonance spectroscopy. Dual-vector treatment allows for production of full-length functional dysferlin with no toxicity. This confirms previous safety data and validates translation of systemic gene delivery for dysferlinopathy patients.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Patricia C. Sondergaard
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan W. Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Eric R. Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ellyn L. Peterson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca 2+ release is modulated by dysferlin. J Physiol 2017; 595:5191-5207. [PMID: 28568606 DOI: 10.1113/jp274515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Brady S, Healy EG, Gang Q, Parton M, Quinlivan R, Jacob S, Curtis E, Al-Sarraj S, Sewry CA, Hanna MG, Houlden H, Beeson D, Holton JL. Tubular Aggregates and Cylindrical Spirals Have Distinct Immunohistochemical Signatures. J Neuropathol Exp Neurol 2016; 75:1171-1178. [DOI: 10.1093/jnen/nlw096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Wei B, Wei H, Jin JP. Dysferlin deficiency blunts β-adrenergic-dependent lusitropic function of mouse heart. J Physiol 2015; 593:5127-44. [PMID: 26415898 DOI: 10.1113/jp271225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 11/08/2022] Open
Abstract
Dysferlin is a cell membrane bound protein with a role in the repair of skeletal and cardiac muscle cells. Deficiency of dysferlin leads to limb-girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy. In cardiac muscle, dysferlin is located at the intercalated disc and transverse tubule membranes. Loss of dysferlin causes death of cardiomyocytes, notably in ageing hearts, leading to dilated cardiomyopathy and heart failure in LGM2B patients. To understand the primary pathogenesis and pathophysiology of dysferlin cardiomyopathy, we studied cardiac phenotypes of young adult dysferlin knockout mice and found early myocardial hypertrophy with largely compensated baseline cardiac function. Cardiomyocytes isolated from dysferlin-deficient mice showed normal shortening and re-lengthening velocities in the absence of external load with normal peak systolic Ca(2+) but slower Ca(2+) re-sequestration than wild-type controls. The effects of isoproterenol on relaxation velocity, left ventricular systolic pressure and stroke volume were blunted in dysferlin-deficient mouse hearts compared with that in wild-type hearts. Young dysferlin-deficient mouse hearts expressed normal isoforms of myofilament proteins whereas the phosphorylation of ventricular myosin light chain 2 was significantly increased, implying a molecular response to the impaired lusitropic function. These early phenotypes of diastolic cardiac dysfunction and blunted lusitropic response of cardiac muscle to β-adrenergic stimulation indicate a novel pathogenic mechanism of dysferlin cardiomyopathy.
Collapse
Affiliation(s)
- Bin Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
17
|
Demonbreun AR, Biersmith BH, McNally EM. Membrane fusion in muscle development and repair. Semin Cell Dev Biol 2015; 45:48-56. [PMID: 26537430 PMCID: PMC4679555 DOI: 10.1016/j.semcdb.2015.10.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair.
Collapse
|
18
|
Roche JA, Tulapurkar ME, Mueller AL, van Rooijen N, Hasday JD, Lovering RM, Bloch RJ. Myofiber damage precedes macrophage infiltration after in vivo injury in dysferlin-deficient A/J mouse skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1686-98. [PMID: 25920768 PMCID: PMC4450316 DOI: 10.1016/j.ajpath.2015.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
Mutations in the dysferlin gene (DYSF) lead to human muscular dystrophies known as dysferlinopathies. The dysferlin-deficient A/J mouse develops a mild myopathy after 6 months of age, and when younger models the subclinical phase of the human disease. We subjected the tibialis anterior muscle of 3- to 4-month-old A/J mice to in vivo large-strain injury (LSI) from lengthening contractions and studied the progression of torque loss, myofiber damage, and inflammation afterward. We report that myofiber damage in A/J mice occurs before inflammatory cell infiltration. Peak edema and inflammation, monitored by magnetic resonance imaging and by immunofluorescence labeling of neutrophils and macrophages, respectively, develop 24 to 72 hours after LSI, well after the appearance of damaged myofibers. Cytokine profiles 72 hours after injury are consistent with extensive macrophage infiltration. Dysferlin-sufficient A/WySnJ mice show much less myofiber damage and inflammation and lesser cytokine levels after LSI than do A/J mice. Partial suppression of macrophage infiltration by systemic administration of clodronate-incorporated liposomes fails to suppress LSI-induced damage or to accelerate torque recovery in A/J mice. The findings from our studies suggest that, although macrophage infiltration is prominent in dysferlin-deficient A/J muscle after LSI, it is the consequence and not the cause of progressive myofiber damage.
Collapse
Affiliation(s)
- Joseph A Roche
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland.
| | - Mohan E Tulapurkar
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Amber L Mueller
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Nico van Rooijen
- Clodronateliposomes.com, Amsterdam, the Netherlands; Department of Molecular Cell Biology, Faculty of Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeffrey D Hasday
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
19
|
Ankala A, Nallamilli BR, Rufibach LE, Hwang E, Hegde MR. Diagnostic overview of blood-based dysferlin protein assay for dysferlinopathies. Muscle Nerve 2014; 50:333-9. [PMID: 24488599 DOI: 10.1002/mus.24195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Dysferlin deficiency causes dysferlinopathies. Among peripheral blood mononuclear cells (PBMCs), the dysferlin protein is expressed specifically in CD14(+) monocytes. METHODS We quantified dysferlin protein levels in PBMC lysates of 77 individuals suspected clinically of having a dysferlinopathy to screen for true positives. Subsequent molecular confirmation was done by Sanger sequencing and comparative genomic hybridization arrays to establish diagnosis. RESULTS Of the 44 individuals who had significantly reduced dysferlin levels (≤10%), 41 underwent molecular testing. We identified at least 1 mutation in 85% (35 of 41), and 2 mutations, establishing a dysferlinopathy diagnosis, in 61% (25 of 41) of these individuals. Among those with dysferlin protein levels of >10% (33 of 77), only 1 individual (of 14 who underwent molecular testing) had a detectable mutation. CONCLUSIONS Our results suggest that dysferlin protein levels of ≤10% in PBMCs, are highly indicative of primary dysferlinopathies. However, this assay may not distinguish carriers from those with secondary dysferlin reduction.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia, 30322, USA
| | | | | | | | | |
Collapse
|
20
|
McDade JR, Archambeau A, Michele DE. Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. FASEB J 2014; 28:3660-70. [PMID: 24784578 DOI: 10.1096/fj.14-250191] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deficits in membrane repair may contribute to disease progression in dysferlin-deficient muscular dystrophy. Dysferlin, a type-II transmembrane phospholipid-binding protein, is hypothesized to regulate fusion of repair vesicles with the sarcolemma to facilitate membrane repair, but the dysferlin-containing compartments involved in membrane repair and the mechanism by which these compartments contribute to resealing are unclear. A dysferlin-pHluorin [dysf-pH-sensitive green fluorescent protein (pHGFP)] muscle-specific transgenic mouse was developed to examine the dynamic behavior and subcellular localization of dysferlin during membrane repair in adult skeletal muscle fibers. Live-cell confocal microscopy of uninjured adult dysf-pHGFP muscle fibers revealed that dysferlin is highly enriched in the sarcolemma and transverse tubules. Laser-wounding induced rapid recruitment of ∼30 μm of local dysferlin-containing sarcolemma, leading to formation of stable dysferlin accumulations surrounding lesions, endocytosis of dysferlin, and formation of large cytoplasmic vesicles from distal regions of the fiber. Disruption of the actin cytoskeleton decreased recruitment of sarcolemma-derived dysferlin to lesions in dysf-pHGFP fibers without affecting endocytosis and impaired membrane resealing in wild-type fibers, similar to findings in dysferlin deficiency (a 2-fold increase in FM1-43 uptake). Our data support a new mechanism whereby recruitment of sarcolemma-derived dysferlin creates an active zone of high lipid-binding activity at wounds to interact with repair vesicles and facilitate membrane resealing in skeletal muscle.
Collapse
Affiliation(s)
- Joel R McDade
- Department of Molecular and Integrative Physiology and
| | | | - Daniel E Michele
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Grounds MD, Terrill JR, Radley-Crabb HG, Robertson T, Papadimitriou J, Spuler S, Shavlakadze T. Lipid accumulation in dysferlin-deficient muscles. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1668-76. [PMID: 24685690 DOI: 10.1016/j.ajpath.2014.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 02/01/2023]
Abstract
Dysferlin is a membrane associated protein involved in vesicle trafficking and fusion. Defects in dysferlin result in limb-girdle muscular dystrophy type 2B and Miyoshi myopathy in humans and myopathy in A/J(dys-/-) and BLAJ mice, but the pathomechanism of the myopathy is not understood. Oil Red O staining showed many lipid droplets within the psoas and quadriceps muscles of dysferlin-deficient A/J(dys-/-) mice aged 8 and 12 months, and lipid droplets were also conspicuous within human myofibers from patients with dysferlinopathy (but not other myopathies). Electron microscopy of 8-month-old A/J(dys-/-) psoas muscles confirmed lipid droplets within myofibers and showed disturbed architecture of myofibers. In addition, the presence of many adipocytes was confirmed, and a possible role for dysferlin in adipocytes is suggested. Increased expression of mRNA for a gene involved in early lipogenesis, CCAAT/enhancer binding protein-δ, in 3-month-old A/J(dys-/-) quadriceps (before marked histopathology is evident), indicates early induction of lipogenesis/adipogenesis within dysferlin-deficient muscles. Similar results were seen for dysferlin-deficient BLAJ mice. These novel observations of conspicuous intermyofibrillar lipid and progressive adipocyte replacement in dysferlin-deficient muscles present a new focus for investigating the mechanisms that result in the progressive decline of muscle function in dysferlinopathies.
Collapse
Affiliation(s)
- Miranda D Grounds
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia.
| | - Jessica R Terrill
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Hannah G Radley-Crabb
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia; CHIRI Biosciences Research Precinct, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Terry Robertson
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - John Papadimitriou
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Berlin, Germany
| | - Tea Shavlakadze
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
22
|
Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca(2+) homeostasis in skeletal muscle. Front Physiol 2014; 5:89. [PMID: 24639655 PMCID: PMC3944681 DOI: 10.3389/fphys.2014.00089] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/15/2014] [Indexed: 11/13/2022] Open
Abstract
The class of muscular dystrophies linked to the genetic ablation or mutation of dysferlin, including Limb Girdle Muscular Dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), are late-onset degenerative diseases. In lieu of a genetic cure, treatments to prevent or slow the progression of dysferlinopathy are of the utmost importance. Recent advances in the study of dysferlinopathy have highlighted the necessity for the maintenance of calcium handling in altering or slowing the progression of muscular degeneration resulting from the loss of dysferlin. This review highlights new evidence for a role for dysferlin at the transverse (t-) tubule of striated muscle, where it is involved in maintaining t-tubule structure and function.
Collapse
Affiliation(s)
- Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Christopher W Ward
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
23
|
Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane. Proc Natl Acad Sci U S A 2013; 110:20831-6. [PMID: 24302765 DOI: 10.1073/pnas.1307960110] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysferlinopathies, most commonly limb girdle muscular dystrophy 2B and Miyoshi myopathy, are degenerative myopathies caused by mutations in the DYSF gene encoding the protein dysferlin. Studies of dysferlin have focused on its role in the repair of the sarcolemma of skeletal muscle, but dysferlin's association with calcium (Ca(2+)) signaling proteins in the transverse (t-) tubules suggests additional roles. Here, we reveal that dysferlin is enriched in the t-tubule membrane of mature skeletal muscle fibers. Following experimental membrane stress in vitro, dysferlin-deficient muscle fibers undergo extensive functional and structural disruption of the t-tubules that is ameliorated by reducing external [Ca(2+)] or blocking L-type Ca(2+) channels with diltiazem. Furthermore, we demonstrate that diltiazem treatment of dysferlin-deficient mice significantly reduces eccentric contraction-induced t-tubule damage, inflammation, and necrosis, which resulted in a concomitant increase in postinjury functional recovery. Our discovery of dysferlin as a t-tubule protein that stabilizes stress-induced Ca(2+) signaling offers a therapeutic avenue for limb girdle muscular dystrophy 2B and Miyoshi myopathy patients.
Collapse
|
24
|
Krajacic P, Pistilli EE, Tanis JE, Khurana TS, Lamitina ST. FER-1/Dysferlin promotes cholinergic signaling at the neuromuscular junction in C. elegans and mice. Biol Open 2013; 2:1245-52. [PMID: 24244862 PMCID: PMC3828772 DOI: 10.1242/bio.20135637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/25/2013] [Indexed: 12/28/2022] Open
Abstract
Dysferlin is a member of the evolutionarily conserved ferlin gene family. Mutations in Dysferlin lead to Limb Girdle Muscular Dystrophy 2B (LGMD2B), an inherited, progressive and incurable muscle disorder. However, the molecular mechanisms underlying disease pathogenesis are not fully understood. We found that both loss-of-function mutations and muscle-specific overexpression of C. elegans fer-1, the founding member of the Dysferlin gene family, caused defects in muscle cholinergic signaling. To determine if Dysferlin-dependent regulation of cholinergic signaling is evolutionarily conserved, we examined the in vivo physiological properties of skeletal muscle synaptic signaling in a mouse model of Dysferlin-deficiency. In addition to a loss in muscle strength, Dysferlin −/− mice also exhibited a cholinergic deficit manifested by a progressive, frequency-dependent decrement in their compound muscle action potentials following repetitive nerve stimulation, which was observed in another Dysferlin mouse model but not in a Dysferlin-independent mouse model of muscular dystrophy. Oral administration of Pyridostigmine bromide, a clinically used acetylcholinesterase inhibitor (AchE.I) known to increase synaptic efficacy, reversed the action potential defect and restored in vivo muscle strength to Dysferlin −/− mice without altering muscle pathophysiology. Our data demonstrate a previously unappreciated role for Dysferlin in the regulation of cholinergic signaling and suggest that such regulation may play a significant pathophysiological role in LGMD2B disease.
Collapse
Affiliation(s)
- Predrag Krajacic
- Department of Physiology, Richards Research Building A702, University of Pennsylvania , Philadelphia, PA 19104 , USA ; Pennsylvania Muscle Institute, 700A Clinical Research Building, University of Pennsylvania , Philadelphia, PA 19104 , USA
| | | | | | | | | |
Collapse
|
25
|
Flix B, de la Torre C, Castillo J, Casal C, Illa I, Gallardo E. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle. Int J Biochem Cell Biol 2013; 45:1927-38. [PMID: 23792176 DOI: 10.1016/j.biocel.2013.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) analysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct interaction of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.
Collapse
Affiliation(s)
- Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Expression of myoferlin in human and murine carcinoma tumors: role in membrane repair, cell proliferation, and tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1900-9. [PMID: 23499551 DOI: 10.1016/j.ajpath.2013.01.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/19/2022]
Abstract
Cancer cells are often characterized by high proliferation rates, a consequence of increased mitotic signaling coupled with unchecked cellular growth. We recently demonstrated that vascular endothelial cells unexpectedly express ferlins, a family of muscle-specific proteins capable of regulating the fusion of lipid patches to the plasma membrane, and that these highly regulated membrane fusion events are essential to endothelial cell proliferation and homeostasis. Here, we show that human and mouse breast cancer cell lines also express myoferlin at various levels, and that the processes of transformation, epithelial-mesenchymal transition, and metastasis do not appear to have any effect on myoferlin expression in vitro. In vivo, we observed that solid mouse and human carcinoma tissues also express high levels of myoferlin protein. Loss-of-function studies performed in mice revealed that myoferlin gene knockdown can attenuate cancer cell proliferation in vitro and decrease tumor burden, and that accelerated tumor cell growth appears to rely on intact myoferlin-dependent membrane repair and signaling under exponential growth conditions. To our knowledge, these data provide the first evidence of myoferlin expression in solid human and mouse tumors. We have thus identified a novel membrane repair process that likely helps sustain the high growth rates characteristic of tumors, and we suggest that interfering with normal myoferlin expression and/or membrane repair and remodeling may provide therapeutically relevant antiproliferative effects.
Collapse
|
27
|
Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer. PLoS One 2012; 7:e39233. [PMID: 22720081 PMCID: PMC3376115 DOI: 10.1371/journal.pone.0039233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/17/2012] [Indexed: 11/22/2022] Open
Abstract
The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.
Collapse
|