1
|
Serga S, Kovalenko PA, Maistrenko OM, Deconninck G, Shevchenko O, Iakovenko N, Protsenko Y, Susulovsky A, Kaczmarek Ł, Pavlovska M, Convey P, Kozeretska I. Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered? ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70040. [PMID: 39533947 PMCID: PMC11558105 DOI: 10.1111/1758-2229.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates. Wolbachia is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of Wolbachia in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of Wolbachia in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of Wolbachia in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.
Collapse
Affiliation(s)
- Svitlana Serga
- CBGP, Univ Montpellier, CIRAD, INRAE, IRDInstitut Agro MontpellierMontpellierFrance
- National Antarctic Scientific Center of UkraineKyivUkraine
| | - Pavlo A. Kovalenko
- National Antarctic Scientific Center of UkraineKyivUkraine
- State Institution Institute for Evolutionary EcologyNational Academy of Sciences of UkraineKyivUkraine
| | - Oleksandr M. Maistrenko
- European Molecular Biology LaboratoryStructural and Computational Biology UnitHeidelbergGermany
- Royal Netherlands Institute for Sea Research, 't Horntje (Texel)Den HoornNetherlands
| | - Gwenaëlle Deconninck
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'InsecteUniversité de Tours, Parc GrandmontToursFrance
| | - Oleksandra Shevchenko
- Institute for Problems of Cryobiology and CryomedicineNational Academy of Sciences of UkraineKharkivUkraine
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
| | - Nataliia Iakovenko
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
- Czech University of Life Sciences PragueFaculty of Forestry and Wood SciencesSuchdolCzech Republic
- Institute of Animal Physiology and Genetics AS ČRLaboratory of Nonmendelian EvolutionLibechovCzech Republic
| | | | - Andrij Susulovsky
- State Museum of Natural HistoryNational Academy of Sciences of UkraineLvivUkraine
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Peter Convey
- British Antarctic Survey, NERC, High CrossCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
- Biodiversity of Antarctic and Sub‐Antarctic Ecosystems (BASE)SantiagoChile
| | | |
Collapse
|
2
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
3
|
Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL. Variable effects of transient Wolbachia infections on alphaviruses in Aedes aegypti. PLoS Negl Trop Dis 2024; 18:e0012633. [PMID: 39495807 DOI: 10.1371/journal.pntd.0012633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of transient somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB had more modest effects. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
Collapse
Affiliation(s)
- Brittany L Dodson
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sujit Pujhari
- Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, South Carolina, United States of America
| | - Marco Brustolin
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
4
|
Zhu Y, Wang X, Wang S, Song Z, Du Y. No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis. INSECTS 2024; 15:784. [PMID: 39452360 PMCID: PMC11508833 DOI: 10.3390/insects15100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Heritable endosymbiont Wolbachia is prevalent among arthropods, serving multiple functions for their hosts. However, the role of Wolbachia in mediating thermal preference selection remains largely unexplored. In this study, we utilized a custom-built thermal gradient to evaluate the thermal preference (Tp) of 1367 individuals of the invasive leaf-miner Liriomyza huidobrensis with or without Wolbachia wLhui from Yunnan and Xinjiang populations. Under meticulously controlled conditions and with a vast sample size, we found no significant difference in the mean Tp between wLhui-infected and uninfected leaf miners from either population when host age and sex were not considered. Furthermore, generalized linear model (GLM) analysis revealed no significant correlation between average Tp and age, sex, or Wolbachia infection, nor interactions among these factors, except in the Xinjiang population, where Tp was strongly associated with host age. Finally, we discuss the ecological implications of these findings and propose future research directions on Wolbachia-mediated host Tp in the leaf miner. Overall, our findings do not provide evidence that Wolbachia significantly affects the thermal preference of L. huidobrensis. Further studies across different systems are needed to investigate the complex interactions between Wolbachia and insect thermal behavior.
Collapse
Affiliation(s)
- Yuxi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| | - Xinyu Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| | - Sibo Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| | - Zhangrong Song
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Yuzhou Du
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| |
Collapse
|
5
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
6
|
Amini S, Fathipour Y, Hoffmann A, Mehrabadi M. Wolbachia affect female mate preference and offspring fitness in a parasitoid wasp. PEST MANAGEMENT SCIENCE 2024; 80:5432-5439. [PMID: 38934782 DOI: 10.1002/ps.8272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Wolbachia are widespread intracellular bacteria in insects that often have high rates of spread due to their impact on insect reproduction. These bacteria may also affect the mating behavior of their host with impacts on the fitness of host progeny. In this study, we investigated the impact of Wolbachia on a preference for mating with young or old males in the parasitoid wasp Habrobracon hebetor. RESULTS Our results showed that uninfected females from a tetracycline-treated line preferred to mate with young males, whereas Wolbachia-infected females had no preference. Time to mating was relatively shorter in the infected lines. Regardless of Wolbachia infection status, progeny resulting from matings with young males showed higher fitness than those from crosses with old males, and infected females crossed with infected young males showed the highest performance. CONCLUSION These results suggest an impact of Wolbachia on female mate preference and offspring fitness although it is unclear how this phenomenon increases Wolbachia transmission of infected wasps. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Amini
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
7
|
Montenegro D, Cortés-Cortés G, Balbuena-Alonso MG, Warner C, Camps M. Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Trop 2024; 260:107410. [PMID: 39349234 DOI: 10.1016/j.actatropica.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Dengue fever is a mosquito-transmitted disease of great public health importance. Dengue lacks adequate vaccine protection and insecticide-based methods of mosquito control are proving increasingly ineffective. Here we review the emerging use of mosquitoes transinfected with the obligate intracellular bacterium Wolbachia pipientis for vector control. Wolbachia often induces cytoplasmic incompatibility in its mosquito hosts, resulting in infertile progeny between an infected male and an uninfected female. Wolbachia infection also suppresses the replication of pathogens in the mosquito, a process known as "pathogen blocking". Two strategies have emerged. The first one releases Wolbachia carriers (both male and female) to replace the wild mosquito population, a process driven by cytoplasmic incompatibility and that becomes irreversible once a threshold is reached. This suppresses disease transmission mainly by pathogen blocking and frequently requires a single intervention. The second strategy floods the field population with an exclusively male population of Wolbachia-carrying mosquitoes to generate infertile hybrid progeny. In this case, transmission suppression depends largely on decreasing the population density of mosquitoes driven by infertility and requires continued mosquito release. The efficacy of both Wolbachia-based approaches has been conclusively demonstrated by randomized and non-randomized studies of deployments across the world. However, results conducted in one setting cannot be directly or easily extrapolated to other settings because dengue incidence is highly affected by the conditions into which the mosquitoes are released. Compared to traditional vector control methods, Wolbachia-based approaches are much more environmentally friendly and can be effective in the medium/long term. On the flip side, they are much more complex and cost-intensive operations, requiring a substantial investment, infrastructure, trained personnel, coordination between agencies, and community engagement. Finally, we discuss recent evidence suggesting that the release of Wolbachia-transinfected mosquitoes has a moderate potential risk of spreading potentially dangerous genes in the environment.
Collapse
Affiliation(s)
- Diego Montenegro
- Corporación Innovation Hub, Monteria 230001, Colombia; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Grupo de Investigación: Salud y Tecnología 4.0. Fundación Chilloa, Santa Marta 470001, Colombia
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - María Guadalupe Balbuena-Alonso
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Caison Warner
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
8
|
Tabbabi A, Mizushima D, Yamamoto DS, Zhioua E, Kato H. Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLoS Negl Trop Dis 2024; 18:e0012458. [PMID: 39236074 PMCID: PMC11407667 DOI: 10.1371/journal.pntd.0012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Phlebotomine sand flies are vectors of the protozoan parasite Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the impact of host species and environment on the gut microbiome. To address this issue, a comparative analysis of the microbiota of sand fly vector populations of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in Tunisia was performed. Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize and compare the overall bacterial and fungal composition of field-collected sand flies: Phlebotomus papatasi, Ph. perniciosus, Ph. riouxi, and Ph. sergenti. Thirty-eight bacterial genera belonging to five phyla were identified in 117 female specimens. The similarities and differences between the microbiome data from different samples collected from three collections were determined using principal coordinate analysis (PCoA). Substantial variations in the bacterial composition were found between geographically distinct populations of the same sand fly species, but not between different species at the same location, suggesting that the microbiota content was structured according to environmental factors rather than host species. These findings suggest that host phylogeny may play a minor role in determining the insect gut microbiota, and its potential to affect the transmission of the Leishmania parasite appear to be very low. These results highlight the need for further studies to decode sand fly Leishmania-microbiota interactions, as even the same bacterial species, such as Enterococcus faecalis, can exert completely opposite effects when confronted with different pathogens within various host insects and vice versa.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Elyes Zhioua
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
9
|
Coffman KA, Kauwe AN, Gillette NE, Burke GR, Geib SM. Host range of a parasitoid wasp is linked to host susceptibility to its mutualistic viral symbiont. Mol Ecol 2024; 33:e17485. [PMID: 39080979 DOI: 10.1111/mec.17485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024]
Abstract
Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. Diachasmimorpha longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.
Collapse
Affiliation(s)
- K A Coffman
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - A N Kauwe
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| | - N E Gillette
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
- College of Agriculture, Forestry and Natural Resource Management, University of Hawai'i at Hilo, Hilo, Hawaii, USA
| | - G R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - S M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| |
Collapse
|
10
|
Bustamante-Brito R, Vera-Ponce de León A, Rosenblueth M, Martínez-Romero E. Comparative genomics of the carmine cochineal symbiont Candidatus Dactylopiibacterium carminicum reveals possible protection to the host against viruses via CRISPR/Cas. Syst Appl Microbiol 2024; 47:126540. [PMID: 39068732 DOI: 10.1016/j.syapm.2024.126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized. Here we found that all cochineal species tested had Dactylopiibacterium carminicum which has a highly conserved genome. All Dactylopiibacterium genomes analyzed had genes involved in nitrogen fixation and plant polymer degradation. Dactylopiibacterium genomes resemble those from free-living plant bacteria, some found as endophytes. Notably, we found here a new putative novel function where the bacteria may protect the insect from viruses, since all Dactylopiibacterium genomes contain CRISPRs with a spacer matching nucleopolyhedrovirus that affects insects.
Collapse
Affiliation(s)
- Rafael Bustamante-Brito
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Arturo Vera-Ponce de León
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico; Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
11
|
Tanaka T, Yano T, Usuki S, Seo Y, Mizuta K, Okaguchi M, Yamaguchi M, Hanyu-Nakamura K, Toyama-Sorimachi N, Brückner K, Nakamura A. Endocytosed dsRNAs induce lysosomal membrane permeabilization that allows cytosolic dsRNA translocation for Drosophila RNAi responses. Nat Commun 2024; 15:6993. [PMID: 39143098 PMCID: PMC11324899 DOI: 10.1038/s41467-024-51343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
RNA interference (RNAi) is a gene-silencing mechanism triggered by the cytosolic entry of double-stranded RNAs (dsRNAs). Many animal cells internalize extracellular dsRNAs via endocytosis for RNAi induction. However, it is not clear how the endocytosed dsRNAs are translocated into the cytosol across the endo/lysosomal membrane. Herein, we show that in Drosophila S2 cells, endocytosed dsRNAs induce lysosomal membrane permeabilization (LMP) that allows cytosolic dsRNA translocation. LMP mediated by dsRNAs requires the lysosomal Cl-/H+ antiporter ClC-b/DmOstm1. In clc-b or dmostm1 knockout S2 cells, extracellular dsRNAs are endocytosed and reach the lysosomes normally but fail to enter the cytosol. Pharmacological induction of LMP restores extracellular dsRNA-directed RNAi in clc-b or dmostm1-knockout cells. Furthermore, clc-b or dmostm1 mutant flies are defective in extracellular dsRNA-directed RNAi and its associated antiviral immunity. Therefore, endocytosed dsRNAs have an intrinsic ability to induce ClC-b/DmOstm1-dependent LMP that allows cytosolic dsRNA translocation for RNAi responses in Drosophila cells.
Collapse
Affiliation(s)
- Tsubasa Tanaka
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tamaki Yano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoko Seo
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kento Mizuta
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Maho Okaguchi
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Maki Yamaguchi
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
12
|
Hrdina A, Serra Canales M, Arias-Rojas A, Frahm D, Iatsenko I. The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization. mBio 2024; 15:e0093624. [PMID: 38940615 PMCID: PMC11323552 DOI: 10.1128/mbio.00936-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Facultative endosymbiotic bacteria, such as Wolbachia and Spiroplasma species, are commonly found in association with insects and can dramatically alter their host physiology. Many endosymbionts are defensive and protect their hosts against parasites or pathogens. Despite the widespread nature of defensive insect symbioses and their importance for the ecology and evolution of insects, the mechanisms of symbiont-mediated host protection remain poorly characterized. Here, we utilized the fruit fly Drosophila melanogaster and its facultative endosymbiont Spiroplasma poulsonii to characterize the mechanisms underlying symbiont-mediated host protection against bacterial and fungal pathogens. Our results indicate a variable effect of S. poulsonii on infection outcome, with endosymbiont-harboring flies being more resistant to Rhyzopus oryzae, Staphylococcus aureus, and Providencia alcalifaciens but more sensitive or as sensitive as endosymbiont-free flies to the infections with Pseudomonas species. Further focusing on the protective effect, we identified Transferrin-mediated iron sequestration induced by Spiroplasma as being crucial for the defense against R. oryzae and P. alcalifaciens. In the case of S. aureus, enhanced melanization in Spiroplasma-harboring flies plays a major role in protection. Both iron sequestration and melanization induced by Spiroplasma require the host immune sensor protease Persephone, suggesting a role of proteases secreted by the symbiont in the activation of host defense reactions. Hence, our work reveals a broader defensive range of Spiroplasma than previously appreciated and adds nutritional immunity and melanization to the defensive arsenal of symbionts. IMPORTANCE Defensive endosymbiotic bacteria conferring protection to their hosts against parasites and pathogens are widespread in insect populations. However, the mechanisms by which most symbionts confer protection are not fully understood. Here, we studied the mechanisms of protection against bacterial and fungal pathogens mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii. We demonstrate that besides the previously described protection against wasps and nematodes, Spiroplasma also confers increased resistance to pathogenic bacteria and fungi. We identified Spiroplasma-induced iron sequestration and melanization as key defense mechanisms. Our work broadens the known defense spectrum of Spiroplasma and reveals a previously unappreciated role of melanization and iron sequestration in endosymbiont-mediated host protection. We propose that the mechanisms we have identified here may be of broader significance and could apply to other endosymbionts, particularly to Wolbachia, and potentially explain their protective properties.
Collapse
Affiliation(s)
- Alexandra Hrdina
- Research group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marina Serra Canales
- Research group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aranzazu Arias-Rojas
- Research group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dagmar Frahm
- Research group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
13
|
Mushtaq I, Sarwar MS, Munzoor I. A comprehensive review of Wolbachia-mediated mechanisms to control dengue virus transmission in Aedes aegypti through innate immune pathways. Front Immunol 2024; 15:1434003. [PMID: 39176079 PMCID: PMC11338905 DOI: 10.3389/fimmu.2024.1434003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.
Collapse
|
14
|
Behrmann LV, Meier K, Vollmer J, Chiedu CC, Schiefer A, Hoerauf A, Pfarr K. In vitro extracellular replication of Wolbachia endobacteria. Front Microbiol 2024; 15:1405287. [PMID: 39091298 PMCID: PMC11293327 DOI: 10.3389/fmicb.2024.1405287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Obligate intracellular endobacteria of the genus Wolbachia are widespread in arthropods and several filarial nematodes. Control programs for vector-borne diseases (dengue, Zika, malaria) and anti-filarial therapy with antibiotics are based on this important endosymbiont. Investigating Wolbachia, however, is impeded by the need for host cells. In this study, the requirements for Wolbachia wAlbB growth in a host cell-free in vitro culture system were characterized via qPCRs. A cell lysate fraction from Aedes albopictus C6/36 insect cells containing cell membranes and medium with fetal bovine serum were identified as requisite for cell-free replication of Wolbachia. Supplementation with the membrane fraction of insect cell lysate increased extracellular Wolbachia replication by 4.2-fold. Replication rates in the insect cell-free culture were lower compared to Wolbachia grown inside insect cells. However, the endobacteria were able to replicate for up to 12 days and to infect uninfected C6/36 cells. Cell-free Wolbachia treated with the lipid II biosynthesis inhibitor fosfomycin had an enlarged phenotype, seen previously for intracellular Wolbachia in C6/36 cells, indicating that the bacteria were unable to divide. In conclusion, we have developed a cell-free culture system in which Wolbachia replicate for up to 12 days, providing an in vitro tool to elucidate the biology of these endobacteria, e.g., cell division by using compounds that may not enter the C6/36 cells. A better understanding of Wolbachia biology, and in particular host-symbiont interactions, is key to the use of Wolbachia in vector control programs and to future drug development against filarial diseases.
Collapse
Affiliation(s)
- Lara Vanessa Behrmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kirstin Meier
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jennifer Vollmer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Chukwuebuka Chibuzo Chiedu
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Andrea Schiefer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
15
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Vassallo BG, Scheidel N, Fischer SEJ, Kim DH. Bacteria are a major determinant of Orsay virus transmission and infection in Caenorhabditis elegans. eLife 2024; 12:RP92534. [PMID: 38990923 PMCID: PMC11239179 DOI: 10.7554/elife.92534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.
Collapse
Affiliation(s)
- Brian G Vassallo
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Noemie Scheidel
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Sylvia E J Fischer
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Dennis H Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
17
|
Henry LP, Fernandez M, Wolf S, Abhyankar V, Ayroles JF. Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment. Ecol Evol 2024; 14:e70004. [PMID: 39041013 PMCID: PMC11262851 DOI: 10.1002/ece3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but theory suggests that fluctuations in both the microbiome and environment modulate these fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the microbiome and host to respond to changing environments. Drosophila melanogaster provides an excellent system to investigate the impacts of interactions between the microbiome and the environment. To address this question, we created field mesocosms of D. melanogaster undergoing seasonal environmental change with and without the vertically transmitted bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that Wolbachia constrained microbial diversity. Furthermore, Wolbachia and a dominant member of the microbiome, Commensalibacter, were associated with differences in two higher-order fitness traits, starvation resistance and lifespan. Our work here suggests that the interplay between the abiotic context and microbe-microbe interactions may shape key host phenotypes that underlie adaptation to changing environments. We conclude by exploring the consequences of complex interactions between Wolbachia and the microbiome for our understanding of eco-evolutionary processes that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Lucas P. Henry
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Michael Fernandez
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Scott Wolf
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Varada Abhyankar
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Julien F. Ayroles
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
18
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
19
|
Li H, Liu H, Zhu D, Dou C, Gang B, Zhang M, Wan Z. Biological function molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol Res 2024; 205:107222. [PMID: 38782147 DOI: 10.1016/j.phrs.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.
Collapse
Affiliation(s)
- Huari Li
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China; College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China.
| | - Huiru Liu
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chengli Dou
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| |
Collapse
|
20
|
De Coninck L, Soto A, Wang L, De Wolf K, Smitz N, Deblauwe I, Mbigha Donfack KC, Müller R, Delang L, Matthijnssens J. Lack of abundant core virome in Culex mosquitoes from a temperate climate region despite a mosquito species-specific virome. mSystems 2024; 9:e0001224. [PMID: 38742876 PMCID: PMC11237611 DOI: 10.1128/msystems.00012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
In arthropod-associated microbial communities, insect-specific viruses (ISVs) are prevalent yet understudied due to limited infectivity outside their natural hosts. However, ISVs might play a crucial role in regulating mosquito populations and influencing arthropod-borne virus transmission. Some studies have indicated a core virome in mosquitoes consisting of mostly ISVs. Employing single mosquito metagenomics, we comprehensively profiled the virome of native and invasive mosquito species in Belgium. This approach allowed for accurate host species determination, prevalence assessment of viruses and Wolbachia, and the identification of novel viruses. Contrary to our expectations, no abundant core virome was observed in Culex mosquitoes from Belgium. In that regard, we caution against rigidly defining mosquito core viromes and encourage nuanced interpretations of other studies. Nonetheless, our study identified 45 viruses of which 28 were novel, enriching our understanding of the mosquito virome and ISVs. We showed that the mosquito virome in this study is species-specific and less dependent on the location where mosquitoes from the same species reside. In addition, because Wolbachia has previously been observed to influence arbovirus transmission, we report the prevalence of Wolbachia in Belgian mosquitoes and the detection of several Wolbachia mobile genetic elements. The observed prevalence ranged from 83% to 92% in members from the Culex pipiens complex.IMPORTANCECulex pipiens mosquitoes are important vectors for arboviruses like West Nile virus and Usutu virus. Virome studies on individual Culex pipiens, and on individual mosquitoes in general, have been lacking. To mitigate this, we sequenced the virome of 190 individual Culex and 8 individual Aedes japonicus mosquitoes. We report the lack of a core virome in these mosquitoes from Belgium and caution the interpretation of other studies in this light. The discovery of new viruses in this study will aid our comprehension of insect-specific viruses and the mosquito virome in general in relation to mosquito physiology and mosquito population dynamics.
Collapse
Affiliation(s)
- Lander De Coninck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Alina Soto
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, Leuven, Belgium
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, Leuven, Belgium
| | - Katrien De Wolf
- Department Biomedical Sciences, The Unit of Entomology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Ghent, Belgium
| | - Nathalie Smitz
- Department of Biology, Royal Museum for Central Africa (Barcoding Facility for Organisms and Tissues of Policy Concern), Tervuren, Belgium
| | - Isra Deblauwe
- Department Biomedical Sciences, The Unit of Entomology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Karelle Celes Mbigha Donfack
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Ruth Müller
- Department Biomedical Sciences, The Unit of Entomology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
21
|
Maeda GP, Kelly MK, Sundar A, Moran NA. Intracellular defensive symbiont is culturable and capable of transovarial, vertical transmission. mBio 2024; 15:e0325323. [PMID: 38712948 PMCID: PMC11237597 DOI: 10.1128/mbio.03253-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Insects frequently form heritable associations with beneficial bacteria that are vertically transmitted from parent to offspring. Long-term vertical transmission has repeatedly resulted in genome reduction and gene loss, rendering many such bacteria incapable of establishment in axenic culture. Among aphids, heritable endosymbionts often provide context-specific benefits to their hosts. Although these associations have large impacts on host phenotypes, experimental approaches are often limited by an inability to cultivate these microbes. Here, we report the axenic culture of Candidatus Fukatsuia symbiotica strain WIR, a heritable bacterial endosymbiont of the pea aphid, Acyrthosiphon pisum. Whole-genome sequencing revealed similar genomic features and high sequence similarity to previously described strains, suggesting that the cultivation techniques used here may be applicable to Ca. F. symbiotica strains from distantly related aphids. Microinjection of cultured Ca. F. symbiotica into uninfected aphids revealed that it can reinfect developing embryos and that infections are maintained in subsequent generations via transovarial maternal transmission. Artificially infected aphids exhibit phenotypic and life history traits similar to those observed for native infections. Our results show that Ca. F. symbiotica may be a useful tool for experimentally probing the molecular mechanisms underlying host-symbiont interactions in a heritable symbiosis. IMPORTANCE Diverse eukaryotic organisms form stable, symbiotic relationships with bacteria that provide benefits to their hosts. While these associations are often biologically important, they can be difficult to probe experimentally because intimately host-associated bacteria are difficult to access within host tissues, and most cannot be cultured. This is especially true for the intracellular, maternally inherited bacteria associated with many insects, including aphids. Here, we demonstrate that a pea aphid-associated strain of the heritable endosymbiont, Candidatus Fukatsuia symbiotica, can be grown outside of its host using standard microbiology techniques and can readily re-establish infection that is maintained across host generations. These artificial infections recapitulate the effects of native infections, making this host-symbiont pair a useful experimental system.
Collapse
Affiliation(s)
- Gerald P. Maeda
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Mary Katherine Kelly
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Aadhunik Sundar
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
22
|
Roldán EL, Stelinski LL, Pelz-Stelinski KS. Reduction of Wolbachia in Diaphorina citri (Hemiptera: Liviidae) increases phytopathogen acquisition and decreases fitness. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:733-749. [PMID: 38701242 DOI: 10.1093/jee/toae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Wolbachia pipientis is a maternally inherited intracellular bacterium that infects a wide range of arthropods. Wolbachia can have a significant impact on host biology and development, often due to its effects on reproduction. We investigated Wolbachia-mediated effects in the Asian citrus psyllid, Diaphorina citri Kuwayama, which transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease. Diaphorina citri are naturally infected with Wolbachia; therefore, investigating Wolbachia-mediated effects on D. citri fitness and CLas transmission required artificial reduction of this endosymbiont with the application of doxycycline. Doxycycline treatment of psyllids reduced Wolbachia infection by approximately 60% in both male and female D. citri. Psyllids treated with doxycycline exhibited higher CLas acquisition in both adults and nymphs as compared with negative controls. In addition, doxycycline-treated psyllids exhibited decreased fitness as measured by reduced egg and nymph production as well as adult emergence as compared with control lines without the doxycycline treatment. Our results indicate that Wolbachia benefits D. citri by improving fitness and potentially competes with CLas by interfering with phytopathogen acquisition. Targeted manipulation of endosymbionts in this phytopathogen vector may yield disease management tools.
Collapse
Affiliation(s)
- Erik L Roldán
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Kirsten S Pelz-Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| |
Collapse
|
23
|
Tafesh-Edwards G, Kyza Karavioti M, Markollari K, Bunnell D, Chtarbanova S, Eleftherianos I. Wolbachia endosymbionts in Drosophila regulate the resistance to Zika virus infection in a sex dependent manner. Front Microbiol 2024; 15:1380647. [PMID: 38903791 PMCID: PMC11188429 DOI: 10.3389/fmicb.2024.1380647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Margarita Kyza Karavioti
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Klea Markollari
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Dean Bunnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Stanislava Chtarbanova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
24
|
Chen J, Lin G, Ma K, Li Z, Liégeois S, Ferrandon D. A specific innate immune response silences the virulence of Pseudomonas aeruginosa in a latent infection model in the Drosophila melanogaster host. PLoS Pathog 2024; 20:e1012252. [PMID: 38833496 PMCID: PMC11178223 DOI: 10.1371/journal.ppat.1012252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.
Collapse
Affiliation(s)
- Jing Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guiying Lin
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
25
|
Prakash A, Fenner F, Shit B, Salminen TS, Monteith KM, Khan I, Vale PF. IMD-mediated innate immune priming increases Drosophila survival and reduces pathogen transmission. PLoS Pathog 2024; 20:e1012308. [PMID: 38857285 PMCID: PMC11192365 DOI: 10.1371/journal.ppat.1012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
Invertebrates lack the immune machinery underlying vertebrate-like acquired immunity. However, in many insects past infection by the same pathogen can 'prime' the immune response, resulting in improved survival upon reinfection. Here, we investigated the mechanistic basis and epidemiological consequences of innate immune priming in the fruit fly Drosophila melanogaster when infected with the gram-negative bacterial pathogen Providencia rettgeri. We find that priming in response to P. rettgeri infection is a long-lasting and sexually dimorphic response. We further explore the epidemiological consequences of immune priming and find it has the potential to curtail pathogen transmission by reducing pathogen shedding and spread. The enhanced survival of individuals previously exposed to a non-lethal bacterial inoculum coincided with a transient decrease in bacterial loads, and we provide strong evidence that the effect of priming requires the IMD-responsive antimicrobial-peptide Diptericin-B in the fat body. Further, we show that while Diptericin B is the main effector of bacterial clearance, it is not sufficient for immune priming, which requires regulation of IMD by peptidoglycan recognition proteins. This work underscores the plasticity and complexity of invertebrate responses to infection, providing novel experimental evidence for the effects of innate immune priming on population-level epidemiological outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Florence Fenner
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Tiina S. Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katy M. Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Pedro F. Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Rong Q, Xi Z, Guo D, Xu W, Zhang L, Wu Q. Regulation of ubiquitination and antiviral activity of Cactin by deubiquitinase Usp14 in Drosophila. J Virol 2024; 98:e0017724. [PMID: 38563731 PMCID: PMC11092352 DOI: 10.1128/jvi.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Cactin, a highly conserved protein, plays a crucial role in various physiological processes in eukaryotes, including innate immunity. Recently, the function of Cactin in the innate immunity of Drosophila has been explored, revealing that Cactin regulates a non-canonical signaling pathway associated with the Toll and Imd pathways via the Cactin-Deaf1 axis. In addition, Cactin exhibits specific antiviral activity against the Drosophila C virus (DCV) in Drosophila, with an unknown mechanism. During DCV infection, it has been confirmed that the protein level and antiviral activity of Cactin are regulated by ubiquitination. However, the precise ubiquitination and deubiquitination mechanisms of Cactin in Drosophila remain unexplored. In this study, we identified ubiquitin-specific protease 14 (Usp14) as a major deubiquitinase for Cactin through comprehensive deubiquitinase screening. Our results demonstrate that Usp14 interacts with the C_Cactus domain of Cactin via its USP domain. Usp14 efficiently removes K48- and K63-linked polyubiquitin chains from Cactin, thereby preventing its degradation through the ubiquitin-proteasome pathway. Usp14 significantly inhibits DCV replication in Drosophila cells by stabilizing Cactin. Moreover, Usp14-deficient fruit flies exhibit increased susceptibility to DCV infection compared to wild-type flies. Collectively, our findings reveal the regulation of ubiquitination and antiviral activity of Cactin by the deubiquitinase Usp14, providing valuable insights into the modulation of Cactin-mediated antiviral activity in Drosophila.IMPORTANCEViral infections pose a severe threat to human health, marked by high pathogenicity and mortality rates. Innate antiviral pathways, such as Toll, Imd, and JAK-STAT, are generally conserved across insects and mammals. Recently, the multi-functionality of Cactin in innate immunity has been identified in Drosophila. In addition to regulating a non-canonical signaling pathway through the Cactin-Deaf1 axis, Cactin exhibits specialized antiviral activity against the Drosophila C virus (DCV) with an unknown mechanism. A previous study emphasized the significance of the Cactin level, regulated by the ubiquitin-proteasome pathway, in modulating antiviral signaling. However, the regulatory mechanisms governing Cactin remain unexplored. In this study, we demonstrate that Usp14 stabilizes Cactin by preventing its ubiquitination and subsequent degradation. Furthermore, Usp14 plays a crucial role in regulating the antiviral function mediated by Cactin. Therefore, our findings elucidate the regulatory mechanism of Cactin in Drosophila, offering a potential target for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Qiqi Rong
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Zhichong Xi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyang Guo
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Wen Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Liqin Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
27
|
Setegn A, Amare GA, Mihret Y. Wolbachia and Lymphatic Filarial Nematodes and Their Implications in the Pathogenesis of the Disease. J Parasitol Res 2024; 2024:3476951. [PMID: 38725798 PMCID: PMC11081757 DOI: 10.1155/2024/3476951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Lymphatic filariasis (LF) is an infection of three closely related filarial worms such as Wuchereria bancrofti, Brugia malayi, and Brugia timori. These worms can cause a devastating disease that involves acute and chronic lymphoedema of the extremities, which can cause elephantiasis in both sexes and hydroceles in males. These important public health nematodes were found to have a mutualistic relationship with intracellular bacteria of the genus Wolbachia, which is essential for the development and survival of the nematode. The host's inflammatory response to parasites and possibly also to the Wolbachia endosymbiont is the cause of lymphatic damage and disease pathogenesis. This review tried to describe and highlight the mutualistic associations between Wolbachia and lymphatic filarial nematodes and the role of bacteria in the pathogenesis of lymphatic filariasis. Articles for this review were searched from PubMed, Google Scholar, and other databases. Article searching was not restricted by publication year; however, only English version full-text articles were included.
Collapse
Affiliation(s)
- Abebaw Setegn
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yenesew Mihret
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
28
|
Walt HK, King JG, Sheele JM, Meyer F, Pietri JE, Hoffmann FG. Do bed bugs transmit human viruses, or do humans spread bed bugs and their viruses? A worldwide survey of the bed bug RNA virosphere. Virus Res 2024; 343:199349. [PMID: 38431055 PMCID: PMC10982078 DOI: 10.1016/j.virusres.2024.199349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
BED BUGS: (Hemiptera: Cimicidae) are a globally distributed hematophagous pest that routinely feed on humans. Unlike many blood-sucking arthropods, they have never been linked to pathogen transmission in a natural setting, and despite increasing interest in their role as disease vectors, little is known about the viruses that bed bugs naturally harbor. Here, we present a global-scale survey of the bed bug RNA virosphere. We sequenced the metatranscriptomes of 22 individual bed bugs (Cimex lectularius and Cimex hemipterus) from 8 locations around the world. We detected sequences from two known bed bug viruses (Shuangao bedbug virus 1 and Shuangao bedbug virus 2) which extends their geographical range. We identified three novel bed bug virus sequences from a tenui-like virus (Bunyavirales), a toti-like virus (Ghabrivirales), and a luteo-like virus (Tolivirales). Interestingly, some of the bed bug viruses branch near to insect-transmitted plant-infecting viruses, opening questions regarding the evolution of plant virus infection. When we analyzed the viral sequences by their host's collection location, we found unexpected patterns of geographical diversity that may reflect humans' role in bed bug dispersal. Additionally, we investigated the effect that Wolbachia, the primary bed bug endosymbiont, may have on viral abundance and found that Wolbachia infection neither promotes nor inhibits viral infection. Finally, our results provide no evidence that bed bugs transmit any known human pathogenic viruses.
Collapse
Affiliation(s)
- Hunter K Walt
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Johnathan M Sheele
- Department of Emergency Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University, Cleveland, OH, USA
| | - Florencia Meyer
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jose E Pietri
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA.
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
29
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
30
|
Vandana V, Dong S, Sheth T, Sun Q, Wen H, Maldonado A, Xi Z, Dimopoulos G. Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi. PLoS Pathog 2024; 20:e1012145. [PMID: 38598552 PMCID: PMC11034644 DOI: 10.1371/journal.ppat.1012145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.
Collapse
Affiliation(s)
- Vandana Vandana
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tanaya Sheth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Han Wen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Amanda Maldonado
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Pilgrim J. Comparative genomics of a novel Erwinia species associated with the Highland midge ( Culicoides impunctatus). Microb Genom 2024; 10. [PMID: 38630610 DOI: 10.1099/mgen.0.001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
32
|
Gomard Y, Hafsia S, Lebon C, Rabarison P, Idaroussi AB, Yssouf A, Boussès P, Mavingui P, Atyame C. Genetic diversity of endosymbiotic bacteria Wolbachia infecting two mosquito species of the genus Eretmapodites occurring in sympatry in the Comoros archipelago. Front Microbiol 2024; 15:1343917. [PMID: 38601925 PMCID: PMC11004463 DOI: 10.3389/fmicb.2024.1343917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The influence of Wolbachia on mosquito reproduction and vector competence has led to renewed interest in studying the genetic diversity of these bacteria and the phenotypes they induced in mosquito vectors. In this study, we focused on two species of Eretmapodites, namely Eretmapodites quinquevittatus and Eretmapodites subsimplicipes, from three islands in the Comoros archipelago (in the Southwestern Indian Ocean). Methods Using the COI gene, we examined the mitochondrial genetic diversity of 879 Eretmapodites individuals from 54 sites. Additionally, we investigated the presence and genetic diversity of Wolbachia using the wsp marker and the diversity of five housekeeping genes commonly used for genotyping through Multiple Locus Sequence Typing (MLST). Results and discussion Overall, Er. quinquevittatus was the most abundant species in the three surveyed islands and both mosquito species occurred in sympatry in most of the investigated sites. We detected a higher mitochondrial genetic diversity in Er. quinquevittatus with 35 reported haplotypes (N = 615 specimens, Hd = 0.481 and π = 0.002) while 13 haplotypes were found in Er. subsimplicipes (N = 205 specimens, Hd = 0.338 and π = 0.001), this difference is likely due to the bias in sampling size between the two species. We report for the first time the presence of Wolbachia in these two Eretmapodites species. The prevalence of Wolbachia infection varied significantly between species, with a low prevalence recorded in Er. quinquevittatus (0.8%, N = 5/627) while infection was close to fixation in Er. subsimplicipes (87.7%, N = 221/252). Both male and female individuals of the two mosquito species appeared to be infected. The analysis of MLST genes revealed the presence of two Wolbachia strains corresponding to two new strain types (STs) within the supergroups A and B, which have been named wEretA and wEretB. These strains were found as mono-infections and are closely related, phylogenetically, to Wolbachia strains previously reported in Drosophila species. Finally, we demonstrate that maternal transmission of Wolbachia is imperfect in Er. subsimplicipes, which could explain the presence of a minority of uninfected individuals in the field.
Collapse
Affiliation(s)
- Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Saint-Denis, île de La Réunion, France
| | - Sarah Hafsia
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Saint-Denis, île de La Réunion, France
| | - Cyrille Lebon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Saint-Denis, île de La Réunion, France
| | | | | | - Amina Yssouf
- National Malaria Control Program, Moroni, Comoros
| | - Philippe Boussès
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Saint-Denis, île de La Réunion, France
| | - Célestine Atyame
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Saint-Denis, île de La Réunion, France
| |
Collapse
|
33
|
Chang NC, Wells JN, Wang AY, Schofield P, Huang YC, Truong VH, Simoes-Costa M, Feschotte C. Gag proteins encoded by endogenous retroviruses are required for zebrafish development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586437. [PMID: 38585793 PMCID: PMC10996621 DOI: 10.1101/2024.03.25.586437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Transposable elements (TEs) make up the bulk of eukaryotic genomes and examples abound of TE-derived sequences repurposed for organismal function. The process by which TEs become coopted remains obscure because most cases involve ancient, transpositionally inactive elements. Reports of active TEs serving beneficial functions are scarce and often contentious due to difficulties in manipulating repetitive sequences. Here we show that recently active TEs in zebrafish encode products critical for embryonic development. Knockdown and rescue experiments demonstrate that the endogenous retrovirus family BHIKHARI-1 (Bik-1) encodes a Gag protein essential for mesoderm development. Mechanistically, Bik-1 Gag associates with the cell membrane and its ectopic expression in chicken embryos alters cell migration. Similarly, depletion of BHIKHARI-2 Gag, a relative of Bik-1, causes defects in neural crest development in zebrafish. We propose an "addiction" model to explain how active TEs can be integrated into conserved developmental processes.
Collapse
Affiliation(s)
- Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Y Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Phillip Schofield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Yi-Chia Huang
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vinh H Truong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Marcos Simoes-Costa
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
34
|
Sharmin Z, Samarah H, Aldaya Bourricaudy R, Ochoa L, Serbus LR. Cross-validation of chemical and genetic disruption approaches to inform host cellular effects on Wolbachia abundance in Drosophila. Front Microbiol 2024; 15:1364009. [PMID: 38591028 PMCID: PMC10999648 DOI: 10.3389/fmicb.2024.1364009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Endosymbiotic Wolbachia bacteria are widespread in nature, present in half of all insect species. The success of Wolbachia is supported by a commensal lifestyle. Unlike bacterial pathogens that overreplicate and harm host cells, Wolbachia infections have a relatively innocuous intracellular lifestyle. This raises important questions about how Wolbachia infection is regulated. Little is known about how Wolbachia abundance is controlled at an organismal scale. Methods This study demonstrates methodology for rigorous identification of cellular processes that affect whole-body Wolbachia abundance, as indicated by absolute counts of the Wolbachia surface protein (wsp) gene. Results Candidate pathways, associated with well-described infection scenarios, were identified. Wolbachia-infected fruit flies were exposed to small molecule inhibitors known for targeting those same pathways. Sequential tests in D. melanogaster and D. simulans yielded a subset of chemical inhibitors that significantly affected whole-body Wolbachia abundance, including the Wnt pathway disruptor, IWR-1 and the mTOR pathway inhibitor, Rapamycin. The implicated pathways were genetically retested for effects in D. melanogaster, using inducible RNAi expression driven by constitutive as well as chemically-induced somatic GAL4 expression. Genetic disruptions of armadillo, tor, and ATG6 significantly affected whole-body Wolbachia abundance. Discussion As such, the data corroborate reagent targeting and pathway relevance to whole-body Wolbachia infection. The results also implicate Wnt and mTOR regulation of autophagy as important for regulation of Wolbachia titer.
Collapse
Affiliation(s)
- Zinat Sharmin
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Hani Samarah
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Rafael Aldaya Bourricaudy
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Laura Ochoa
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| |
Collapse
|
35
|
Vassallo BG, Scheidel N, Fischer SEJ, Kim DH. Bacteria Are a Major Determinant of Orsay Virus Transmission and Infection in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556377. [PMID: 37732241 PMCID: PMC10508782 DOI: 10.1101/2023.09.05.556377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.
Collapse
Affiliation(s)
- Brian G. Vassallo
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, 02139, USA
| | - Noémie Scheidel
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
| | - Sylvia E. J. Fischer
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
| |
Collapse
|
36
|
Kaur R, Meier CJ, McGraw EA, Hillyer JF, Bordenstein SR. The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-infected Aedes aegypti mosquitoes deployed for arbovirus control. PLoS Biol 2024; 22:e3002573. [PMID: 38547237 PMCID: PMC11014437 DOI: 10.1371/journal.pbio.3002573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Cole J. Meier
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Pennsylvania State University, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Julian F. Hillyer
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| |
Collapse
|
37
|
Martin M, López-Madrigal S, Newton ILG. The Wolbachia WalE1 effector alters Drosophila endocytosis. PLoS Pathog 2024; 20:e1011245. [PMID: 38547310 PMCID: PMC11003677 DOI: 10.1371/journal.ppat.1011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector-WalE1, which encodes an alpha-synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression of WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates in the host cell cytosol. We next show that WalE1 co-immunoprecipitates with the host protein Past1, although might not directly interact with it, and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. We also show that flies expressing WalE1 suffer from endocytosis defects in larval nephrocytes. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between Wolbachia and a host protein involved in endocytosis and point to yet another important host cell process impinged upon by Wolbachia's WalE1 effector.
Collapse
Affiliation(s)
- MaryAnn Martin
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Sergio López-Madrigal
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| |
Collapse
|
38
|
Zhu X, Li J, He A, Gurr GM, You M, You S. Developmental Shifts in the Microbiome of a Cosmopolitan Pest: Unraveling the Role of Wolbachia and Dominant Bacteria. INSECTS 2024; 15:132. [PMID: 38392551 PMCID: PMC10888865 DOI: 10.3390/insects15020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyang Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Geoff M Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Gulbali Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
39
|
Kumar MPS, Keerthana A, Priya, Singh SK, Rai D, Jaiswal A, Reddy MSS. Exploration of culturable bacterial associates of aphids and their interactions with entomopathogens. Arch Microbiol 2024; 206:96. [PMID: 38349547 DOI: 10.1007/s00203-024-03830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 02/15/2024]
Abstract
Aphids shelter several bacteria that benefit them in various ways. The associates having an obligatory relationship are non-culturable, while a few of facultative associates are culturable in insect cell lines, axenic media or standard microbiology media. In the present investigation, isolation, and characterization of the culturable bacterial associates of various aphid species, viz., Rhopalosiphum maidis, Rhopalosiphum padi, Sitobion avenae, Schizaphis graminum, and Lipaphis erysimi pseudobrassicae were carried out. A total of 42 isolates were isolated using different growth media, followed by their morphological, biochemical, and molecular characterization. The isolated culturable bacterial associates were found to belong to the genera Acinetobacter, Bacillus, Brevundimonas, Cytobacillus, Fictibacillus, Planococcus, Priestia, Pseudomonas, Staphylococcus, Sutcliffiella, and Tumebacillus which were grouped under seven families of four different orders of phyla Bacillota (Firmicutes) and Pseudomonata (Proteobacteria). Symbiont-entomopathogen interaction study was also conducted, in which the quantification of colony forming units of culturable bacterial associates of entomopathogenic fungal-treated aphids led us to the assumption that the bacterial load in aphid body can be altered by the application of entomopathogens. Whereas, the mycelial growth of entomopathogens Akanthomyces lecanii and Metarhizium anisopliae was found uninhibited by the bacterial associates obtained from Sitobion avenae and Rhopalosiphum padi. Analyzing persistent aphid microflora and their interactions with entomopathogens enhances our understanding of aphid resistance. It also fosters the development of innovative solutions for agricultural pest management, highlighting the intricate dynamics of symbiotic relationships in pest management strategies.
Collapse
Affiliation(s)
- M P Shireesh Kumar
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Alagesan Keerthana
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Priya
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Satish Kumar Singh
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Dinesh Rai
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Aman Jaiswal
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | | |
Collapse
|
40
|
Liu L, Chen J, Jiang J, Liang J, Song Y, Chen Q, Yan F, Bai Z, Song Z, Liu J. Detection of Candidatus Liberibacter asiaticus and five viruses in individual Asian citrus psyllid in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1357163. [PMID: 38379950 PMCID: PMC10877018 DOI: 10.3389/fpls.2024.1357163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Introduction Asian citrus psyllid (ACP, Diaphorina citri) is an important transmission vector of "Candidatus Liberibacter asiaticus" (CLas), the causal agent of Huanglongbing (HLB), the most destructive citrus disease in the world. As there are currently no HLB-resistant rootstocks or varieties, the control of ACP is an important way to prevent HLB. Some viruses of insect vectors can be used as genetically engineered materials to control insect vectors. Methods To gain knowledge on viruses in ACP in China, the prevalence of five RNA and DNA viruses was successfully determined by optimizing reverse transcription polymerase chain reaction (RT-PCR) in individual adult ACPs. The five ACP-associated viruses were identified as follows: diaphorina citri bunyavirus 2, which was newly identified by high-throughput sequencing in our lab, diaphorina citri reovirus (DcRV), diaphorina citri picorna-like virus (DcPLV), diaphorina citri bunyavirus (DcBV), and diaphorina citri densovirus-like virus (DcDV). Results DcPLV was the most prevalent and widespread ACP-associated virus, followed by DcBV, and it was detected in more than 50% of all samples tested. DcPLV was also demonstrated to propagate vertically and found more in salivary glands among different tissues. Approximately 60% of all adult insect samples were co-infected with more than one insect pathogen, including the five ACP-associated viruses and CLas. Discussion This is the first time these viruses, including the newly identified ACP-associated virus, have been detected in individual adult ACPs from natural populations in China's five major citrus-producing provinces. These results provide valuable information about the prevalence of ACP-associated viruses in China, some of which have the potential to be used as biocontrol agents. In addition, analysis of the change in prevalence of pathogens in a single insect vector is the basis for understanding the interactions between CLas, ACP, and insect viruses.
Collapse
Affiliation(s)
- Luqin Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jing Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Junyao Jiang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jiamei Liang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Yaqin Song
- Guangxi Academy of Specialty Crops, Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guangxi, China
| | - Qi Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Fuling Yan
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Ziqin Bai
- Fruit Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, China
| | - Zhen Song
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jinxiang Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
41
|
Strunov A, Schönherr C, Kapun M. Wolbachia effects on thermal preference of natural Drosophila melanogaster are influenced by host genetic background, Wolbachia type, and bacterial titer. Environ Microbiol 2024; 26:e16579. [PMID: 38192184 DOI: 10.1111/1462-2920.16579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Temperature plays a fundamental role in the fitness of all organisms. In particular, it strongly affects metabolism and reproduction in ectotherms that have limited physiological capabilities to regulate their body temperature. The influence of temperature variation on the physiology and behaviour of ectotherms is well studied but we still know little about the influence of symbiotic interactions on thermal preference (Tp ) of the host. A growing number of studies focusing on the Wolbachia-Drosophila host-symbiont system found that Wolbachia can influence Tp in Drosophila laboratory strains. Here, we investigated the effect of Wolbachia on Tp in wild-type D. melanogaster flies recently collected from nature. Consistent with previous data, we found reduced Tp compared to an uninfected control in one of two fly strains infected with the wMelCS Wolbachia type. Additionally, we, for the first time, found that Wolbachia titer variation influences the thermal preference of the host fly. These data indicate that the interaction of Wolbachia and Drosophila resulting in behavioural variation is strongly influenced by the genetic background of the host and symbiont. More studies are needed to better understand the evolutionary significance of Tp variation influenced by Wolbachia in natural Drosophila populations.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charlotte Schönherr
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Sharpe SR, Morrow JL, Cook JM, Papanicolaou A, Riegler M. Transmission mode predicts coinfection patterns of insect-specific viruses in field populations of the Queensland fruit fly. Mol Ecol 2024; 33:e17226. [PMID: 38018898 DOI: 10.1111/mec.17226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology. To help address this knowledge gap, we assessed the diversity, prevalence and coinfections of three ISVs (horizontally transmitted cripavirus, biparentally transmitted sigmavirus and maternally transmitted iflavirus) in 29 field populations of Queensland fruit fly, Australia's most significant horticultural pest, in the context of their different transmission modes. We detected new virus variant diversity. In contrast to the very high virus prevalence in laboratory populations, 46.8% of 293 field flies carried one virus and 4.8% had two viruses. Cripavirus and sigmavirus occurred in all regions, while iflavirus was restricted to subtropical and tropical regions. Cripavirus was most prevalent (37.5%), followed by sigmavirus (13.7%) and iflavirus (4.4%). Cripavirus coinfected some flies with either one of the two vertically transmitted viruses. However, sigmavirus did not coinfect individuals with iflavirus. Three different modelling approaches detected negative association patterns between sigmavirus and iflavirus, consistent with the absence of such coinfections in laboratory populations. This may be linked with their maternal transmission and the ineffective paternal transmission of sigmavirus. Furthermore, we found that, unlike sigmavirus and iflavirus, cripavirus load was higher in laboratory than field flies. Laboratory and mass-rearing conditions may increase ISV prevalence and load due to increased transmission opportunities. We conclude that a combination of field and laboratory studies is needed to uncover ISV interactions and further our understanding of ISV epidemiology.
Collapse
Affiliation(s)
- Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
43
|
Chrostek E. Procedures for the Detection of Wolbachia-Conferred Antiviral Protection in Drosophila melanogaster. Methods Mol Biol 2024; 2739:219-237. [PMID: 38006555 DOI: 10.1007/978-1-0716-3553-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Spread of Wolbachia infections in host populations may be enhanced by Wolbachia-conferred protection from viral pathogens. Wolbachia-infected Drosophila melanogaster survive the pathogenic effects of positive-sense single-stranded RNA virus infections at a higher rate than the flies without Wolbachia. The protection can occur with or without detectable reduction in virus titer. For the comparisons to be meaningful, Wolbachia-harboring and Wolbachia-free insects need to be genetically matched, and original populations of gut microbiota need to be restored after the removal of Wolbachia using antibiotics. Here, I describe the procedures needed to detect Wolbachia-conferred antiviral protection against Drosophila C virus measured as the difference in survival and viral titer between flies with and without Wolbachia.
Collapse
Affiliation(s)
- Ewa Chrostek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland.
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK.
| |
Collapse
|
44
|
Wang H, Chao S, Yan Q, Zhang S, Chen G, Mao C, Hu Y, Yu F, Wang S, Lv L, Yang B, He J, Zhang S, Zhang L, Simmonds P, Feng G. Genetic diversity of RNA viruses infecting invertebrate pests of rice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:175-187. [PMID: 37946067 DOI: 10.1007/s11427-023-2398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 11/12/2023]
Abstract
Invertebrate species are a natural reservoir of viral genetic diversity, and invertebrate pests are widely distributed in crop fields. However, information on viruses infecting invertebrate pests of crops is limited. In this report, we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields. We identified 296 new RNA viruses and 13 known RNA viruses. These viruses clustered within 31 families, with many highly divergent viruses constituting potentially new families and genera. Of the identified viruses, 13 RNA viruses clustered within the Fiersviridae family of bacteriophages, and 48 RNA viruses clustered within families and genera of mycoviruses. We detected known rice viruses in novel invertebrate hosts at high abundances. Furthermore, some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species. Forty-five potential insect pathogenic RNA viruses were detected in invertebrate species. Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity. Cross-species transmission of RNA viruses was detected between invertebrate hosts. Newly identified viral genomes showed extensive variation for invertebrate viral families or genera. Together, the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species, the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shufen Chao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Qing Yan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Shu Zhang
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Chonghui Mao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Fengquan Yu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Shuo Wang
- Sanya Agricultural Technology Extension and Service Centre, Sanya, 572000, China
| | - Liang Lv
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Baojun Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Jiachun He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310012, China
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China.
| |
Collapse
|
45
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
46
|
Maeda GP, Kelly MK, Sundar A, Moran NA. Intracellular defensive symbiont is culturable and capable of transovarial, vertical transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570145. [PMID: 38106215 PMCID: PMC10723312 DOI: 10.1101/2023.12.05.570145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Insects frequently form heritable associations with beneficial bacteria that are vertically transmitted from parent to offspring. Long term vertical transmission has repeatedly resulted in genome reduction and gene loss rendering many such bacteria incapable of independent culture. Among aphids, heritable endosymbionts often provide a wide range of context-specific benefits to their hosts. Although these associations have large impacts on host phenotypes, experimental approaches are often limited by an inability to independently cultivate these microbes. Here, we report the axenic culture of Candidatus Fukatsuia symbiotica strain WIR, a heritable bacterial endosymbiont of the pea aphid, Acyrthosiphon pisum . Whole genome sequencing revealed similar genomic features and high sequence similarity to previously described strains, suggesting the cultivation techniques used here may be applicable to Ca . F. symbiotica strains from distantly related aphids. Microinjection of the isolated strain into uninfected aphids revealed that it can reinfect developing embryos, and is maintained in subsequent generations via transovarial maternal transmission. Artificially infected aphids exhibit similar phenotypic and life history traits compared to native infections, including protective effects against an entomopathogenic Fusarium species. Overall, our results show that Ca . F. symbiotica may be a useful tool for experimentally probing the molecular mechanisms underlying heritable symbioses and antifungal defense in the pea aphid system. IMPORTANCE Diverse eukaryotic organisms form stable, symbiotic relationships with bacteria that provide benefits to their hosts. While these associations are often biologically important, they can be difficult to probe experimentally, because intimately host-associated bacteria are difficult to access within host tissues, and most cannot be cultured. This is especially true of the intracellular, maternally inherited bacteria associated with many insects, including aphids. Here, we demonstrate that a pea aphid-associated strain of the heritable endosymbiont, Candidatus Fukatsuia symbiotica, can be grown outside of its host using standard microbiology techniques, and can readily re-establish infection that is maintained across host generations. These artificial infections recapitulate the effects of native infections making this host-symbiont pair a useful experimental system. Using this system, we demonstrate that Ca . F. symbiotica infection reduces host fitness under benign conditions, but protects against a previously unreported fungal pathogen.
Collapse
|
47
|
Strunov A, Kirchner S, Schindelar J, Kruckenhauser L, Haring E, Kapun M. Historic Museum Samples Provide Evidence for a Recent Replacement of Wolbachia Types in European Drosophila melanogaster. Mol Biol Evol 2023; 40:msad258. [PMID: 37995370 PMCID: PMC10701101 DOI: 10.1093/molbev/msad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Wolbachia is one of the most common bacterial endosymbionts, which is frequently found in numerous arthropods and nematode taxa. Wolbachia infections can have a strong influence on the evolutionary dynamics of their hosts since these bacteria are reproductive manipulators that affect the fitness and life history of their host species for their own benefit. Host-symbiont interactions with Wolbachia are perhaps best studied in the model organism Drosophila melanogaster, which is naturally infected with at least 5 different variants among which wMel and wMelCS are the most frequent ones. Comparisons of infection types between natural flies and long-term lab stocks have previously indicated that wMelCS represents the ancestral type, which was only very recently replaced by the nowadays dominant wMel in most natural populations. In this study, we took advantage of recently sequenced museum specimens of D. melanogaster that have been collected 90 to 200 yr ago in Northern Europe to test this hypothesis. Our comparison to contemporary Wolbachia samples provides compelling support for the replacement hypothesis. Our analyses show that sequencing data from historic museum specimens and their bycatch are an emerging and unprecedented resource to address fundamental questions about evolutionary dynamics in host-symbiont interactions. However, we also identified contamination with DNA from crickets that resulted in co-contamination with cricket-specific Wolbachia in several samples. These results underpin the need for rigorous quality assessments of museomic data sets to account for contamination as a source of error that may strongly influence biological interpretations if it remains undetected.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sandra Kirchner
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| | - Julia Schindelar
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| | - Luise Kruckenhauser
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
- Department for Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Elisabeth Haring
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
- Department for Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| |
Collapse
|
48
|
Caamal-Chan MG, Barraza A, Loera-Muro A, Montes-Sánchez JJ, Castellanos T, Rodríguez-Pagaza Y. Bacterial communities of the psyllid pest Bactericera cockerelli (Hemiptera: Triozidae) Central haplotype of tomato crops cultivated at different locations of Mexico. PeerJ 2023; 11:e16347. [PMID: 37941933 PMCID: PMC10629388 DOI: 10.7717/peerj.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Background The psyllid, Bactericera cockerelli, is an insect vector of 'Candidatus Liberibacter' causing "Zebra chip" disease that affects potato and other Solanaceae crops worldwide. In the present study, we analyzed the bacterial communities associated with the insect vector Bactericera cockerelli central haplotype of tomato crop fields in four regions from Mexico. Methods PCR was used to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) and then analyze the single nucleotide polymorphisms (SNP) and phylogenetic analysis for haplotype identification of the isolated B. cockerelli. Moreover, we carried out the microbial diversity analysis of several B. cockerelli collected from four regions of Mexico through the NGS sequencing of 16S rRNA V3 region. Finally, Wolbachia was detected by the wsp gene PCR amplification, which is the B. cockerelli facultative symbiont. Also we were able to confirm the relationship with several Wolbachia strains by phylogenetic analysis. Results Our results pointed that B. cockerelli collected in the four locations from Mexico (Central Mexico: Queretaro, and Northern Mexico: Sinaloa, Coahuila, and Nuevo Leon) were identified, such as the central haplotype. Analyses of the parameters of the composition, relative abundance, and diversity (Shannon index: 1.328 ± 0.472; Simpson index 0.582 ± 0.167), showing a notably relatively few microbial species in B. cockerelli. Analyses identified various facultative symbionts, particularly the Wolbachia (Rickettsiales: Anaplasmataceae) with a relative abundance higher. In contrast, the genera of Sodalis and 'Candidatus Carsonella' (Gammaproteobacteria: Oceanospirillales: Halomonadaceae) were identified with a relatively low abundance. On the other hand, the relative abundance for the genus 'Candidatus Liberibacter' was higher only for some of the locations analyzed. PCR amplification of a fragment of the gene encoding a surface protein (wsp) of Wolbachia and phylogenetic analysis corroborated the presence of this bacterium in the central haplotype. Beta-diversity analysis revealed that the presence of the genus 'Candidatus Liberibacter' influences the microbiota structure of this psyllid species. Conclusions Our data support that the members with the highest representation in microbial community of B. cockerelli central haplotype, comprise their obligate symbiont, Carsonella, and facultative symbionts. We also found evidence that among the factors analyzed, the presence of the plant pathogen affects the structure and composition of the bacterial community associated with B. cockerelli.
Collapse
Affiliation(s)
- Maria Goretty Caamal-Chan
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Aarón Barraza
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Abraham Loera-Muro
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Juan J. Montes-Sánchez
- Agricultura, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, Guerrero Negro, B.C.S., México
| | - Thelma Castellanos
- Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | | |
Collapse
|
49
|
McPherson AE, Abram PK, Curtis CI, Wannop ER, Dudzic JP, Perlman SJ. Dynamic changes in Wolbachia infection over a single generation of Drosophila suzukii, across a wide range of resource availability. Ecol Evol 2023; 13:e10722. [PMID: 38020682 PMCID: PMC10651314 DOI: 10.1002/ece3.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Wolbachia bacteria are maternally inherited symbionts that commonly infect terrestrial arthropods. Many Wolbachia reach high frequencies in their hosts by manipulating their reproduction, for example by causing reproductive incompatibilities between infected male and uninfected female hosts. However, not all strains manipulate reproduction, and a key unresolved question is how these non-manipulative Wolbachia persist in their hosts, often at intermediate to high frequencies. One such strain, wSuz, infects the invasive fruit pest Drosophila suzukii, spotted-wing drosophila. Here, we tested the hypothesis that wSuz infection provides a competitive benefit when resources are limited. Over the course of one season, we established population cages with varying amounts of food in a semi-field setting and seeded them with a 50:50 mixture of flies with and without Wolbachia. We predicted that Wolbachia-infected individuals should have higher survival and faster development than their uninfected counterparts when there was little available food. We found that while food availability strongly impacted fly fitness, there was no difference in development times or survival between Wolbachia-infected and uninfected flies. Interestingly, however, Wolbachia infection frequencies changed dramatically, with infections either increasing or decreasing by as much as 30% in a single generation, suggesting the possibility of unidentified factors shaping Wolbachia infection over the course of the season.
Collapse
Affiliation(s)
- Audrey E. McPherson
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Agriculture and Agri‐Food Canada, Agassiz Research and Development CentreAgassizBritish ColumbiaCanada
| | - Paul K. Abram
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Agriculture and Agri‐Food Canada, Agassiz Research and Development CentreAgassizBritish ColumbiaCanada
| | - Caitlin I. Curtis
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Erik R. Wannop
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Jan P. Dudzic
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Steve J. Perlman
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
50
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|