1
|
Mukherjee N, Contreras CJ, Lin L, Colglazier KA, Mather EG, Kalwat MA, Esser N, Kahn SE, Templin AT. RIPK3 promotes islet amyloid-induced β-cell loss and glucose intolerance in a humanized mouse model of type 2 diabetes. Mol Metab 2024; 80:101877. [PMID: 38218538 PMCID: PMC10830894 DOI: 10.1016/j.molmet.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Aggregation of human islet amyloid polypeptide (hIAPP), a β-cell secretory product, leads to islet amyloid deposition, islet inflammation and β-cell loss in type 2 diabetes (T2D), but the mechanisms that underlie this process are incompletely understood. Receptor interacting protein kinase 3 (RIPK3) is a pro-death signaling molecule that has recently been implicated in amyloid-associated brain pathology and β-cell cytotoxicity. Here, we evaluated the role of RIPK3 in amyloid-induced β-cell loss using a humanized mouse model of T2D that expresses hIAPP and is prone to islet amyloid formation. METHODS We quantified amyloid deposition, cell death and caspase 3/7 activity in islets isolated from WT, Ripk3-/-, hIAPP and hIAPP; Ripk3-/- mice in real time, and evaluated hIAPP-stimulated inflammation in WT and Ripk3-/- bone marrow derived macrophages (BMDMs) in vitro. We also characterized the role of RIPK3 in glucose stimulated insulin secretion (GSIS) in vitro and in vivo. Finally, we examined the role of RIPK3 in high fat diet (HFD)-induced islet amyloid deposition, β-cell loss and glucose homeostasis in vivo. RESULTS We found that amyloid-prone hIAPP mouse islets exhibited increased cell death and caspase 3/7 activity compared to amyloid-free WT islets in vitro, and this was associated with increased RIPK3 expression. hIAPP; Ripk3-/- islets were protected from amyloid-induced cell death compared to hIAPP islets in vitro, although amyloid deposition and caspase 3/7 activity were not different between genotypes. We observed that macrophages are a source of Ripk3 expression in isolated islets, and that Ripk3-/- BMDMs were protected from hIAPP-stimulated inflammatory gene expression (Tnf, Il1b, Nos2). Following 52 weeks of HFD feeding, islet amyloid-prone hIAPP mice exhibited impaired glucose tolerance and decreased β-cell area compared to WT mice in vivo, whereas hIAPP; Ripk3-/- mice were protected from these impairments. CONCLUSIONS In conclusion, loss of RIPK3 protects from amyloid-induced inflammation and islet cell death in vitro and amyloid-induced β-cell loss and glucose intolerance in vivo. We propose that therapies targeting RIPK3 may reduce islet inflammation and β-cell loss and improve glucose homeostasis in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher J Contreras
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Kaitlyn A Colglazier
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Egan G Mather
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Michael A Kalwat
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Alonso L, Piron A, Morán I, Guindo-Martínez M, Bonàs-Guarch S, Atla G, Miguel-Escalada I, Royo R, Puiggròs M, Garcia-Hurtado X, Suleiman M, Marselli L, Esguerra JLS, Turatsinze JV, Torres JM, Nylander V, Chen J, Eliasson L, Defrance M, Amela R, Mulder H, Gloyn AL, Groop L, Marchetti P, Eizirik DL, Ferrer J, Mercader JM, Cnop M, Torrents D. TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Rep 2021; 37:109807. [PMID: 34644572 PMCID: PMC8864863 DOI: 10.1016/j.celrep.2021.109807] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWASs) identified hundreds of signals associated with type 2 diabetes (T2D). To gain insight into their underlying molecular mechanisms, we have created the translational human pancreatic islet genotype tissue-expression resource (TIGER), aggregating >500 human islet genomic datasets from five cohorts in the Horizon 2020 consortium T2DSystems. We impute genotypes using four reference panels and meta-analyze cohorts to improve the coverage of expression quantitative trait loci (eQTL) and develop a method to combine allele-specific expression across samples (cASE). We identify >1 million islet eQTLs, 53 of which colocalize with T2D signals. Among them, a low-frequency allele that reduces T2D risk by half increases CCND2 expression. We identify eight cASE colocalizations, among which we found a T2D-associated SLC30A8 variant. We make all data available through the TIGER portal (http://tiger.bsc.es), which represents a comprehensive human islet genomic data resource to elucidate how genetic variation affects islet function and translates into therapeutic insight and precision medicine for T2D.
Collapse
Affiliation(s)
- Lorena Alonso
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels 1050, Belgium
| | - Ignasi Morán
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Marta Guindo-Martínez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Sílvia Bonàs-Guarch
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Goutham Atla
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Irene Miguel-Escalada
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Romina Royo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Montserrat Puiggròs
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Xavier Garcia-Hurtado
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Jonathan L S Esguerra
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö 214 28, Sweden
| | | | - Jason M Torres
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Ji Chen
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter EX4 4PY, UK
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö 214 28, Sweden
| | - Matthieu Defrance
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Ramon Amela
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö 214 28, Sweden
| | - Anna L Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK; Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA; NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7DQ, UK; Stanford Diabetes Research Centre, Stanford University, Stanford, CA 94305, USA
| | - Leif Groop
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö 214 28, Sweden; Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö 214 28, Sweden; Finnish Institute of Molecular Medicine Finland (FIMM), Helsinki University, Helsinki 00014, Finland
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Jorge Ferrer
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain; Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Josep M Mercader
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain; Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium.
| | - David Torrents
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
3
|
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater 2021; 10:e2100965. [PMID: 34480420 DOI: 10.1002/adhm.202100965] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic β-cells in response to autoimmune reactions. Shapiro et al. conducted novel islet transplantation with a glucocorticoid-free immunosuppressive agent in 2000 and achieved great success; since then, islet transplantation has been increasingly regarded as a promising strategy for the curative treatment of T1DM. However, many unavoidable challenges, such as a lack of donors, poor revascularization, blood-mediated inflammatory reactions, hypoxia, and side effects caused by immunosuppression have severely hindered the widespread application of islet transplantation in clinics. Biomaterial-based encapsulation and delivery strategies are proposed for overcoming these obstacles, and have demonstrated remarkable improvements in islet transplantation outcomes. Herein, the major problems faced by islet transplantation are summarized and updated biomaterial-based strategies for islet transplantation, including islet encapsulation across different scales, delivery of stem cell-derived beta cells, co-delivery of islets with accessory cells and immunomodulatory molecules are highlighted.
Collapse
Affiliation(s)
- Siying Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hai Huang
- Department of Urology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 P. R. China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
4
|
Hogan MF, Ziemann M, K N H, Rodriguez H, Kaspi A, Esser N, Templin AT, El-Osta A, Kahn SE. RNA-seq-based identification of Star upregulation by islet amyloid formation. Protein Eng Des Sel 2020; 32:67-76. [PMID: 31504890 DOI: 10.1093/protein/gzz022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022] Open
Abstract
Aggregation of islet amyloid polypeptide (IAPP) into islet amyloid results in β-cell toxicity in human type 2 diabetes. To determine the effect of islet amyloid formation on gene expression, we performed ribonucleic acid (RNA) sequencing (RNA-seq) analysis using cultured islets from either wild-type mice (mIAPP), which are not amyloid prone, or mice that express human IAPP (hIAPP), which develop amyloid. Comparing mIAPP and hIAPP islets, 5025 genes were differentially regulated (2439 upregulated and 2586 downregulated). When considering gene sets (reactomes), 248 and 52 pathways were up- and downregulated, respectively. Of the top 100 genes upregulated under two conditions of amyloid formation, seven were common. Of these seven genes, only steroidogenic acute regulatory protein (Star) demonstrated no effect of glucose per se to modify its expression. We confirmed this differential gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and also demonstrated the presence of STAR protein in islets containing amyloid. Furthermore, Star is a part of reactomes representing metabolism, metabolism of lipids, metabolism of steroid hormones, metabolism of steroids and pregnenolone biosynthesis. Thus, examining gene expression that is differentially regulated by islet amyloid has the ability to identify new molecules involved in islet physiology and pathology applicable to type 2 diabetes.
Collapse
Affiliation(s)
- Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Harikrishnan K N
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Hanah Rodriguez
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Antony Kaspi
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| | - Andrew T Templin
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| |
Collapse
|
5
|
Anquetil F, Mondanelli G, Gonzalez N, Rodriguez Calvo T, Zapardiel Gonzalo J, Krogvold L, Dahl-Jørgensen K, Van den Eynde B, Orabona C, Grohmann U, von Herrath MG. Loss of IDO1 Expression From Human Pancreatic β-Cells Precedes Their Destruction During the Development of Type 1 Diabetes. Diabetes 2018; 67:1858-1866. [PMID: 29945890 PMCID: PMC6110313 DOI: 10.2337/db17-1281] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Indoleamine 2,3 dioxygenase-1 (IDO1) is a powerful immunoregulatory enzyme that is deficient in patients with type 1 diabetes (T1D). In this study, we present the first systematic evaluation of IDO1 expression and localization in human pancreatic tissue. Although IDO1 was constitutively expressed in β-cells from donors without diabetes, less IDO1 was expressed in insulin-containing islets from double autoantibody-positive donors and patients with recent-onset T1D, although it was virtually absent in insulin-deficient islets from donors with T1D. Scatter plot analysis suggested that IDO1 decay occurred in individuals with multiple autoantibodies, prior to β-cell demise. IDO1 impairment might therefore contribute to β-cell demise and could potentially emerge as a promising therapeutic target.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Autoantibodies/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Autoimmunity
- Cadaver
- Cohort Studies
- Cross-Sectional Studies
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Disease Progression
- Down-Regulation
- Female
- Fluorescent Antibody Technique, Indirect
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Insulin/metabolism
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Male
- Middle Aged
- Prediabetic State/immunology
- Prediabetic State/metabolism
- Prediabetic State/pathology
- Prediabetic State/physiopathology
- Protein Transport
- Young Adult
Collapse
Affiliation(s)
| | | | | | | | | | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Benoit Van den Eynde
- de Duve Institute, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
| | | | | | - Matthias G von Herrath
- La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Novo Nordisk Diabetes Research & Development Center, Seattle, WA
| |
Collapse
|
6
|
Canzano JS, Nasif LH, Butterworth EA, Fu DA, Atkinson MA, Campbell-Thompson M. Islet Microvasculature Alterations With Loss of Beta-cells in Patients With Type 1 Diabetes. J Histochem Cytochem 2018; 67:41-52. [PMID: 29771178 DOI: 10.1369/0022155418778546] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Islet microvasculature provides key architectural and functional roles, yet the morphological features of islets from patients with type 1 diabetes are poorly defined. We examined islet and exocrine microvasculature networks by multiplex immunofluorescence imaging of pancreases from organ donors with and without type 1 diabetes (n=17 and n=16, respectively) and determined vessel diameter, density, and area. We also analyzed these variables in insulin-positive and insulin-negative islets of 7 type 1 diabetes donors. Control islet vessel diameter was significantly larger (7.6 ± 1.1 μm) compared with vessels in diabetic islets (6.2 ± 0.8 μm; p<0.001). Control islet vessel density (number/islet) was significantly lower (5.3 ± 0.6) versus diabetic islets (9.3 ± 0.2; p<0.001). Exocrine vessel variables were not significantly different between groups. Islets with residual beta-cells were comparable to control islets for both vessel diameter and density and were significantly different from insulin-negative islets within diabetic donors (p<0.05). Islet smooth muscle actin area had a significant positive correlation with age in both groups (p<0.05), which could negatively impact islet transplantation efficiency from older donors. These data underscore the critical relationship of islet beta-cells and islet vessel morphology in type 1 diabetes. These studies provide new knowledge of the islet microvasculature in diabetes and aging.
Collapse
Affiliation(s)
- Joseph S Canzano
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Lith H Nasif
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Elizabeth A Butterworth
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Dongtao A Fu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Templin AT, Samarasekera T, Meier DT, Hogan MF, Mellati M, Crow MT, Kitsis RN, Zraika S, Hull RL, Kahn SE. Apoptosis Repressor With Caspase Recruitment Domain Ameliorates Amyloid-Induced β-Cell Apoptosis and JNK Pathway Activation. Diabetes 2017; 66:2636-2645. [PMID: 28729244 PMCID: PMC5606321 DOI: 10.2337/db16-1352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 07/13/2017] [Indexed: 12/28/2022]
Abstract
Islet amyloid is present in more than 90% of individuals with type 2 diabetes, where it contributes to β-cell apoptosis and insufficient insulin secretion. Apoptosis repressor with caspase recruitment domain (ARC) binds and inactivates components of the intrinsic and extrinsic apoptosis pathways and was recently found to be expressed in islet β-cells. Using a human islet amyloid polypeptide transgenic mouse model of islet amyloidosis, we show ARC knockdown increases amyloid-induced β-cell apoptosis and loss, while ARC overexpression decreases amyloid-induced apoptosis, thus preserving β-cells. These effects occurred in the absence of changes in islet amyloid deposition, indicating ARC acts downstream of amyloid formation. Because islet amyloid increases c-Jun N-terminal kinase (JNK) pathway activation, we investigated whether ARC affects JNK signaling in amyloid-forming islets. We found ARC knockdown enhances JNK pathway activation, whereas ARC overexpression reduces JNK, c-Jun phosphorylation, and c-Jun target gene expression (Jun and Tnf). Immunoprecipitation of ARC from mouse islet lysates showed ARC binds JNK, suggesting interaction between JNK and ARC decreases amyloid-induced JNK phosphorylation and downstream signaling. These data indicate that ARC overexpression diminishes amyloid-induced JNK pathway activation and apoptosis in the β-cell, a strategy that may reduce β-cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Andrew T Templin
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| | - Tanya Samarasekera
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| | - Daniel T Meier
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| | - Meghan F Hogan
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| | - Mahnaz Mellati
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| | - Michael T Crow
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Sakeneh Zraika
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| | - Rebecca L Hull
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| | - Steven E Kahn
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Meier DT, Entrup L, Templin AT, Hogan MF, Mellati M, Zraika S, Hull RL, Kahn SE. The S20G substitution in hIAPP is more amyloidogenic and cytotoxic than wild-type hIAPP in mouse islets. Diabetologia 2016; 59:2166-71. [PMID: 27393137 PMCID: PMC5026922 DOI: 10.1007/s00125-016-4045-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS The S20G human islet amyloid polypeptide (hIAPP) substitution is associated with an earlier onset of type 2 diabetes in humans. Studies of synthetic S20G hIAPP in cell-free systems and immortalised beta cells have suggested that this may be due to increased hIAPP amyloidogenicity and cytotoxicity. Thus, using primary islets from mice with endogenous S20G hIAPP expression, we sought to determine whether the S20G gene mutation leads to increased amyloid-induced toxicity, beta cell loss and reduced beta cell function. METHODS Islets from mice in which mouse Iapp was replaced with human wild-type or S20G hIAPP were isolated and cultured in vitro under amyloid-forming conditions. Levels of insulin and hIAPP mRNA and protein, amyloid deposition and beta cell apoptosis and area, as well as glucose-stimulated insulin and hIAPP secretion, were quantified. RESULTS Islets expressing S20G hIAPP cultured in 16.7 mmol/l glucose demonstrated increased amyloid deposition and beta cell apoptosis, reduced beta cell area, decreased insulin content and diminished glucose-stimulated insulin secretion, compared with islets expressing wild-type hIAPP. Amyloid deposition and beta cell apoptosis were also increased when S20G islets were cultured in 11.1 mmol/l glucose (the concentration that is thought to be physiological for mouse islets). CONCLUSIONS/INTERPRETATION S20G hIAPP reduces beta cell number and function, thereby possibly explaining the earlier onset of type 2 diabetes in individuals carrying this gene mutation.
Collapse
Affiliation(s)
- Daniel T Meier
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Leon Entrup
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Meghan F Hogan
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Mahnaz Mellati
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Sakeneh Zraika
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Hogan MF, Meier DT, Zraika S, Templin AT, Mellati M, Hull RL, Leissring MA, Kahn SE. Inhibition of Insulin-Degrading Enzyme Does Not Increase Islet Amyloid Deposition in Vitro. Endocrinology 2016; 157:3462-8. [PMID: 27404391 PMCID: PMC5007890 DOI: 10.1210/en.2016-1410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Islet amyloid deposition in human type 2 diabetes results in β-cell loss. These amyloid deposits contain the unique amyloidogenic peptide human islet amyloid polypeptide (hIAPP), which is also a known substrate of the protease insulin-degrading enzyme (IDE). Whereas IDE inhibition has recently been demonstrated to improve glucose metabolism in mice, inhibiting it has also been shown to increase cell death when synthetic hIAPP is applied exogenously to a β-cell line. Thus, we wanted to determine whether a similar deleterious effect is observed when hIAPP is endogenously produced and secreted from islets. To address this issue, we cultured hIAPP transgenic mouse islets that have the propensity to form amyloid for 48 and 144 hours in 16.7 mM glucose in the presence and absence of the IDE inhibitor 1. At neither time interval did IDE inhibition increase amyloid formation or β-cell loss. Thus, the inhibition of IDE may represent an approach to improve glucose metabolism in human type 2 diabetes, without inducing amyloid deposition and its deleterious effects.
Collapse
Affiliation(s)
- Meghan F Hogan
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| | - Daniel T Meier
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| | - Andrew T Templin
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| | - Mahnaz Mellati
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| | - Malcolm A Leissring
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| | - Steven E Kahn
- Division of Metabolism, Endocrinology, and Nutrition (M.F.H., D.T.M., S.Z., A.T.T., M.M., R.L.H., S.E.K.), Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108; and Institute for Memory Impairments and Neurological Disorders (M.A.L.), University of California, Irvine, Irvine, California 92697
| |
Collapse
|
10
|
PIK3CD promoted proliferation in diffuse large B cell lymphoma through upregulation of c-myc. Tumour Biol 2016; 37:12767-12777. [PMID: 27448819 DOI: 10.1007/s13277-016-5225-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
Abstract
Despite PIK3CD has been extensively reported in cancers, however, little evidence has been available regarding its role in the setting of diffuse large B cell lymphoma (DLBCL). In the present study, to investigate the role of PIK3CD in DLBCL, relevant experiments were carried out on both in vivo clinical tissue level and in vitro cell line level. Prognostic and clinicopathological significance were analyzed after immunohistochemical assay of PIK3CD expression on DLBCL tissue microarray. MTT assay and flow cytometry were employed to evaluate the proliferative variation, cell cycle, and apoptosis. Athymic nude mice xenografted with DLBCL cell line were employed to confirm the role of PIK3CD. It was found that there was a significant difference between expression of PIK3CD and international prognosis index (IPI), performance state (PS), and inferior overall prognosis. Furthermore, PIK3CD can promote proliferation and prevent apoptosis in DLBCL cells in vitro through upregulation of c-myc and p-AKT and in contrast downregulation of p21 and p27. In nude mice model, knock-down of PIK3CD was shown to be able to suppress the proliferation of DLBCL but not significantly compared with control group. Taken together, our study showed that PIK3CD can promote proliferation of DLBCL cells both in vitro and in vivo, suggesting that PIK3CD could be druggable in the therapy of DLBCL.
Collapse
|
11
|
PIK3CA promotes proliferation and motility but is unassociated with lymph node metastasis or prognosis in esophageal squamous cell carcinoma. Hum Pathol 2016; 53:121-9. [PMID: 27001433 DOI: 10.1016/j.humpath.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 11/23/2022]
Abstract
The PIK3CA mutation has been extensively reported in the setting of cancers; however, the clinicopathological significance of PIK3CA expression has rarely been discussed in esophageal squamous cell carcinoma. In the present study, to confirm the significance of PIK3CA expression in association with metastasis and prognosis, which has been somewhat controversial in esophageal squamous cell carcinoma (ESCC), the relationship between clinicopathological features of ESCC and PIK3CA expression was analyzed using immunohistochemistry with a tissue microarray. Meanwhile, as additional verification and an ethnic control, another independent small cohort of Kazakh ESCC were analyzed by immunohistochemistry. To investigate the pilot role of PIK3CA in ESCC cells, ESCC cell lines ECa109 and EC9706 were transiently transfected with specific siRNA against PIK3CA. The silencing effect was detected by Western blot. Cell proliferation was examined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay; apoptosis and the cell cycles were analyzed by flow cytometry. Furthermore, the migratory and invasive ability were evaluated by wound healing and transwell invasion assay, respectively. Expression of PIK3CA was significantly higher in ESCC than in paired normal controls and was ethnicity independent; no statistically significant difference was observed between PIK3CA expression and sex, age, depth of invasion, tumor differentiation, lymph node metastasis, or prognosis. Proliferation, migration, and invasion were all markedly reduced after knockout of PIK3CA. Moreover, the cell cycle was arrested at the S phase, and the apoptosis rate was significantly increased, suggesting that PIK3CA plays a key role in promoting the proliferation and motility of ESCC cells.
Collapse
|
12
|
Retraction note to: KDM3A confers metastasis and chemoresistance in epithelial ovarian cancer. J Mol Histol 2016; 46:511-8. [PMID: 26779649 DOI: 10.1007/s10735-016-9653-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Zheng S, Yang C, Liu T, Liu Q, Dai F, Sheyhidin I, Lu X. Clinicopathological significance of p38β, p38γ, and p38δ and its biological roles in esophageal squamous cell carcinoma. Tumour Biol 2015; 37:7255-66. [PMID: 26666822 DOI: 10.1007/s13277-015-4610-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
P38β, p38γ, and p38δ have been sporadically and scarcely reported to be involved in the carcinogenesis of cancers, compared with p38α isoform. However, little has been known regarding their clinicopathological significance and biological roles in esophageal squamous cell carcinoma (ESCC). Expression status of p38β, p38γ, and p38δ was assayed using immunohistochemistry with ESCC tissue microarray; ensuing clinicopathological significance was statistically analyzed. To define its biological roles on proliferation, migration and invasion of ESCC cell line Eca109 in vitro, MTT, wound healing, and Transwell assays were employed, respectively. As confirmation, athymic nude mice were taken to verify the effect over proliferation in vivo. It was found that both p38β and p38δ expression, other than p38γ, were significantly higher in ESCC tissues compared with paired normal controls. In terms of prognosis, only p38β expression was observed to be significantly associated with overall prognosis. Clinicopathologically, there was significant association between p38γ expression and clinical stage, lymph nodes metastases, and tumor volume. No significant association was found for p38β and p38δ between its expression and other clinicopathological parameters other than significant difference of expression between ESCC versus normal control. In Eca109, it was observed that p38β, p38γ, and p38δ can promote the cell growth and motility. As verification, over-expression of p38δ can promote, whereas knockdown of p38γ can prevent, the tumorigenesis in nude mice model xenografted with Eca109 cells whose basal level of p38δ was stably over-expressed and p38γ was stably knocked down. Together, our results demonstrate that p38β, p38γ, and p38δ played oncogenic roles in ESCC.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China.,State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Chenchen Yang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China.,State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Tao Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China.,State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China.,State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Fang Dai
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China.,State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Ilyar Sheyhidin
- State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China. .,State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China. .,Clinical Medical Research Institute, State Key Lab Breeding Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
14
|
RETRACTED ARTICLE: KDM3A confers metastasis and chemoresistance in epithelial ovarian cancer. J Mol Histol 2015; 47:103. [DOI: 10.1007/s10735-015-9642-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
15
|
Meier DT, Tu LH, Zraika S, Hogan MF, Templin AT, Hull RL, Raleigh DP, Kahn SE. Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity. J Biol Chem 2015; 290:30475-85. [PMID: 26483547 DOI: 10.1074/jbc.m115.676692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/21/2022] Open
Abstract
Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1-15, 1-25, 16-37, 16-25, and 26-37. The fragments 1-15, 1-25, and 26-37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16-37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16-37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16-37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Daniel T Meier
- From the VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98108
| | - Ling-Hsien Tu
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, and
| | - Sakeneh Zraika
- From the VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98108
| | - Meghan F Hogan
- From the VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98108
| | - Andrew T Templin
- From the VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98108
| | - Rebecca L Hull
- From the VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98108
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, and Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Steven E Kahn
- From the VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98108,
| |
Collapse
|
16
|
Hull RL, Baskin DG. Histochemical Insights into Pancreatic Islet Biology. J Histochem Cytochem 2015. [PMID: 26216132 DOI: 10.1369/0022155415586442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rebecca L Hull
- Veterans Affairs Puget Sound Health Care System, Research and Development Service, Seattle, WashingtonUniversity of Washington, Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Seattle, Washington (RLH,DGB)
| | - Denis G Baskin
- Veterans Affairs Puget Sound Health Care System, Research and Development Service, Seattle, WashingtonUniversity of Washington, Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Seattle, Washington (RLH,DGB)
| |
Collapse
|