1
|
Chen F, Zhang Z, Zhang H, Guo P, Feng J, Shen H, Liu X. Activation of α7 Nicotinic Acetylcholine Receptor Improves Muscle Endurance by Upregulating Orosomucoid Expression and Glycogen Content in Mice. J Cell Biochem 2024; 125:e30630. [PMID: 39014907 DOI: 10.1002/jcb.30630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR+/+ mice but not α7nAChR-/- mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Pengyue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Pan L, He X, Xu R, Bhattarai U, Niu Z, do Carmo J, Sun Y, Zeng H, Clemmer JS, Chen JX, Chen Y. Endothelial specific prolyl hydroxylase domain-containing protein 2 deficiency attenuates aging-related obesity and exercise intolerance. GeroScience 2024; 46:3945-3956. [PMID: 38462569 PMCID: PMC11226575 DOI: 10.1007/s11357-024-01108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Obesity and exercise intolerance greatly reduce the life quality of older people. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an important enzyme in modulating hypoxia-inducible factor-alpha (HIF) protein. Using vascular endothelial cell-specific PHD2 gene knockout (PHD2 ECKO) mice, we investigated the role of endothelial PHD2 in aging-related obesity and exercise capacity. Briefly, PHD2 ECKO mice were obtained by crossing PHD2-floxed mice with VE-Cadherin (Cdh5)-Cre transgenic mice. The effect of PHD2 ECKO on obesity and exercise capacity in PHD2 ECKO mice and control PHD2f/f mice were determined in young mice (6 to 7 months) and aged mice (16-18 months). We found that aged PHD2 ECKO mice, but not young mice, exhibited a lean phenotype, characterized by lower fat mass, and its ratio to lean weight, body weight, or tibial length, while their food uptake was not reduced compared with controls. Moreover, as compared with aged control mice, aged PHD2 ECKO mice exhibited increased oxygen consumption at rest and during exercise, and the maximum rate of oxygen consumption (VO2 max) during exercise. Furthermore, as compared with corresponding control mice, both young and aged PHD2 ECKO mice demonstrated improved glucose tolerance and lower insulin resistance. Together, these data demonstrate that inhibition of vascular endothelial PHD2 signaling significantly attenuates aging-related obesity, exercise intolerance, and glucose intolerance.
Collapse
Affiliation(s)
- Lihong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xiaochen He
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Rui Xu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Umesh Bhattarai
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ziru Niu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jussara do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
3
|
Church MC, Workman JL. The SWI/SNF chromatin remodeling complex: a critical regulator of metabolism. Biochem Soc Trans 2024; 52:1327-1337. [PMID: 38666605 PMCID: PMC11346436 DOI: 10.1042/bst20231141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
The close relationship between chromatin and metabolism has been well-studied in recent years. Many metabolites have been found to be cofactors used to modify chromatin, and these modifications can in turn affect gene transcription. One chromatin-associated factor responsible for regulating transcription is the SWI/SNF complex, an ATP-dependent chromatin remodeler conserved throughout eukaryotes. SWI/SNF was originally described in yeast as regulating genes involved in carbon source metabolism and mating type switching, and its mammalian counterpart has been extensively studied for its role in diseases such as cancer. The yeast SWI/SNF complex is closely associated with activation of stress response genes, many of which have metabolic functions. It is now recognized that this is a conserved function of the complex, and recent work has shown that mammalian SWI/SNF is also a key regulator of metabolic transcription. Emerging evidence suggests that loss of SWI/SNF introduces vulnerabilities to cells due to this metabolic influence, and that this may present opportunities for treatment of SWI/SNF-deficient cancers.
Collapse
Affiliation(s)
- Michael C. Church
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| | - Jerry L. Workman
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| |
Collapse
|
4
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
5
|
Beiter T, Zügel M, Hudemann J, Schild M, Fragasso A, Burgstahler C, Krüger K, Mooren FC, Steinacker JM, Nieß AM. The Acute, Short-, and Long-Term Effects of Endurance Exercise on Skeletal Muscle Transcriptome Profiles. Int J Mol Sci 2024; 25:2881. [PMID: 38474128 DOI: 10.3390/ijms25052881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years). We characterized baseline differences as well as acute exercise-induced transcriptome responses in vastus lateralis biopsy specimens of endurance-trained athletes (ET; n = 8; VO2max, 67.2 ± 8.9 mL/min/kg) and sedentary healthy volunteers (SED; n = 8; VO2max, 40.3 ± 7.6 mL/min/kg) using microarray technology. A second cohort of SED volunteers (SED-T; n = 10) followed an 8-week endurance training program to assess expression changes of selected marker genes in the course of skeletal muscle adaptation. We deciphered differential baseline signatures that reflected major differences in the oxidative and metabolic capacity of the endurance-trained and untrained muscles. SED-T individuals in the training group displayed an up-regulation of nodal regulators of oxidative adaptation after 3 weeks of training and a significant shift toward the ET signature after 8 weeks. Transcriptome changes provoked by 1 h of intense cycling exercise only poorly overlapped with the genes that constituted the differential baseline signature of ETs and SEDs. Overall, acute exercise-induced transcriptional responses were connected to pathways of contractile, oxidative, and inflammatory stress and revealed a complex and highly regulated framework of interwoven signaling cascades to cope with exercise-provoked homeostatic challenges. While temporal transcriptional programs that were activated in SEDs and ETs were quite similar, the quantitative divergence in the acute response transcriptomes implicated divergent kinetics of gene induction and repression following an acute bout of exercise. Together, our results provide an extensive examination of the transcriptional framework that underlies skeletal muscle plasticity.
Collapse
Affiliation(s)
- Thomas Beiter
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Martina Zügel
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Jens Hudemann
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Marius Schild
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Christof Burgstahler
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany
| | - Frank C Mooren
- Department of Medicine, Faculty of Health, University of Witten/Herdecke, 58455 Witten, Germany
| | - Jürgen M Steinacker
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Andreas M Nieß
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Urdampilleta Otegui A, Roche Collado E. Intermittent hypoxia in sport nutrition, performance, health status and body composition. NUTR HOSP 2024; 41:224-229. [PMID: 38095103 DOI: 10.20960/nh.04692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction Intermittent hypoxia refers to the discontinuous use of low oxygen levels in normobaric environment. These conditions can be reproduced in hypoxic tents or chambers while the individual is training in different physical activity protocols. Intermittent hypoxia can affect several body systems, impacting nutrition, physical performance, health status and body composition. Therefore, it is necessary to assess protocols, regarding time and frequency of exposure, passive exposure or training in hypoxia, and the simulated altitude. At the molecular level, the hypoxia-inducible factor-1α is the primary factor mediating induction of target genes, including vascular endothelial growth factor and erythropoietin. The goal of these molecular changes is to preserve oxygen supply for cardiac and neuronal function. In addition, hypoxia produces a sympathetic adrenal activation that can increase the resting metabolic rate. Altogether, these changes are instrumental in protocols designed to improve physical performance as well as functional parameters for certain pathological disorders. In addition, nutrition must adapt to the increased energy expenditure. In this last context, performing physical activity in intermittent hypoxia improves insulin sensitivity by increasing the presence of the glucose transporter GLUT-4 in muscle membranes. These changes could also be relevant for obesity and type 2 diabetes treatment. Also, the anorectic effect of intermittent hypoxia modulates serotonin and circulating leptin levels, which may contribute to regulate food intake and favor body weight adaptation for optimal sport performance and health. All these actions suggest that intermittent hypoxia can be a very effective tool in sports training as well as in certain clinical protocols.
Collapse
Affiliation(s)
| | - Enrique Roche Collado
- Department of Applied Biology-Nutrition. Institute of Bioengineering. Universidad Miguel Hernández
| |
Collapse
|
7
|
Talbot NP, Cheng H, Hanstock H, Smith TG, Dorrington KL, Robbins PA. Hypoxic pulmonary vasoconstriction does not limit maximal exercise capacity in healthy volunteers breathing 12% oxygen at sea level. Physiol Rep 2024; 12:e15944. [PMID: 38366054 PMCID: PMC10873163 DOI: 10.14814/phy2.15944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Maximal exercise capacity is reduced at altitude or during hypoxia at sea level. It has been suggested that this might reflect increased right ventricular afterload due to hypoxic pulmonary vasoconstriction. We have shown previously that the pulmonary vascular sensitivity to hypoxia is enhanced by sustained isocapnic hypoxia, and inhibited by intravenous iron. In this study, we tested the hypothesis that elevated pulmonary artery pressure contributes to exercise limitation during acute hypoxia. Twelve healthy volunteers performed incremental exercise tests to exhaustion breathing 12% oxygen, before and after sustained (8-h) isocapnic hypoxia at sea level. Intravenous iron sucrose (n = 6) or saline placebo (n = 6) was administered immediately before the sustained hypoxia. In the placebo group, there was a substantial (12.6 ± 1.5 mmHg) rise in systolic pulmonary artery pressure (SPAP) during sustained hypoxia, but no associated fall in maximal exercise capacity breathing 12% oxygen. In the iron group, the rise in SPAP during sustained hypoxia was markedly reduced (3.4 ± 1.0 mmHg). There was a small rise in maximal exercise capacity following sustained hypoxia within the iron group, but no overall effect of iron, compared with saline. These results do not support the hypothesis that elevated SPAP inhibits maximal exercise capacity during acute hypoxia in healthy volunteers.
Collapse
Affiliation(s)
- Nick P. Talbot
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Hung‐Yuan Cheng
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Helen Hanstock
- Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Thomas G. Smith
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
- Guy's and St Thomas' NHS Foundation TrustLondonUK
| | | | - Peter A. Robbins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Tan X, Liu K, He Y, Yan Z, Chen J, Zhao R, Sui X, Zhang J, Irwin DM, Zhang S, Li B. Succinylation proteomic analysis identified differentially expressed succinylation sites affecting porcine muscle fiber type function. Food Chem X 2023; 20:100962. [PMID: 38144777 PMCID: PMC10740141 DOI: 10.1016/j.fochx.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Muscle fiber type is a major factor in pork meat quality, however, the role of post-translational protein modifications, especially succinylation, in the regulation of muscle fiber type is not fully understood. Here we performed protein succinylation profiles of fast-type biceps femoris (BF) and slow-type soleus (SOL) muscles. A total of 4,221 succinylation sites were identified from these samples, of which 294 sites were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these succinylated proteins were mainly involved in glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Succinylation modification of the CRAT and RAB10 proteins was verified by co-immunoprecipitation. Protein-protein interaction (PPI) network analysis unveiled the interactions of these succinylated proteins that regulate pig myofiber type conversion. This investigation offers fresh perspectives into the molecular roles of protein succinylation in the regulation of pig myofiber type transformation and meat quality.
Collapse
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Kaiqing Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518000, China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Yan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruixue Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
9
|
Pi A, Villivalam SD, Kang S. The Molecular Mechanisms of Fuel Utilization during Exercise. BIOLOGY 2023; 12:1450. [PMID: 37998049 PMCID: PMC10669127 DOI: 10.3390/biology12111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Exercise is widely recognized for its positive impact on human health and well-being. The process of utilizing substrates in skeletal muscle during exercise is intricate and governed by complex mechanisms. Carbohydrates and lipids serve as the primary fuel sources for skeletal muscle during exercise. It is now understood that fuel selection during exercise is not solely determined by physical activity itself but is also influenced by the overall metabolic state of the body. The balance between lipid and carbohydrate utilization significantly affects exercise capacity, including endurance, fatigue, and overall performance. Therefore, comprehensively understanding the regulation of substrate utilization during exercise is of utmost importance. The aim of this review is to provide an extensive overview of the current knowledge regarding the pathways involved in the regulation of substrate utilization during exercise. By synthesizing existing research, we can gain a holistic perspective on the intricate relationship between exercise, metabolism, and fuel selection. This advanced understanding has the potential to drive advancements in the field of exercise science and contribute to the development of personalized exercise strategies for individuals looking to optimize their performance and overall health.
Collapse
Affiliation(s)
| | | | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Wang Y, Li H, Hou L, Wang S, Kang X, Yu J, Tian F, Ni W, Deng X, Liu T, You Y, Chen W. Genome-wide association study on coordination and agility in 461 Chinese Han males. Heliyon 2023; 9:e19268. [PMID: 37654465 PMCID: PMC10465941 DOI: 10.1016/j.heliyon.2023.e19268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
There is growing evidence that genetic factors can influence human athletic performance. In many sports performances, excellent coordination and agility are the keys to mastery. However, few studies have been devoted to identifying genetic influences on athletic performance. Methods: We generated a derived measure of coordination and agility from the data of hexagonal jumps and T-runs and conducted genome-wide association and meta-analysis studies focused on coordination and agility. Results: The phenotypic correlation and genetic covariance analysis indicated that hexagonal jumps and T-runs were possibly influenced by the same set of genetic factors (R = 0.27, genetic covariance = 0.59). Meta-analysis identified rs117047321 genome-wide significant association (N = 143, P < 10E-5) with coordination and agility, and this association was replicated in the replication group (N = 318, P < 0.05). The CG genotype samples of this single nucleotide polymorphism (SNP) required a longer average movement time than the CC genotype samples, and the CG genotype only exists in Asia, which may belong to the East Asia-specific variation. This SNP is located on MYO5B, which is highly expressed in tissues such as the brain, heart, and muscle, suggesting that this locus might be a genetic factor related to human energy metabolism. Conclusion: Our study indicated that genetic factors can affect the athletic performance of coordination and agility. These findings may provide valuable insights for using genetic factors to evaluate sports characteristics.
Collapse
Affiliation(s)
- Yan Wang
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - He Li
- Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China
| | - Lei Hou
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shan Wang
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Xia Kang
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Jihong Yu
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Fenfen Tian
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Wenfeng Ni
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Deng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Tianzi Liu
- Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China
| | - Yanqin You
- Department of Obstetrics and Gynecology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Kang JS, Kim D, Rhee J, Seo JY, Park I, Kim JH, Lee D, Lee W, Kim YL, Yoo K, Bae S, Chung J, Seong RH, Kong YY. Baf155 regulates skeletal muscle metabolism via HIF-1a signaling. PLoS Biol 2023; 21:e3002192. [PMID: 37478146 PMCID: PMC10396025 DOI: 10.1371/journal.pbio.3002192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 07/23/2023] Open
Abstract
During exercise, skeletal muscle is exposed to a low oxygen condition, hypoxia. Under hypoxia, the transcription factor hypoxia-inducible factor-1α (HIF-1α) is stabilized and induces expressions of its target genes regulating glycolytic metabolism. Here, using a skeletal muscle-specific gene ablation mouse model, we show that Brg1/Brm-associated factor 155 (Baf155), a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is essential for HIF-1α signaling in skeletal muscle. Muscle-specific ablation of Baf155 increases oxidative metabolism by reducing HIF-1α function, which accompanies the decreased lactate production during exercise. Furthermore, the augmented oxidation leads to high intramuscular adenosine triphosphate (ATP) level and results in the enhancement of endurance exercise capacity. Mechanistically, our chromatin immunoprecipitation (ChIP) analysis reveals that Baf155 modulates DNA-binding activity of HIF-1α to the promoters of its target genes. In addition, for this regulatory function, Baf155 requires a phospho-signal transducer and activator of transcription 3 (pSTAT3), which forms a coactivator complex with HIF-1α, to activate HIF-1α signaling. Our findings reveal the crucial role of Baf155 in energy metabolism of skeletal muscle and the interaction between Baf155 and hypoxia signaling.
Collapse
Affiliation(s)
- Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - WonUk Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sunghwan Bae
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
13
|
Meyer-Lindemann U, Moggio A, Dutsch A, Kessler T, Sager HB. The Impact of Exercise on Immunity, Metabolism, and Atherosclerosis. Int J Mol Sci 2023; 24:3394. [PMID: 36834808 PMCID: PMC9967592 DOI: 10.3390/ijms24043394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Physical exercise represents an effective preventive and therapeutic strategy beneficially modifying the course of multiple diseases. The protective mechanisms of exercise are manifold; primarily, they are elicited by alterations in metabolic and inflammatory pathways. Exercise intensity and duration strongly influence the provoked response. This narrative review aims to provide comprehensive up-to-date insights into the beneficial effects of physical exercise by illustrating the impact of moderate and vigorous exercise on innate and adaptive immunity. Specifically, we describe qualitative and quantitative changes in different leukocyte subsets while distinguishing between acute and chronic exercise effects. Further, we elaborate on how exercise modifies the progression of atherosclerosis, the leading cause of death worldwide, representing a prime example of a disease triggered by metabolic and inflammatory pathways. Here, we describe how exercise counteracts causal contributors and thereby improves outcomes. In addition, we identify gaps that still need to be addressed in the future.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
14
|
Wang X, Jia Y, Zhao J, Lesner NP, Menezes CJ, Shelton SD, Venigalla SSK, Xu J, Cai C, Mishra P. A mitofusin 2/HIF1α axis sets a maturation checkpoint in regenerating skeletal muscle. J Clin Invest 2022; 132:e161638. [PMID: 36125902 PMCID: PMC9711883 DOI: 10.1172/jci161638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
A fundamental issue in regenerative medicine is whether there exist endogenous regulatory mechanisms that limit the speed and efficiency of the repair process. We report the existence of a maturation checkpoint during muscle regeneration that pauses myofibers at a neonatal stage. This checkpoint is regulated by the mitochondrial protein mitofusin 2 (Mfn2), the expression of which is activated in response to muscle injury. Mfn2 is required for growth and maturation of regenerating myofibers; in the absence of Mfn2, new myofibers arrested at a neonatal stage, characterized by centrally nucleated myofibers and loss of H3K27me3 repressive marks at the neonatal myosin heavy chain gene. A similar arrest at the neonatal stage was observed in infantile cases of human centronuclear myopathy. Mechanistically, Mfn2 upregulation suppressed expression of hypoxia-induced factor 1α (HIF1α), which is induced in the setting of muscle damage. Sustained HIF1α signaling blocked maturation of new myofibers at the neonatal-to-adult fate transition, revealing the existence of a checkpoint that delays muscle regeneration. Correspondingly, inhibition of HIF1α allowed myofibers to bypass the checkpoint, thereby accelerating the repair process. We conclude that skeletal muscle contains a regenerative checkpoint that regulates the speed of myofiber maturation in response to Mfn2 and HIF1α activity.
Collapse
Affiliation(s)
- Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuemeng Jia
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiawei Zhao
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas P. Lesner
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine
- Department of Pediatrics, and
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center
- Department of Pediatrics, and
| |
Collapse
|
15
|
Ding D, Zhang J, Du B, Wang X, Hou L, Guo S, Chen B, Kang L. Non-canonical function of an Hif-1α splice variant contributes to the sustained flight of locusts. eLife 2022; 11:74554. [PMID: 36039636 PMCID: PMC9427102 DOI: 10.7554/elife.74554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/11/2022] [Indexed: 12/30/2022] Open
Abstract
The hypoxia inducible factor (Hif) pathway is functionally conserved across metazoans in modulating cellular adaptations to hypoxia. However, the functions of this pathway under aerobic physiological conditions are rarely investigated. Here, we show that Hif-1α2, a locust Hif-1α isoform, does not induce canonical hypoxic responses but functions as a specific regulator of locust flight, which is a completely aerobic physiological process. Two Hif-1α splice variants were identified in locusts, a ubiquitously expressed Hif-1α1 and a muscle-predominantly expressed Hif-1α2. Hif-1α1 that induces typical hypoxic responses upon hypoxia exposure remains inactive during flight. By contrast, the expression of Hif-1α2, which lacks C-terminal transactivation domain, is less sensitive to oxygen tension but induced extensively by flying. Hif-1α2 regulates physiological processes involved in glucose metabolism and antioxidation during flight and sustains flight endurance by maintaining redox homeostasis through upregulating the production of a reactive oxygen species (ROS) quencher, DJ-1. Overall, this study reveals a novel Hif-mediated mechanism underlying prolonged aerobic physiological activity.
Collapse
Affiliation(s)
- Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Baozhen Du
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xuanzhao Wang
- School of Life Science, Hebei University, Baoding, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- School of Life Science, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,School of Life Science, Hebei University, Baoding, China
| |
Collapse
|
16
|
Effect of acute swimming exercise at different intensities but equal total load over metabolic and molecular responses in swimming rats. J Muscle Res Cell Motil 2022; 43:35-44. [PMID: 35084659 DOI: 10.1007/s10974-022-09614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023]
Abstract
Acute metabolic and molecular response to exercise may vary according to exercise's intensity and duration. However, there is a lack regarding specific tissue alterations after acute exercise with aerobic or anaerobic predominance. The present study investigated the effects of acute exercise performed at different intensities, but with equal total load on molecular and physiological responses in swimming rats. Sixty male rats were divided into a control group and five groups performing an acute bout of swimming exercise at different intensities (80, 90, 100, 110 and 120% of anaerobic threshold [AnT]). The exercise duration of each group was balanced so all groups performed at the same total load. Gene expression (HIF-1α, PGC-1α, MCT1 and MCT4 mRNA), blood biomarkers and tissue glycogen depletion were analyzed after the exercise session. ANOVA One-Way was used to indicate statistical mean differences considering 5% significance level. Blood lactate concentration was the only biomarker sensitive to acute exercise, with a significant increase in rats exercised above AnT intensities (p < 0.000). Glycogen stores of gluteus muscle were significantly reduced in all exercised animals in comparison to control group (p = 0.02). Hepatic tissue presented significant reduction in glycogen in animals exercised above AnT (p = 0.000, as well as reduced HIF-1α mRNA and increased MCT1 mRNA, especially at the highest intensity (p = 0.002). Physiological parameters did not alter amongst groups for most tissues. Our results indicate the hepatic tissue alterations (glycogen stores and gene expressions) in response to different exercise intensities of exercise, even with the total load matched.
Collapse
|
17
|
Frise MC, Holdsworth DA, Johnson AW, Chung YJ, Curtis MK, Cox PJ, Clarke K, Tyler DJ, Roberts DJ, Ratcliffe PJ, Dorrington KL, Robbins PA. Abnormal whole-body energy metabolism in iron-deficient humans despite preserved skeletal muscle oxidative phosphorylation. Sci Rep 2022; 12:998. [PMID: 35046429 PMCID: PMC8770476 DOI: 10.1038/s41598-021-03968-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
Iron deficiency impairs skeletal muscle metabolism. The underlying mechanisms are incompletely characterised, but animal and human experiments suggest the involvement of signalling pathways co-dependent upon oxygen and iron availability, including the pathway associated with hypoxia-inducible factor (HIF). We performed a prospective, case-control, clinical physiology study to explore the effects of iron deficiency on human metabolism, using exercise as a stressor. Thirteen iron-deficient (ID) individuals and thirteen iron-replete (IR) control participants each underwent 31P-magnetic resonance spectroscopy of exercising calf muscle to investigate differences in oxidative phosphorylation, followed by whole-body cardiopulmonary exercise testing. Thereafter, individuals were given an intravenous (IV) infusion, randomised to either iron or saline, and the assessments repeated ~ 1 week later. Neither baseline iron status nor IV iron significantly influenced high-energy phosphate metabolism. During submaximal cardiopulmonary exercise, the rate of decline in blood lactate concentration was diminished in the ID group (P = 0.005). Intravenous iron corrected this abnormality. Furthermore, IV iron increased lactate threshold during maximal cardiopulmonary exercise by ~ 10%, regardless of baseline iron status. These findings demonstrate abnormal whole-body energy metabolism in iron-deficient but otherwise healthy humans. Iron deficiency promotes a more glycolytic phenotype without having a detectable effect on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - David A Holdsworth
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Andrew W Johnson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Pete J Cox
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - David J Roberts
- Nuffield Department of Clinical Laboratory Sciences, National Blood Service Oxford Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Peter J Ratcliffe
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - Keith L Dorrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
18
|
Kitakaze T, Sugihira T, Kameyama H, Maruchi A, Kobayashi Y, Harada N, Yamaji R. Carotenoid transporter CD36 expression depends on hypoxia-inducible factor-1α in mouse soleus muscles. J Clin Biochem Nutr 2022; 71:112-121. [PMID: 36213788 PMCID: PMC9519423 DOI: 10.3164/jcbn.21-163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Dietary β-carotene induces muscle hypertrophy and prevents muscle atrophy in red slow-twitch soleus muscles, but not in white fast-twitch extensor digitorum longus (EDL) muscles and gastrocnemius muscles. However, it remains unclear why these beneficial effects of β-carotene are elicited in soleus muscles. To address this issue, we focused on carotenoid transporters in skeletal muscles. In mice, Cd36 mRNA levels were higher in red muscle than in white muscle. The siRNA-mediated knockdown of CD36 decreased β-carotene uptake in C2C12 myotubes. In soleus muscles, CD36 knockdown inhibited β-carotene-induced increase in muscle mass. Intravenous injection of the hypoxia marker pimonidazole produced more pimonidazole-bound proteins in soleus muscles than in EDL muscles, and the hypoxia-inducible factor-1 (HIF-1) α protein level was higher in soleus muscles than in EDL muscles. In C2C12 myotubes, hypoxia increased the expression of CD36 and HIF-1α at the protein and mRNA levels, and HIF-1α knockdown reduced hypoxia-induced increase in Cd36 mRNA level. In soleus muscles, HIF-1α knockdown reduced Cd36 mRNA level. These results indicate that CD36 is predominantly involved in β-carotene-induced increase in soleus muscle mass of mice. Furthermore, we demonstrate that CD36 expression depends on HIF-1α in the soleus muscles of mice, even under normal physiological conditions.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Takashi Sugihira
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Hiromichi Kameyama
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Asami Maruchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Yasuyuki Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
19
|
Abstract
Human physiology is likely to have been selected for endurance physical activity. However, modern humans have become largely sedentary, with physical activity becoming a leisure-time pursuit for most. Whereas inactivity is a strong risk factor for disease, regular physical activity reduces the risk of chronic disease and mortality. Although substantial epidemiological evidence supports the beneficial effects of exercise, comparatively little is known about the molecular mechanisms through which these effects operate. Genetic and genomic analyses have identified genetic variation associated with human performance and, together with recent proteomic, metabolomic and multi-omic analyses, are beginning to elucidate the molecular genetic mechanisms underlying the beneficial effects of physical activity on human health.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
21
|
Kolodziej F, O’Halloran KD. Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? Antioxidants (Basel) 2021; 10:609. [PMID: 33921022 PMCID: PMC8071436 DOI: 10.3390/antiox10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O2-). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, T12 XF62 Cork, Ireland;
| | | |
Collapse
|
22
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
23
|
Abstract
Hypoxia can be defined as a relative deficiency in the amount of oxygen reaching the tissues. Hypoxia-inducible factors (HIFs) are critical regulators of the mammalian response to hypoxia. In normal circumstances, HIF-1α protein turnover is rapid, and hyperglycemia further destabilizes the protein. In addition to their role in diabetes pathogenesis, HIFs are implicated in development of the microvascular and macrovascular complications of diabetes. Improving glucose control in people with diabetes increases HIF-1α protein and has wide-ranging benefits, some of which are at least partially mediated by HIF-1α. Nevertheless, most strategies to improve diabetes or its complications via regulation of HIF-1α have not currently proven to be clinically useful. The intersection of HIF biology with diabetes is a complex area in which many further questions remain, especially regarding the well-conducted studies clearly describing discrepant effects of different methods of increasing HIF-1α, even within the same tissues. This Review presents a brief overview of HIFs; discusses the range of evidence implicating HIFs in β cell dysfunction, diabetes pathogenesis, and diabetes complications; and examines the differing outcomes of HIF-targeting approaches in these conditions.
Collapse
Affiliation(s)
- Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Westmead Hospital, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
24
|
Sun T, Huang GY, Wang ZH, Teng SH, Cao YH, Sun JL, Hanif Q, Chen NB, Lei CZ, Liao YY. Selection signatures of Fuzhong Buffalo based on whole-genome sequences. BMC Genomics 2020; 21:674. [PMID: 32993537 PMCID: PMC7526191 DOI: 10.1186/s12864-020-07095-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fuzhong buffalo, a native breed of Guangxi Zhuang Autonomous Region, is traditionally used as a draft animal to provide farm power in the rice cultivation. In addition, the Fuzhong buffalo also prepared for the bullfighting festival organized by the locals. The detection of the selective signatures in its genome can help in elucidating the selection mechanisms in its stamina and muscle development of a draft animal. RESULTS In this study, we analyzed 27 whole genomes of buffalo (including 15 Fuzhong buffalo genomes and 12 published buffalo genomes from Upper Yangtze region). The ZHp, ZFst, π-Ratio, and XP-EHH statistics were used to identify the candidate signatures of positive selection in Fuzhong buffalo. Our results detected a set of candidate genes involving in the pathways and GO terms associated with the response to exercise (e.g., ALDOA, STAT3, AKT2, EIF4E2, CACNA2D2, TCF4, CDH2), immunity (e.g., PTPN22, NKX2-3, PIK3R1, ITK, TMEM173), nervous system (e.g., PTPN21, ROBO1, HOMER1, MAGI2, SLC1A3, NRG3, SNAP47, CTNNA2, ADGRL3). In addition, we also identified several genes related to production and growth traits (e.g., PHLPP1, PRKN, MACF1, UCN3, RALGAPA1, PHKB, PKD1L). Our results depicted several pathways, GO terms, and candidate genes to be associated with response to exercise, immunity, nervous system, and growth traits. CONCLUSIONS The selective sweep analysis of the Fuzhong buffalo demonstrated positive selection pressure on potential target genes involved in behavior, immunity, and growth traits, etc. Our findings provided a valuable resource for future research on buffalo breeding and an insight into the mechanisms of artificial selection.
Collapse
Affiliation(s)
- Ting Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guang-Yun Huang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Zi-Hao Wang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Shao-Hua Teng
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Yan-Hong Cao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Jun-Li Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Ning-Bo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yu-Ying Liao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.
| |
Collapse
|
25
|
Takemura K, Nishi H, Inagi R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front Physiol 2020; 11:565023. [PMID: 33013483 PMCID: PMC7500155 DOI: 10.3389/fphys.2020.565023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, there has been an increased focus on the influences of mitochondrial dysfunction on various pathologies. Mitochondria are major intracellular organelles with a variety of critical roles, such as adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting attention as a therapeutic target in several diseases. Additionally, a lot of existing agents have been found to have pharmacological effects on mitochondria. This review provides an overview of the mitochondrial change in the kidney and skeletal muscle, which is often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the pharmacological effects of therapeutics for CKD on mitochondria are explored.
Collapse
Affiliation(s)
- Koji Takemura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Vaughan ME, Wallace M, Handzlik MK, Chan AB, Metallo CM, Lamia KA. Cryptochromes Suppress HIF1α in Muscles. iScience 2020; 23:101338. [PMID: 32683313 PMCID: PMC7371909 DOI: 10.1016/j.isci.2020.101338] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Muscles preferentially utilize glycolytic or oxidative metabolism depending on the intensity of physical activity. Transcripts required for carbohydrate and lipid metabolism undergo circadian oscillations of expression in muscles, and both exercise capacity and the metabolic response to exercise are influenced by time of day. The circadian repressors CRY1 and CRY2 repress peroxisome proliferator-activated receptor delta (PPARδ), a major driver of oxidative metabolism and exercise endurance. CRY-deficient mice exhibit enhanced PPARδ activation and greater maximum speed when running on a treadmill but no increase in exercise endurance. Here we demonstrate that CRYs limit hypoxia-responsive transcription via repression of HIF1α-BMAL1 heterodimers. Furthermore, CRY2 appeared to be more effective than CRY1 in the reduction of HIF1α protein steady-state levels in primary myotubes and quadriceps in vivo. Finally, CRY-deficient myotubes exhibit metabolic alterations consistent with cryptochrome-dependent suppression of HIF1α, which likely contributes to circadian modulation of muscle metabolism. CRY2 plays a unique role in regulating HIF1α protein accumulation in muscle HIF1α and BMAL1 heterodimers are transcriptionally active CRY1/2 represses transcription driven by HIF1α/BMAL1 heterodimers Cryptochromes influence skeletal muscle substrate preference and utilization
Collapse
Affiliation(s)
- Megan E Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michal K Handzlik
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alanna B Chan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katja A Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Tolerance to Hypoxia Is Promoted by FOXO Regulation of the Innate Immunity Transcription Factor NF-κB/Relish in Drosophila. Genetics 2020; 215:1013-1025. [PMID: 32513813 DOI: 10.1534/genetics.120.303219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of tissues and organs to low oxygen (hypoxia) occurs in both physiological and pathological conditions in animals. Under these conditions, organisms have to adapt their physiology to ensure proper functioning and survival. Here, we define a role for the transcription factor Forkhead Box-O (FOXO) as a mediator of hypoxia tolerance in Drosophila We find that upon hypoxia exposure, FOXO transcriptional activity is rapidly induced in both larvae and adults. Moreover, we see that foxo mutant animals show misregulated glucose metabolism in low oxygen and subsequently exhibit reduced hypoxia survival. We identify the innate immune transcription factor, NF-κB/Relish, as a key FOXO target in the control of hypoxia tolerance. We find that expression of Relish and its target genes is increased in a FOXO-dependent manner in hypoxia, and that relish mutant animals show reduced survival in hypoxia. Together, these data indicate that FOXO is a hypoxia-inducible factor that mediates tolerance to low oxygen by inducing immune-like responses.
Collapse
|
28
|
Peek CB. Metabolic Implications of Circadian-HIF Crosstalk. Trends Endocrinol Metab 2020; 31:459-468. [PMID: 32396846 DOI: 10.1016/j.tem.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Research over the past few decades has shed light on the mechanisms underlying the link between circadian disruption and the development of metabolic diseases such as obesity, type 2 diabetes, and cancer. However, how the clock network interacts with tissue-specificnutrient-sensing pathways during conditions of nutrient stress or pathological states remains incompletely understood. Recent work has demonstrated that the circadian clock can 'reprogram' the transcriptome to control distinct sets of genes during altered nutrient conditions, such as high fat diet, aging, and exercise. In this review, I discuss connections between circadian clock transcription factors and the oxygen- and nutrient-responsivehypoxia-inducible factor (HIF) pathway. I highlight recently uncovered mechanistic insights underlying these pathway interactions and address potential implications for the role of circadian disruption in metabolic diseases.
Collapse
Affiliation(s)
- Clara B Peek
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Valle-Tenney R, Rebolledo D, Acuña MJ, Brandan E. HIF-hypoxia signaling in skeletal muscle physiology and fibrosis. J Cell Commun Signal 2020; 14:147-158. [PMID: 32088838 DOI: 10.1007/s12079-020-00553-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia refers to the decrease in oxygen tension in the tissues, and the central effector of the hypoxic response is the transcription factor Hypoxia-Inducible Factor α (HIF1-α). Transient hypoxia in acute events, such as exercising or regeneration after damage, play an important role in skeletal muscle physiology and homeostasis. However, sustained activation of hypoxic signaling is a feature of skeletal muscle injury and disease, which can be a consequence of chronic damage but can also increase the severity of the pathology and worsen its outcome. Here, we review evidence that supports the idea that hypoxia and HIF-1α can contribute to the establishment of fibrosis in skeletal muscle through its crosstalk with other profibrotic factors, such as Transforming growth factor β (TGF-β), the induction of profibrotic cytokines expression, as is the case of Connective Tissue Growth Factor (CTGF/CCN2), or being the target of the Renin-angiotensin system (RAS).
Collapse
Affiliation(s)
- Roger Valle-Tenney
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Fundación Ciencia & Vida, Santiago, Chile. .,Department Cell and Molecular Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Dutchak PA, Estill-Terpack SJ, Plec AA, Zhao X, Yang C, Chen J, Ko B, Deberardinis RJ, Yu Y, Tu BP. Loss of a Negative Regulator of mTORC1 Induces Aerobic Glycolysis and Altered Fiber Composition in Skeletal Muscle. Cell Rep 2019; 23:1907-1914. [PMID: 29768191 PMCID: PMC6038807 DOI: 10.1016/j.celrep.2018.04.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/28/2017] [Accepted: 04/13/2018] [Indexed: 01/11/2023] Open
Abstract
The conserved GATOR1 complex consisting of NPRL2-NPRL3-DEPDC5 inhibits mammalian target of rapamycin complex 1 (mTORC1) in response to amino acid insufficiency. Here, we show that loss of NPRL2 and GATOR1 function in skeletal muscle causes constitutive activation of mTORC1 signaling in the fed and fasted states. Muscle fibers of NPRL2 knockout animals are significantly larger and show altered fiber-type composition, with more fast-twitch glycolytic and fewer slow-twitch oxidative fibers. NPRL2 muscle knockout mice also have altered running behavior and enhanced glucose tolerance. Furthermore, loss of NPRL2 induces aerobic glycolysis and suppresses glucose entry into the TCA cycle. Such chronic activation of mTORC1 leads to compensatory increases in anaplerotic pathways to replenish TCA intermediates that are consumed for biosynthetic purposes. These phenotypes reveal a fundamental role for the GATOR1 complex in the homeostatic regulation of mitochondrial functions (biosynthesis versus ATP) to mediate carbohydrate utilization in muscle.
Collapse
Affiliation(s)
- Paul A Dutchak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada; CERVO Brain Research Centre, 2601 Chemin de la Canardière, Québec, QC, Canada
| | - Sandi J Estill-Terpack
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abigail A Plec
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaozheng Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J Deberardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Cummins EP, Strowitzki MJ, Taylor CT. Mechanisms and Consequences of Oxygen and Carbon Dioxide Sensing in Mammals. Physiol Rev 2019; 100:463-488. [PMID: 31539306 DOI: 10.1152/physrev.00003.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular oxygen (O2) and carbon dioxide (CO2) are the primary gaseous substrate and product of oxidative phosphorylation in respiring organisms, respectively. Variance in the levels of either of these gasses outside of the physiological range presents a serious threat to cell, tissue, and organism survival. Therefore, it is essential that endogenous levels are monitored and kept at appropriate concentrations to maintain a state of homeostasis. Higher organisms such as mammals have evolved mechanisms to sense O2 and CO2 both in the circulation and in individual cells and elicit appropriate corrective responses to promote adaptation to commonly encountered conditions such as hypoxia and hypercapnia. These can be acute and transient nontranscriptional responses, which typically occur at the level of whole animal physiology or more sustained transcriptional responses, which promote chronic adaptation. In this review, we discuss the mechanisms by which mammals sense changes in O2 and CO2 and elicit adaptive responses to maintain homeostasis. We also discuss crosstalk between these pathways and how they may represent targets for therapeutic intervention in a range of pathological states.
Collapse
Affiliation(s)
- Eoin P Cummins
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Moritz J Strowitzki
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
32
|
Imaging Hypoxic Stress and the Treatment of Amyotrophic Lateral Sclerosis with Dimethyloxalylglycine in a Mice Model. Neuroscience 2019; 415:31-43. [DOI: 10.1016/j.neuroscience.2019.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
33
|
Sato S, Basse AL, Schönke M, Chen S, Samad M, Altıntaş A, Laker RC, Dalbram E, Barrès R, Baldi P, Treebak JT, Zierath JR, Sassone-Corsi P. Time of Exercise Specifies the Impact on Muscle Metabolic Pathways and Systemic Energy Homeostasis. Cell Metab 2019; 30:92-110.e4. [PMID: 31006592 DOI: 10.1016/j.cmet.2019.03.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
While the timing of food intake is important, it is unclear whether the effects of exercise on energy metabolism are restricted to unique time windows. As circadian regulation is key to controlling metabolism, understanding the impact of exercise performed at different times of the day is relevant for physiology and homeostasis. Using high-throughput transcriptomic and metabolomic approaches, we identify distinct responses of metabolic oscillations that characterize exercise in either the early rest phase or the early active phase in mice. Notably, glycolytic activation is specific to exercise at the active phase. At the molecular level, HIF1α, a central regulator of glycolysis during hypoxia, is selectively activated in a time-dependent manner upon exercise, resulting in carbohydrate exhaustion, usage of alternative energy sources, and adaptation of systemic energy expenditure. Our findings demonstrate that the time of day is a critical factor to amplify the beneficial impact of exercise on both metabolic pathways within skeletal muscle and systemic energy homeostasis.
Collapse
Affiliation(s)
- Shogo Sato
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Milena Schönke
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Rhianna C Laker
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark; Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
34
|
Arrigoni C, Petta D, Bersini S, Mironov V, Candrian C, Moretti M. Engineering complex muscle-tissue interfaces through microfabrication. Biofabrication 2019; 11:032004. [PMID: 31042682 DOI: 10.1088/1758-5090/ab1e7c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a tissue with a complex and hierarchical architecture that influences its functional properties. In order to exert its contractile function, muscle tissue is connected to neural, vascular and connective compartments, comprising finely structured interfaces which are orchestrated by multiple signalling pathways. Pathological conditions such as dystrophies and trauma, or physiological situations such as exercise and aging, modify the architectural organization of these structures, hence affecting muscle functionality. To overcome current limitations of in vivo and standard in vitro models, microfluidics and biofabrication techniques have been applied to better reproduce the microarchitecture and physicochemical environment of human skeletal muscle tissue. In the present review, we aim to critically discuss the role of those techniques, taken individually or in combination, in the generation of models that mimic the complex interfaces between muscle tissue and neural/vascular/tendon compartments. The exploitation of either microfluidics or biofabrication to model different muscle interfaces has led to the development of constructs with an improved spatial organization, thus presenting a better functionality as compared to standard models. However, the achievement of models replicating muscle-tissue interfaces with adequate architecture, presence of fundamental proteins and recapitulation of signalling pathways is still far from being achieved. Increased integration between microfluidics and biofabrication, providing the possibility to pattern cells in predetermined structures with higher resolution, will help to reproduce the hierarchical and heterogeneous structure of skeletal muscle interfaces. Such strategies will further improve the functionality of these techniques, providing a key contribution towards the study of skeletal muscle functions in physiology and pathology.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Yaghoob Nezhad F, Verbrugge SAJ, Schönfelder M, Becker L, Hrabě de Angelis M, Wackerhage H. Genes Whose Gain or Loss-of-Function Increases Endurance Performance in Mice: A Systematic Literature Review. Front Physiol 2019; 10:262. [PMID: 30967789 PMCID: PMC6439621 DOI: 10.3389/fphys.2019.00262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 01/23/2023] Open
Abstract
Endurance is not only a key factor in many sports but endurance-related variables are also associated with good health and low mortality. Twin and family studies suggest that several endurance-associated traits are ≈50% inherited. However, we still poorly understand what DNA sequence variants contribute to endurance heritability. To address this issue, we conducted a systematic review to identify genes whose experimental loss or gain-of-function increases endurance capacity in mice. We found 31 genes including two isoforms of Ppargc1a whose manipulation increases running or swimming endurance performance by up to 1800%. Genes whose gain-of-function increases endurance are Adcy5, Adcy8, Hk2, Il15, Mef2c, Nr4a3, Pck1 (Pepck), Ppard, Ppargc1a (both the a and b isoforms of the protein Pgc-1α), Ppargc1b, Ppp3ca (calcineurin), Scd1, Slc5a7, Tfe3, Tfeb, Trib3 & Trpv1. Genes whose loss-of-function increases endurance in mice are Actn3, Adrb2, Bdkrb2, Cd47, Crym, Hif1a, Myoz1, Pappa, Pknox1, Pten, Sirt4, Thbs1, Thra, and Tnfsf12. Of these genes, human DNA sequence variants of ACTN3, ADCY5, ADRB2, BDKRB2, HIF1A, PPARD, PPARGC1A, PPARGC1B, and PPP3CA are also associated with endurance capacity and/or VO2max trainability suggesting evolutionary conservation between mice and humans. Bioinformatical analyses show that there are numerous amino acid or copy number-changing DNA variants of endurance genes in humans, suggesting that genetic variation of endurance genes contributes to the variation of human endurance capacity, too. Moreover, several of these genes/proteins change their expression or phosphorylation in skeletal muscle or the heart after endurance exercise, suggesting a role in the adaptation to endurance exercise.
Collapse
Affiliation(s)
- Fakhreddin Yaghoob Nezhad
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Sander A J Verbrugge
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Schönfelder
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Henning Wackerhage
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
36
|
|
37
|
Xu S, Hao X, Zhang M, Wang K, Li S, Chen X, Yang L, Hu L, Zhang S. Polymorphisms of HOMER1 gene are associated with piglet splay leg syndrome and one significant SNP can affect its intronic promoter activity in vitro. BMC Genet 2018; 19:110. [PMID: 30526478 PMCID: PMC6286600 DOI: 10.1186/s12863-018-0701-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND In our previous genome-wide association study (GWAS) on the piglet splay leg (PSL) syndrome, the homer scaffolding protein 1 (HOMER1) was detected as a candidate gene. The aim of this work was to further verify the candidate gene by sequencing the gene and find the significantly associated mutation. Then we preliminarily analyzed the effect of the significant SNP on intronic promoter activity. This research provided a reference for further investigation of the pathogenesis of PSL. RESULT We investigated the 19 SNPs on HOMER1 and found 12 SNPs significant associated with PSL, including 8 SNPs resided in the potential intronic promoter region in intron 4. The - 663~ - 276 bp upstream the exon 5 had promoter activity and it could be an intronic promoter that regulated the transcription of HOMER1-205 transcript. The promoter activity of the - 663~ - 276 bp containing the rs339135425 and rs325197091 mutant alleles was significantly higher than of the wild type (P < 0.05). The G allele of rs325197091 (A > G) may create a new binding site of transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT) and could enhance HOMER1 intronic promoter activity. CONCLUSIONS HOMER1 gene was associated with the PSL, and the rs325197091 could influence HOMER1 intronic promoter activity in vitro.
Collapse
Affiliation(s)
- Sutong Xu
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xingjie Hao
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Zhang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Kai Wang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Shuaifeng Li
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, 430208 Hubei China
| | - Liaohan Yang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Lin Hu
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Shujun Zhang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
38
|
Petkus DL, Murray-Kolb LE, De Souza MJ. The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review. Sports Med 2018; 47:1721-1737. [PMID: 28290159 DOI: 10.1007/s40279-017-0706-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the severity and prevalence of iron deficiency in exercising women, few published reports have explored how iron deficiency interacts with another prevalent and severe condition in exercising women: the 'female athlete triad.' This review aims to describe how iron deficiency may interact with each component of the female athlete triad, that is, energy status, reproductive function, and bone health. The effects of iron deficiency on energy status are discussed in regards to thyroid function, metabolic fuel availability, eating behaviors, and energy expenditure. The interactions between iron deficiency and reproductive function are explored by discussing the potentially impaired fertility and hyperprolactinemia due to iron deficiency and the alterations in iron metabolism due to menstrual blood loss and estrogen exposure. The interaction of iron deficiency with bone health may occur via dysregulation of the growth hormone/insulin-like growth factor-1 axis, hypoxia, and hypothyroidism. Based on these discussions, several future directions for research are presented.
Collapse
Affiliation(s)
- Dylan L Petkus
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA
| | - Laura E Murray-Kolb
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
39
|
Chaillou T. Skeletal Muscle Fiber Type in Hypoxia: Adaptation to High-Altitude Exposure and Under Conditions of Pathological Hypoxia. Front Physiol 2018; 9:1450. [PMID: 30369887 PMCID: PMC6194176 DOI: 10.3389/fphys.2018.01450] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscle is able to modify its size, and its metabolic/contractile properties in response to a variety of stimuli, such as mechanical stress, neuronal activity, metabolic and hormonal influences, and environmental factors. A reduced oxygen availability, called hypoxia, has been proposed to induce metabolic adaptations and loss of mass in skeletal muscle. In addition, several evidences indicate that muscle fiber-type composition could be affected by hypoxia. The main purpose of this review is to explore the adaptation of skeletal muscle fiber-type composition to exposure to high altitude (ambient hypoxia) and under conditions of pathological hypoxia, including chronic obstructive pulmonary disease (COPD), chronic heart failure (CHF) and obstructive sleep apnea syndrome (OSAS). The muscle fiber-type composition of both adult animals and humans is not markedly altered during chronic exposure to high altitude. However, the fast-to-slow fiber-type transition observed in hind limb muscles during post-natal development is impaired in growing rats exposed to severe altitude. A slow-to-fast transition in fiber type is commonly found in lower limb muscles from patients with COPD and CHF, whereas a transition toward a slower fiber-type profile is often found in the diaphragm muscle in these two pathologies. A slow-to-fast transformation in fiber type is generally observed in the upper airway muscles in rodent models of OSAS. The factors potentially responsible for the adaptation of fiber type under these hypoxic conditions are also discussed in this review. The impaired locomotor activity most likely explains the changes in fiber type composition in growing rats exposed to severe altitude. Furthermore, chronic inactivity and muscle deconditioning could result in the slow-to-fast fiber-type conversion in lower limb muscles during COPD and CHF, while the factors responsible for the adaptation of muscle fiber type during OSAS remain hypothetical. Finally, the role played by cellular hypoxia, hypoxia-inducible factor-1 alpha (HIF-1α), and other molecular regulators in the adaptation of muscle fiber-type composition is described in response to high altitude exposure and conditions of pathological hypoxia.
Collapse
Affiliation(s)
- Thomas Chaillou
- School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
40
|
Hotta K, Behnke BJ, Arjmandi B, Ghosh P, Chen B, Brooks R, Maraj JJ, Elam ML, Maher P, Kurien D, Churchill A, Sepulveda JL, Kabolowsky MB, Christou DD, Muller-Delp JM. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle. J Physiol 2018; 596:1903-1917. [PMID: 29623692 DOI: 10.1113/jp275459] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/19/2018] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. ABSTRACT Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day-1 , 5 days week-1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch.
Collapse
Affiliation(s)
- Kazuki Hotta
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Engineering Science, University of Electro-communications, Tokyo, Japan
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University College of Human Ecology, Manhattan, KS, USA
| | - Bahram Arjmandi
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Bei Chen
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rachael Brooks
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Joshua J Maraj
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marcus L Elam
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Patrick Maher
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Daniel Kurien
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alexandra Churchill
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jaime L Sepulveda
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Max B Kabolowsky
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
41
|
The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metab 2018; 27:898-913.e7. [PMID: 29617647 PMCID: PMC5887987 DOI: 10.1016/j.cmet.2018.02.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/29/2017] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
Abstract
Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia.
Collapse
|
42
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Rundqvist H, Gustafsson T. Hypoxic sprint exercise as a complement to the "Live High-Train Low" regimen. Acta Physiol (Oxf) 2018; 222. [PMID: 29086470 DOI: 10.1111/apha.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helene Rundqvist
- Department of Cell and Molecular Biology; Karolinska Institutet; Stockholm Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine; Clinical Physiology; Karolinska Institutet; Stockholm Sweden
- Department of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
44
|
Li Y, Yu C, Li J, Zhang L, Gao F, Zhou G. Effects of dietary energy sources on early postmortem muscle metabolism of finishing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1764-1772. [PMID: 28728385 PMCID: PMC5666181 DOI: 10.5713/ajas.17.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study investigated the effects of different dietary energy sources on early postmortem muscle metabolism of finishing pigs. METHODS Seventy-two barrow (Duroc×Landrace×Yorkshire, DLY) pigs (65.0±2.0 kg) were allotted to three iso-energetic and iso-nitrogenous diets: A (44.1% starch, 5.9% crude fat, and 12.6% neutral detergent fibre [NDF]), B (37.6% starch, 9.5% crude fat, and 15.4% NDF) or C (30.9% starch, 14.3% crude fat, and 17.8% NDF). After the duration of 28-day feeding experiment, 24 pigs (eight per treatment) were slaughtered and the M. longissimus lumborum (LL) samples at 45 min postmortem were collected. RESULTS Compared with diet A, diet C resulted in greater adenosine triphosphate and decreased phosphocreatine (PCr) concentrations, greater activity of creatine kinase and reduced percentage bound activities of hexokinase (HK), and pyruvate kinase (PK) in LL muscles (p<0.05). Moreover, diet C decreased the phosphor-AKT level and increased the hydroxy-hypoxia-inducible factor-1α (HIF-1α) level, as well as decreased the bound protein expressions of HK II, PKM2, and lactate dehydrogenase A (p<0.05). CONCLUSION Diet C with the lowest level of starch and the highest levels of fat and NDF could enhance the PCr utilization and attenuate glycolysis early postmortem in LL muscle of finishing pigs.
Collapse
Affiliation(s)
- Yanjiao Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changning Yu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
45
|
Mayeuf-Louchart A, Zecchin M, Staels B, Duez H. Circadian control of metabolism and pathological consequences of clock perturbations. Biochimie 2017; 143:42-50. [DOI: 10.1016/j.biochi.2017.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
|
46
|
Soares RN, McLay KM, George MA, Murias JM. Differences in oxidative metabolism modulation induced by ischemia/reperfusion between trained and untrained individuals assessed by NIRS. Physiol Rep 2017; 5:5/19/e13384. [PMID: 29038351 PMCID: PMC5641926 DOI: 10.14814/phy2.13384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022] Open
Abstract
Endurance training is associated with skeletal muscle adaptations that regulate the oxidative metabolism during ischemia/reperfusion. The aim of this study was to noninvasively assess in vivo differences in the oxidative metabolism activity during ischemia/reperfusion between trained and untrained individuals, using near infrared spectroscopy (NIRS) combined with a vascular occlusion test (VOT) technique (NIRS-VOT). Sixteen untrained (26.3 ± 5.1 year) and seventeen trained (29.4 ± 4.9 year) healthy young adult men were submitted to a VOT (2 min baseline, 5 min occlusion, and 8 min reperfusion). Oxygen utilization was estimated from the area under the curve of the NIRS-derived deoxyhemoglobin [HHb] signal during occlusion (AUCocc). Muscle reperfusion was derived from the area above the curve (AACrep) of the [HHb] signal after cuff release. The AUCocc of the untrained participants (21010 ± 9553 % · s) was significantly larger than the AUCocc of their trained counterparts (12320 ± 3283 % · s); P = 0.001). The AACrep of the untrained participants (5928 ± 3769 % · s) was significantly larger than the AACrep of the trained participants (3745 ± 1900 % · s; P = 0.042). There was a significant correlation between AUCocc and AACrep (r = 0.840; P = 0.001). NIRS assessment of oxidative metabolism showed that trained individuals are more efficient in shifting between oxidative and anaerobic metabolism in response to ischemia and reperfusion.
Collapse
Affiliation(s)
- Rogério N Soares
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Kaitlin M McLay
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Mitchell A George
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
Hao T, Liu YH, Li YY, Lu Y, Xu HY. A Transcriptomic Analysis of Physiological Significance of Hypoxia-inducible Factor-1α in Myogenesis and Carbohydrate Metabolism of Genioglossus in Mice. Chin Med J (Engl) 2017. [PMID: 28639573 PMCID: PMC5494921 DOI: 10.4103/0366-6999.208235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Chronic intermittent hypoxia is the most remarkable feature of obstructive sleep apnea/hypopnea syndrome and it can induce the change of hypoxia-inducible factor-1α (HIF-1α) expression and contractile properties in the genioglossus. To clarify the role of HIF-1α in contractile properties of the genioglossus, this study generated and compared high-throughput RNA-sequencing data from genioglossus between HIF-1α conditional knockout (KO) mice and littermate wild-type (WT) mice. Methods: KO mice were generated with cre-loxP strategy. Gene expression profile analysis was performed using gene enrichment analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of differently expressed messenger RNAs were performed to identify the related pathways and biological functions. Six differentially expressed genes (DEGs) were validated by qualitative reverse transcription polymerase chain reaction. Results: A total of 142 (77 upregulated and 65 downregulated) transcripts were found to exhibit statistically significant difference between the HIF-1α-KO and WT mice. GO and KEGG analyses indicated that DEGs included genes involved in “skeletal muscle cell differentiation,” “muscle organ development,” “glucose metabolic process,” “glycogen biosynthetic and metabolic process,” etc. Conclusion: This study might provide evidence that HIF-1α affects the expression of multiple genes involved in the myogenesis, muscle development, and carbohydrate metabolism through transcriptome analysis in conditional HIF-1α-KO mice.
Collapse
Affiliation(s)
- Tong Hao
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yue-Hua Liu
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072; Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai 200001, China
| | - Yuan-Yuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai 200001, China
| | - Hong-Yi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| |
Collapse
|
48
|
Nikolić N, Görgens SW, Thoresen GH, Aas V, Eckel J, Eckardt K. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol (Oxf) 2017; 220:310-331. [PMID: 27863008 DOI: 10.1111/apha.12830] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
Abstract
The beneficial health-related effects of exercise are well recognized, and numerous studies have investigated underlying mechanism using various in vivo and in vitro models. Although electrical pulse stimulation (EPS) for the induction of muscle contraction has been used for quite some time, its application on cultured skeletal muscle cells of animal or human origin as a model of in vitro exercise is a more recent development. In this review, we compare in vivo exercise and in vitro EPS with regard to effects on signalling, expression level and metabolism. We provide a comprehensive overview of different EPS protocols and their applications, discuss technical aspects of this model including critical controls and the importance of a proper maintenance procedure and finally discuss the limitations of the EPS model.
Collapse
Affiliation(s)
- N. Nikolić
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - G. H. Thoresen
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
- Department of Pharmacology; Institute of Clinical Medicine; Faculty of Medicine; University of Oslo; Oslo Norway
| | - V. Aas
- Department of Life Sciences and Health; Oslo and Akershus University College of Applied Sciences; Oslo Norway
| | - J. Eckel
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
- German Center for Diabetes Research (DZD e.V.); Düsseldorf Germany
| | - K. Eckardt
- Department of Nutrition; Institute for Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
49
|
Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J, Xu X, Yang S, Um JH, Koch LG, Britton SL, Lieber RL, Philp A, Baar K, Kohama SG, Abel ED, Kim MK, Chung JH. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging. Cell Metab 2017; 25:1135-1146.e7. [PMID: 28467930 PMCID: PMC5485859 DOI: 10.1016/j.cmet.2017.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/25/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity.
Collapse
Affiliation(s)
- Sung-Jun Park
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra L Brown
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jamie E Soto
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shannon Bremner
- Department of Orthopedic Surgery, University of California and V.A. Medical Centers, San Diego, La Jolla, CA 92093, USA
| | - Jeonghan Kim
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xihui Xu
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shutong Yang
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jee-Hyun Um
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren G Koch
- Department of Anesthesiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven L Britton
- Department of Anesthesiology, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard L Lieber
- Department of Orthopedic Surgery, University of California and V.A. Medical Centers, San Diego, La Jolla, CA 92093, USA
| | - Andrew Philp
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA USA 95616
| | - Keith Baar
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA USA 95616
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - E Dale Abel
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Myung K Kim
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
|