1
|
Alvarado-Melendez EI, de Jong H, Hartman JEM, Ong JY, Wösten MMSM, Wennekes T. Glycoengineering with neuraminic acid analogs to label lipooligosaccharides and detect native sialyltransferase activity in gram-negative bacteria. Glycobiology 2024; 34:cwae071. [PMID: 39244665 DOI: 10.1093/glycob/cwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
Lipooligosaccharides are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their lipooligosaccharides with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their lipooligosaccharides. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the lipooligosaccharides of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering and Selective Exo-Enzymatic Labeling, and that together they provide tools to modify, label, detect and visualize sialylation of bacterial lipooligosaccharides.
Collapse
Affiliation(s)
- Erianna I Alvarado-Melendez
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jet E M Hartman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
2
|
Wu C, Xiong L, Liao Q, Zhang W, Xiao Y, Xie Y. Clinical manifestations, antimicrobial resistance and genomic feature analysis of multidrug-resistant Elizabethkingia strains. Ann Clin Microbiol Antimicrob 2024; 23:32. [PMID: 38600542 PMCID: PMC11007976 DOI: 10.1186/s12941-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Elizabethkingia is emerging as an opportunistic pathogen in humans. The aim of this study was to investigate the clinical epidemiology, antimicrobial susceptibility, virulence factors, and genome features of Elizabethkingia spp. METHODS Clinical data from 71 patients who were diagnosed with Elizabethkingia-induced pneumonia and bacteremia between August 2019 and September 2021 were analyzed. Whole-genome sequencing was performed on seven isolates, and the results were compared with a dataset of 83 available Elizabethkingia genomes. Genomic features, Kyoto Encyclopedia of Genes and Genomes (KEGG) results and clusters of orthologous groups (COGs) were analyzed. RESULTS The mean age of the patients was 56.9 ± 20.7 years, and the in-hospital mortality rate was 29.6% (21/71). Elizabethkingia strains were obtained mainly from intensive care units (36.6%, 26/71) and emergency departments (32.4%, 23/71). The majority of the strains were isolated from respiratory tract specimens (85.9%, 61/71). All patients had a history of broad-spectrum antimicrobial exposure. Hospitalization for invasive mechanical ventilation or catheter insertion was found to be a risk factor for infection. The isolates displayed a high rate of resistance to cephalosporins and carbapenems, but all were susceptible to minocycline and colistin. Genomic analysis identified five β-lactamase genes (blaGOB, blaBlaB, blaCME, blaOXA, and blaTEM) responsible for β-lactam resistance and virulence genes involved in stress adaptation (ureB/G, katA/B, and clpP), adherence (groEL, tufA, and htpB) and immune modulation (gmd, tviB, cps4J, wbtIL, cap8E/D/G, and rfbC). Functional analysis of the COGs revealed that "metabolism" constituted the largest category within the core genome, while "information storage and processing" was predominant in both the accessory and unique genomes. The unique genes in our 7 strains were mostly enriched in KEGG pathways related to microRNAs in cancer, drug resistance (β-lactam and vancomycin), ABC transporters, biological metabolism and biosynthesis, and nucleotide excision repair mechanisms. CONCLUSION The Elizabethkingia genus exhibits multidrug resistance and carries carbapenemase genes. This study presents a comparative genomic analysis of Elizabethkingia, providing knowledge that facilitates a better understanding of this microorganism.
Collapse
Affiliation(s)
- Chongyang Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Xiong
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanfeng Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weili Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Parker CT, Villafuerte DA, Miller WG, Huynh S, Chapman MH, Hanafy Z, Jackson JH, Miller MA, Kathariou S. Genomic Analysis Points to Multiple Genetic Mechanisms for Non-Transformable Campylobacter jejuni ST-50. Microorganisms 2024; 12:327. [PMID: 38399730 PMCID: PMC10893306 DOI: 10.3390/microorganisms12020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Campylobacter jejuni and Campylobacter coli are well known for their natural competence, i.e., their capacity for the uptake of naked DNA with subsequent transformation. This study identifies non-transformable C. jejuni and C. coli strains from domestic animals and employs genomic analysis to investigate the strain genotypes and their associated genetic mechanisms. The results reveal genetic associations leading to a non-transformable state, including functional DNase genes from bacteriophages and mutations within the cts-encoded DNA-uptake system, which impact the initial steps of the DNA uptake during natural transformation. Interestingly, all 38 tested C. jejuni ST-50 strains from the United States exhibit a high prevalence of non-transformability, and the strains harbor a variety of these genetic markers. This research emphasizes the role of these genetic markers in hindering the transfer of antimicrobial resistance (AMR) determinants, providing valuable insights into the genetic diversity of Campylobacter. As ST-50 is a major clone of C. jejuni globally, we additionally determined the prevalence of the genetic markers for non-transformability among C. jejuni ST-50 from different regions of the world, revealing distinct patterns of evolution and a strong selective pressure on the loss of competence in ST-50 strains, particularly in the agricultural environment in the United States. Our findings contribute to a comprehensive understanding of genetic exchange mechanisms within Campylobacter strains, and their implications for antimicrobial resistance dissemination and evolutionary pathways within specific lineages.
Collapse
Affiliation(s)
- Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - David A. Villafuerte
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - Mary H. Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - Zahra Hanafy
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - James H. Jackson
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - Morgan A. Miller
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - Sophia Kathariou
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| |
Collapse
|
4
|
Kopf A, Bunk B, Riedel T, Schröttner P. The zoonotic pathogen Wohlfahrtiimonas chitiniclastica - current findings from a clinical and genomic perspective. BMC Microbiol 2024; 24:3. [PMID: 38172653 PMCID: PMC10763324 DOI: 10.1186/s12866-023-03139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.
Collapse
Affiliation(s)
- Anna Kopf
- Clinic for Cardiology, Sana Heart Center, Leipziger Str. 50, 03048, Cottbus, Germany
- 2nd Medical Clinic for Hematology, Oncology, Pneumology and Nephrology, Carl-Thiem Hospital Cottbus gGmbH, Cottbus, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Institute for Medical Microbiology and Virology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Ienes-Lima J, Becerra R, Logue CM. Comparative genomic analysis of Campylobacter hepaticus genomes associated with spotty liver disease, Georgia, United States. Front Microbiol 2023; 14:1215769. [PMID: 37455739 PMCID: PMC10343453 DOI: 10.3389/fmicb.2023.1215769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Campylobacter hepaticus has re-emerged as an important cause of disease in egg laying birds worldwide, resulting in morbidity, mortality, and significant losses in eggs for the breeding and table egg laying industries. Although birds may appear asymptomatic, the disease is characterized by spots on the liver of birds and histopathological analysis reveals multifocal fibrogranulocytic necrotizing hepatitis microscopically. The re-emergence of C. hepaticus may be linked with housing practices as the disease appears more prevalent in pasture raised birds with outside exposure. Here we describe, the whole genome sequences and comparative analysis of four C. hepaticus genomes associated with an outbreak on pasture raised breeders from a farm in Georgia, United States. All four genomes were relatively similar in size and virulence genes harbored. Using these genomes, comparison with current C. hepaticus genomes available in NCBI and other databases and other members of the Campylobacter species was carried out. Using current tools available, virulence gene factor content was compared, and it was found that different tools lead to different numbers of factors identified. The four genomes from this study were relatively similar to C. hepaticus HV10 the type strain from Australia but differed from the other sequenced US strains from Iowa and Florida. C. hepaticus was found to have an overall lower gene content for genes associated with virulence and iron acquisition compared to other Campylobacter genomes and appears to cluster differently than UK genomes on phylogenetic analysis, suggesting the emergence of two lineages of C. hepaticus. This analysis provides valuable insight into the emerging pathogen C. hepaticus, its virulence factors and traits associated with disease in poultry production in the US, potentially providing insight into targets for its control and treatment for laying birds. Our analysis also confirms genes associated with iron acquisition are limited and the presence of the multidrug efflux pump CmeABC in C. hepaticus which may promote survival and persistence in the host niche - the chicken liver/bile. One unique aspect of this study was the finding of a close genetic relationship between C. hepaticus and Campylobacter fetus species and evidence of genome reduction in relation to host niche specificity.
Collapse
|
6
|
Molecular Targets in Campylobacter Infections. Biomolecules 2023; 13:biom13030409. [PMID: 36979344 PMCID: PMC10046527 DOI: 10.3390/biom13030409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Human campylobacteriosis results from foodborne infections with Campylobacter bacteria such as Campylobacter jejuni and Campylobacter coli, and represents a leading cause of bacterial gastroenteritis worldwide. After consumption of contaminated poultry meat, constituting the major source of pathogenic transfer to humans, infected patients develop abdominal pain and diarrhea. Post-infectious disorders following acute enteritis may occur and affect the nervous system, the joints or the intestines. Immunocompromising comorbidities in infected patients favor bacteremia, leading to vascular inflammation and septicemia. Prevention of human infection is achieved by hygiene measures focusing on the reduction of pathogenic food contamination. Molecular targets for the treatment and prevention of campylobacteriosis include bacterial pathogenicity and virulence factors involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation. This repertoire of intervention measures has recently been completed by drugs dampening the pro-inflammatory immune responses induced by the Campylobacter endotoxin lipo-oligosaccharide. Novel pharmaceutical strategies will combine anti-pathogenic and anti-inflammatory effects to reduce the risk of both anti-microbial resistance and post-infectious sequelae of acute enteritis. Novel strategies and actual trends in the combat of Campylobacter infections are presented in this review, alongside molecular targets applied for prevention and treatment strategies.
Collapse
|
7
|
Yoshida-Takashima Y, Takaki Y, Yoshida M, Zhang Y, Nunoura T, Takai K. Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor. ISME COMMUNICATIONS 2022; 2:108. [PMID: 37938718 PMCID: PMC9723563 DOI: 10.1038/s43705-022-00194-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023]
Abstract
The genus Nitratiruptor represents one of the most numerically abundant chemolithoautotrophic Campylobacterota populations in the mixing zones of habitats between hydrothermal fluids and ambient seawater in deep-sea hydrothermal environments. We isolated and characterized four novel temperate phages (NrS-2, NrS-3, NrS-4, and NrS-5) having a siphoviral morphology, infecting Nitratiruptor strains from the Hatoma Knoll hydrothermal field in the southern-Okinawa Trough, Japan, and conducted comparative genomic analyses among Nitratiruptor strains and their phages. The Nitratiruptor temperate phages shared many potential core genes (e.g., integrase, Cro, two structural proteins, lysozyme, and MazG) with each other despite their diverse morphological and genetic features. Some homologs of coding sequences (CDSs) of the temperate phages were dispersed throughout the non-prophage regions of the Nitratiruptor genomes. In addition, several regions of the phage genome sequences matched to spacer sequences within clustered regularly interspaced short palindromic repeats (CRISPR) in Nitratiruptor genomes. Moreover, a restriction-modification system found in a temperate phage affected an epigenetic feature of its host. These results strongly suggested a coevolution of temperate phages and their host genomes via the acquisition of temperate phages, the CRISPR systems, the nucleotide substitution, and the epigenetic regulation during multiple phage infections in the deep-sea environments.
Collapse
Affiliation(s)
- Yukari Yoshida-Takashima
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Mitsuhiro Yoshida
- Deep-Sea Bioresource Research Group, Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yi Zhang
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Deep-Sea Bioresource Research Group, Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
8
|
Pokhrel D, Thames HT, Zhang L, Dinh TTN, Schilling W, White SB, Ramachandran R, Theradiyil Sukumaran A. Roles of Aerotolerance, Biofilm Formation, and Viable but Non-Culturable State in the Survival of Campylobacter jejuni in Poultry Processing Environments. Microorganisms 2022; 10:2165. [PMID: 36363757 PMCID: PMC9699079 DOI: 10.3390/microorganisms10112165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 08/11/2023] Open
Abstract
Campylobacter jejuni is one of the most common causes of foodborne human gastroenteritis in the developed world. This bacterium colonizes in the ceca of chickens, spreads throughout the poultry production chain, and contaminates poultry products. Despite numerous on farm intervention strategies and developments in post-harvest antimicrobial treatments, C. jejuni is frequently detected on broiler meat products. This indicates that C. jejuni is evolving over time to overcome the stresses/interventions that are present throughout poultry production and processing. The development of aerotolerance has been reported to be a major survival strategy used by C. jejuni in high oxygen environments. Recent studies have indicated that C. jejuni can enter a viable but non-culturable (VBNC) state or develop biofilm in response to environmental stressors such as refrigeration and freezing stress and aerobic stress. This review provides an overview of different stressors that C. jejuni are exposed to throughout the poultry production chain and the genotypic and phenotypic survival mechanisms, with special attention to aerotolerance, biofilm formation, and development of the VBNC state.
Collapse
Affiliation(s)
- Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Hudson T. Thames
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Thu T. N. Dinh
- Tyson Foods, 2200 W. Don Tyson Parkway, Springdale, AR 72762, USA
| | - Wes Schilling
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Shecoya B. White
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | | |
Collapse
|
9
|
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022; 10:2134. [PMID: 36363726 PMCID: PMC9697106 DOI: 10.3390/microorganisms10112134] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
Collapse
Affiliation(s)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Pan-Genome Analysis of Campylobacter: Insights on the Genomic Diversity and Virulence Profile. Microbiol Spectr 2022; 10:e0102922. [PMID: 36069574 PMCID: PMC9602946 DOI: 10.1128/spectrum.01029-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genus Campylobacter contains pathogens that cause bacterial gastroenteritis in humans and animals. Despite large-scale sequencing efforts to raise clinical awareness of Campylobacter, little is known about the diversity and functions of virulence factors. Here, we constructed the pan-genome of Campylobacter using 39 representative genomes, elucidating their genetic diversity, evolutionary characteristics, and virulence and resistance profiles. The Campylobacter pan-genome was open and showed extensive genome variability, with high levels of gene expansion and contraction as the organism evolved. These Campylobacter members had diverse virulence gene content, and six potential core virulence genes (porA, PEB4, cheY, htrB, Cj1135, and kpsF) have been identified. The conserved mechanisms for Campylobacter pathogenicity were related to adherence, motility, and immune modulation. We emphasized the relative importance of variable virulence genes. Many virulence genes have experienced expansion or contraction in specific lineages, which may be one of the factors causing differences in the content of virulence genes. Additionally, these Campylobacter genomes have a high prevalence of the cmeA and cmeC genes, which are linked to the CmeABC pump and contribute to multidrug resistance. The genomic variations, core and variable virulence factors, and resistance genes of Campylobacter characterized in this study would contribute to a better understanding of the virulence of Campylobacter and more effective use of candidates for drug development and prevention of Campylobacter infections. IMPORTANCE Pathogenic members of the genus Campylobacter are recognized as one of the major causative agents of human bacterial gastroenteritis. This study revealed the pan-genome of 39 Campylobacter species, provided the most updated reconstruction of the global virulence gene pool of 39 Campylobacter species, and identified species-related virulence differences. This study highlighted the basic conserved functionality and specificity of pathogenicity that are crucial to infection, which was critical for improving the diagnosis and prevention of Campylobacter infections.
Collapse
|
11
|
Ma L, Feng J, Zhang J, Lu X. Campylobacter biofilms. Microbiol Res 2022; 264:127149. [DOI: 10.1016/j.micres.2022.127149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
12
|
Insights into the Virulence of Campylobacter jejuni Associated with Two-Component Signal Transduction Systems and Single Regulators. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is one of the major aetiologies of diarrhoea. Understanding the processes and virulence factors contributing to C. jejuni fitness is a cornerstone for developing mitigation strategies. Two-component signal transduction systems, known as two-component systems (TCSs), along with single regulators with no obvious cognate histidine kinase, help pathogens in interacting with their environments, but the available literature on C. jejuni is limited. A typical TCS possesses histidine kinase and response regulator proteins. The objective of this review was to provide insights into the virulence of C. jejuni associated with TCSs and single regulators. Despite limited research, TCSs are important contributors to the pathogenicity of C. jejuni by influencing motility (FlgSR), colonisation (DccRS), nutrient acquisition (PhosSR and BumSR), and stress response (RacRS). Of the single regulators, CbrR and CosR are involved in bile resistance and oxidative stress response, respectively. Cross-talks among TCSs complicate the full elucidation of their molecular mechanisms. Although progress has been made in characterising C. jejuni TCSs, shortfalls such as triggering signals, inability to induce mutations in some genes, or developing suitable in vivo models are still being encountered. Further research is expected to shed light on the unexplored sides of the C. jejuni TCSs, which may allow new drug discoveries and better control strategies.
Collapse
|
13
|
Tanoeiro L, Oleastro M, Nunes A, Marques AT, Duarte SV, Gomes JP, Matos APA, Vítor JMB, Vale FF. Cryptic Prophages Contribution for Campylobacter jejuni and Campylobacter coli Introgression. Microorganisms 2022; 10:microorganisms10030516. [PMID: 35336092 PMCID: PMC8955182 DOI: 10.3390/microorganisms10030516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Campylobacter coli and C. jejuni, the causing agents of campylobacteriosis, are described to be undergoing introgression events, i.e., the transference of genetic material between different species, with some isolates sharing almost a quarter of its genome. The participation of phages in introgression events and consequent impact on host ecology and evolution remain elusive. Three distinct prophages, named C. jejuni integrated elements 1, 2, and 4 (CJIE1, CJIE2, and CJIE4), are described in C. jejuni. Here, we identified two unreported prophages, Campylobacter coli integrated elements 1 and 2 (CCIE1 and CCIE2 prophages), which are C. coli homologues of CJIE1 and CJIE2, respectively. No induction was achieved for both prophages. Conversely, induction assays on CJIE1 and CJIE2 point towards the inducibility of these prophages. CCIE2-, CJIE1-, and CJIE4-like prophages were identified in a Campylobacter spp. population of 840 genomes, and phylogenetic analysis revealed clustering in three major groups: CJIE1-CCIE1, CJIE2-CCIE2, and CJIE4, clearly segregating prophages from C. jejuni and C. coli, but not from human- and nonhuman-derived isolates, corroborating the flowing between animals and humans in the agricultural context. Punctual bacteriophage host-jumps were observed in the context of C. jejuni and C. coli, and although random chance cannot be fully discarded, these observations seem to implicate prophages in evolutionary introgression events that are modulating the hybridization of C. jejuni and C. coli species.
Collapse
Affiliation(s)
- Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal;
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal; (A.N.); (J.P.G.)
| | - Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Sílvia Vaz Duarte
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal;
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal; (A.N.); (J.P.G.)
| | - António Pedro Alves Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Cooperativa de Ensino Superior Egas Moniz, Quinta da Granja, 2829-511 Caparica, Portugal;
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
- Correspondence: or
| |
Collapse
|
14
|
Nasher F, Wren BW. Transient internalization of Campylobacter jejuni in Amoebae enhances subsequent invasion of human cells. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35175913 PMCID: PMC8941996 DOI: 10.1099/mic.0.001143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide and is a major public health problem. The ability of C. jejuni to interact and potentially invade epithelial cells is thought to be key for disease development in humans. We examined C. jejuni grown under standard laboratory conditions, 11168HCBA with that harvested from within Acanthamoeba castellanii (11168HAC/CBA) or Acanthamoeba polyphaga (11168HAP/CBA), and compared their ability to invade different cell lines. C. jejuni harvested from within amoebae had a ~3.7-fold increase in invasiveness into T84 human epithelial cells and a striking ~11-fold increase for re-entry into A. castellanii cells. We also investigated the invasiveness and survivability of six diverse representative C. jejuni strains within Acanthamoeba spp., our results confirm that invasion and survivability is likely host-cell-dependent. Our survival assay data led us to conclude that Acanthamoeba spp. are a transient host for C. jejuni and that survival within amoebae pre-adapts C. jejuni and enhances subsequent cell invasion. This study provides new insight into C. jejuni interactions with amoebae and its increased invasiveness potential in mammalian hosts.
Collapse
Affiliation(s)
- Fauzy Nasher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
15
|
Aleksić E, Miljković-Selimović B, Tambur Z, Aleksić N, Biočanin V, Avramov S. Resistance to Antibiotics in Thermophilic Campylobacters. Front Med (Lausanne) 2021; 8:763434. [PMID: 34859016 PMCID: PMC8632019 DOI: 10.3389/fmed.2021.763434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most frequent causes of bacterial enterocolitis globally. The disease in human is usually self-limiting, but when complications arise antibiotic therapy is required at a time when resistance to antibiotics is increasing worldwide. Mechanisms of antibiotic resistance in bacteria are diverse depending on antibiotic type and usage and include: enzymatic destruction or drug inactivation; alteration of the target enzyme; alteration of cell membrane permeability; alteration of ribosome structure and alteration of the metabolic pathway(s). Resistance of Campylobacter spp. to antibiotics, especially fluoroquinolones is now a major public health problem in developed and developing countries. In this review the mechanisms of resistance to fluoroquinolones, macrolides, tetracycline, aminoglycoside and the role of integrons in resistance of Campylobacter (especially at the molecular level) are discussed, as well as the mechanisms of resistance to β-lactam antibiotics, sulphonamides and trimethoprim. Multiple drug resistance is an increasing problem for treatment of campylobacter infections and emergence of resistant strains and resistance are important One Health issues.
Collapse
Affiliation(s)
- Ema Aleksić
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | | | - Zoran Tambur
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | - Nikola Aleksić
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia.,Institute for Cardiovascular Disease "Dedinje, "Belgrade, Serbia
| | - Vladimir Biočanin
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | - Stevan Avramov
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia.,Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
van Vliet AHM, Charity OJ, Reuter M. A Campylobacter integrative and conjugative element with a CRISPR-Cas9 system targeting competing plasmids: a history of plasmid warfare? Microb Genom 2021; 7. [PMID: 34766904 PMCID: PMC8743540 DOI: 10.1099/mgen.0.000729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microbial genomes are highly adaptable, with mobile genetic elements (MGEs) such as integrative conjugative elements (ICEs) mediating the dissemination of new genetic information throughout bacterial populations. This is countered by defence mechanisms such as CRISPR-Cas systems, which limit invading MGEs by sequence-specific targeting. Here we report the distribution of the pVir, pTet and PCC42 plasmids and a new 70–129 kb ICE (CampyICE1) in the foodborne bacterial pathogens Campylobacter jejuni and Campylobacter coli. CampyICE1 contains a degenerated Type II-C CRISPR system consisting of a sole Cas9 protein, which is distinct from the previously described Cas9 proteins from C. jejuni and C. coli. CampyICE1 is conserved in structure and gene order, containing blocks of genes predicted to be involved in recombination, regulation and conjugation. CampyICE1 was detected in 134/5829 (2.3 %) C. jejuni genomes and 92/1347 (6.8 %) C. coli genomes. Similar ICEs were detected in a number of non-jejuni/coli Campylobacter species, although these lacked a CRISPR-Cas system. CampyICE1 carries three separate short CRISPR spacer arrays containing a combination of 108 unique spacers and 16 spacer-variant families. A total of 69 spacers and 10 spacer-variant families (63.7 %) were predicted to target Campylobacter plasmids. The presence of a functional CampyICE1 Cas9 protein and matching anti-plasmid spacers was associated with the absence of the pVir, pTet and pCC42 plasmids (188/214 genomes, 87.9 %), suggesting that the CampyICE1-encoded CRISPR-Cas has contributed to the exclusion of competing plasmids. In conclusion, the characteristics of the CRISPR-Cas9 system on CampyICE1 suggests a history of plasmid warfare in Campylobacter.
Collapse
Affiliation(s)
- Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Oliver J Charity
- Quadram Institute Bioscience, Microbes in the Food Chain programme, Norwich, UK
| | - Mark Reuter
- Quadram Institute Bioscience, Microbes in the Food Chain programme, Norwich, UK
| |
Collapse
|
17
|
Heikema AP, Strepis N, Horst-Kreft D, Huynh S, Zomer A, Kelly DJ, Cooper KK, Parker CT. Biomolecule sulphation and novel methylations related to Guillain-Barré syndrome-associated Campylobacter jejuni serotype HS:19. Microb Genom 2021; 7. [PMID: 34723785 PMCID: PMC8743553 DOI: 10.1099/mgen.0.000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni strains that produce sialylated lipooligosaccharides (LOS) can cause the immune-mediated disease Guillain-Barré syndrome (GBS). The risk of GBS after infection with C. jejuni Penner serotype HS:19 is estimated to be at least six times higher than the average risk. Aside from LOS biosynthesis genes, genomic characteristics that promote an increased risk for GBS following C. jejuni HS:19 infection, remain uncharacterized. We hypothesized that strains with the HS:19 serotype have unique genomic features that explain the increased risk for GBS. We performed genome sequencing, alignments, single nucleotide polymorphisms' analysis and methylome characterization on a subset, and pan-genome analysis on a large number of genomes to compare HS:19 with non-HS:19 C. jejuni genome sequences. Comparison of 36 C. jejuni HS:19 with 874 C. jejuni non-HS:19 genome sequences led to the identification of three single genes and ten clusters containing contiguous genes that were significantly associated with C. jejuni HS:19. One gene cluster of seven genes, localized downstream of the capsular biosynthesis locus, was related to sulphation of biomolecules. This cluster also encoded the campylobacter sialyl transferase Cst-I. Interestingly, sulphated bacterial biomolecules such as polysaccharides can promote immune responses and, therefore, (in the presence of sialic acid) may play a role in the development of GBS. Additional gene clusters included those involved in persistence-mediated pathogenicity and gene clusters involved in restriction-modification systems. Furthermore, characterization of methylomes of two HS:19 strains exhibited novel methylation patterns (5′-CATG-3 and 5′-m6AGTNNNNNNRTTG-3) that could differentially effect gene-expression patterns of C. jejuni HS:19 strains. Our study provides novel insight into specific genetic features and possible virulence factors of C. jejuni associated with the HS:19 serotype that may explain the increased risk of GBS.
Collapse
Affiliation(s)
- Astrid P. Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
- *Correspondence: Astrid P. Heikema,
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Deborah Horst-Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
- *Correspondence: Craig T. Parker,
| |
Collapse
|
18
|
Cytolethal distending toxin: from genotoxin to a potential biomarker and anti-tumor target. World J Microbiol Biotechnol 2021; 37:150. [PMID: 34379213 DOI: 10.1007/s11274-021-03117-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Cytolethal Distending Toxin (CDT) belongs to the AB toxin family and is produced by a plethora of Gram-negative bacteria. Eight human-affecting enteropathogens harbor CDT that causes irritable bowel syndrome (IBS), dysentery, chancroid, and periodontitis worldwide. They have a novel molecular mode of action as they interfere in the eukaryotic cell-cycle progression leading to G2/M arrest and apoptosis. CDT, the first bacterial genotoxin described, is encoded in a single operon possessing three proteins, CdtA, CdtB, and CdtC. CdtA and CdtC are needed for the binding of the CDT toxin complex to the cholesterol-rich lipid domains of the host cell while the CdtB is the active moiety. Sequence and 3D structural-based analysis of CdtB showed similarities with nucleases and phosphatases, it was hypothesized that CdtB exercises a biochemical function identical to both these enzymes. CDT is secreted through the outer membrane vesicles from the producing bacteria. It is internalized in the target cells via clathrin-dependent endocytosis and translocated to the host cell nucleus through the Golgi complex and ER. This study discusses the virulence role of CDT, causing pathogenicity by acting as a tri-perditious complex in the CDT-producing species with an emphasis on its potential role as a biomarker and an anti-tumor agent.
Collapse
|
19
|
Cayrou C, Barratt NA, Ketley JM, Bayliss CD. Phase Variation During Host Colonization and Invasion by Campylobacter jejuni and Other Campylobacter Species. Front Microbiol 2021; 12:705139. [PMID: 34394054 PMCID: PMC8355987 DOI: 10.3389/fmicb.2021.705139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Phase variation (PV) is a phenomenon common to a variety of bacterial species for niche adaption and survival in challenging environments. Among Campylobacter species, PV depends on the presence of intergenic and intragenic hypermutable G/C homopolymeric tracts. The presence of phase-variable genes is of especial interest for species that cause foodborne or zoonotic infections in humans. PV influences the formation and the structure of the lipooligosaccharide, flagella, and capsule in Campylobacter species. PV of components of these molecules is potentially important during invasion of host tissues, spread within hosts and transmission between hosts. Motility is a critical phenotype that is potentially modulated by PV. Variation in the status of the phase-variable genes has been observed to occur during colonization in chickens and mouse infection models. Interestingly, PV is also involved in bacterial survival of attack by bacteriophages even during chicken colonization. This review aims to explore and discuss observations of PV during model and natural infections by Campylobacter species and how PV may affect strategies for fighting infections by this foodborne pathogen.
Collapse
Affiliation(s)
- Caroline Cayrou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Natalie A Barratt
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Julian M Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christopher D Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
20
|
Robinson L, Liaw J, Omole Z, Xia D, van Vliet AHM, Corcionivoschi N, Hachani A, Gundogdu O. Bioinformatic Analysis of the Campylobacter jejuni Type VI Secretion System and Effector Prediction. Front Microbiol 2021; 12:694824. [PMID: 34276628 PMCID: PMC8285248 DOI: 10.3389/fmicb.2021.694824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
The Type VI Secretion System (T6SS) has important roles relating to bacterial antagonism, subversion of host cells, and niche colonisation. Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis worldwide and is a commensal coloniser of birds. Although recently discovered, the T6SS biological functions and identities of its effectors are still poorly defined in C. jejuni. Here, we perform a comprehensive bioinformatic analysis of the C. jejuni T6SS by investigating the prevalence and genetic architecture of the T6SS in 513 publicly available genomes using C. jejuni 488 strain as reference. A unique and conserved T6SS cluster associated with the Campylobacter jejuni Integrated Element 3 (CJIE3) was identified in the genomes of 117 strains. Analyses of the T6SS-positive 488 strain against the T6SS-negative C. jejuni RM1221 strain and the T6SS-positive plasmid pCJDM202 carried by C. jejuni WP2-202 strain defined the “T6SS-containing CJIE3” as a pathogenicity island, thus renamed as Campylobacter jejuni Pathogenicity Island-1 (CJPI-1). Analysis of CJPI-1 revealed two canonical VgrG homologues, CJ488_0978 and CJ488_0998, harbouring distinct C-termini in a genetically variable region downstream of the T6SS operon. CJPI-1 was also found to carry a putative DinJ-YafQ Type II toxin-antitoxin (TA) module, conserved across pCJDM202 and the genomic island CJIE3, as well as several open reading frames functionally predicted to encode for nucleases, lipases, and peptidoglycan hydrolases. This comprehensive in silico study provides a framework for experimental characterisation of T6SS-related effectors and TA modules in C. jejuni.
Collapse
Affiliation(s)
- Luca Robinson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dong Xia
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Abderrahman Hachani
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Greninger AL, Addetia A, Starr K, Cybulski RJ, Stewart MK, Salipante SJ, Bryan AB, Cookson B, Gaudreau C, Bekal S, Fang FC. International Spread of Multidrug-Resistant Campylobacter coli in Men Who Have Sex With Men in Washington State and Québec, 2015-2018. Clin Infect Dis 2021; 71:1896-1904. [PMID: 31665255 PMCID: PMC7643735 DOI: 10.1093/cid/ciz1060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Campylobacter species are among the most common causes of enteric bacterial infections worldwide. Men who have sex with men (MSM) are at increased risk for sexually transmitted enteric infections, including globally distributed strains of multidrug-resistant Shigella species. Methods This was a retrospective study of MSM-associated Campylobacter in Seattle, Washington and Montréal, Québec with phenotypic antimicrobial resistance profiles and whole genome sequencing (WGS). Results We report the isolation of 2 clonal lineages of multidrug-resistant Campylobacter coli from MSM in Seattle and Montréal. WGS revealed nearly identical strains obtained from the 2 regions over a 4-year period. Comparison with the National Center for Biotechnology Information’s Pathogen Detection database revealed extensive Campylobacter species clusters carrying multiple drug resistance genes that segregated with these isolates. Examination of the genetic basis of antimicrobial resistance revealed multiple macrolide resistance determinants including a novel ribosomal RNA methyltransferase situated in a CRISPR (clustered regularly interspaced short palindromic repeats) array locus in a C. coli isolate. Conclusions As previously reported for Shigella, specific multidrug-resistant strains of Campylobacter are circulating by sexual transmission in MSM populations across diverse geographic locations, suggesting a need to incorporate sexual behavior in the investigation of clusters of foodborne pathogens revealed by WGS data.
Collapse
Affiliation(s)
- Alexander L Greninger
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Correspondence: A. L. Greninger, University of Washington, 1616 Eastlake Ave E, Suite 320, Seattle, WA 98102 ()
| | - Amin Addetia
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly Starr
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert J Cybulski
- Department of Pathology and Area Laboratory Services, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Mary K Stewart
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J Salipante
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew B Bryan
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Brad Cookson
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Christiane Gaudreau
- Microbiologie médicale et infectiologie, Centre hospitalier de l’Université de Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Québec, Canada
| | - Sadjia Bekal
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Québec, Canada
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Ferric C Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
22
|
Ha J, Seo Y, Kim Y, Choi Y, Oh H, Lee Y, Park E, Kang J, Lee H, Lee S, Yoon Y. Development of a Selective Agar for Improving Campylobacter jejuni Detection in Food. J AOAC Int 2021; 104:1344-1349. [PMID: 33856456 DOI: 10.1093/jaoacint/qsab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/02/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Campylobacter jejuni is a major gastroenteritis-causing foodborne pathogen. However, it is difficult to isolate when competing bacteria or cold-damaged cells are present. OBJECTIVE Herein, a medium (Campylobacter selective agar, CSA) was developed and supplemented with catalase, L-serine, L-cysteine, and quercetin for the selective detection of C. jejuni in food. METHODS The C. jejuni-detection efficiency in broth media and chicken tenders was evaluated. The pathogen was enumerated on modified charcoal-cefoperazone-deoxycholate agar (mCCDA), CSA supplemented with 4 µM catalase (CSA-C4), 8 µM catalase (CSA-C8), 20 mM L-serine (CSA-S20) or 50 mM L-serine (CSA-S50), and mCCDA supplemented with 0.5 mM L-cysteine (mCCDA-LC0.5), 1 mM L-cysteine (mCCDA-LC1), 40 µM quercetin (mCCDA-Q40) or 320 µM quercetin (mCCDA-Q320). The detection efficiency was then evaluated by counting colonies on the selective agar media. Quantitative assessment was also performed using chicken and duck carcasses. RESULTS The C. jejuni detection efficiencies were higher (p < 0.05) in the groups CSA-C4 or CSA-C8 and CSA-S20 or CSA-S50 than mCCDA, and the detection efficiencies were maintained even in the presence of Acinetobacter baumannii, a competing bacterium. In the quantitative test, CSA-C8 and CSA-S50 demonstrated higher C. jejuni-detection efficiencies than mCCDA (control). CONCLUSION Therefore, CSA-C8 and CSA-S50 improved the detection efficiency of C. jejuni in poultry products by promoting the recovery of cold-damaged cells. HIGHLIGHTS When using CSA-C8 or CSA-S50 developed in this study for detection of C. jejuni in food, detection efficiency was higher than mCCDA.
Collapse
Affiliation(s)
- Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Yeongeun Seo
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| | - Yujin Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| | - Yukyung Choi
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Yewon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| | - Eunyoung Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| | - Joohyun Kang
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| | - Heeyoung Lee
- Food Standard Research Center, Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, Korea.,Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Korea
| |
Collapse
|
23
|
Duqué B, Rezé S, Rossero A, Membré JM, Guillou S, Haddad N. Quantification of Campylobacter jejuni gene expression after successive stresses mimicking poultry slaughtering steps. Food Microbiol 2021; 98:103795. [PMID: 33875223 DOI: 10.1016/j.fm.2021.103795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Broiler meat is considered as the most important source of the foodborne pathogen Campylobacter jejuni. Exposure to stress conditions encountered during the slaughtering process may induce bacterial adaptation mechanisms, and enhance or decrease pathogen resistance to subsequent stress. This adaptation may result from changes in bacterial gene expression. This study aims to accurately quantify the expression of selected C. jejuni genes after stresses inspired from the poultry slaughtering process. RT-qPCR was used to quantify gene expression of 44 genes in three strains after successive heat and cold stresses. Main results indicated that 26 genes out of 44 were differentially expressed following the successive thermal stresses. Three clusters of genes were differentially expressed according to the strain and the stress condition. Up-regulated genes mainly included genes involved in the heat shock response, whereas down-regulated genes belonged to metabolic pathways (such as lipid, amino-acid metabolisms). However, four genes were similarly overexpressed in the three strains; they might represent indicators of the thermal stress response at the species scale. Advances in the molecular understanding of the stress response of pathogenic bacteria, such as Campylobacter, in real-life processing conditions will make it possible to identify technological levers and better mitigate the microbial risk.
Collapse
Affiliation(s)
- Benjamin Duqué
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Sandrine Rezé
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Albert Rossero
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | | | - Sandrine Guillou
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Nabila Haddad
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| |
Collapse
|
24
|
Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni. Sci Rep 2021; 11:5676. [PMID: 33707610 PMCID: PMC7952698 DOI: 10.1038/s41598-021-84956-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
The sequencing, assembly, and analysis of bacterial genomes is central to tracking and characterizing foodborne pathogens. The bulk of bacterial genome sequencing at the US Food and Drug Administration is performed using short-read Illumina MiSeq technology, resulting in highly accurate but fragmented genomic sequences. The MinION sequencer from Oxford Nanopore is an evolving technology that produces long-read sequencing data with low equipment cost. The goal of this study was to compare Campylobacter genome assemblies generated from MiSeq and MinION data independently, as well as hybrid genome assemblies combining both data types. Two reference strains and two field isolates of C. jejuni were sequenced using MiSeq and MinION, and the sequence data were assembled using the software programs SPAdes and Canu, respectively. Hybrid genome assembly was performed using the program Unicycler. Comparison of the C. jejuni 81-176 and RM1221 genome assemblies to the PacBio reference genomes revealed that the SPAdes assemblies had the most accurate nucleotide identity, while the hybrid assemblies were the most contiguous. Assemblies generated only from MinION data using Canu were the least accurate, containing many indels and substitutions that affected downstream analyses. The hybrid sequencing approach was the most useful for detecting plasmids, large genome rearrangements, and repetitive elements such as rRNA and tRNA genes. The full genomes of both C. jejuni field isolates were completed and circularized using hybrid sequencing, and a plasmid was detected in one isolate. Continued development of nanopore sequencing technologies will likely enhance the accuracy of hybrid genome assemblies and enable public health laboratories to routinely generate complete circularized bacterial genome sequences.
Collapse
|
25
|
Heimesaat MM, Backert S, Alter T, Bereswill S. Human Campylobacteriosis-A Serious Infectious Threat in a One Health Perspective. Curr Top Microbiol Immunol 2021; 431:1-23. [PMID: 33620646 DOI: 10.1007/978-3-030-65481-8_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zoonotic Campylobacter species-mainly C. jejuni and C. coli-are major causes of food-borne bacterial infectious gastroenteritis worldwide. Symptoms of intestinal campylobacteriosis include abdominal pain, diarrhea and fever. The clinical course of enteritis is generally self-limiting, but some infected individuals develop severe post-infectious sequelae including autoimmune disorders affecting the nervous system, the joints and the intestinal tract. Moreover, in immunocompromised individuals, systemic spread of the pathogens may trigger diseases of the circulatory system and septicemia. The socioeconomic costs associated with Campylobacter infections have been calculated to several billion dollars annually. Poultry meat products represent major sources of human infections. Thus, a "One World-One Health" approach with collective efforts of public health authorities, veterinarians, clinicians, researchers and politicians is required to reduce the burden of campylobacteriosis. Innovative intervention regimes for the prevention of Campylobacter contaminations along the food chain include improvements of information distribution to strengthen hygiene measures for agricultural remediation. Given that elimination of Campylobacter from the food production chains is not feasible, novel intervention strategies fortify both the reduction of pathogen contamination in food production and the treatment of the associated diseases in humans. This review summarizes some current trends in the combat of Campylobacter infections including the combination of public health and veterinary preventive approaches with consumer education. The "One World-One Health" perspective is completed by clinical aspects and molecular concepts of human campylobacteriosis offering innovative treatment options supported by novel murine infection models that are based on the essential role of innate immune activation by bacterial endotoxins.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Thomas Alter
- Department of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Free University Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
26
|
Zampara A, Sørensen MCH, Gencay YE, Grimon D, Kristiansen SH, Jørgensen LS, Kristensen JR, Briers Y, Elsser-Gravesen A, Brøndsted L. Developing Innolysins Against Campylobacter jejuni Using a Novel Prophage Receptor-Binding Protein. Front Microbiol 2021; 12:619028. [PMID: 33597938 PMCID: PMC7882524 DOI: 10.3389/fmicb.2021.619028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Campylobacter contaminated poultry remains the major cause of foodborne gastroenteritis worldwide, calling for novel antibacterials. We previously developed the concept of Innolysin composed of an endolysin fused to a phage receptor binding protein (RBP) and provided the proof-of-concept that Innolysins exert bactericidal activity against Escherichia coli. Here, we have expanded the Innolysin concept to target Campylobacter jejuni. As no C. jejuni phage RBP had been identified so far, we first showed that the H-fiber originating from a CJIE1-like prophage of C. jejuni CAMSA2147 functions as a novel RBP. By fusing this H-fiber to phage T5 endolysin, we constructed Innolysins targeting C. jejuni (Innolysins Cj). Innolysin Cj1 exerts antibacterial activity against diverse C. jejuni strains after in vitro exposure for 45 min at 20°C, reaching up to 1.30 ± 0.21 log reduction in CAMSA2147 cell counts. Screening of a library of Innolysins Cj composed of distinct endolysins for growth inhibition, allowed us to select Innolysin Cj5 as an additional promising antibacterial candidate. Application of either Innolysin Cj1 or Innolysin Cj5 on chicken skin refrigerated to 5°C and contaminated with C. jejuni CAMSA2147 led to 1.63 ± 0.46 and 1.18 ± 0.10 log reduction of cells, respectively, confirming that Innolysins Cj can kill C. jejuni in situ. The receptor of Innolysins Cj remains to be identified, however, the RBP component (H-fiber) recognizes a novel receptor compared to lytic phages binding to capsular polysaccharide or flagella. Identification of other unexplored Campylobacter phage RBPs may further increase the repertoire of new Innolysins Cj targeting distinct receptors and working as antibacterials against Campylobacter.
Collapse
Affiliation(s)
- Athina Zampara
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Grimon
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | | | | | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Abstract
Thermophilic Campylobacter, in particular Campylobacter jejuni, C. coli and C. lari are the main relevant Campylobacter species for human infections. Due to their high capacity of genetic exchange by horizontal gene transfer (HGT), rapid adaptation to changing environmental and host conditions contribute to successful spreading and persistence of these foodborne pathogens. However, extensive HGT can exert dangerous side effects for the bacterium, such as the incorporation of gene fragments leading to disturbed gene functions. Here we discuss mechanisms of HGT, notably natural transformation, conjugation and bacteriophage transduction and limiting regulatory strategies of gene transfer. In particular, we summarize the current knowledge on how the DNA macromolecule is exchanged between single cells. Mechanisms to stimulate and to limit HGT obviously coevolved and maintained an optimal balance. Chromosomal rearrangements and incorporation of harmful mutations are risk factors for survival and can result in drastic loss of fitness. In Campylobacter, the restricted recognition and preferential uptake of free DNA from relatives are mediated by a short methylated DNA pattern and not by a classical DNA uptake sequence as found in other bacteria. A class two CRISPR-Cas system is present but also other DNases and restriction-modification systems appear to be important for Campylobacter genome integrity. Several lytic and integrated bacteriophages have been identified, which contribute to genome diversity. Furthermore, we focus on the impact of gene transfer on the spread of antibiotic resistance genes (resistome) and persistence factors. We discuss remaining open questions in the HGT field, supposed to be answered in the future by current technologies like whole-genome sequencing and single-cell approaches.
Collapse
Affiliation(s)
- Julia Carolin Golz
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| |
Collapse
|
28
|
Samarth DP, Kwon YM. Horizontal genetic exchange of chromosomally encoded markers between Campylobacter jejuni cells. PLoS One 2020; 15:e0241058. [PMID: 33104745 PMCID: PMC7588059 DOI: 10.1371/journal.pone.0241058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Many epidemiological studies provide us with the evidence of horizontal gene transfer (HGT) contributing to the bacterial genomic diversity that benefits the bacterial populations with increased ability to adapt to the dynamic environments. Campylobacter jejuni, a major cause of acute enteritis in the U.S., often linked with severe post-infection neuropathies, has been reported to exhibit a non-clonal population structure and comparatively higher strain-level genetic variation. In this study, we provide evidence of the HGT of chromosomally encoded genetic markers between C. jejuni cells in the biphasic MH medium. We used two C. jejuni NCTC-11168 mutants harbouring distinct antibiotic-resistance genes [chloramphenicol (Cm) and kanamycin (Km)] present at two different neutral genomic loci. Cultures of both marker strains were mixed together and incubated for 5 hrs, then plated on MH agar plates supplemented with both antibiotics. The recombinant cells with double antibiotic markers were generated at the frequency of 0.02811 ± 0.0035% of the parental strains. PCR assays using locus-specific primers confirmed that transfer of the antibiotic-resistance genes was through homologous recombination. Also, the addition of chicken cecal content increased the recombination efficiency approximately up to 10-fold as compared to the biphasic MH medium (control) at P < 0.05. Furthermore, treating the co-culture with DNase I decreased the available DNA, which in turn significantly reduced recombination efficiency by 99.92% (P < 0.05). We used the cell-free supernatant of 16 hrs-culture of Wild-type C. jejuni as a template for PCR and found DNA sequences from six different genomic regions were easily amplified, indicating the presence of released chromosomal DNA in the culture supernatant. Our findings suggest that HGT in C. jejuni is facilitated in the chicken gut environment contributing to in vivo genomic diversity. Additionally, C. jejuni might have an active mechanism to release its chromosomal DNA into the extracellular environment, further expediting HGT in C. jejuni populations.
Collapse
Affiliation(s)
- Deepti Pranay Samarth
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
29
|
Duqué B, Canon J, Haddad N, Guillou S, Membré JM. Quantitative approach to assess the compliance to a performance objective (PO) of Campylobacter jejuni in poultry meat in France. Int J Food Microbiol 2020; 336:108916. [PMID: 33091756 DOI: 10.1016/j.ijfoodmicro.2020.108916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/19/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
Predictive modelling is used in microbiological risk assessment to quantify the growth and inactivation of microorganisms through the use of mathematical models. Campylobacter jejuni is one of the main foodborne pathogens and broiler meat is considered as the most important source of human campylobacteriosis. The purpose of this study was to assess the effects of heating and chilling during the poultry slaughter process on inactivation kinetics of Campylobacter jejuni during chilled storage in order to predict its contamination level prior to preparation and consumption in the consumer's home, and then to assess the compliance to a Performance Objective (PO). Three strains of C. jejuni were submitted to consecutive heat (54 °C for 3 min) and cold (3 °C for 2 h) stresses, mimicking the two main slaughtering steps, i.e. scalding and chilling, by inoculating chicken fillets with three different concentrations (4, 6 and 8 log10 CFU/g). Fillets were then stored at 6 °C during 17 days under the modified atmosphere currently used by food processors (70% O2/30% CO2). For all strains, bacterial log reduction was the lowest when inoculated at 8 log10 CFU/g. One strain showed an enhanced resistance during cold storage after application of stressing steps, suggesting an impact of the cell history on further bacterial resistance. Taking strain variability into account, after six days of storage, predictions showed compliance of ready-to-be-cooked chicken meat with a hypothetical PO of 2.55 log10 CFU/g, value set before the meat enters the consumer's home by the ICMSF (International Commission on Microbiological Specifications for Foods). This study opens the path to assess the compliance to a PO of Campylobacter jejuni in poultry meat and more generally provides inputs to refine microbiological risk assessment by taking into account the cell history and more particularly the impact of stressful steps on the subsequent inactivation at consumer's home.
Collapse
|
30
|
Mining whole genome sequence data to efficiently attribute individuals to source populations. Sci Rep 2020; 10:12124. [PMID: 32699222 PMCID: PMC7376179 DOI: 10.1038/s41598-020-68740-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Whole genome sequence (WGS) data could transform our ability to attribute individuals to source populations. However, methods that efficiently mine these data are yet to be developed. We present a minimal multilocus distance (MMD) method which rapidly deals with these large data sets as well as methods for optimally selecting loci. This was applied on WGS data to determine the source of human campylobacteriosis, the geographical origin of diverse biological species including humans and proteomic data to classify breast cancer tumours. The MMD method provides a highly accurate attribution which is computationally efficient for extended genotypes. These methods are generic, easy to implement for WGS and proteomic data and have wide application.
Collapse
|
31
|
Hooton S, D'Angelantonio D, Hu Y, Connerton PL, Aprea G, Connerton IF. Campylobacter bacteriophage DA10: an excised temperate bacteriophage targeted by CRISPR-cas. BMC Genomics 2020; 21:400. [PMID: 32532247 PMCID: PMC7291426 DOI: 10.1186/s12864-020-06808-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lytic bacteriophages that infect Campylobacter spp. have been utilized to develop therapeutic/decontamination techniques. However, the association of Campylobacter spp. and bacteriophages has been the focus of several strands of research aimed at understanding the complex relationships that have developed between predators and prey over evolutionary time. The activities of endogenous temperate bacteriophages have been used to evaluate genomic rearrangements and differential protein expression in host cells, and mechanisms of resistance to bacteriophage infection in campylobacters such as phase variation and CRISPR-mediated immunity. Results Temperate bacteriophage DA10 represents a novel excised and infective virus capable of replication in a restricted set of C. jejuni and C. coli hosts. Whole genome sequencing reveals that DA10 (35,379 bp) forms part of a novel group of temperate bacteriophages that have limited distribution among database host genome sequences. Analysis of potential host genomes reveals a robust response against DA10 and DA10-like bacteriophages is driven by CRISPR-mediated immunity with 75% of DA10 ORFs represented as ~ 30 bp spacer sequences in numerous Campylobacter Type II-C CRISPR arrays. Several DA10-like homologues have been identified in a small sub-set of C. jejuni and C. coli genome sequences (ranging from near complete integrated prophage sequences to fragments recognisable in the sequence read archive). Conclusions A complete intact DA10-like prophage in C. jejuni CJ677CC520 provides evidence that the associations between host and DA10-like bacteriophages are long-standing in evolutionary timescales. Extensive nucleotide substitution and loss can be observed in the integrated DA10-like prophage of CJ677CC520 compared to other relatives as observed through pairwise genome comparisons. Examining factors that have limited the population expansion of the prophage, while others appear to have thrived and prospered (Mu-like, CJIE-like, and lytic Campylobacter bacteriophages) will assist in identifying the underlying evolutionary processes in the natural environment.
Collapse
Affiliation(s)
- Steven Hooton
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Daniela D'Angelantonio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Yang Hu
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Phillippa L Connerton
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Ian F Connerton
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
32
|
Thames HT, Theradiyil Sukumaran A. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods 2020; 9:E776. [PMID: 32545362 PMCID: PMC7353592 DOI: 10.3390/foods9060776] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Poultry is one of the largest sources of animal-based protein in the United States. Poultry processing has grown from a small local network of plants to nearly 500 plants nationwide. Two of the most persistent bacteria in poultry processing are Salmonella and Campylobacter. It was not until the introduction of Hazard Analysis and Critical Control Point systems in 1996 that major efforts to reduce bacterial contamination were developed. Traditionally, chlorine has been the industry standard for decontaminating chicken meat. However, antimicrobials such as peracetic acid, cetylpyridinium chloride, and acidified sodium chlorite have replaced chlorine as primary antimicrobials. Despite current interventions, the emergence of stress-tolerant and biofilm-forming Salmonella and Campylobacter is of primary concern. In an effort to offset growing tolerance from microbes, novel techniques such as cold plasma treatment, electrostatic spraying, and bacteriophage-based applications have been investigated as alternatives to conventional treatments, while new chemical antimicrobials such as Amplon and sodium ferrate are investigated as well. This review provides an overview of poultry processing in the United States, major microbes in poultry processing, current interventions, emerging issues, and emerging technologies in antimicrobial treatments.
Collapse
|
33
|
Narváez-Barragán DA, de Sandozequi A, Rodríguez M, Estrada K, Tovar-Herrera OE, Martínez-Anaya C. Analysis of two Mexican Pectobacterium brasiliense strains reveals an inverted relationship between c-di-GMP levels with exopolysaccharide production and swarming motility. Microbiol Res 2020; 235:126427. [PMID: 32109688 DOI: 10.1016/j.micres.2020.126427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Pectobacterium is a diverse genus of phytopathogenic species from soil and water that cause infection either to restricted or multiple plant hosts. Phylogenetic analysis and metabolic fingerprinting of large numbers of genomes have expanded classification of Pectobacterium members. Pectobacterium brasiliense sp. nov has been elevated to the species level having detached from P. carotovorum. Here we present two P. brasiliense strains BF20 and BF45 isolated in Mexico from Opuntia and tobacco, respectively, which cluster into two different groups in whole genome comparisons with other Pectobacterium. We found that BF20 and BF45 strains are phenotypically different as BF45 showed more severe and rapid symptoms in comparison to BF20 in the host models celery and broccoli. Both strains produced similar levels of the main autoinducers, but BF45 shows an additional low abundant autoinducer compared to strain BF20. The two strains had different levels of c-di-GMP, which regulates the transition from motile to sessile lifestyle. In contrast to BF45, BF20 had the highest levels of c-di-GMP, was more motile (swarming), non-flocculant and less proficient in biofilm formation and exopolysaccharide production. Genomic comparisons revealed that differences in c-di-GMP accumulation and perhaps the associated phenotypes might be due to unique c-di-GMP metabolic genes in these two strains. Our results improve our understanding of the associations between phenotype and genotype and how this has shaped the physiology of Pectobacterium strains.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Mabel Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Karel Estrada
- Unidad de Secuenciación Masiva y Bioinformática. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Omar E Tovar-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México.
| |
Collapse
|
34
|
French NP, Zhang J, Carter GP, Midwinter AC, Biggs PJ, Dyet K, Gilpin BJ, Ingle DJ, Mulqueen K, Rogers LE, Wilkinson DA, Greening SS, Muellner P, Fayaz A, Williamson DA. Genomic Analysis of Fluoroquinolone- and Tetracycline-Resistant Campylobacter jejuni Sequence Type 6964 in Humans and Poultry, New Zealand, 2014-2016. Emerg Infect Dis 2020; 25:2226-2234. [PMID: 31742539 PMCID: PMC6874264 DOI: 10.3201/eid2512.190267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In 2014, antimicrobial drug–resistant Campylobacter jejuni sequence type 6964 emerged contemporaneously in poultry from 3 supply companies in the North Island of New Zealand and as a major cause of campylobacteriosis in humans in New Zealand. This lineage, not previously identified in New Zealand, was resistant to tetracycline and fluoroquinolones. Genomic analysis revealed divergence into 2 major clades; both clades were associated with human infection, 1 with poultry companies A and B and the other with company C. Accessory genome evolution was associated with a plasmid, phage insertions, and natural transformation. We hypothesize that the tetO gene and a phage were inserted into the chromosome after conjugation, leaving a remnant plasmid that was lost from isolates from company C. The emergence and rapid spread of a resistant clone of C. jejuni in New Zealand, coupled with evolutionary change in the accessory genome, demonstrate the need for ongoing Campylobacter surveillance among poultry and humans.
Collapse
|
35
|
Riedel C, Förstner KU, Püning C, Alter T, Sharma CM, Gölz G. Differences in the Transcriptomic Response of Campylobacter coli and Campylobacter lari to Heat Stress. Front Microbiol 2020; 11:523. [PMID: 32292399 PMCID: PMC7118207 DOI: 10.3389/fmicb.2020.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter spp. are one of the most important food-borne pathogens, which are quite susceptible to environmental or technological stressors compared to other zoonotic bacteria. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter jejuni are already known, information about the stress response in other Campylobacter species are still scarce. In this study, the stress response of Campylobacter coli and Campylobacter lari to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analysis. None of the strains survived at 46°C for more than 8 h and approximately 20% of the genes of C. coli RM2228 and C. lari RM2100 were differentially expressed. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL, and clpB in both strains, indicating a general involvement in the heat stress response within the Campylobacter species. However, the pronounced differences in the expression pattern between C. coli and C. lari suggest that stress response mechanisms described for one Campylobacter species might be not necessarily transferable to other Campylobacter species.
Collapse
Affiliation(s)
- Carolin Riedel
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Konrad U Förstner
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
- ZB MED - Information Centre for Life Sciences, Köln, Germany
- Institute of Information Science, Faculty of Information Science and Communication Studies, TH Köln (University of Applied Sciences), Köln, Germany
| | - Christoph Püning
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
36
|
Haldenby S, Bronowski C, Nelson C, Kenny J, Martinez-Rodriguez C, Chaudhuri R, Williams NJ, Forbes K, Strachan NJ, Pulman J, Winstanley IN, Corless CE, Humphrey TJ, Bolton FJ, O’Brien SJ, Hall N, Hertz-Fowler C, Winstanley C. Increasing prevalence of a fluoroquinolone resistance mutation amongst Campylobacter jejuni isolates from four human infectious intestinal disease studies in the United Kingdom. PLoS One 2020; 15:e0227535. [PMID: 31999701 PMCID: PMC6992184 DOI: 10.1371/journal.pone.0227535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the most common bacterial cause of human infectious intestinal disease. METHODS We genome sequenced 601 human C. jejuni isolates, obtained from two large prospective studies of infectious intestinal disease (IID1 [isolates from 1993-1996; n = 293] and IID2 [isolates from 2008-2009; n = 93]), the INTEGRATE project [isolates from 2016-2017; n = 52] and the ENIGMA project [isolates from 2017; n = 163]. RESULTS There was a significant increase in the prevalence of the T86I mutation conferring resistance to fluoroquinolone between each of the three later studies (IID2, INTEGRATE and ENIGMA) and IID1. Although the distribution of major multilocus sequence types (STs) was similar between the studies, there were changes in both the abundance of minority STs associated with the T86I mutation, and the abundance of clones within single STs associated with the T86I mutation. DISCUSSION Four population-based studies of community diarrhoea over a 25 year period revealed an increase over time in the prevalence of the T86I amongst isolates of C. jejuni associated with human gastrointestinal disease in the UK. Although associated with many STs, much of the increase is due to the expansion of clones associated with the resistance mutation.
Collapse
Affiliation(s)
- Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Nelson
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - John Kenny
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | | | - Roy Chaudhuri
- Department of Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Nicola J. Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ken Forbes
- School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Norval J. Strachan
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jane Pulman
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Ian N. Winstanley
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Caroline E. Corless
- Infection and Immunity, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Tom J. Humphrey
- Medical Microbiology and Infectious Diseases, School of Medicine, Swansea University, Swansea, United Kingdom
| | - Frederick J. Bolton
- Department of Public Health and Policy, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Sarah J. O’Brien
- Department of Public Health and Policy, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Asare PT, Zurfluh K, Greppi A, Lynch D, Schwab C, Stephan R, Lacroix C. Reuterin Demonstrates Potent Antimicrobial Activity Against a Broad Panel of Human and Poultry Meat Campylobacter spp. Isolates. Microorganisms 2020; 8:E78. [PMID: 31935889 PMCID: PMC7022665 DOI: 10.3390/microorganisms8010078] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 01/08/2023] Open
Abstract
Reuterin is a broad-spectrum antimicrobial system produced by specific strains of Lactobacillus reuteri during anaerobic metabolism of glycerol. Acrolein is the main component responsible for its antimicrobial activity. Here, the sensitivity of Campylobacter jejuni (n = 51) and Campylobacter coli (n = 20) isolates from chicken meat and human stool samples to reuterin was investigated. The minimum inhibitory concentration (MIC) of C. jejuni and C. coli strains was measured between 1.5 and 3.0 µM of acrolein, below the MIC of the sensitive indicator strain Escherichia coli K12 (16.5 µM acrolein). The interaction of C. jejuni N16-1419 and the reuterin-producing L. reuteri PTA5_F13 was studied during 24 h co-cultures with or without glycerol. A high C. jejuni growth was observed in cultures without glycerol. In contrast, C. jejuni growth decreased from 7.3 ± 0.1 log CFU/mL to below detection limit (1 log CFU/mL) during co-cultures added with 28 mM glycerol. This bactericidal effect could be attributed to in situ reuterin production. The low MIC observed and the high sensitivity towards in situ produced reuterin suggests L. reuteri combined with glycerol, as a possible intervention option to reduce Campylobacter in the food chain.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| | - Katrin Zurfluh
- Institute for Food Hygiene and Safety, University of Zürich, 8057 Zürich, Switzerland; (K.Z.); (D.L.); (R.S.)
| | - Anna Greppi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| | - Denise Lynch
- Institute for Food Hygiene and Safety, University of Zürich, 8057 Zürich, Switzerland; (K.Z.); (D.L.); (R.S.)
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| | - Roger Stephan
- Institute for Food Hygiene and Safety, University of Zürich, 8057 Zürich, Switzerland; (K.Z.); (D.L.); (R.S.)
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| |
Collapse
|
38
|
Campana R, Baffone W. Intracellular Survival and Translocation Ability of Human and Avian Campylobacter jejuni and Campylobacter coli Strains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1282:115-125. [PMID: 32329029 DOI: 10.1007/5584_2020_531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter acts using complex strategies to establish and promote intestinal infections. After ingestion via contaminated foods, this bacterium invades and can survive within the intestinal cells, also inducing epithelial translocation of non-invasive intestinal bacteria. In this investigation, the ability of human and avian C. jejuni and C. coli isolates to survive within two different intestinal epithelial cells lines, Caco-2 and INT 407, as well as the intestinal translocation phenomenon, was assessed. Our data demonstrated that both C. jejuni and C. coli strains survived in Caco-2 (81.8% and 100% respectively) and INT 407 monolayers (72.7% and 100% respectively) within the first 24 h post-infection period, with a progressive reduction in the prolonged period of 48 h and 72 h post-infection. The translocation of the non-invasive E. coli 60/06 FB was remarkably increased in C. jejuni treated Caco-2 monolayers (2.36 ± 0.42 log cfu/mL) (P < 0.01) and less in those treated with C. coli (1.2 ± 0.34 log cfu/mL), compared to E. coli 60/06 FB alone (0.37 ± 0.14 log cfu/mL). Our results evidenced the ability of both human and avian strains of C. jejuni and C. coli to efficiently survive within intestinal cells and induce the translocation of a non-invasive pathogen. Overall, these findings stress how this pathogen can interact with host cells and support the hypothesis that defects in the intestinal barrier function induced by Campylobacter spp. could have potentially negative implications for human health.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Science, Division of Pharmacology and Hygiene, University of Urbino, Urbino, Italy.
| | - Wally Baffone
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| |
Collapse
|
39
|
Duqué B, Haddad N, Rossero A, Membré JM, Guillou S. Influence of cell history on the subsequent inactivation of Campylobacter jejuni during cold storage under modified atmosphere. Food Microbiol 2019; 84:103263. [DOI: 10.1016/j.fm.2019.103263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 07/05/2019] [Indexed: 11/15/2022]
|
40
|
de Fátima Rauber Würfel S, Jorge S, de Oliveira NR, Kremer FS, Sanchez CD, Campos VF, da Silva Pinto L, da Silva WP, Dellagostin OA. Campylobacter jejuni isolated from poultry meat in Brazil: in silico analysis and genomic features of two strains with different phenotypes of antimicrobial susceptibility. Mol Biol Rep 2019; 47:671-681. [PMID: 31749118 DOI: 10.1007/s11033-019-05174-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022]
Abstract
Campylobacter jejuni is the most common bacterial cause of foodborne diarrheal disease worldwide and is among the antimicrobial resistant "priority pathogens" that pose greatest threat to public health. The genomes of two C. jejuni isolated from poultry meat sold on the retail market in Southern Brazil phenotypically characterized as multidrug-resistant (CJ100) and susceptible (CJ104) were sequenced and analyzed by bioinformatic tools. The isolates CJ100 and CJ104 showed distinct multilocus sequence types (MLST). Comparative genomic analysis revealed a large number of single nucleotide polymorphisms, rearrangements, and inversions in both genomes, in addition to virulence factors, genomic islands, prophage sequences, and insertion sequences. A circular 103-kilobase megaplasmid carrying virulence factors was identified in the genome of CJ100, in addition to resistance mechanisms to aminoglycosides, beta-lactams, macrolides, quinolones, and tetracyclines. The molecular characterization of distinct phenotypes of foodborne C. jejuni and the discovery of a novel virulence megaplasmid provide useful data for pan-genome and large-scale studies to monitor the virulent C. jejuni in poultry meat is warranted.
Collapse
Affiliation(s)
| | - Sérgio Jorge
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Natasha Rodrigues de Oliveira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Christian Domingues Sanchez
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinícius Farias Campos
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
41
|
Lazou TP, Iossifidou EG, Gelasakis AI, Chaintoutis SC, Dovas CI. Viability Quantitative PCR Utilizing Propidium Monoazide, Spheroplast Formation, and Campylobacter coli as a Bacterial Model. Appl Environ Microbiol 2019; 85:e01499-19. [PMID: 31420339 PMCID: PMC6805072 DOI: 10.1128/aem.01499-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
A viability quantitative PCR (qPCR) utilizing propidium monoazide (PMA) is presented for rapid quantification of viable cells using the foodborne pathogen Campylobacter coli as a bacterial model. It includes optimized spheroplast formation via lysozyme and EDTA, induction of a mild osmotic shock for enhancing the selective penetration of PMA into dead cells, and exploitation of an internal sample process control (ISPC) involving cell inactivation to assess residual false-positive signals within each sample. Spheroplasting of bacteria in exponential phase did not permit PMA entrance into viable cells since a strong linear relationship was detected between simple qPCR and PMA-qPCR quantification, and no differences were observed regardless of whether spheroplasting was utilized. The PMA-qPCR signal suppression of dead cells was elevated using spheroplast formation. With regard to the ISPC, cell inactivation by hydrogen peroxide resulted in higher signal suppression during qPCR than heat inactivation did. Viability quantification of C. coli cells by optimized spheroplasting-PMA-qPCR with ISPC was successfully applied in an aging pure culture under aerobic conditions and artificially inoculated meat. The same method exhibited a high linear range of quantification (1.5 to 8.5 log10 viable cells ml-1), and results were highly correlated with culture-based enumeration. PMA-qPCR quantification of viable cells can be affected by their rigidity, age, culture media, and niches, but spheroplast formation along with osmotic shock and the use of a proper ISPC can address such variations. The developed methodology could detect cells in a viable-but-nonculturable state and might be utilized for the quantification of other Gram-negative bacteria.IMPORTANCE There is need for rapid and accurate methods to detect viable bacterial cells of foodborne pathogens. Conventional culture-based methods are time-consuming and unable to detect bacteria in a viable-but-nonculturable state. The high sensitivity and specificity of the quantitative PCR (qPCR) are negated by its inability to differentiate the DNAs from viable and dead cells. The combination of propidium monoazide (PMA), a DNA-intercalating dye, with qPCR assays is promising for detection of viable cells. Despite encouraging results, these assays still encounter various challenges, such as false-positive signals by dead cells and the lack of an internal control identifying these signals per sample. The significance of our research lies in enhancing the selective entrance of PMA into dead Campylobacter coli cells via spheroplasting and in developing an internal sample process control, thus delivering reliable results in pure cultures and meat samples, approaches that can be applicable to other Gram-negative pathogens.
Collapse
Affiliation(s)
- Thomai P Lazou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni G Iossifidou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
42
|
Identification of Campylobacter fetus subsp. venerealis virulence genes in cervical mucus from cows. Braz J Microbiol 2019; 50:1133-1137. [PMID: 31410776 DOI: 10.1007/s42770-019-00127-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
We used the polymerase chain reaction to identify virulence genes in cervico-vaginal mucus samples from cows positive for Campylobacter fetus subsp. venerealis. There was positivity for the pldA, racR, dnaJ, cdtA, and cdtB genes. No samples showed the cdtC, ciaB, cadF, wlaN, and virB11 genes.
Collapse
|
43
|
Tabashsum Z, Peng M, Kahan E, Rahaman SO, Biswas D. Effect of conjugated linoleic acid overproducing Lactobacillus with berry pomace phenolic extracts on Campylobacter jejuni pathogenesis. Food Funct 2019; 10:296-303. [PMID: 30566169 DOI: 10.1039/c8fo01863d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Campylobacter jejuni (CJ) is one of the predominant causative agents of acute gastroenteritis in the US and other developed countries through the handling of raw chicken or the consumption of undercooked poultry and poultry products. Probiotics and their metabolites such as conjugated linoleic acids (CLAs) play a crucial role in improving host health and act as antimicrobials against enteric pathogens. Furthermore, prebiotics or prebiotic-like components such as bioactive phenolics from berry pomace can stimulate the growth of beneficial microbes including Lactobacillus casei (LC) and its metabolites, and competitively inhibit the growth of enteric bacterial pathogens. In this study, we aimed at enhancing the efficiency of antimicrobial/beneficial activities of LC and the extent of production of bioactive compounds by combining berry pomace phenolic extract (BPPE) and overproducing CLA in L. casei (LC-CLA). Under mixed culture conditions, LC-CLA in the presence of BPPE reduced the growth of CJ by more than 3 log CFU ml-1 within 48 h. The cell-free culture supernatant (CFCS) of LC-CLA in the presence of BPPE also reduced significantly the growth of CJ >3.2 log CFU ml-1 at 24 h. The interactions of CJ with cultured chicken fibroblast cells (DF-1), chicken macrophage (HD-11), and human epithelial cells (HeLa) were altered significantly. Treatments with BPPE and/or CFCS also altered the injured cell number, auto-aggregation capacity and cell surface hydrophobicity of CJ, significantly. Furthermore, combined treatments with BPPE and CFCSs of LC-CLA altered the expression of multiple virulence genes such as ciaB, cdtB, cadF, flaA, and flaB of CJ from 0.45 fold to 6.85 fold. Overall, BPPE enhanced the effect of LC-CLA in the reduction of CJ growth, survival ability, host cell-CJ interactions, and virulence gene expression. This finding indicates that a combination of BPPE and LC-CLA may be able to prevent the colonization of CJ in poultry, reduce the cross-contamination of poultry products and control poultry-borne campylobacteriosis in humans.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA.
| | | | | | | | | |
Collapse
|
44
|
Schmidt AM, Escher U, Mousavi S, Boehm M, Backert S, Bereswill S, Heimesaat MM. Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice. Front Cell Infect Microbiol 2019; 9:79. [PMID: 30984628 PMCID: PMC6449876 DOI: 10.3389/fcimb.2019.00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/08/2019] [Indexed: 01/20/2023] Open
Abstract
Even though human Campylobacter jejuni infections are progressively increasing worldwide, the underlying molecular mechanisms of pathogen-host-interactions are still not fully understood. We have recently shown that the secreted serine protease HtrA plays a key role in C. jejuni cellular invasion and transepithelial migration in vitro, and is involved in the onset of intestinal pathology in murine infection models in vivo. In the present study, we investigated whether the protease activity of HtrA had an impact in C. jejuni induced acute enterocolitis. For this purpose, we perorally infected secondary abiotic IL-10-/- mice with wildtype C. jejuni strain NCTC11168 (11168WT) or isogenic bacteria carrying protease-inactive HtrA with a single point mutation at S197A in the active center (11168HtrA-S197A). Irrespective of the applied pathogenic strain, mice harbored similar C. jejuni loads in their feces and exhibited comparably severe macroscopic signs of acute enterocolitis at day 6 postinfection (p.i.). Interestingly, the 11168HtrA-S197A infected mice displayed less pronounced colonic apoptosis and immune cell responses, but enhanced epithelial proliferation as compared to the 11168WT strain infected controls. Furthermore, less distinct microscopic sequelae in 11168HtrA-S197A as compared to parental strain infected mice were accompanied by less distinct colonic secretion of pro-inflammatory cytokines such as MCP-1, IL-6, TNF, and IFN-γ in the former as compared to the latter. Strikingly, the S197A point mutation was additionally associated with less pronounced systemic pro-inflammatory immune responses as assessed in serum samples. In conclusion, HtrA is a remarkable novel virulence determinant of C. jejuni, whose protease activity is not required for intestinal colonization and establishment of disease, but aggravates campylobacteriosis by triggering apoptosis and pro-inflammatory immune responses.
Collapse
Affiliation(s)
- Anna-Maria Schmidt
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Manja Boehm
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
45
|
Clark C, Berry C, Demczuk W. Diversity of transducer-like proteins (Tlps) in Campylobacter. PLoS One 2019; 14:e0214228. [PMID: 30908544 PMCID: PMC6433261 DOI: 10.1371/journal.pone.0214228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/09/2019] [Indexed: 12/12/2022] Open
Abstract
Campylobacter transducer-like proteins (Tlps), also known as methyl-accepting chemotaxis proteins (MCPs), are associated with virulence as well as niche and host adaptation. While functional attributes of these proteins are being elucidated, little has been published regarding their sequence diversity or chromosomal locations and context, although they appear to define invertible regions within Campylobacter jejuni genomes. Genome assemblies for several species of Campylobacter were obtained from the publicly available NCBI repositories. Genomes from all isolates were obtained from GenBank and assessed for Tlp content, while data from isolates with complete, finished genomes were used to determine the identity of Tlps as well as the gene content of putative invertible elements (IEs) in C. jejuni (Cj) and C. coli (Cc). Tlps from several Campylobacter species were organized into a nomenclature system and novel Tlps were defined and named for Cj and Cc. The content of Tlps appears to be species-specific, though diverse within species. Cj and Cc carried overlapping, related Tlp content, as did the three C. fetus subspecies. Tlp1 was detected in 88% of Cj isolates and approximately 43% of Cc, and was found in a different conserved chromosomal location and genetic context in each species. Tlp1 and Tlp 3 predominated in genomes from Cj whereas other Tlps were detected less frequently. Tlp13 and Tlp20 predominated in genomes from Cc while some Cj/Cc Tlps were not detected at all. Tlps 2–4 and 11–20 were less frequently detected and many showed sequence heterogeneity that could affect substrate binding, signal transduction, or both. Tlps other than Tlp1, 7, and 10 had substantial sequence identity in the C-terminal half of the protein, creating chromosomal repeats potentially capable of mediating the inversion of large chromosomal DNA. Cj and Cc Tlps were both found in association with only 14 different genes, indicating a limited genomic context. In Cj these Tlps defined IEs that were for the most part found at a single chromosomal location and comprised of a conserved set of genes. Cc IEs were situated at very different chromosomal locations, had different structures than Cj IEs, and were occasionally incomplete, therefore not capable of inversion. Tlps may have a role in Campylobacter genome structure and dynamics as well as acting as chemoreceptors mediating chemotactic responses.
Collapse
Affiliation(s)
- Clifford Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Chrystal Berry
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Walter Demczuk
- Streptococci and STI Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
46
|
Melo RT, Grazziotin AL, Júnior ECV, Prado RR, Mendonça EP, Monteiro GP, Peres PABM, Rossi DA. Evolution of Campylobacter jejuni of poultry origin in Brazil. Food Microbiol 2019; 82:489-496. [PMID: 31027810 DOI: 10.1016/j.fm.2019.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 01/29/2019] [Accepted: 03/07/2019] [Indexed: 11/26/2022]
Abstract
Campylobacter jejuni is the most common pathogen associated with foodborne diseases. Persistent presence of this pathogen contaminating the environment in slaughterhouses and chicken products have been reported worldwide. Although many efforts have been employed for reducing C. jejuni contamination, few studies have been conducted to understand the dynamics of C. jejuni in slaughterhouses over time. In this study, we evaluated the virulence, antibiotic resistance and genetic diversity profiles of 99 C. jejuni isolated from chilled chicken carcasses collected in Brazilian slaughterhouses during two distinct periods (2011-2012 and 2015-2016). The virulence profile was evaluated for the presence of flaA, ciaB, cadF, pldA and cdtABC genes. Antibiotic resistance was evaluated for amoxicillin-clavulanic acid, gentamicin, erythromycin and tetracycline. Genetic diversity was assessed using RAPD-PCR. The prevalence of C. jejuni was significantly reduced in 2015-2016 as well the number of antibiotic (and multidrug) resistant isolates, except for tetracycline. However, isolates from 2015 to 2016 showed higher prevalence of multiple virulence genes and genetic diversity profile compared to isolates from 2011 to 2012. During the studied period, stricter regulations to control pathogens in poultry farms and slaughterhouses were implemented in Brazil, which may have contributed to the profile variation observed due to changes of selective pressures on bacterial populations.
Collapse
Affiliation(s)
- Roberta T Melo
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil.
| | - Ana Laura Grazziotin
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Edson C Valadares Júnior
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Renata R Prado
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Eliane P Mendonça
- Laboratório de Biologia Molecular, Universidade de Uberaba, Av. Nenê Sabino 1801, Bairro Aeroporto, Uberaba, MG, 38055-500, Brazil
| | - Guilherme P Monteiro
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Phelipe A B M Peres
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Daise A Rossi
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| |
Collapse
|
47
|
Karki AB, Wells H, Fakhr MK. Retail liver juices enhance the survivability of Campylobacter jejuni and Campylobacter coli at low temperatures. Sci Rep 2019; 9:2733. [PMID: 30804407 PMCID: PMC6389972 DOI: 10.1038/s41598-018-35820-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
The high prevalence of Campylobacter spp. in retail liver products was previously reported and has been linked to several outbreaks of campylobacteriosis. The main objective of this study was to investigate the influence of retail liver juices on the survivability of several strains of C. jejuni and C. coli, which were previously isolated from various retail meats at 4 °C. All tested Campylobacter strains showed higher survival in beef liver juice (BLJ) and chicken liver juice (CLJ) as compared to beef and chicken juices (BJ and CJ) or Mueller Hinton broth (MHB) at 4 °C. Overall, C. jejuni strains showed greater survival in retail liver and meat juices as compared to C. coli. CLJ enhanced biofilm formation of most C. coli strains and supported growth in favorable conditions. When diluted, retail liver and meat juices enhanced survival of Campylobacter strains at low temperatures and increased aerotolerance. In conclusion, beef and chicken liver juices enhanced the survival of C. jejuni and C. coli strains at low temperatures, which helps explain the high prevalence of Campylobacter spp. in retail liver products.
Collapse
Affiliation(s)
- Anand B Karki
- Department of Biological Science, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Harrington Wells
- Department of Biological Science, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, 74104, USA.
| |
Collapse
|
48
|
Kovanen S, Rossi M, Pohja-Mykrä M, Nieminen T, Raunio-Saarnisto M, Sauvala M, Fredriksson-Ahomaa M, Hänninen ML, Kivistö R. Population Genetics and Characterization of Campylobacter jejuni Isolates from Western Jackdaws and Game Birds in Finland. Appl Environ Microbiol 2019; 85:e02365-18. [PMID: 30552190 PMCID: PMC6365822 DOI: 10.1128/aem.02365-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/08/2018] [Indexed: 01/18/2023] Open
Abstract
Poultry are considered a major reservoir and source of human campylobacteriosis, but the roles of environmental reservoirs, including wild birds, have not been assessed in depth. In this study, we isolated and characterized Campylobacter jejuni from western jackdaws (n = 91, 43%), mallard ducks (n = 82, 76%), and pheasants (n = 9, 9%). Most of the western jackdaw and mallard duck C. jejuni isolates represented multilocus sequence typing (MLST) sequence types (STs) that diverged from those previously isolated from human patients and various animal species, whereas all pheasant isolates represented ST-19, a common ST among human patients and other hosts worldwide. Whole-genome MLST revealed that mallard duck ST-2314 and pheasant ST-19 isolates represented bacterial clones that were genetically highly similar to human isolates detected previously. Further analyses revealed that in addition to a divergent ClonalFrame genealogy, certain genomic characteristics of the western jackdaw C. jejuni isolates, e.g., a novel cdtABC gene cluster and the type VI secretion system (T6SS), may affect their host specificity and virulence. Game birds may thus pose a risk for acquiring campylobacteriosis; therefore, hygienic measures during slaughter and meat handling warrant special attention.IMPORTANCE The roles of environmental reservoirs, including wild birds, in the molecular epidemiology of Campylobacter jejuni have not been assessed in depth. Our results showed that game birds may pose a risk for acquiring campylobacteriosis, because they had C. jejuni genomotypes highly similar to human isolates detected previously. Therefore, hygienic measures during slaughter and meat handling warrant special attention. On the contrary, a unique phylogeny was revealed for the western jackdaw isolates, and certain genomic characteristics identified among these isolates are hypothesized to affect their host specificity and virulence. Comparative genomics within sequence types (STs), using whole-genome multilocus sequence typing (wgMLST), and phylogenomics are efficient methods to analyze the genomic relationships of C. jejuni isolates.
Collapse
Affiliation(s)
- Sara Kovanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Pohja-Mykrä
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | - Timo Nieminen
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | | | - Mikaela Sauvala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Karki AB, Marasini D, Oakey CK, Mar K, Fakhr MK. Campylobacter coli From Retail Liver and Meat Products Is More Aerotolerant Than Campylobacter jejuni. Front Microbiol 2018; 9:2951. [PMID: 30631306 PMCID: PMC6315125 DOI: 10.3389/fmicb.2018.02951] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 11/16/2018] [Indexed: 02/01/2023] Open
Abstract
Aerotolerance in the microaerophilic species Campylobacter was previously reported and could increase bacterial survival and transmission in foods during stressful processing and storage conditions. In this study, 167 Campylobacter isolates (76 C. jejuni and 91 C. coli) were screened for aerotolerance; these strains were previously isolated from retail chicken meat, chicken livers, chicken gizzards, turkey, pork, and beef liver samples. Bacterial cultures were incubated aerobically in Mueller Hinton broth with agitation and viable cell counts were taken at 0, 6, 12, and 24 h. Approximately 47% of the screened Campylobacter isolates were aerotolerant (viable after a 12-h aerobic incubation period), whereas 24% were hyper-aerotolerant (viable after a 24-h aerobic incubation). A greater prevalence of aerotolerant strains (80%) was found among C. coli isolates as compared to C. jejuni isolates (6%). Differences in the oxidative stress response related genes were detected among C. jejuni and C. coli isolates when comparative genomics was used to analyze 17 Whole Genome Sequenced (WGS) strains from our laboratory. Genes encoding putative transcriptional regulator proteins and a catalase-like heme binding protein were found in C. coli genomes, but were absent in the genomes of C. jejuni. PCR screening showed the presence of a catalase-like protein gene in 75% (68/91) of C. coli strains, which was absent in all tested C. jejuni strains. While about 79% (30/38) of the hyper-aerotolerant C. coli strains harbored the catalase-like protein gene, the gene was also present in a number of the aerosensitive strains. The Catalase like protein gene was found to be expressed in both aerobic and microaerobic conditions with a 2-fold higher gene expression detected in aerobic conditions for an aerosensitive strain. However, the exact function of the gene remains unclear and awaits further investigation. In conclusion, aerotolerant Campylobacter strains (especially C. coli) are prevalent in various retail meats. Further studies are needed to investigate whether the genes encoding catalase-like heme binding protein and putative transcriptional regulators in C. coli strains are involved in stress response.
Collapse
Affiliation(s)
- Anand B Karki
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Daya Marasini
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Clark K Oakey
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Kaitlin Mar
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
50
|
Abstract
Campylobacter is a major foodborne pathogen and has become increasingly resistant to clinically important antimicrobials. To cope with the selection pressure from antimicrobial use in both veterinary and human medicine, Campylobacter has developed multiple mechanisms for antibiotic resistance, including modification or mutation of antimicrobial targets, modification or inactivation of antibiotics, and reduced drug accumulation by drug efflux pumps. Some of these mechanisms confer resistance to a specific class of antimicrobials, while others give rise to multidrug resistance. Notably, new antibiotic resistance mechanisms continuously emerge in Campylobacter, and some examples include the recently discovered multidrug resistance genomic islands harboring multiple genes involved in the resistance to aminoglycosides and macrolides, a novel Cfr(C) conferring resistance to phenicols and other drugs, and a potent multidrug efflux pump CmeABC variant (RE-CmeABC) that shows a significantly enhanced function in multidrug resistance and is associated with exceedingly high-level resistance to fluoroquinolones. These newly emerged resistance mechanisms are horizontally transferable and greatly facilitate the adaptation of Campylobacter in the food-producing environments where antibiotics are frequently used. In this article, we will discuss how Campylobacter resists the action of various classes of antimicrobials, with an emphasis on newly discovered mechanisms.
Collapse
|