1
|
Cho E, Kwon J, Lee G, Shin J, Lee H, Lee SH, Chung CK, Yoon J, Ho WK. Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy. Nat Commun 2024; 15:6683. [PMID: 39107293 PMCID: PMC11303528 DOI: 10.1038/s41467-024-51065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Focal cortical dysplasia type I (FCD I) is the most common cause of pharmaco-resistant epilepsy with the poorest prognosis. To understand the epileptogenic mechanisms of FCD I, we obtained tissue resected from patients with FCD I epilepsy, and from tumor patients as control. Using whole-cell patch clamp in acute human brain slices, we investigated the cellular properties of fast-spiking interneurons (FSINs) and pyramidal neurons (PNs) within the ictal onset zone. In FCD I epilepsy, FSINs exhibited lower firing rates from slower repolarization and action potential broadening, while PNs had increased firing. Importantly, excitatory synaptic drive of FSINs increased progressively with the scale of cortical activation as a general property across species, but this relationship was inverted towards net inhibition in FCD I epilepsy. Further comparison with intracranial electroencephalography (iEEG) from the same patients revealed that the spatial extent of pathological high-frequency oscillations (pHFO) was associated with synaptic events at FSINs.
Collapse
Affiliation(s)
- Eunhye Cho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jii Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Gyuwon Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jiwoo Shin
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hyunsu Lee
- Department of Physiology, Pusan National University School of Medicine, Busan, Korea
| | - Suk-Ho Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| | - Jaeyoung Yoon
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Won-Kyung Ho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.
| |
Collapse
|
2
|
Burton SD, Malyshko CM, Urban NN. Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb. PLoS Biol 2024; 22:e3002660. [PMID: 39186804 PMCID: PMC11379389 DOI: 10.1371/journal.pbio.3002660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Christina M Malyshko
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Nathaniel N Urban
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
3
|
Yang D, Qi G, Ort J, Witzig V, Bak A, Delev D, Koch H, Feldmeyer D. Modulation of large rhythmic depolarizations in human large basket cells by norepinephrine and acetylcholine. Commun Biol 2024; 7:885. [PMID: 39033173 PMCID: PMC11271271 DOI: 10.1038/s42003-024-06546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Rhythmic brain activity is critical to many brain functions and is sensitive to neuromodulation, but so far very few studies have investigated this activity on the cellular level in vitro in human brain tissue samples. This study reveals and characterizes a novel rhythmic network activity in the human neocortex. Using intracellular patch-clamp recordings of human cortical neurons, we identify large rhythmic depolarizations (LRDs) driven by glutamate release but not by GABA. These LRDs are intricate events made up of multiple depolarizing phases, occurring at ~0.3 Hz, have large amplitudes and long decay times. Unlike human tissue, rat neocortex layers 2/3 exhibit no such activity under identical conditions. LRDs are mainly observed in a subset of L2/3 interneurons that receive substantial excitatory inputs and are likely large basket cells based on their morphology. LRDs are highly sensitive to norepinephrine (NE) and acetylcholine (ACh), two neuromodulators that affect network dynamics. NE increases LRD frequency through β-adrenergic receptor activity while ACh decreases it via M4 muscarinic receptor activation. Multi-electrode array recordings show that NE enhances and synchronizes oscillatory network activity, whereas ACh causes desynchronization. Thus, NE and ACh distinctly modulate LRDs, exerting specific control over human neocortical activity.
Collapse
Affiliation(s)
- Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Guanxiao Qi
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany
| | - Jonas Ort
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Bonn, Germany
| | - Victoria Witzig
- Department of Neurology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Aniella Bak
- Department of Neurology, Section Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Bonn, Germany
| | - Henner Koch
- Department of Neurology, Section Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, 52074, Aachen, Germany.
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany.
| |
Collapse
|
4
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
6
|
Burton SD, Malyshko CM, Urban NN. Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592874. [PMID: 38766161 PMCID: PMC11100763 DOI: 10.1101/2024.05.07.592874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection cells, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
Collapse
Affiliation(s)
- Shawn D. Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | | | - Nathaniel N. Urban
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
7
|
Peng Y, Bjelde A, Aceituno PV, Mittermaier FX, Planert H, Grosser S, Onken J, Faust K, Kalbhenn T, Simon M, Radbruch H, Fidzinski P, Schmitz D, Alle H, Holtkamp M, Vida I, Grewe BF, Geiger JRP. Directed and acyclic synaptic connectivity in the human layer 2-3 cortical microcircuit. Science 2024; 384:338-343. [PMID: 38635709 DOI: 10.1126/science.adg8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Antje Bjelde
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Pau Vilimelis Aceituno
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland
| | - Franz X Mittermaier
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Henrike Planert
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, 33617 Bielefeld, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, 33617 Bielefeld, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Pawel Fidzinski
- Clinical Study Center, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Henrik Alle
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
8
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
9
|
Khodosevich K, Dragicevic K, Howes O. Drug targeting in psychiatric disorders - how to overcome the loss in translation? Nat Rev Drug Discov 2024; 23:218-231. [PMID: 38114612 DOI: 10.1038/s41573-023-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
In spite of major efforts and investment in development of psychiatric drugs, many clinical trials have failed in recent decades, and clinicians still prescribe drugs that were discovered many years ago. Although multiple reasons have been discussed for the drug development deadlock, we focus here on one of the major possible biological reasons: differences between the characteristics of drug targets in preclinical models and the corresponding targets in patients. Importantly, based on technological advances in single-cell analysis, we propose here a framework for the use of available and newly emerging knowledge from single-cell and spatial omics studies to evaluate and potentially improve the translational predictivity of preclinical models before commencing preclinical and, in particular, clinical studies. We believe that these recommendations will improve preclinical models and the ability to assess drugs in clinical trials, reducing failure rates in expensive late-stage trials and ultimately benefitting psychiatric drug discovery and development.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
| | - Katarina Dragicevic
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
10
|
Seignette K, Jamann N, Papale P, Terra H, Porneso RO, de Kraker L, van der Togt C, van der Aa M, Neering P, Ruimschotel E, Roelfsema PR, Montijn JS, Self MW, Kole MHP, Levelt CN. Experience shapes chandelier cell function and structure in the visual cortex. eLife 2024; 12:RP91153. [PMID: 38192196 PMCID: PMC10963032 DOI: 10.7554/elife.91153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Detailed characterization of interneuron types in primary visual cortex (V1) has greatly contributed to understanding visual perception, yet the role of chandelier cells (ChCs) in visual processing remains poorly characterized. Using viral tracing we found that V1 ChCs predominantly receive monosynaptic input from local layer 5 pyramidal cells and higher-order cortical regions. Two-photon calcium imaging and convolutional neural network modeling revealed that ChCs are visually responsive but weakly selective for stimulus content. In mice running in a virtual tunnel, ChCs respond strongly to events known to elicit arousal, including locomotion and visuomotor mismatch. Repeated exposure of the mice to the virtual tunnel was accompanied by reduced visual responses of ChCs and structural plasticity of ChC boutons and axon initial segment length. Finally, ChCs only weakly inhibited pyramidal cells. These findings suggest that ChCs provide an arousal-related signal to layer 2/3 pyramidal cells that may modulate their activity and/or gate plasticity of their axon initial segments during behaviorally relevant events.
Collapse
Affiliation(s)
- Koen Seignette
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Nora Jamann
- Department of Axonal Signaling, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Biology Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Paolo Papale
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Huub Terra
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Ralph O Porneso
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Leander de Kraker
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Chris van der Togt
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Maaike van der Aa
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Paul Neering
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Emma Ruimschotel
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la VisionParisFrance
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Jorrit S Montijn
- Department of Cortical Structure & Function, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Maarten HP Kole
- Department of Axonal Signaling, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Biology Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University AmsterdamAmsterdamNetherlands
| |
Collapse
|
11
|
Libé-Philippot B, Lejeune A, Wierda K, Louros N, Erkol E, Vlaeminck I, Beckers S, Gaspariunaite V, Bilheu A, Konstantoulea K, Nyitrai H, De Vleeschouwer M, Vennekens KM, Vidal N, Bird TW, Soto DC, Jaspers T, Dewilde M, Dennis MY, Rousseau F, Comoletti D, Schymkowitz J, Theys T, de Wit J, Vanderhaeghen P. LRRC37B is a human modifier of voltage-gated sodium channels and axon excitability in cortical neurons. Cell 2023; 186:5766-5783.e25. [PMID: 38134874 PMCID: PMC10754148 DOI: 10.1016/j.cell.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) β-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Amélie Lejeune
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Emir Erkol
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Katerina Konstantoulea
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Hajnalka Nyitrai
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Matthias De Vleeschouwer
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Kristel M Vennekens
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Niels Vidal
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Daniela C Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Tom Jaspers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Tom Theys
- KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium.
| |
Collapse
|
12
|
Milicevic KD, Barbeau BL, Lovic DD, Patel AA, Ivanova VO, Antic SD. Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100121. [PMID: 38616956 PMCID: PMC11015061 DOI: 10.1016/j.crneur.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 04/16/2024] Open
Abstract
Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Brianna L. Barbeau
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Darko D. Lovic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Aayushi A. Patel
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Violetta O. Ivanova
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Srdjan D. Antic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| |
Collapse
|
13
|
Wilbers R, Galakhova AA, Driessens SL, Heistek TS, Metodieva VD, Hagemann J, Heyer DB, Mertens EJ, Deng S, Idema S, de Witt Hamer PC, Noske DP, van Schie P, Kommers I, Luan G, Li T, Shu Y, de Kock CP, Mansvelder HD, Goriounova NA. Structural and functional specializations of human fast-spiking neurons support fast cortical signaling. SCIENCE ADVANCES 2023; 9:eadf0708. [PMID: 37824618 PMCID: PMC10569701 DOI: 10.1126/sciadv.adf0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/17/2023] [Indexed: 10/14/2023]
Abstract
Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.
Collapse
Affiliation(s)
- René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Anna A. Galakhova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Stan L.W. Driessens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Tim S. Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Verjinia D. Metodieva
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Jim Hagemann
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Djai B. Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Eline J. Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Suixin Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 201508, China
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Philip C. de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - David P. Noske
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Paul van Schie
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Ivar Kommers
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Beijing 100093, China
| | - Tianfu Li
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Beijing 100093, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 201508, China
| | - Christiaan P.J. de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Natalia A. Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
14
|
Chameh HM, Falby M, Movahed M, Arbabi K, Rich S, Zhang L, Lefebvre J, Tripathy SJ, De Pittà M, Valiante TA. Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue. Front Synaptic Neurosci 2023; 15:1250834. [PMID: 37860223 PMCID: PMC10584155 DOI: 10.3389/fnsyn.2023.1250834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Electrophysiological characterization of live human tissue from epilepsy patients has been performed for many decades. Although initially these studies sought to understand the biophysical and synaptic changes associated with human epilepsy, recently, it has become the mainstay for exploring the distinctive biophysical and synaptic features of human cell-types. Both epochs of these human cellular electrophysiological explorations have faced criticism. Early studies revealed that cortical pyramidal neurons obtained from individuals with epilepsy appeared to function "normally" in comparison to neurons from non-epilepsy controls or neurons from other species and thus there was little to gain from the study of human neurons from epilepsy patients. On the other hand, contemporary studies are often questioned for the "normalcy" of the recorded neurons since they are derived from epilepsy patients. In this review, we discuss our current understanding of the distinct biophysical features of human cortical neurons and glia obtained from tissue removed from patients with epilepsy and tumors. We then explore the concept of within cell-type diversity and its loss (i.e., "neural homogenization"). We introduce neural homogenization to help reconcile the epileptogenicity of seemingly "normal" human cortical cells and circuits. We propose that there should be continued efforts to study cortical tissue from epilepsy patients in the quest to understand what makes human cell-types "human".
Collapse
Affiliation(s)
- Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Madeleine Falby
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mandana Movahed
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Scott Rich
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liang Zhang
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Jérémie Lefebvre
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Maurizio De Pittà
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Basque Center for Applied Mathematics, Bilbao, Spain
- Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Taufik A. Valiante
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Bod R, Tóth K, Essam N, Tóth EZ, Erõss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Synaptic alterations and neuronal firing in human epileptic neocortical excitatory networks. Front Synaptic Neurosci 2023; 15:1233569. [PMID: 37635750 PMCID: PMC10450510 DOI: 10.3389/fnsyn.2023.1233569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.
Collapse
Affiliation(s)
- Réka Bod
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nour Essam
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Loránd Erõss
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Attila G. Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| |
Collapse
|
16
|
Oberle HM, Ford AN, Czarny JE, Rogalla MM, Apostolides PF. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus. J Neurosci 2023; 43:5642-5655. [PMID: 37308295 PMCID: PMC10401644 DOI: 10.1523/jneurosci.0626-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking. Perplexingly, anatomy studies imply that corticofugal axons primarily target glutamatergic IC neurons while only sparsely innervating IC GABA neurons. Corticofugal inhibition of the IC may thus occur largely independently of feedforward activation of local GABA neurons. We shed light on this paradox using in vitro electrophysiology in acute IC slices from fluorescent reporter mice of either sex. Using optogenetic stimulation of corticofugal axons, we find that excitation evoked with single light flashes is indeed stronger in presumptive glutamatergic neurons compared with GABAergic neurons. However, many IC GABA neurons fire tonically at rest, such that sparse and weak excitation suffices to significantly increase their spike rates. Furthermore, a subset of glutamatergic IC neurons fire spikes during repetitive corticofugal activity, leading to polysynaptic excitation in IC GABA neurons owing to a dense intracollicular connectivity. Consequently, recurrent excitation amplifies corticofugal activity, drives spikes in IC GABA neurons, and generates substantial local inhibition in the IC. Thus, descending signals engage intracollicular inhibitory circuits despite apparent constraints of monosynaptic connectivity between auditory cortex and IC GABA neurons.SIGNIFICANCE STATEMENT Descending "corticofugal" projections are ubiquitous across mammalian sensory systems, and enable the neocortex to control subcortical activity in a predictive or feedback manner. Although corticofugal neurons are glutamatergic, neocortical activity often inhibits subcortical neuron spiking. How does an excitatory pathway generate inhibition? Here we study the corticofugal pathway from auditory cortex to inferior colliculus (IC), a midbrain hub important for complex sound perception. Surprisingly, cortico-collicular transmission was stronger onto IC glutamatergic compared with GABAergic neurons. However, corticofugal activity triggered spikes in IC glutamate neurons with local axons, thereby generating strong polysynaptic excitation and feedforward spiking of GABAergic neurons. Our results thus reveal a novel mechanism that recruits local inhibition despite limited monosynaptic convergence onto inhibitory networks.
Collapse
Affiliation(s)
- Hannah M Oberle
- Neuroscience Graduate Program
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Alexander N Ford
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Jordyn E Czarny
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Meike M Rogalla
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Pierre F Apostolides
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Inibhunu H, Moradi Chameh H, Skinner F, Rich S, Valiante TA. Hyperpolarization-Activated Cation Channels Shape the Spiking Frequency Preference of Human Cortical Layer 5 Pyramidal Neurons. eNeuro 2023; 10:ENEURO.0215-23.2023. [PMID: 37567768 PMCID: PMC10467019 DOI: 10.1523/eneuro.0215-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Discerning the contribution of specific ionic currents to complex neuronal dynamics is a difficult, but important, task. This challenge is exacerbated in the human setting, although the widely characterized uniqueness of the human brain compared with preclinical models necessitates the direct study of human neurons. Neuronal spiking frequency preference is of particular interest given its role in rhythm generation and signal transmission in cortical circuits. Here, we combine the frequency-dependent gain (FDG), a measure of spiking frequency preference, and novel in silico analyses to dissect the contributions of individual ionic currents to the suprathreshold features of human layer 5 (L5) neurons captured by the FDG. We confirm that a contemporary model of such a neuron, primarily constrained to capture subthreshold activity driven by the hyperpolarization-activated cyclic nucleotide gated (h-) current, replicates key features of the in vitro FDG both with and without h-current activity. With the model confirmed as a viable approximation of the biophysical features of interest, we applied new analysis techniques to quantify the activity of each modeled ionic current in the moments before spiking, revealing unique dynamics of the h-current. These findings motivated patch-clamp recordings in analogous rodent neurons to characterize their FDG, which confirmed that a biophysically detailed model of these neurons captures key interspecies differences in the FDG. These differences are correlated with distinct contributions of the h-current to neuronal activity. Together, this interdisciplinary and multispecies study provides new insights directly relating the dynamics of the h-current to suprathreshold spiking frequency preference in human L5 neurons.
Collapse
Affiliation(s)
- Happy Inibhunu
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
| | - Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
| | - Frances Skinner
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
- Departments of Medicine, Neurology and Physiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
| | - Taufik A Valiante
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E2, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
18
|
Driessens SLW, Galakhova AA, Heyer DB, Pieterse IJ, Wilbers R, Mertens EJ, Waleboer F, Heistek TS, Coenen L, Meijer JR, Idema S, de Witt Hamer PC, Noske DP, de Kock CPJ, Lee BR, Smith K, Ting JT, Lein ES, Mansvelder HD, Goriounova NA. Genes associated with cognitive ability and HAR show overlapping expression patterns in human cortical neuron types. Nat Commun 2023; 14:4188. [PMID: 37443107 PMCID: PMC10345092 DOI: 10.1038/s41467-023-39946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult human cortical neurons, and how their expression relates to neuronal function and structure. We find that these gene sets are preferentially expressed in L3 pyramidal neurons in middle temporal gyrus (MTG). Furthermore, neurons with higher expression had larger total dendritic length (TDL) and faster action potential (AP) kinetics, properties previously linked to intelligence. We identify a subset of genes associated with TDL or AP kinetics with predominantly synaptic functions and high abundance of HARs.
Collapse
Affiliation(s)
- Stan L W Driessens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Anna A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Djai B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Isabel J Pieterse
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - René Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Eline J Mertens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Femke Waleboer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Loet Coenen
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Julia R Meijer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Philip C de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - David P Noske
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Brian R Lee
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Kimberly Smith
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Jonathan T Ting
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Ed S Lein
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
19
|
Kim MH, Radaelli C, Thomsen ER, Monet D, Chartrand T, Jorstad NL, Mahoney JT, Taormina MJ, Long B, Baker K, Bakken TE, Campagnola L, Casper T, Clark M, Dee N, D'Orazi F, Gamlin C, Kalmbach BE, Kebede S, Lee BR, Ng L, Trinh J, Cobbs C, Gwinn RP, Keene CD, Ko AL, Ojemann JG, Silbergeld DL, Sorensen SA, Berg J, Smith KA, Nicovich PR, Jarsky T, Zeng H, Ting JT, Levi BP, Lein E. Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex. eLife 2023; 12:e81863. [PMID: 37249212 PMCID: PMC10332811 DOI: 10.7554/elife.81863] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Deja Monet
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | | | - Brian Long
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Tamara Casper
- Allen Institute for Brain ScienceSeattleUnited States
| | - Michael Clark
- Allen Institute for Brain ScienceSeattleUnited States
| | - Nick Dee
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - Clare Gamlin
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian E Kalmbach
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Sara Kebede
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian R Lee
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lindsay Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jessica Trinh
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - C Dirk Keene
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - Andrew L Ko
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Daniel L Silbergeld
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | | | - Jim Berg
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Tim Jarsky
- Allen Institute for Brain ScienceSeattleUnited States
| | - Hongkui Zeng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jonathan T Ting
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Boaz P Levi
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
20
|
Straehle J, Ravi VM, Heiland DH, Galanis C, Lenz M, Zhang J, Neidert NN, El Rahal A, Vasilikos I, Kellmeyer P, Scheiwe C, Klingler JH, Fung C, Vlachos A, Beck J, Schnell O. Technical report: surgical preparation of human brain tissue for clinical and basic research. Acta Neurochir (Wien) 2023; 165:1461-1471. [PMID: 37147485 DOI: 10.1007/s00701-023-05611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND The study of the distinct structure and function of the human central nervous system, both in healthy and diseased states, is becoming increasingly significant in the field of neuroscience. Typically, cortical and subcortical tissue is discarded during surgeries for tumors and epilepsy. Yet, there is a strong encouragement to utilize this tissue for clinical and basic research in humans. Here, we describe the technical aspects of the microdissection and immediate handling of viable human cortical access tissue for basic and clinical research, highlighting the measures needed to be taken in the operating room to ensure standardized procedures and optimal experimental results. METHODS In multiple rounds of experiments (n = 36), we developed and refined surgical principles for the removal of cortical access tissue. The specimens were immediately immersed in cold carbogenated N-methyl-D-glucamine-based artificial cerebrospinal fluid for electrophysiology and electron microscopy experiments or specialized hibernation medium for organotypic slice cultures. RESULTS The surgical principles of brain tissue microdissection were (1) rapid preparation (<1 min), (2) maintenance of the cortical axis, (3) minimization of mechanical trauma to sample, (4) use of pointed scalpel blade, (5) avoidance of cauterization and blunt preparation, (6) constant irrigation, and (7) retrieval of the sample without the use of forceps or suction. After a single round of introduction to these principles, multiple surgeons adopted the technique for samples with a minimal dimension of 5 mm spanning all cortical layers and subcortical white matter. Small samples (5-7 mm) were ideal for acute slice preparation and electrophysiology. No adverse events from sample resection were observed. CONCLUSION The microdissection technique of human cortical access tissue is safe and easily adoptable into the routine of neurosurgical procedures. The standardized and reliable surgical extraction of human brain tissue lays the foundation for human-to-human translational research on human brain tissue.
Collapse
Affiliation(s)
- J Straehle
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), Freiburg, Germany
| | - D H Heiland
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - N N Neidert
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A El Rahal
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - I Vasilikos
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Kellmeyer
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C Scheiwe
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J H Klingler
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C Fung
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links - Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Beck
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - O Schnell
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Hunt S, Leibner Y, Mertens EJ, Barros-Zulaica N, Kanari L, Heistek TS, Karnani MM, Aardse R, Wilbers R, Heyer DB, Goriounova NA, Verhoog MB, Testa-Silva G, Obermayer J, Versluis T, Benavides-Piccione R, de Witt-Hamer P, Idema S, Noske DP, Baayen JC, Lein ES, DeFelipe J, Markram H, Mansvelder HD, Schürmann F, Segev I, de Kock CPJ. Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex. Cereb Cortex 2023; 33:2857-2878. [PMID: 35802476 PMCID: PMC10016070 DOI: 10.1093/cercor/bhac246] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/25/2022] Open
Abstract
Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.
Collapse
Affiliation(s)
| | | | - Eline J Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalí Barros-Zulaica
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Lida Kanari
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Mahesh M Karnani
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Romy Aardse
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai B Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | | | - Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tamara Versluis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Philip de Witt-Hamer
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - David P Noske
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Johannes C Baayen
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Henry Markram
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Felix Schürmann
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Idan Segev
- Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190501 Jerusalem, Israel
| | | |
Collapse
|
22
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Riquelme JL, Hemberger M, Laurent G, Gjorgjieva J. Single spikes drive sequential propagation and routing of activity in a cortical network. eLife 2023; 12:e79928. [PMID: 36780217 PMCID: PMC9925052 DOI: 10.7554/elife.79928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/19/2022] [Indexed: 02/14/2023] Open
Abstract
Single spikes can trigger repeatable firing sequences in cortical networks. The mechanisms that support reliable propagation of activity from such small events and their functional consequences remain unclear. By constraining a recurrent network model with experimental statistics from turtle cortex, we generate reliable and temporally precise sequences from single spike triggers. We find that rare strong connections support sequence propagation, while dense weak connections modulate propagation reliability. We identify sections of sequences corresponding to divergent branches of strongly connected neurons which can be selectively gated. Applying external inputs to specific neurons in the sparse backbone of strong connections can effectively control propagation and route activity within the network. Finally, we demonstrate that concurrent sequences interact reliably, generating a highly combinatorial space of sequence activations. Our results reveal the impact of individual spikes in cortical circuits, detailing how repeatable sequences of activity can be triggered, sustained, and controlled during cortical computations.
Collapse
Affiliation(s)
- Juan Luis Riquelme
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Mike Hemberger
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Gilles Laurent
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| |
Collapse
|
24
|
Szegedi V, Bakos E, Furdan S, Kovács BH, Varga D, Erdélyi M, Barzó P, Szücs A, Tamás G, Lamsa K. HCN channels at the cell soma ensure the rapid electrical reactivity of fast-spiking interneurons in human neocortex. PLoS Biol 2023; 21:e3002001. [PMID: 36745683 PMCID: PMC9934405 DOI: 10.1371/journal.pbio.3002001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/16/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that there are substantial species differences in the properties of mammalian neurons, yet theories on circuit activity and information processing in the human brain are based heavily on results obtained from rodents and other experimental animals. This knowledge gap may be particularly important for understanding the neocortex, the brain area responsible for the most complex neuronal operations and showing the greatest evolutionary divergence. Here, we examined differences in the electrophysiological properties of human and mouse fast-spiking GABAergic basket cells, among the most abundant inhibitory interneurons in cortex. Analyses of membrane potential responses to current input, pharmacologically isolated somatic leak currents, isolated soma outside-out patch recordings, and immunohistochemical staining revealed that human neocortical basket cells abundantly express hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms HCN1 and HCN2 at the cell soma membrane, whereas these channels are sparse at the rodent basket cell soma membrane. Antagonist experiments showed that HCN channels in human neurons contribute to the resting membrane potential and cell excitability at the cell soma, accelerate somatic membrane potential kinetics, and shorten the lag between excitatory postsynaptic potentials and action potential generation. These effects are important because the soma of human fast-spiking neurons without HCN channels exhibit low persistent ion leak and slow membrane potential kinetics, compared with mouse fast-spiking neurons. HCN channels speed up human cell membrane potential kinetics and help attain an input-output rate close to that of rodent cells. Computational modeling demonstrated that HCN channel activity at the human fast-spiking cell soma membrane is sufficient to accelerate the input-output function as observed in cell recordings. Thus, human and mouse fast-spiking neurons exhibit functionally significant differences in ion channel composition at the cell soma membrane to set the speed and fidelity of their input-output function. These HCN channels ensure fast electrical reactivity of fast-spiking cells in human neocortex.
Collapse
Affiliation(s)
- Viktor Szegedi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
| | - Emőke Bakos
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
| | - Szabina Furdan
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
| | - Bálint H. Kovács
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Dániel Varga
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Attila Szücs
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Budapest, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Karri Lamsa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
- * E-mail: ,
| |
Collapse
|
25
|
Shang Z, Huang J, Liu N, Zhang X. Bi-directional Control of Synaptic Input Summation and Spike Generation by GABAergic Inputs at the Axon Initial Segment. Neurosci Bull 2023; 39:1-13. [PMID: 35639277 PMCID: PMC9849666 DOI: 10.1007/s12264-022-00887-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.
Collapse
Affiliation(s)
- Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Junhao Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Nan Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
26
|
Galakhova AA, Hunt S, Wilbers R, Heyer DB, de Kock CPJ, Mansvelder HD, Goriounova NA. Evolution of cortical neurons supporting human cognition. Trends Cogn Sci 2022; 26:909-922. [PMID: 36117080 PMCID: PMC9561064 DOI: 10.1016/j.tics.2022.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
Human cognitive abilities are generally thought to arise from cortical expansion over the course of human brain evolution. In addition to increased neuron numbers, this cortical expansion might be driven by adaptations in the properties of single neurons and their local circuits. We review recent findings on the distinct structural, functional, and transcriptomic features of human cortical neurons and their organization in cortical microstructure. We focus on the supragranular cortical layers, which showed the most prominent expansion during human brain evolution, and the properties of their principal cells: pyramidal neurons. We argue that the evolutionary adaptations in neuronal features that accompany the expansion of the human cortex partially underlie interindividual variability in human cognitive abilities.
Collapse
Affiliation(s)
- A A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - S Hunt
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - R Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - D B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - C P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - H D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - N A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
27
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
28
|
Gansel KS. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front Integr Neurosci 2022; 16:900715. [PMID: 36262373 PMCID: PMC9574343 DOI: 10.3389/fnint.2022.900715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synchronization of neuronal discharges on the millisecond scale has long been recognized as a prevalent and functionally important attribute of neural activity. In this article, I review classical concepts and corresponding evidence of the mechanisms that govern the synchronization of distributed discharges in cortical networks and relate those mechanisms to their possible roles in coding and cognitive functions. To accommodate the need for a selective, directed synchronization of cells, I propose that synchronous firing of distributed neurons is a natural consequence of spike-timing-dependent plasticity (STDP) that associates cells repetitively receiving temporally coherent input: the “synchrony through synaptic plasticity” hypothesis. Neurons that are excited by a repeated sequence of synaptic inputs may learn to selectively respond to the onset of this sequence through synaptic plasticity. Multiple neurons receiving coherent input could thus actively synchronize their firing by learning to selectively respond at corresponding temporal positions. The hypothesis makes several predictions: first, the position of the cells in the network, as well as the source of their input signals, would be irrelevant as long as their input signals arrive simultaneously; second, repeating discharge patterns should get compressed until all or some part of the signals are synchronized; and third, this compression should be accompanied by a sparsening of signals. In this way, selective groups of cells could emerge that would respond to some recurring event with synchronous firing. Such a learned response pattern could further be modulated by synchronous network oscillations that provide a dynamic, flexible context for the synaptic integration of distributed signals. I conclude by suggesting experimental approaches to further test this new hypothesis.
Collapse
|
29
|
Loomba S, Straehle J, Gangadharan V, Heike N, Khalifa A, Motta A, Ju N, Sievers M, Gempt J, Meyer HS, Helmstaedter M. Connectomic comparison of mouse and human cortex. Science 2022; 377:eabo0924. [PMID: 35737810 DOI: 10.1126/science.abo0924] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cerebral cortex houses 1,000 times more neurons than the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used 3-dimensional electron microscopy of mouse, macaque and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared to mouse was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-vs-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in human cortex.
Collapse
Affiliation(s)
- Sahil Loomba
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.,Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jakob Straehle
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Vijayan Gangadharan
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Natalie Heike
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Abdelrahman Khalifa
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Alessandro Motta
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Niansheng Ju
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Meike Sievers
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.,Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Hanno S Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
30
|
Meneghini S, Modena D, Colombo G, Coatti A, Milani N, Madaschi L, Amadeo A, Becchetti A. The β2V287L nicotinic subunit linked to sleep-related epilepsy differently affects fast-spiking and regular spiking somatostatin-expressing neurons in murine prefrontal cortex. Prog Neurobiol 2022; 214:102279. [DOI: 10.1016/j.pneurobio.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
|
31
|
Hofer KT, Kandrács Á, Tóth K, Hajnal B, Bokodi V, Tóth EZ, Erőss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci Rep 2022; 12:6280. [PMID: 35428851 PMCID: PMC9012754 DOI: 10.1038/s41598-022-10319-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes—the hypersynchronous events between seizures—is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony.
Collapse
Affiliation(s)
- Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,Department of Neurobiology, School of Medicine and Institute for Medical Research Israel-Canada, The Hebrew University, 91120, Jerusalem, Israel
| | - Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Boglárka Hajnal
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Virág Bokodi
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Attila G Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary. .,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary. .,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.
| |
Collapse
|
32
|
Campagnola L, Seeman SC, Chartrand T, Kim L, Hoggarth A, Gamlin C, Ito S, Trinh J, Davoudian P, Radaelli C, Kim MH, Hage T, Braun T, Alfiler L, Andrade J, Bohn P, Dalley R, Henry A, Kebede S, Mukora A, Sandman D, Williams G, Larsen R, Teeter C, Daigle TL, Berry K, Dotson N, Enstrom R, Gorham M, Hupp M, Lee SD, Ngo K, Nicovich PR, Potekhina L, Ransford S, Gary A, Goldy J, McMillen D, Pham T, Tieu M, Siverts L, Walker M, Farrell C, Schroedter M, Slaughterbeck C, Cobb C, Ellenbogen R, Gwinn RP, Keene CD, Ko AL, Ojemann JG, Silbergeld DL, Carey D, Casper T, Crichton K, Clark M, Dee N, Ellingwood L, Gloe J, Kroll M, Sulc J, Tung H, Wadhwani K, Brouner K, Egdorf T, Maxwell M, McGraw M, Pom CA, Ruiz A, Bomben J, Feng D, Hejazinia N, Shi S, Szafer A, Wakeman W, Phillips J, Bernard A, Esposito L, D’Orazi FD, Sunkin S, Smith K, Tasic B, Arkhipov A, Sorensen S, Lein E, Koch C, Murphy G, Zeng H, Jarsky T. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 2022; 375:eabj5861. [PMID: 35271334 PMCID: PMC9970277 DOI: 10.1126/science.abj5861] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.
Collapse
Affiliation(s)
| | | | | | - Lisa Kim
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Clare Gamlin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Shinya Ito
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Travis Hage
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Alex Henry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Sara Kebede
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Alice Mukora
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Kyla Berry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nadia Dotson
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Charles Cobb
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Richard Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA,Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA,Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Medea McGraw
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - David Feng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shu Shi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Susan Sunkin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gabe Murphy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA,Corresponding author:
| |
Collapse
|
33
|
Perumal MB, Sah P. A protocol to investigate cellular and circuit mechanisms generating sharp wave ripple oscillations in rodent basolateral amygdala using ex vivo slices. STAR Protoc 2022; 3:101085. [PMID: 35072114 PMCID: PMC8761775 DOI: 10.1016/j.xpro.2021.101085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022; 15:787164. [PMID: 35069126 PMCID: PMC8777274 DOI: 10.3389/fncir.2021.787164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.
Collapse
Affiliation(s)
- Ewoud R. E. Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Ewoud R. E. Schmidt
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
- Franck Polleux
| |
Collapse
|
35
|
Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. Int J Mol Sci 2021; 23:ijms23010202. [PMID: 35008628 PMCID: PMC8745731 DOI: 10.3390/ijms23010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated—in conjunction with the electron microscopy—that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.
Collapse
|
36
|
Heyer DB, Wilbers R, Galakhova AA, Hartsema E, Braak S, Hunt S, Verhoog MB, Muijtjens ML, Mertens EJ, Idema S, Baayen JC, de Witt Hamer P, Klein M, McGraw M, Lein ES, de Kock CPJ, Mansvelder HD, Goriounova NA. Verbal and General IQ Associate with Supragranular Layer Thickness and Cell Properties of the Left Temporal Cortex. Cereb Cortex 2021; 32:2343-2357. [PMID: 34550325 PMCID: PMC9157308 DOI: 10.1093/cercor/bhab330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022] Open
Abstract
The left temporal lobe is an integral part of the language system and its cortical structure and function associate with general intelligence. However, whether cortical laminar architecture and cellular properties of this brain area relate to verbal intelligence is unknown. Here, we addressed this using histological analysis and cellular recordings of neurosurgically resected temporal cortex in combination with presurgical IQ scores. We find that subjects with higher general and verbal IQ scores have thicker left (but not right) temporal cortex (Brodmann area 21, BA21). The increased thickness is due to the selective increase in layers 2 and 3 thickness, accompanied by lower neuron densities, and larger dendrites and cell body size of pyramidal neurons in these layers. Furthermore, these neurons sustain faster action potential kinetics, which improves information processing. Our results indicate that verbal mental ability associates with selective adaptations of supragranular layers and their cellular micro-architecture and function in left, but not right temporal cortex.
Collapse
Affiliation(s)
- D B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - R Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - A A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E Hartsema
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Braak
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Hunt
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M B Verhoog
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.,Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town 7925, South Africa
| | - M L Muijtjens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E J Mertens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Idema
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - J C Baayen
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - P de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M Klein
- Department of Medical Psychology, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HZ, The Netherlands
| | - M McGraw
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - E S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - C P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - H D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - N A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
37
|
Moradi Chameh H, Rich S, Wang L, Chen FD, Zhang L, Carlen PL, Tripathy SJ, Valiante TA. Diversity amongst human cortical pyramidal neurons revealed via their sag currents and frequency preferences. Nat Commun 2021; 12:2497. [PMID: 33941783 PMCID: PMC8093195 DOI: 10.1038/s41467-021-22741-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
In the human neocortex coherent interlaminar theta oscillations are driven by deep cortical layers, suggesting neurons in these layers exhibit distinct electrophysiological properties. To characterize this potential distinctiveness, we use in vitro whole-cell recordings from cortical layers 2 and 3 (L2&3), layer 3c (L3c) and layer 5 (L5) of the human cortex. Across all layers we observe notable heterogeneity, indicating human cortical pyramidal neurons are an electrophysiologically diverse population. L5 pyramidal cells are the most excitable of these neurons and exhibit the most prominent sag current (abolished by blockade of the hyperpolarization activated cation current, Ih). While subthreshold resonance is more common in L3c and L5, we rarely observe this resonance at frequencies greater than 2 Hz. However, the frequency dependent gain of L5 neurons reveals they are most adept at tracking both delta and theta frequency inputs, a unique feature that may indirectly be important for the generation of cortical theta oscillations.
Collapse
Affiliation(s)
- Homeira Moradi Chameh
- grid.231844.80000 0004 0474 0428Krembil Brain Institute, University Health Network, Toronto, ON Canada
| | - Scott Rich
- grid.231844.80000 0004 0474 0428Krembil Brain Institute, University Health Network, Toronto, ON Canada
| | - Lihua Wang
- grid.231844.80000 0004 0474 0428Krembil Brain Institute, University Health Network, Toronto, ON Canada
| | - Fu-Der Chen
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada ,grid.450270.40000 0004 0491 5558Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Liang Zhang
- grid.231844.80000 0004 0474 0428Krembil Brain Institute, University Health Network, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Departments of Medicine & Physiology, University of Toronto, Toronto, ON Canada
| | - Peter L. Carlen
- grid.231844.80000 0004 0474 0428Krembil Brain Institute, University Health Network, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Departments of Medicine & Physiology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada
| | - Shreejoy J. Tripathy
- grid.155956.b0000 0000 8793 5925Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Sciences, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Taufik A. Valiante
- grid.231844.80000 0004 0474 0428Krembil Brain Institute, University Health Network, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Sciences, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
| |
Collapse
|
38
|
Perumal MB, Latimer B, Xu L, Stratton P, Nair S, Sah P. Microcircuit mechanisms for the generation of sharp-wave ripples in the basolateral amygdala: A role for chandelier interneurons. Cell Rep 2021; 35:109106. [PMID: 33979609 PMCID: PMC9136954 DOI: 10.1016/j.celrep.2021.109106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/22/2021] [Accepted: 04/18/2021] [Indexed: 01/11/2023] Open
Abstract
Synchronized activity in neural circuits, detected as oscillations in the extracellular field potential, has been associated with learning and memory. Neural circuits in the basolateral amygdala (BLA), a mid-temporal lobe structure, generate oscillations in specific frequency bands to mediate emotional memory functions. However, how BLA circuits generate oscillations in distinct frequency bands is not known. Of these, sharp-waves (SWs) are repetitive, brief transitions that contain a low-frequency (<20 Hz) envelope, often coupled with ripples (100–300 Hz), have been associated with memory consolidation. Here, we show that SWs are retained in the BLA ex vivo and generated by local circuits. We demonstrate that an action potential in a chandelier interneuron is sufficient to initiate SWs through local circuits. Using a physiologically constrained model, we show that microcircuits organized as chandelier-interneuron-driven modules reproduce SWs and associated cellular events, revealing a functional role for chandelier interneurons and microcircuits for SW generation. Perumal et al. investigate circuits that generate network oscillations called sharp waves (SWs) in the basolateral amygdala. They show that discharge in a chandelier interneuron can initiate SW oscillations—a network activity associated with memory consolidation. They develop a network model with chandelier-interneuron-driven modular microcircuits for SW generation.
Collapse
Affiliation(s)
| | - Benjamin Latimer
- Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Li Xu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Stratton
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Satish Nair
- Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Joint Center for Neuroscience and Neural Engineering and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, P.R. China.
| |
Collapse
|
39
|
Dynamics of a Mutual Inhibition Circuit between Pyramidal Neurons Compared to Human Perceptual Competition. J Neurosci 2021; 41:1251-1264. [PMID: 33443089 DOI: 10.1523/jneurosci.2503-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
Neural competition plays an essential role in active selection processes of noisy and ambiguous input signals, and it is assumed to underlie emergent properties of brain functioning, such as perceptual organization and decision-making. Despite ample theoretical research on neural competition, experimental tools to allow neurophysiological investigation of competing neurons have not been available. We developed a "hybrid" system where real-life neurons and a computer-simulated neural circuit interacted. It enabled us to construct a mutual inhibition circuit between two real-life pyramidal neurons. We then asked what dynamics this minimal unit of neural competition exhibits and compared them with the known behavioral-level dynamics of neural competition. We found that the pair of neurons shows bistability when activated simultaneously by current injections. The addition of modeled synaptic noise and changes in the activation strength showed that the dynamics of the circuit are strikingly similar to the known properties of bistable visual perception: The distribution of dominance durations showed a right-skewed shape, and the changes of the activation strengths caused changes in dominance, dominance durations, and reversal rates as stated in the well-known empirical laws of bistable perception known as Levelt's propositions.SIGNIFICANCE STATEMENT Visual perception emerges as the result of neural systems actively organizing visual signals that involves selection processes of competing neurons. While the neural competition, realized by a "mutual inhibition" circuit has been examined in many theoretical studies, its properties have not been investigated in real neurons. We have developed a "hybrid" system where two real-life pyramidal neurons in a mouse brain slice interact through a computer-simulated mutual inhibition circuit. We found that simultaneous activation of the neurons leads to bistable activity. We investigated the effect of noise and the effect of changes in the activation strength on the dynamics. We observed that the pair of neurons exhibit dynamics strikingly similar to the known properties of bistable visual perception.
Collapse
|
40
|
Rich S, Moradi Chameh H, Sekulic V, Valiante TA, Skinner FK. Modeling Reveals Human-Rodent Differences in H-Current Kinetics Influencing Resonance in Cortical Layer 5 Neurons. Cereb Cortex 2021; 31:845-872. [PMID: 33068000 PMCID: PMC7906797 DOI: 10.1093/cercor/bhaa261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
While our understanding of human neurons is often inferred from rodent data, inter-species differences between neurons can be captured by building cellular models specifically from human data. This includes understanding differences at the level of ion channels and their implications for human brain function. Thus, we here present a full spiking, biophysically detailed multi-compartment model of a human layer 5 (L5) cortical pyramidal cell. Model development was primarily based on morphological and electrophysiological data from the same human L5 neuron, avoiding confounds of experimental variability. Focus was placed on describing the behavior of the hyperpolarization-activated cation (h-) channel, given increasing interest in this channel due to its role in pacemaking and differentiating cell types. We ensured that the model exhibited post-inhibitory rebound spiking considering its relationship with the h-current, along with other general spiking characteristics. The model was validated against data not used in its development, which highlighted distinctly slower kinetics of the human h-current relative to the rodent setting. We linked the lack of subthreshold resonance observed in human L5 neurons to these human-specific h-current kinetics. This work shows that it is possible and necessary to build human-specific biophysical neuron models in order to understand human brain dynamics.
Collapse
Affiliation(s)
- Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Vladislav Sekulic
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Taufik A Valiante
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Frances K Skinner
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
41
|
Matsui TK, Tsuru Y, Kuwako KI. Challenges in Modeling Human Neural Circuit Formation via Brain Organoid Technology. Front Cell Neurosci 2020; 14:607399. [PMID: 33362473 PMCID: PMC7756199 DOI: 10.3389/fncel.2020.607399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 01/12/2023] Open
Abstract
Human brain organoids are three-dimensional self-organizing tissues induced from pluripotent cells that recapitulate some aspects of early development and some of the early structure of the human brain in vitro. Brain organoids consist of neural lineage cells, such as neural stem/precursor cells, neurons, astrocytes and oligodendrocytes. Additionally, brain organoids contain fluid-filled ventricle-like structures surrounded by a ventricular/subventricular (VZ/SVZ) zone-like layer of neural stem cells (NSCs). These NSCs give rise to neurons, which form multiple outer layers. Since these structures resemble some aspects of structural arrangements in the developing human brain, organoid technology has attracted great interest in the research fields of human brain development and disease modeling. Developmental brain disorders have been intensely studied through the use of human brain organoids. Relatively early steps in human brain development, such as differentiation and migration, have also been studied. However, research on neural circuit formation with brain organoids has just recently began. In this review, we summarize the current challenges in studying neural circuit formation with organoids and discuss future perspectives.
Collapse
Affiliation(s)
- Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Yuichiro Tsuru
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
42
|
Park TIH, Schweder P, Lee K, Dieriks BV, Jung Y, Smyth L, Rustenhoven J, Mee E, Heppner P, Turner C, Curtis MA, Faull RLM, Montgomery JM, Dragunow M. Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Commun 2020; 2:fcaa171. [PMID: 33215086 PMCID: PMC7660143 DOI: 10.1093/braincomms/fcaa171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
The ability to characterize and study primary neurons isolated directly from the adult human brain would greatly advance neuroscience research. However, significant challenges such as accessibility of human brain tissue and the lack of a robust neuronal cell culture protocol have hampered its progress. Here, we describe a simple and reproducible method for the isolation and culture of functional adult human neurons from neurosurgical brain specimens. In vitro, adult human neurons form a dense network and express a plethora of mature neuronal and synaptic markers. Most importantly, for the first time, we demonstrate the re-establishment of mature neurophysiological properties in vitro, such as repetitive fast-spiking action potentials, and spontaneous and evoked synaptic activity. Together, our dissociated and slice culture systems enable studies of adult human neurophysiology and gene expression under normal and pathological conditions and provide a high-throughput platform for drug testing on brain cells directly isolated from the adult human brain.
Collapse
Affiliation(s)
- Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon Smyth
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Edward Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Abstract
Brains are composed of networks of neurons that are highly interconnected. A central question in neuroscience is how such neuronal networks operate in tandem to make a functioning brain. To understand this, we need to study how neurons interact with each other in action, such as when viewing a visual scene or performing a motor task. One way to approach this question is by perturbing the activity of functioning neurons and measuring the resulting influence on other neurons. By using computational models of neuronal networks, we studied how this influence in visual networks depends on connectivity. Our results help to interpret contradictory results from previous experimental studies and explain how different connectivity patterns can enhance information processing during natural vision. To unravel the functional properties of the brain, we need to untangle how neurons interact with each other and coordinate in large-scale recurrent networks. One way to address this question is to measure the functional influence of individual neurons on each other by perturbing them in vivo. Application of such single-neuron perturbations in mouse visual cortex has recently revealed feature-specific suppression between excitatory neurons, despite the presence of highly specific excitatory connectivity, which was deemed to underlie feature-specific amplification. Here, we studied which connectivity profiles are consistent with these seemingly contradictory observations, by modeling the effect of single-neuron perturbations in large-scale neuronal networks. Our numerical simulations and mathematical analysis revealed that, contrary to the prima facie assumption, neither inhibition dominance nor broad inhibition alone were sufficient to explain the experimental findings; instead, strong and functionally specific excitatory–inhibitory connectivity was necessary, consistent with recent findings in the primary visual cortex of rodents. Such networks had a higher capacity to encode and decode natural images, and this was accompanied by the emergence of response gain nonlinearities at the population level. Our study provides a general computational framework to investigate how single-neuron perturbations are linked to cortical connectivity and sensory coding and paves the road to map the perturbome of neuronal networks in future studies.
Collapse
|
44
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
45
|
Fişek M, Häusser M. Are Human Dendrites Different? Trends Cogn Sci 2020; 24:411-412. [PMID: 32392467 PMCID: PMC7903140 DOI: 10.1016/j.tics.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
The first patch-clamp recordings from the dendrites of human neocortical neurons have recently been reported by Beaulieu-Laroche et al. and Gidon et al. These studies have shown that human dendrites are electrically excitable, exhibiting backpropagating action potentials and fast dendritic calcium spikes. This new frontier highlights the potential for interspecies differences in the biophysics of dendritic computation.
Collapse
Affiliation(s)
- Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK; Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK; Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
46
|
Qi G, Yang D, Ding C, Feldmeyer D. Unveiling the Synaptic Function and Structure Using Paired Recordings From Synaptically Coupled Neurons. Front Synaptic Neurosci 2020; 12:5. [PMID: 32116641 PMCID: PMC7026682 DOI: 10.3389/fnsyn.2020.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 11/24/2022] Open
Abstract
Synaptic transmission between neurons is the basic mechanism for information processing in cortical microcircuits. To date, paired recording from synaptically coupled neurons is the most widely used method which allows a detailed functional characterization of unitary synaptic transmission at the cellular and synaptic level in combination with a structural characterization of both pre- and postsynaptic neurons at the light and electron microscopic level. In this review, we will summarize the many applications of paired recordings to investigate synaptic function and structure. Paired recordings have been used to study the detailed electrophysiological and anatomical properties of synaptically coupled cell pairs within a synaptic microcircuit; this is critical in order to understand the connectivity rules and dynamic properties of synaptic transmission. Paired recordings can also be adopted for quantal analysis of an identified synaptic connection and to study the regulation of synaptic transmission by neuromodulators such as acetylcholine, the monoamines, neuropeptides, and adenosine etc. Taken together, paired recordings from synaptically coupled neurons will remain a very useful approach for a detailed characterization of synaptic transmission not only in the rodent brain but also that of other species including humans.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany
| | - Danqing Yang
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany
| | - Chao Ding
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
47
|
Lee K, Park TIH, Heppner P, Schweder P, Mee EW, Dragunow M, Montgomery JM. Human in vitro systems for examining synaptic function and plasticity in the brain. J Neurophysiol 2020; 123:945-965. [PMID: 31995449 DOI: 10.1152/jn.00411.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human brain shows remarkable complexity in its cellular makeup and function, which are distinct from nonhuman species, signifying the need for human-based research platforms for the study of human cellular neurophysiology and neuropathology. However, the use of adult human brain tissue for research purposes is hampered by technical, methodological, and accessibility challenges. One of the major problems is the limited number of in vitro systems that, in contrast, are readily available from rodent brain tissue. With recent advances in the optimization of protocols for adult human brain preparations, there is a significant opportunity for neuroscientists to validate their findings in human-based systems. This review addresses the methodological aspects, advantages, and disadvantages of human neuron in vitro systems, focusing on the unique properties of human neurons and synapses in neocortical microcircuits. These in vitro models provide the incomparable advantage of being a direct representation of the neurons that have formed part of the human brain until the point of recording, which cannot be replicated by animal models nor human stem-cell systems. Important distinct cellular mechanisms are observed in human neurons that may underlie the higher order cognitive abilities of the human brain. The use of human brain tissue in neuroscience research also raises important ethical, diversity, and control tissue limitations that need to be considered. Undoubtedly however, these human neuron systems provide critical information to increase the potential of translation of treatments from the laboratory to the clinic in a way animal models are failing to provide.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Peter Heppner
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward W Mee
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| |
Collapse
|
48
|
Szegedi V, Paizs M, Baka J, Barzó P, Molnár G, Tamas G, Lamsa K. Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex. eLife 2020; 9:51691. [PMID: 31916939 PMCID: PMC6984819 DOI: 10.7554/elife.51691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Inhibitory autapses are self-innervating synaptic connections in GABAergic interneurons in the brain. Autapses in neocortical layers have not been systematically investigated, and their function in different mammalian species and specific interneuron types is poorly known. We investigated GABAergic parvalbumin-expressing basket cells (pvBCs) in layer 2/3 (L2/3) in human neocortical tissue resected in deep-brain surgery, and in mice as control. Most pvBCs showed robust GABAAR-mediated self-innervation in both species, but autapses were rare in nonfast-spiking GABAergic interneurons. Light- and electron microscopy analyses revealed pvBC axons innervating their own soma and proximal dendrites. GABAergic self-inhibition conductance was similar in human and mouse pvBCs and comparable to that of synapses from pvBCs to other L2/3 neurons. Autaptic conductance prolonged somatic inhibition in pvBCs after a spike and inhibited repetitive firing. Perisomatic autaptic inhibition is common in both human and mouse pvBCs of supragranular neocortex, where they efficiently control discharge of the pvBCs.
Collapse
Affiliation(s)
- Viktor Szegedi
- MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Melinda Paizs
- MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Judith Baka
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gabor Tamas
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Karri Lamsa
- MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
49
|
Prodromidou K, Matsas R. Species-Specific miRNAs in Human Brain Development and Disease. Front Cell Neurosci 2019; 13:559. [PMID: 31920559 PMCID: PMC6930153 DOI: 10.3389/fncel.2019.00559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Identification of the unique features of human brain development and function can be critical towards the elucidation of intricate processes such as higher cognitive functions and human-specific pathologies like neuropsychiatric and behavioral disorders. The developing primate and human central nervous system (CNS) are distinguished by expanded progenitor zones and a protracted time course of neurogenesis, leading to the expansion in brain size, prominent gyral anatomy, distinctive synaptic properties, and complex neural circuits. Comparative genomic studies have revealed that adaptations of brain capacities may be partly explained by human-specific genetic changes that impact the function of proteins associated with neocortical expansion, synaptic function, and language development. However, the formation of complex gene networks may be most relevant for brain evolution. Indeed, recent studies identified distinct human-specific gene expression patterns across developmental time occurring in brain regions linked to cognition. Interestingly, such modules show species-specific divergence and are enriched in genes associated with neuronal development and synapse formation whilst also being implicated in neuropsychiatric diseases. microRNAs represent a powerful component of gene-regulatory networks by promoting spatiotemporal post-transcriptional control of gene expression in the human and primate brain. It has also been suggested that the divergence in miRNA expression plays an important role in shaping gene expression divergence among species. Primate-specific and human-specific miRNAs are principally involved in progenitor proliferation and neurogenic processes but also associate with human cognition, and neurological disorders. Human embryonic or induced pluripotent stem cells and brain organoids, permitting experimental access to neural cells and differentiation stages that are otherwise difficult or impossible to reach in humans, are an essential means for studying species-specific brain miRNAs. Single-cell sequencing approaches can further decode refined miRNA-mRNA interactions during developmental transitions. Elucidating species-specific miRNA regulation will shed new light into the mechanisms that control spatiotemporal events during human brain development and disease, an important step towards fostering novel, holistic and effective therapeutic approaches for neural disorders. In this review, we discuss species-specific regulation of miRNA function, its contribution to the evolving features of the human brain and in neurological disease, with respect also to future therapeutic approaches.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
50
|
Hemberger M, Shein-Idelson M, Pammer L, Laurent G. Reliable Sequential Activation of Neural Assemblies by Single Pyramidal Cells in a Three-Layered Cortex. Neuron 2019; 104:353-369.e5. [PMID: 31439429 DOI: 10.1016/j.neuron.2019.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
Abstract
Recent studies reveal the occasional impact of single neurons on surround firing statistics and even simple behaviors. Exploiting the advantages of a simple cortex, we examined the influence of single pyramidal neurons on surrounding cortical circuits. Brief activation of single neurons triggered reliable sequences of firing in tens of other excitatory and inhibitory cortical neurons, reflecting cascading activity through local networks, as indicated by delayed yet precisely timed polysynaptic subthreshold potentials. The evoked patterns were specific to the pyramidal cell of origin, extended over hundreds of micrometers from their source, and unfolded over up to 200 ms. Simultaneous activation of pyramidal cell pairs indicated balanced control of population activity, preventing paroxysmal amplification. Single cortical pyramidal neurons can thus trigger reliable postsynaptic activity that can propagate in a reliable fashion through cortex, generating rapidly evolving and non-random firing sequences reminiscent of those observed in mammalian hippocampus during "replay" and in avian song circuits.
Collapse
Affiliation(s)
- Mike Hemberger
- Max Planck Institute for Brain Research, Frankfurt am Main, 60438 Germany
| | - Mark Shein-Idelson
- Max Planck Institute for Brain Research, Frankfurt am Main, 60438 Germany; Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School for Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Lorenz Pammer
- Max Planck Institute for Brain Research, Frankfurt am Main, 60438 Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt am Main, 60438 Germany.
| |
Collapse
|