1
|
Yan X, Liang Y, Yamashita F, Baluška F. Investigation of Arabidopsis root skototropism with different distance settings. PLANT SIGNALING & BEHAVIOR 2024; 19:2348917. [PMID: 38704856 PMCID: PMC11073417 DOI: 10.1080/15592324.2024.2348917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Plants can activate protective and defense mechanisms under biotic and abiotic stresses. Their roots naturally grow in the soil, but when they encounter sunlight in the top-soil layers, they may move away from the light source to seek darkness. Here we investigate the skototropic behavior of roots, which promotes their fitness and survival. Glutamate-like receptors (GLRs) of plants play roles in sensing and responding to signals, but their role in root skototropism is not yet understood. Light-induced tropisms are known to be affected by auxin distribution, mainly determined by auxin efflux proteins (PIN proteins) at the root tip. However, the role of PIN proteins in root skototropism has not been investigated yet. To better understand root skototropism and its connection to the distance between roots and light, we established five distance settings between seedlings and darkness to investigate the variations in root bending tendencies. We compared differences in root skototropic behavior across different expression lines of Arabidopsis thaliana seedlings (atglr3.7 ko, AtGLR3.7 OE, and pin2 knockout) to comprehend their functions. Our research shows that as the distance between roots and darkness increases, the root's positive skototropism noticeably weakens. Our findings highlight the involvement of GLR3.7 and PIN2 in root skototropism.
Collapse
Affiliation(s)
- Xingyu Yan
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Yongshun Liang
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Felipe Yamashita
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Liu B, Yang Q, Xin GL, Wang X, Zhang L, He D, Zhang S, Pan Y, Zou SQ, Zhang J, Liao J, Zou XX. A comprehensive proteomic map revealing the regulation of the development of long-duration, red butterfly-shaped fruit in Euscaphis japonica. Int J Biol Macromol 2024:139061. [PMID: 39730056 DOI: 10.1016/j.ijbiomac.2024.139061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Fruit features are crucial for plant propagation, population growth, biodiversity preservation, and evolutionary survival. However, the synergistic regulatory mechanisms underlying the development of fruit traits such as color, shape and duration are unclear. Euscaphis japonica, whose fruits have a red-winged pericarp and persist for a long period of time, is an important ornamental plant in eastern Asia. In this study, we present a complete proteome spanning multiple time points and the phosphoproteome landscape of E. japonica fruit during the maturation and ripening phases. Quantitative evaluation via two-way proteomics analysis revealed three distinct phases that are consistent with the fruit maturation and ripening stages on a longitudinal time scale. The proteome and phosphoproteome analyses revealed functionally important biological events, including anthocyanin accumulation and phytohormone and light signal transduction. Importantly, our integrated analysis, along with experimental validation and phytohormone treatments, suggests that alterations in EjPHYBS21/S37 and EjPHOT1S394/S429 phosphorylation may lead to auxin accumulation and the inhibition of ethylene biosynthesis, thereby initiating the development of long-duration, red butterfly-shaped E. japonica fruit. Our study reveals a mechanism of E. japonica fruit formation that highlights plant adaptive strategies that potentially evolved through interactions with frugivores.
Collapse
Affiliation(s)
- Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qixin Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Gui-Liang Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Li Zhang
- College of Agricultural and Biological engineering, Heze Uninversity, Heze, Shandong 274015, China
| | - Dongmei He
- Yancheng Coastal Wetland Ecosystem National Research Station, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Shuning Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuru Pan
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shuang-Quan Zou
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, School of Future Technology and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiao-Xing Zou
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
3
|
Geisler M, Dreyer I. An auxin homeostat allows plant cells to establish and control defined transmembrane auxin gradients. THE NEW PHYTOLOGIST 2024; 244:1422-1436. [PMID: 39279032 DOI: 10.1111/nph.20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Extracellular auxin maxima and minima are important to control plant developmental programs. Auxin gradients are provided by the concerted action of proteins from the three major plasma membrane (PM) auxin transporter classes AUX1/LAX, PIN and ATP-BINDING CASSETTE subfamily B (ABCB) transporters. But neither genetic nor biochemical nor modeling approaches have been able to reliably assign the individual roles and interplay of these transporter types. Based on the thermodynamic properties of the transporters, we show here by mathematical modeling and computational simulations that the concerted action of different auxin transporter types allows the adjustment of specific transmembrane auxin gradients. The dynamic flexibility of the 'auxin homeostat' comes at the cost of an energy-consuming 'auxin cycling' across the membrane. An unexpected finding was that potential functional ABCB-PIN synchronization appears to allow an optimization of the trade-off between the speed of PM auxin gradient adjustment on the one hand and ATP consumption and disturbance of general anion homeostasis on the other. In conclusion, our analyses provide fundamental insights into the thermodynamic constraints and flexibility of transmembrane auxin transport in plants.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Ingo Dreyer
- Faculty of Engineering, Electrical Signaling in Plants (ESP) Laboratory - Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, Talca, CL-3460000, Chile
| |
Collapse
|
4
|
Zhang B, Zhang S, Wu Y, Li Y, Kong L, Wu R, Zhao M, Liu W, Yu H. Defining context-dependent m 6A RNA methylomes in Arabidopsis. Dev Cell 2024; 59:2772-2786.e3. [PMID: 39025060 DOI: 10.1016/j.devcel.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
N6-Methyladenosine (m6A) prevalently occurs on cellular RNA across almost all kingdoms of life. It governs RNA fate and is essential for development and stress responses. However, the dynamic, context-dependent m6A methylomes across tissues and in response to various stimuli remain largely unknown in multicellular organisms. Here, we generate a comprehensive census that identifies m6A methylomes in 100 samples during development or following exposure to various external conditions in Arabidopsis thaliana. We demonstrate that m6A is a suitable biomarker to reflect the developmental lineage, and that various stimuli rapidly affect m6A methylomes that constitute the regulatory network required for an effective response to the stimuli. Integrative analyses of the census and its correlation with m6A regulators identify multiple layers of regulation on highly context-dependent m6A modification in response to diverse developmental and environmental stimuli, providing insights into m6A modification dynamics in the myriad contexts of multicellular organisms.
Collapse
Affiliation(s)
- Bin Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yujin Wu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lingyao Kong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ranran Wu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Zhao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Wang YX, Zhao QP, Zhu JD, Chu FY, Fu XL, Li XK, Ding MC, Liu YF, Wu QQ, Xue LL, Xin GY, Zhao X. TRANSPARENT TESTA GLABRA1 regulates high-intensity blue light-induced phototropism by reducing CRYPTOCHROME1 levels. PLANT PHYSIOLOGY 2024; 196:1475-1488. [PMID: 38833579 DOI: 10.1093/plphys/kiae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
The asymmetrical distribution of auxin supports high intensity blue light (HBL)-mediated phototropism. Flavonoids, secondary metabolites induced by blue light and TRANSPARENT TESTA GLABRA1 (TTG1), alter auxin transport. However, the role of TTG1 in HBL-induced phototropism in Arabidopsis (Arabidopsis thaliana) remains unclear. We found that TTG1 regulates HBL-mediated phototropism. HBL-induced degradation of CRYPTOCHROME 1 (CRY1) was repressed in ttg1-1, and depletion of CRY1 rescued the phototropic defects of the ttg1-1 mutant. Moreover, overexpression of CRY1 in a cry1 mutant background led to phototropic defects in response to HBL. These results indicated that CRY1 is involved in the regulation of TTG1-mediated phototropism in response to HBL. Further investigation showed that TTG1 physically interacts with CRY1 via its N-terminus and that the added TTG1 promotes the dimerization of CRY1. The interaction between TTG1 and CRY1 may promote HBL-mediated degradation of CRY1. TTG1 also physically interacted with blue light inhibitor of cryptochrome 1 (BIC1) and Light-Response Bric-a-Brack/Tramtrack/Broad 2 (LRB2), and these interactions either inhibited or promoted their interaction with CRY1. Exogenous gibberellins (GA) and auxins, two key plant hormones that crosstalk with CRY1, may confer the recovery of phototropic defects in the ttg1-1 mutant and CRY1-overexpressing plants. Our results revealed that TTG1 participates in the regulation of HBL-induced phototropism by modulating CRY1 levels, which are coordinated with GA or IAA signaling.
Collapse
Affiliation(s)
- Yu-Xi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, Henan, China
| | - Jin-Dong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fang-Yuan Chu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang-Lin Fu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xing-Kun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Mei-Chen Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yan-Fei Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qi-Qi Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin-Lin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
6
|
Han J, Liu CX, Liu J, Wang CR, Wang SC, Miao G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. PLANT PHYSIOLOGY 2024; 195:1835-1850. [PMID: 38535832 DOI: 10.1093/plphys/kiae186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/28/2024] [Indexed: 06/30/2024]
Abstract
Plant transporters regulating the distribution of secondary metabolites play critical roles in defending against pathogens, insects, and interacting with beneficial microbes. The phosphorylation of these transporters can alter their activity, stability, and intracellular protein trafficking. However, the regulatory mechanism underlying this modification remains elusive. In this study, we discovered two orthologs of mammalian PKA, PKG, and PKC (AGC) kinases, oxidative signal-inducible 1 (OXI1) and its closest homologue, AGC subclass 2 member 2 (AGC2-2; 75% amino acid sequence identity with OXI1), associated with the extracellular secretion of camalexin and Arabidopsis (Arabidopsis thaliana) resistance to Pseudomonas syringae, and Botrytis cinerea. These kinases can undergo in vitro kinase reactions with three pleiotropic drug resistance (PDR) transporters: PDR6, PDR8, and PDR12. Moreover, our investigation confirmed PDR6 interaction with OXI1 and AGC2-2. By performing LC-MS/MS and parallel reaction monitoring, we identified the phosphorylation sites on PDR6 targeted by these kinases. Notably, chitin-induced PDR6 phosphorylation at specific residues, namely S31, S33, S827, and T832. Additional insights emerged by expressing dephosphorylated PDR6 variants in a pdr6 mutant background, revealing that the target residues S31, S33, and S827 promote PDR6 efflux activity, while T832 potentially contributes to PDR6 stability within the plasma membrane. The findings of this study elucidate partial mechanisms involved in the activity regulation of PDR-type transporters, providing valuable insights for their potential application in future plant breeding endeavors.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chang-Xin Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jian Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Cheng-Run Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shun-Chang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| |
Collapse
|
7
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
8
|
Nahas Z, Ticchiarelli F, van Rongen M, Dillon J, Leyser O. The activation of Arabidopsis axillary buds involves a switch from slow to rapid committed outgrowth regulated by auxin and strigolactone. THE NEW PHYTOLOGIST 2024; 242:1084-1097. [PMID: 38503686 DOI: 10.1111/nph.19664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Arabidopsis thaliana (Arabidopsis) shoot architecture is largely determined by the pattern of axillary buds that grow into lateral branches, the regulation of which requires integrating both local and systemic signals. Nodal explants - stem explants each bearing one leaf and its associated axillary bud - are a simplified system to understand the regulation of bud activation. To explore signal integration in bud activation, we characterised the growth dynamics of buds in nodal explants in key mutants and under different treatments. We observed that isolated axillary buds activate in two genetically and physiologically separable phases: a slow-growing lag phase, followed by a switch to rapid outgrowth. Modifying BRANCHED1 expression or the properties of the auxin transport network, including via strigolactone application, changed the length of the lag phase. While most interventions affected only the length of the lag phase, strigolactone treatment and a second bud also affected the rapid growth phase. Our results are consistent with the hypothesis that the slow-growing lag phase corresponds to the time during which buds establish canalised auxin transport out of the bud, after which they enter a rapid growth phase. Our work also hints at a role for auxin transport in influencing the maximum growth rate of branches.
Collapse
Affiliation(s)
- Zoe Nahas
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Martin van Rongen
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Jean Dillon
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
9
|
Ying W, Wang Y, Wei H, Luo Y, Ma Q, Zhu H, Janssens H, Vukašinović N, Kvasnica M, Winne JM, Gao Y, Tan S, Friml J, Liu X, Russinova E, Sun L. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 2024; 383:eadj4591. [PMID: 38513023 DOI: 10.1126/science.adj4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.
Collapse
Affiliation(s)
- Wei Ying
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Heyuan Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Xin Liu
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Linfeng Sun
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
10
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Kou X, Zhao Z, Xu X, Li C, Wu J, Zhang S. Identification and expression analysis of ATP-binding cassette (ABC) transporters revealed its role in regulating stress response in pear (Pyrus bretchneideri). BMC Genomics 2024; 25:169. [PMID: 38347517 PMCID: PMC10863237 DOI: 10.1186/s12864-024-10063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. RESULTS In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. CONCLUSION This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology.
Collapse
Affiliation(s)
- Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Zhen Zhao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinqi Xu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Chang Li
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Tseng TS, Chen CA, Lo MH. PHOTOTROPIN1 lysine 526 functions to enhance phototropism in Arabidopsis. PLANTA 2024; 259:56. [PMID: 38305934 DOI: 10.1007/s00425-024-04332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
MAIN CONCLUSION After blue-light exposure, ubiquitination of PHOTOTROPIN1 lysine 526 enhances phototropic responses. Arabidopsis blue-light photoreceptor, PHOTOTROPIN1 (PHOT1) mediates a series of blue-light responses that function to optimize photosynthesis efficiency. Blue-light sensing through the N-terminal sensory domain activates the C-terminal kinase activity of PHOT1, resulting in autophosphorylation. In addition to phosphorylation, PHOT1 lysine residue 526 (Lys526), after blue-light exposure, was found to carry a double glycine attachment, indicative of a possible ubiquitination modification. The functionality of PHOT1 Lys526 was investigated by reverse genetic approaches. Arginine replacements of PHOT1 Lys526, together with Lys527, complemented phot1-5 phot2-1 double mutant with attenuated phototropic bending, while blue-light responses: leaf expansion and stomatal opening, were restored to wild type levels. Transgenic seedlings were not different in protein levels of phot1 Lys526 527Arg than the wild type control, suggesting the reduced phototropic responses was not caused by reduction in protein levels. Treating the transformants with proteosome inhibitor, MG132, did not restore phototropic sensitivity. Both transgenic protein and wild type PHOT1 also had similar dark recovery of kinase activity, suggesting that phot1 Lys526 527Arg replacement did not affect the protein stability to cause the phenotype. Together, our results indicate that blocking Lys526 ubiquitination by arginine substitution may have caused the reduced phototropic phenotype. Therefore, the putative ubiquitination on Lys526 functions to enhance PHOT1-mediated phototropism, rather than targeting PHOT1 for proteolysis.
Collapse
Affiliation(s)
- Tong-Seung Tseng
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan.
| | - Chih-An Chen
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| | - Ming-Hung Lo
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| |
Collapse
|
13
|
Kanojia A, Bhola D, Mudgil Y. Light signaling as cellular integrator of multiple environmental cues in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1485-1503. [PMID: 38076763 PMCID: PMC10709290 DOI: 10.1007/s12298-023-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 12/17/2023]
Abstract
Plants being sessile need to rapidly adapt to the constantly changing environment through modifications in their internal clock, metabolism, and gene expression. They have evolved an intricate system to perceive and transfer the signals from the primary environmental factors namely light, temperature and water to regulate their growth development and survival. Over past few decades rigorous research using molecular genetics approaches, especially in model plant Arabidopsis, has resulted in substantial progress in discovering various photoreceptor systems and light signaling components. In parallel several molecular pathways operating in response to other environmental cues have also been elucidated. Interestingly, the studies have shown that expression profiles of genes involved in photomorphogenesis can undergo modulation in response to other cues from the environment. Recently, the photoreceptor, PHYB, has been shown to function as a thermosensor. Downstream components of light signaling pathway like COP1 and PIF have also emerged as integrating hubs for various kinds of signals. All these findings indicate that light signaling components may act as central integrator of various environmental cues to regulate plant growth and development processes. In this review, we present a perspective on cross talk of signaling mechanisms induced in response to myriad array of signals and their integration with the light signaling components. By putting light signals on the central stage, we propose the possibilities of enhancing plant resilience to the changing environment by fine-tuning the genetic manipulation of its signaling components in the future.
Collapse
Affiliation(s)
- Abhishek Kanojia
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Diksha Bhola
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Yashwanti Mudgil
- Department of Botany, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
14
|
Lv QY, Zhao QP, Zhu C, Ding M, Chu FY, Li XK, Cheng K, Zhao X. Hydrogen peroxide mediates high-intensity blue light-induced hypocotyl phototropism of cotton seedlings. STRESS BIOLOGY 2023; 3:27. [PMID: 37676397 PMCID: PMC10442013 DOI: 10.1007/s44154-023-00111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/16/2023] [Indexed: 09/08/2023]
Abstract
Phototropism is a classic adaptive growth response that helps plants to enhance light capture for photosynthesis. It was shown that hydrogen peroxide (H2O2) participates in the regulation of blue light-induced hypocotyl phototropism; however, the underlying mechanism is unclear. In this study, we demonstrate that the unilateral high-intensity blue light (HBL) could induce asymmetric distribution of H2O2 in cotton hypocotyls. Disruption of the HBL-induced asymmetric distribution of H2O2 by applying either H2O2 itself evenly on the hypocotyls or H2O2 scavengers on the lit side of hypocotyls could efficiently inhibit hypocotyl phototropic growth. Consistently, application of H2O2 on the shaded and lit sides of the hypocotyls led to reduced and enhanced hypocotyl phototropism, respectively. Further, we show that H2O2 inhibits hypocotyl elongation of cotton seedlings, thus supporting the repressive role of H2O2 in HBL-induced hypocotyl phototropism. Moreover, our results show that H2O2 interferes with HBL-induced asymmetric distribution of auxin in the cotton hypocotyls. Taken together, our study uncovers that H2O2 changes the asymmetric accumulation of auxin and inhibits hypocotyl cell elongation, thus mediating HBL-induced hypocotyl phototropism.
Collapse
Affiliation(s)
- Qian-Yi Lv
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Chen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meichen Ding
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fang-Yuan Chu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xing-Kun Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep 2023; 42:112729. [PMID: 37405922 DOI: 10.1016/j.celrep.2023.112729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Protein phosphorylation modification is crucial for signaling transduction in plant development and environmental adaptation. By precisely phosphorylating crucial components in signaling cascades, plants can switch on and off the specific signaling pathways needed for growth or defense. Here, we have summarized recent findings of key phosphorylation events in typical hormone signaling and stress responses. More interestingly, distinct phosphorylation patterns on proteins result in diverse biological functions of these proteins. Thus, we have also highlighted latest findings that show how the different phosphosites of a protein, also named phosphocodes, determine the specificity of downstream signaling in both plant development and stress responses.
Collapse
Affiliation(s)
- Wen Jie Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yewei Zhou
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
16
|
Aryal B, Xia J, Hu Z, Stumpe M, Tsering T, Liu J, Huynh J, Fukao Y, Glöckner N, Huang HY, Sáncho-Andrés G, Pakula K, Ziegler J, Gorzolka K, Zwiewka M, Nodzynski T, Harter K, Sánchez-Rodríguez C, Jasiński M, Rosahl S, Geisler MM. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Curr Biol 2023; 33:2008-2023.e8. [PMID: 37146609 DOI: 10.1016/j.cub.2023.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Collapse
Affiliation(s)
- Bibek Aryal
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tashi Tsering
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - John Huynh
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Nina Glöckner
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hsin-Yao Huang
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gloria Sáncho-Andrés
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Joerg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | | | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Markus M Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
17
|
Waksman T, Suetsugu N, Hermanowicz P, Ronald J, Sullivan S, Łabuz J, Christie JM. Phototropin phosphorylation of ROOT PHOTOTROPISM 2 and its role in mediating phototropism, leaf positioning, and chloroplast accumulation movement in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:390-402. [PMID: 36794876 PMCID: PMC10953443 DOI: 10.1111/tpj.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
Directional movements impact the ability of plants to respond and adjust their growth accordingly to the prevailing light environment. The plasma-membrane associated protein, ROOT PHOTOTROPISM 2 (RPT2) is a key signalling component involved in chloroplast accumulation movement, leaf positioning, and phototropism, all of which are regulated redundantly by the ultraviolet/blue light-activated AGC kinases phototropin 1 and 2 (phot1 and phot2). We recently demonstrated that members of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)/RPT2-like (NRL) family in Arabidopsis thaliana, including RPT2, are directly phosphorylated by phot1. However, whether RPT2 is a substrate for phot2, and the biological significance of phot phosphorylation of RPT2 remains to be determined. Here, we show that RPT2 is phosphorylated by both phot1 and phot2 at a conserved serine residue (S591) within the C-terminal region of the protein. Blue light triggered the association of 14-3-3 proteins with RPT2 consistent with S591 acting as a 14-3-3 binding site. Mutation of S591 had no effect on the plasma membrane localization of RPT2 but reduced its functionality for leaf positioning and phototropism. Moreover, our findings indicate that S591 phosphorylation within the C-terminus of RPT2 is required for chloroplast accumulation movement to low level blue light. Taken together, these findings further highlight the importance of the C-terminal region of NRL proteins and how its phosphorylation contributes to phot receptor signalling in plants.
Collapse
Affiliation(s)
- Thomas Waksman
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Noriyuki Suetsugu
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
- Graduate School of Arts and SciencesThe University of TokyoTokyo153‐8902Japan
| | - Pawel Hermanowicz
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakówPoland
| | - James Ronald
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Stuart Sullivan
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Justyna Łabuz
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakówPoland
| | - John M. Christie
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| |
Collapse
|
18
|
Xin GY, Li LP, Wang PT, Li XY, Han YJ, Zhao X. The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. STRESS BIOLOGY 2022; 2:50. [PMID: 37676522 PMCID: PMC10441985 DOI: 10.1007/s44154-022-00066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 09/08/2023]
Abstract
To cope with fluctuating light conditions, terrestrial plants have evolved precise regulation mechanisms to help optimize light capture and increase photosynthetic efficiency. Upon blue light-triggered autophosphorylation, activated phototropin (PHOT1 and PHOT2) photoreceptors function solely or redundantly to regulate diverse responses, including phototropism, chloroplast movement, stomatal opening, and leaf positioning and flattening in plants. These responses enhance light capture under low-light conditions and avoid photodamage under high-light conditions. NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2) are signal transducers that function in the PHOT1- and PHOT2-mediated response. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation as well as NPH3-mediated responses. NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) was recently identified as a PHOT1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation. The PHYTOCHROME KINASE SUBSTRATE (PKS) proteins (PKS1, PKS2, and PKS4) interact with PHOT1 and NPH3 and mediate hypocotyl phototropic bending. This review summarizes advances in phototropic growth and chloroplast movement induced by light. We also focus on how crosstalk in signaling between phototropism and chloroplast movement enhances weak light capture, providing a basis for future studies aiming to delineate the mechanism of light-trapping plants to improve light-use efficiency.
Collapse
Affiliation(s)
- Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu-Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Peng-Tao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yue Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan-Ji Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
19
|
Łabuz J, Sztatelman O, Hermanowicz P. Molecular insights into the phototropin control of chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6034-6051. [PMID: 35781490 DOI: 10.1093/jxb/erac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.
Collapse
Affiliation(s)
- Justyna Łabuz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego, Warszawa, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
20
|
Yue X, Su T, Xin X, Li P, Wang W, Yu Y, Zhang D, Zhao X, Wang J, Sun L, Jin G, Yu S, Zhang F. The Adaxial/Abaxial Patterning of Auxin and Auxin Gene in Leaf Veins Functions in Leafy Head Formation of Chinese Cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:918112. [PMID: 35755702 PMCID: PMC9224592 DOI: 10.3389/fpls.2022.918112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Leaf curling is an essential prerequisite for the formation of leafy heads in Chinese cabbage. However, the part or tissue that determines leaf curvature remains largely unclear. In this study, we first introduced the auxin-responsive marker DR5::GUS into the Chinese cabbage genome and visualized its expression during the farming season. We demonstrated that auxin response is adaxially/abaxially distributed in leaf veins. Together with the fact that leaf veins occupy considerable proportions of the Chinese cabbage leaf, we propose that leaf veins play a crucial supporting role as a framework for heading. Then, by combining analyses of QTL mapping and a time-course transcriptome from heading Chinese cabbage and non-heading pak choi during the farming season, we identified the auxin-related gene BrPIN5 as a strong candidate for leafy head formation. PIN5 displays an adaxial/abaxial expression pattern in leaf veins, similar to that of DR5::GUS, revealing an involvement of BrPIN5 in leafy head development. The association of BrPIN5 function with heading was further confirmed by its haplo-specificity to heading individuals in both a natural population and two segregating populations. We thus conclude that the adaxial/abaxial patterning of auxin and auxin genes in leaf veins functions in the formation of the leafy head in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaozhen Yue
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Jiao Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Liling Sun
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Guihua Jin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
21
|
Zeng Y, Schotte S, Trinh HK, Verstraeten I, Li J, Van de Velde E, Vanneste S, Geelen D. Genetic Dissection of Light-Regulated Adventitious Root Induction in Arabidopsis thaliana Hypocotyls. Int J Mol Sci 2022; 23:5301. [PMID: 35628112 PMCID: PMC9140560 DOI: 10.3390/ijms23105301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well understood. Hereto, we analyzed adventitious rooting under different light conditions in wild type and photomorphogenesis mutants in Arabidopsis thaliana. Etiolation was not essential for AR formation but raised the competence to form AR under white and blue light. The blue light receptors CRY1 and PHOT1/PHOT2 are key elements contributing to the induction of AR formation in response to light. Furthermore, etiolation-controlled competence for AR formation depended on the COP9 signalosome, E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC (COP1), the COP1 interacting SUPPRESSOR OF PHYA-105 (SPA) kinase family members (SPA1,2 and 3) and Phytochrome-Interacting Factors (PIF). In contrast, ELONGATED HYPOCOTYL5 (HY5), suppressed AR formation. These findings provide a genetic framework that explains the high and low AR competence of Arabidopsis thaliana hypocotyls that were treated with dark, and light, respectively. We propose that light-induced auxin signal dissipation generates a transient auxin maximum that explains AR induction by a dark to light switch.
Collapse
Affiliation(s)
- Yinwei Zeng
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Sebastien Schotte
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Hoang Khai Trinh
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City 900000, Vietnam
| | - Inge Verstraeten
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Jing Li
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Ellen Van de Velde
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Steffen Vanneste
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant SystemsBiology, VIB, Technologiepark 71, 9052 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Korea
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| |
Collapse
|
22
|
Jenness MK, Tayengwa R, Bate GA, Tapken W, Zhang Y, Pang C, Murphy AS. Loss of Multiple ABCB Auxin Transporters Recapitulates the Major twisted dwarf 1 Phenotypes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:840260. [PMID: 35528937 PMCID: PMC9069160 DOI: 10.3389/fpls.2022.840260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
FK506-BINDING PROTEIN 42/TWISTED DWARF 1 (FKBP42/TWD1) directly regulates cellular trafficking and activation of multiple ATP-BINDING CASSETTE (ABC) transporters from the ABCB and ABCC subfamilies. abcb1 abcb19 double mutants exhibit remarkable phenotypic overlap with twd1 including severe dwarfism, stamen elongation defects, and compact circinate leaves; however, twd1 mutants exhibit greater loss of polar auxin transport and additional helical twisting of roots, inflorescences, and siliques. As abcc1 abcc2 mutants do not exhibit any visible phenotypes and TWD1 does not interact with PIN or AUX1/LAX auxin transporters, loss of function of other ABCB auxin transporters is hypothesized to underly the remaining morphological phenotypes. Here, gene expression, mutant analyses, pharmacological inhibitor studies, auxin transport assays, and direct auxin quantitations were used to determine the relative contributions of loss of other reported ABCB auxin transporters (4, 6, 11, 14, 20, and 21) to twd1 phenotypes. From these analyses, the additional reduction in plant height and the twisted inflorescence, root, and silique phenotypes observed in twd1 compared to abcb1 abcb19 result from loss of ABCB6 and ABCB20 function. Additionally, abcb6 abcb20 root twisting exhibited the same sensitivity to the auxin transport inhibitor 1-napthalthalamic acid as twd1 suggesting they are the primary contributors to these auxin-dependent organ twisting phenotypes. The lack of obvious phenotypes in higher order abcb4 and abcb21 mutants suggests that the functional loss of these transporters does not contribute to twd1 root or shoot twisting. Analyses of ABCB11 and ABCB14 function revealed capacity for auxin transport; however, their activities are readily outcompeted by other substrates, suggesting alternate functions in planta, consistent with a spectrum of relative substrate affinities among ABCB transporters. Overall, the results presented here suggest that the ABCB1/19 and ABCB6/20 pairs represent the primary long-distance ABCB auxin transporters in Arabidopsis and account for all reported twd1 morphological phenotypes. Other ABCB transporters appear to participate in highly localized auxin streams or mobilize alternate transport substrates.
Collapse
Affiliation(s)
- Mark K. Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Gabrielle A. Bate
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Changxu Pang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Angus S. Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| |
Collapse
|
23
|
Cavallaro V, Pellegrino A, Muleo R, Forgione I. Light and Plant Growth Regulators on In Vitro Proliferation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070844. [PMID: 35406824 PMCID: PMC9002540 DOI: 10.3390/plants11070844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 05/17/2023]
Abstract
Plant tissue cultures depend entirely upon artificial light sources for illumination. The illumination should provide light in the appropriate regions of the electromagnetic spectrum for photomorphogenic responses and photosynthetic metabolism. Controlling light quality, irradiances and photoperiod enables the production of plants with desired characteristics. Moreover, significant money savings may be achieved using both more appropriate and less consuming energy lamps. In this review, the attention will be focused on the effects of light characteristics and plant growth regulators on shoot proliferation, the main process in in vitro propagation. The effects of the light spectrum on the balance of endogenous growth regulators will also be presented. For each light spectrum, the effects on proliferation but also on plantlet quality, i.e., shoot length, fresh and dry weight and photosynthesis, have been also analyzed. Even if a huge amount of literature is available on the effects of light on in vitro proliferation, the results are often conflicting. In fact, a lot of exogenous and endogenous factors, but also the lack of a common protocol, make it difficult to choose the most effective light spectrum for each of the large number of species. However, some general issues derived from the analysis of the literature are discussed.
Collapse
Affiliation(s)
- Valeria Cavallaro
- Institute of BioEconomy (IBE), National Research Council of Italy, 95126 Catania, Italy;
- Correspondence: (V.C.); (R.M.)
| | - Alessandra Pellegrino
- Institute of BioEconomy (IBE), National Research Council of Italy, 95126 Catania, Italy;
| | - Rosario Muleo
- Tree Physiology and Fruit Crop Biotechnology Laboratory, Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: (V.C.); (R.M.)
| | - Ivano Forgione
- Tree Physiology and Fruit Crop Biotechnology Laboratory, Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
| |
Collapse
|
24
|
Lanassa Bassukas AE, Xiao Y, Schwechheimer C. Phosphorylation control of PIN auxin transporters. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102146. [PMID: 34974229 DOI: 10.1016/j.pbi.2021.102146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
The directional transport of the phytohormone auxin is required for proper plant development and tropic growth. Auxin cell-to-cell transport gains directionality through the polar distribution of 'canonical' long PIN-FORMED (PIN) auxin efflux carriers. In recent years, AGC kinases, MAP kinases, Ca2+/CALMODULIN-DEPENDENT PROTEIN KINASE-RELATED KINASEs and receptor kinases have been implicated in the control of PIN activity, polarity and trafficking. In this review, we summarize the current knowledge in understanding the posttranslational regulation of PINs by these different protein kinase families. The proposed regulation of PINs by AGC kinases after salt stress and by the stress-activated MAP kinases suggest that abiotic and biotic stress factors may modulate auxin transport and thereby plant growth.
Collapse
Affiliation(s)
- Alkistis E Lanassa Bassukas
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Yao Xiao
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany.
| |
Collapse
|
25
|
Abstract
From embryogenesis to fruit formation, almost every aspect of plant development and differentiation is controlled by the cellular accumulation or depletion of auxin from cells and tissues. The respective auxin maxima and minima are generated by cell-to-cell auxin transport via transporter proteins. Differential auxin accumulation as a result of such transport processes dynamically regulates auxin distribution during differentiation. In this review, we introduce all auxin transporter (families) identified to date and discuss the knowledge on prominent family members, namely, the PIN-FORMED exporters, ATP-binding cassette B (ABCB)-type transporters, and AUX1/LAX importers. We then concentrate on the biochemical features of these transporters and their regulation by posttranslational modifications and interactors.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture
- Agriculture Biotechnology Center, University of Maryland, College Park, Maryland 20742, USA
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
26
|
Wang X, Han L, Yin H, Zhao Z, Cao H, Shang Z, Kang E. AtANN1 and AtANN2 are involved in phototropism of etiolated hypocotyls of Arabidopsis by regulating auxin distribution. AOB PLANTS 2022; 14:plab075. [PMID: 35079328 PMCID: PMC8782606 DOI: 10.1093/aobpla/plab075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Phototropism is an essential response in some plant organs and features several signalling molecules involved in either photo-sensing or post-sensing responses. Annexins are involved in regulating plant growth and its responses to various stimuli. Here, we provide novel data showing that two members of the Annexin family in Arabidopsis thaliana, AtANN1 and AtANN2, may be involved in the phototropism of etiolated hypocotyls. In wild type, unilateral blue light (BL) induced a strong phototropic response, while red light (RL) only induced a weak response. The responses of single- or double-null mutants of the two annexins, including atann1, atann2 and atann1/atann2, were significantly weaker than those observed in wild type, indicating the involvement of AtANN1 and AtANN2 in BL-induced phototropism. Unilateral BL induced asymmetric distribution of DR5-GFP and PIN3-GFP fluorescence in hypocotyls; notably, fluorescent intensity on the shaded side was markedly stronger than that on the illuminated side. In etiolated atann1, atann2 or atann1/atann2 hypocotyls, unilateral BL-induced asymmetric distributions of DR5-GFP and PIN3-GFP were weakened or impaired. Herein, we suggest that during hypocotyls phototropic response, AtANN1 and AtANN2 may be involved in BL-stimulated signalling by regulating PIN3-charged auxin transport.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Department of Agricultural and Animal Engineering, Cangzhou Vocation College of Technology, Cangzhou 061001, China
| | - Lijuan Han
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hongmin Yin
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhenping Zhao
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huishu Cao
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhonglin Shang
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Erfang Kang
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
27
|
Zeidler M. Physiological Analysis of Phototropic Responses to Blue and Red Light in Arabidopsis. Methods Mol Biol 2022; 2494:37-45. [PMID: 35467199 DOI: 10.1007/978-1-0716-2297-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plants utilize light as sole energy source. To maximize light capture, they are able to detect the light direction and orient themselves toward the light source. This phototropic response is mediated by the plant blue-light photoreceptors phototropin1 and phototropin2 (phot1 and phot2). Although fully differentiated plants also exhibit this response, it can be best observed in etiolated seedlings. Differences in light between the illuminated and shaded site of a seedling stem lead to changes in the auxin distribution, resulting in cell elongation on the shaded site. Since phototropism connects light perception, signaling, and auxin transport, it is of great interest to analyze this response with a fast and simple method. Moreover, pre-exposure to red light enhances the phototropic response via phytochrome A (phyA) and phyB action. Here we describe a method to analyze the phototropic response of Arabidopsis seedlings to blue light and the enhanced response with a red-light pretreatment. With numerous mutants available, its fast germination, and its small size, Arabidopsis is well suited for this analysis. Different genotypes can be simultaneously probed in less than a week.
Collapse
Affiliation(s)
- Mathias Zeidler
- Institute of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
28
|
Guard-Cell-Specific Expression of Phototropin2 C-Terminal Fragment Enhances Leaf Transpiration. PLANTS 2021; 11:plants11010065. [PMID: 35009069 PMCID: PMC8747280 DOI: 10.3390/plants11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Phototropins (phot1 and phot2) are plant-specific blue light receptors that mediate chloroplast movement, stomatal opening, and phototropism. Phototropin is composed of the N-terminus LOV1 and LOV2 domains and the C-terminus Ser/Thr kinase domain. In previous studies, 35-P2CG transgenic plants expressing the phot2 C-terminal fragment–GFP fusion protein (P2CG) under the control of 35S promoter showed constitutive phot2 responses, including chloroplast avoidance response, stomatal opening, and reduced hypocotyl phototropism regardless of blue light, and some detrimental growth phenotypes. In this study, to exclude the detrimental growth phenotypes caused by the ectopic expression of P2C and to improve leaf transpiration, we used the PHOT2 promoter for the endogenous expression of GFP-fused P2C (GP2C) (P2-GP2C) and the BLUS1 promoter for the guard-cell-specific expression of GP2C (B1-GP2C), respectively. In P2-GP2C plants, GP2C expression induced constitutive phototropin responses and a relatively dwarf phenotype as in 35-P2CG plants. In contrast, B1-GP2C plants showed the guard-cell-specific P2C expression that induced constitutive stomatal opening with normal phototropism, chloroplast movement, and growth phenotype. Interestingly, leaf transpiration was significantly improved in B1-GP2C plants compared to that in P2-GP2C plants and WT. Taken together, this transgenic approach could be applied to improve leaf transpiration in indoor plants.
Collapse
|
29
|
Do THT, Martinoia E, Lee Y, Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. PLANT PHYSIOLOGY 2021; 187:1876-1892. [PMID: 35235666 PMCID: PMC8890498 DOI: 10.1093/plphys/kiab193] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/10/2021] [Indexed: 05/02/2023]
Abstract
Recent developments in the field of ABC proteins including newly identified functions and regulatory mechanisms expand the understanding of how they function in the development and physiology of plants.
Collapse
Affiliation(s)
- Thanh Ha Thi Do
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Plant and Microbial Biology, University Zurich, Zurich 8008, Switzerland
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Life Sciences, POSTECH, Pohang 37673, South Korea
| | - Jae-Ung Hwang
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Author for communication:
| |
Collapse
|
30
|
Atif MJ, Amin B, Ghani MI, Ali M, Khursheed S, Cheng Z. Transcriptomic analysis of Allium sativum uncovers putative genes involved in photoperiodic pathway and hormone signaling under long day and short day conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111095. [PMID: 34763878 DOI: 10.1016/j.plantsci.2021.111095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 05/20/2023]
Abstract
Photoperiod is dominant environmental factor that controls plant growth and development. Even though research on plants response to photoperiod is significant in agriculture, molecular mechanisms of garlic in response to photoperiod remain largely unknown. In the current investigation, 3 months old garlic plants were treated with long day (LD) and short day (SD) for 10 and 20 days after treatment (DAT). Liquid chromatography-mass spectrometry (LC-MS) analysis of phytohormones exhibited that indole-3-acetic acid (IAA), zeatin riboside (ZR) and salicylic acid (SA) were observed maximum under LD at 10 DAT, whereas abscisic acid (ABA), gibberellic acid 3 (GA3), zeatin (ZT) and jasmonic acid (JA) were observed maximum under LD at 20 DAT. Transcriptome sequencing analysis was done to evaluate the transcriptional response to LD and SD. Differentially expressed genes (DEGs) were detected to have pathway enrichment. i.e., DNA binding transcription factor activity, transcription regulator activity, transferase activity, transferring hexosyl groups, and sequence specific-DNA binding activity, plant hormone signal transduction, circadian rhythm-plant, biosynthesis of amino acids, phenylpropanoid biosynthesis, and starch and sucrose metabolism. Furthermore, 28 and 40 DEGs were identified related to photoperiod and hormone signaling, respectively and their interaction in response to LD and SD were discussed in detail. Outcomes of current investigation might be useful to provide novel resources for garlic bulb formation in response to photoperiod.
Collapse
Affiliation(s)
- Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Yangling, 712100, China; Horticultural Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan.
| | - Bakht Amin
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Imran Ghani
- College of Horticulture, Northwest A&F University, Yangling, 712100, China; College of Natural Resource and Environment, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | | | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
31
|
Legris M, Szarzynska-Erden BM, Trevisan M, Allenbach Petrolati L, Fankhauser C. Phototropin-mediated perception of light direction in leaves regulates blade flattening. PLANT PHYSIOLOGY 2021; 187:1235-1249. [PMID: 34618121 PMCID: PMC8567070 DOI: 10.1093/plphys/kiab410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals.
Collapse
Affiliation(s)
- Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bogna Maria Szarzynska-Erden
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
33
|
Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nat Commun 2021; 12:6128. [PMID: 34675219 PMCID: PMC8531446 DOI: 10.1038/s41467-021-26332-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key component of the auxin-dependent plant phototropic growth response. We report that NPH3 directly binds polyacidic phospholipids, required for plasma membrane association in darkness. We further demonstrate that blue light induces an immediate phosphorylation of a C-terminal 14-3-3 binding motif in NPH3. Subsequent association of 14-3-3 proteins is causal for the light-induced release of NPH3 from the membrane and accompanied by NPH3 dephosphorylation. In the cytosol, NPH3 dynamically transitions into membraneless condensate-like structures. The dephosphorylated state of the 14-3-3 binding site and NPH3 membrane recruitment are recoverable in darkness. NPH3 variants that constitutively localize either to the membrane or to condensates are non-functional, revealing a fundamental role of the 14-3-3 mediated dynamic change in NPH3 localization for auxin-dependent phototropism. This regulatory mechanism might be of general nature, given that several members of the NPH3-like family interact with 14-3-3 via a C-terminal motif. NPH3 is required for auxin-dependent plant phototropism. Here Reuter et al. show that NPH3 is a plasma membrane-bound phospholipid-binding protein and that in response to blue light, NPH3 is phosphorylated and associates with 14-3-3 proteins which leads to dissociation from the plasma membrane.
Collapse
|
34
|
Sullivan S, Waksman T, Paliogianni D, Henderson L, Lütkemeyer M, Suetsugu N, Christie JM. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding. Nat Commun 2021; 12:6129. [PMID: 34675214 PMCID: PMC8531357 DOI: 10.1038/s41467-021-26333-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Thomas Waksman
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dimitra Paliogianni
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Louise Henderson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melanie Lütkemeyer
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Noriyuki Suetsugu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
35
|
Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. THE NEW PHYTOLOGIST 2021; 232:510-522. [PMID: 34254313 DOI: 10.1111/nph.17617] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 05/27/2023]
Abstract
Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underlie differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, as well as the crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.
Collapse
Affiliation(s)
- Huibin Han
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
- Research Center for Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Maciek Adamowski
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Linlin Qi
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Saqer S Alotaibi
- Department of Biotechnology, Taif University, PO Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
36
|
Serrano AM, Vanhaelewyn L, Vandenbussche F, Boccalandro HE, Maldonado B, Van Der Straeten D, Ballaré CL, Arana MV. Cryptochromes are the dominant photoreceptors mediating heliotropic responses of Arabidopsis inflorescences. PLANT, CELL & ENVIRONMENT 2021; 44:3246-3256. [PMID: 34181245 DOI: 10.1111/pce.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.
Collapse
Affiliation(s)
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Hernán Esteban Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - Belén Maldonado
- Instituto Argentino de Investigación de las Zonas Áridas, Mendoza, Argentina
| | | | - Carlos Luis Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agronomía (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
37
|
Łabuz J, Sztatelman O, Jagiełło-Flasińska D, Hermanowicz P, Bażant A, Banaś AK, Bartnicki F, Giza A, Kozłowska A, Lasok H, Sitkiewicz E, Krzeszowiec W, Gabryś H, Strzałka W. Phototropin Interactions with SUMO Proteins. PLANT & CELL PHYSIOLOGY 2021; 62:693-707. [PMID: 33594440 PMCID: PMC8462379 DOI: 10.1093/pcp/pcab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The disruption of the sumoylation pathway affects processes controlled by the two phototropins (phots) of Arabidopsis thaliana, phot1 and phot2. Phots, plant UVA/blue light photoreceptors, regulate growth responses and fast movements aimed at optimizing photosynthesis, such as phototropism, chloroplast relocations and stomatal opening. Sumoylation is a posttranslational modification, consisting of the addition of a SUMO (SMALL UBIQUITIN-RELATED MODIFIER) protein to a lysine residue in the target protein. In addition to affecting the stability of proteins, it regulates their activity, interactions and subcellular localization. We examined physiological responses controlled by phots, phototropism and chloroplast movements, in sumoylation pathway mutants. Chloroplast accumulation in response to both continuous and pulse light was enhanced in the E3 ligase siz1 mutant, in a manner dependent on phot2. A significant decrease in phot2 protein abundance was observed in this mutant after blue light treatment both in seedlings and mature leaves. Using plant transient expression and yeast two-hybrid assays, we found that phots interacted with SUMO proteins mainly through their N-terminal parts, which contain the photosensory LOV domains. The covalent modification in phots by SUMO was verified using an Arabidopsis sumoylation system reconstituted in bacteria followed by the mass spectrometry analysis. Lys 297 was identified as the main target of SUMO3 in the phot2 molecule. Finally, sumoylation of phot2 was detected in Arabidopsis mature leaves upon light or heat stress treatment.
Collapse
Affiliation(s)
- Justyna Łabuz
- * Corresponding author: E-mail, ; Fax, +48 12 664 6902
| | | | - Dominika Jagiełło-Flasińska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Aleksandra Giza
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Anna Kozłowska
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Hanna Lasok
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Ewa Sitkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warszawa 02-106, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| |
Collapse
|
38
|
Casal JJ, Estevez JM. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harb Perspect Biol 2021; 13:a040030. [PMID: 33431585 PMCID: PMC8015692 DOI: 10.1101/cshperspect.a040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant fitness depends on the adequate morphological adjustment to the prevailing conditions of the environment. Therefore, plants sense environmental cues through their life cycle, including the presence of full darkness, light, or shade, the range of ambient temperatures, the direction of light and gravity vectors, and the presence of water and mineral nutrients (such as nitrate and phosphate) in the soil. The environmental information impinges on different aspects of the auxin system such as auxin synthesis, degradation, transport, perception, and downstream transcriptional regulation to modulate organ growth. Although a single environmental cue can affect several of these points, the relative impacts differ significantly among the various growth processes and cues. While stability in the generation of precise auxin gradients serves to guide the basic developmental pattern, dynamic changes in the auxin system fine-tune body shape to optimize the capture of environmental resources.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires 1417, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago 8370146, Chile
| |
Collapse
|
39
|
Eckstein A, Grzyb J, Hermanowicz P, Zgłobicki P, Łabuz J, Strzałka W, Dziga D, Banaś AK. Arabidopsis Phototropins Participate in the Regulation of Dark-Induced Leaf Senescence. Int J Mol Sci 2021; 22:ijms22041836. [PMID: 33673252 PMCID: PMC7918785 DOI: 10.3390/ijms22041836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Senescence is the final stage of plant development, affecting individual organs or the whole organism, and it can be induced by several environmental factors, including shading or darkness. Although inevitable, senescence is a complex and tightly regulated process, ensuring optimal remobilization of nutrients and cellular components from senescing organs. Photoreceptors such as phytochromes and cryptochromes are known to participate in the process of senescence, but the involvement of phototropins has not been studied to date. We investigated the role of these blue light photoreceptors in the senescence of individually darkened Arabidopsis thaliana leaves. We compared several physiological and molecular senescence markers in darkened leaves of wild-type plants and phototropin mutants (phot1, phot2, and phot1phot2). In general, all the symptoms of senescence (lower photochemical activity of photosystem II, photosynthetic pigment degradation, down-regulation of photosynthetic genes, and up-regulation of senescence-associated genes) were less pronounced in phot1phot2, as compared to the wild type, and some also in one of the single mutants, indicating delayed senescence. This points to different mechanisms of phototropin operation in the regulation of senescence-associated processes, either with both photoreceptors acting redundantly, or only one of them, phot1, playing a dominant role.
Collapse
Affiliation(s)
- Aleksandra Eckstein
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Paweł Hermanowicz
- Laboratory of Photobiology, The Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (P.H.); (J.Ł.)
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
| | - Justyna Łabuz
- Laboratory of Photobiology, The Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (P.H.); (J.Ł.)
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
- Correspondence:
| |
Collapse
|
40
|
Tan S, Luschnig C, Friml J. Pho-view of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling. MOLECULAR PLANT 2021; 14:151-165. [PMID: 33186755 DOI: 10.1016/j.molp.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 05/24/2023]
Abstract
The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
41
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
42
|
Geisler MM. A Retro-Perspective on Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:756968. [PMID: 34675956 PMCID: PMC8524130 DOI: 10.3389/fpls.2021.756968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
|
43
|
Kamal MM, Ishikawa S, Takahashi F, Suzuki K, Kamo M, Umezawa T, Shinozaki K, Kawamura Y, Uemura M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int J Mol Sci 2020; 21:E8631. [PMID: 33207747 PMCID: PMC7696906 DOI: 10.3390/ijms21228631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase-substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Ko Suzuki
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Masaharu Kamo
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
44
|
Jenness MK, Tayengwa R, Murphy AS. An ATP-Binding Cassette Transporter, ABCB19, Regulates Leaf Position and Morphology during Phototropin1-Mediated Blue Light Responses. PLANT PHYSIOLOGY 2020; 184:1601-1612. [PMID: 32855213 PMCID: PMC7608178 DOI: 10.1104/pp.20.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Blue light regulates multiple processes that optimize light capture and gas exchange in plants, including chloroplast movement, changes in stomatal conductance, and altered organ positioning. In Arabidopsis (Arabidopsis thaliana), these processes are primarily modulated by the blue light phototropin photoreceptors phot1 and phot2. Changes in leaf positioning and shape involve several signaling components that include NON-PHOTOTROPIC HYPOCOTYL3, PHYTOCHROME KINASE SUBSTRATE, ROOT PHOTOTROPISM2, and alterations in localized auxin streams. Direct phosphorylation of the auxin transporter ATP-BINDING CASSETTE subfamily B19 (ABCB19) by phot1 in phototropic seedlings suggests that phot1 may directly regulate ABCB19 to adjust auxin-dependent leaf responses. Here, abcb19 mutants were analyzed for fluence and blue light-dependent changes in leaf positioning and morphology. abcb19 displays upright petiole angles that remain unchanged in response to red and blue light. Similarly, abcb19 mutants develop irregularly wavy rosette leaves that are less sensitive to blue light-mediated leaf flattening. Visualization of auxin distribution, measurement of auxin transport in protoplasts, and direct quantification of free auxin levels suggest these irregularities are caused by misregulation of ABCB19-mediated auxin distribution in addition to light-dependent auxin biosynthesis.
Collapse
Affiliation(s)
- Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| |
Collapse
|
45
|
Favero DS. Leaf Position Makes a Difference: The ABCB19 Auxin Transporter Affects Light Perception. PLANT PHYSIOLOGY 2020; 184:1219-1220. [PMID: 33139487 PMCID: PMC7608155 DOI: 10.1104/pp.20.01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
46
|
Inoue S, Kaiserli E, Zhao X, Waksman T, Takemiya A, Okumura M, Takahashi H, Seki M, Shinozaki K, Endo Y, Sawasaki T, Kinoshita T, Zhang X, Christie JM, Shimazaki K. CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:679-692. [PMID: 32780529 PMCID: PMC7693358 DOI: 10.1111/tpj.14955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.
Collapse
Affiliation(s)
- Shin‐Ichiro Inoue
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Eirini Kaiserli
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Xiang Zhao
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - Thomas Waksman
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Atsushi Takemiya
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
- Present address:
Department of BiologyGraduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchi753‐8512Japan
| | - Masaki Okumura
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota
| | | | - Motoaki Seki
- RIKEN Cluster for Pioneering Research2‐1 HirosawaWako351‐0198Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22, Suehiro, Tsurumi‐kuYokohama230‐0045Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukuba305‐0074Japan
| | - Yaeta Endo
- Institute for the Promotion of Science and TechnologyEhime UniversityMatsuyama790‐8577Japan
| | | | - Toshinori Kinoshita
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8602Japan
| | - Xiao Zhang
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - John M. Christie
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Ken‐Ichiro Shimazaki
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
| |
Collapse
|
47
|
Hao P, Xia J, Liu J, Di Donato M, Pakula K, Bailly A, Jasinski M, Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J Biol Chem 2020; 295:13094-13105. [PMID: 32699109 PMCID: PMC7489919 DOI: 10.1074/jbc.ra120.014104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
The plant hormone auxin must be transported throughout plants in a cell-to-cell manner to affect its various physiological functions. ABCB transporters are critical for this polar auxin distribution, but the regulatory mechanisms controlling their function is not fully understood. The auxin transport activity of ABCB1 was suggested to be regulated by a physical interaction with FKBP42/Twisted Dwarf1 (TWD1), a peptidylprolyl cis-trans isomerase (PPIase), but all attempts to demonstrate such a PPIase activity by TWD1 have failed so far. By using a structure-based approach, we identified several surface-exposed proline residues in the nucleotide binding domain and linker of Arabidopsis ABCB1, mutations of which do not alter ABCB1 protein stability or location but do affect its transport activity. P1008 is part of a conserved signature D/E-P motif that seems to be specific for auxin-transporting ABCBs, which we now refer to as ATAs. Mutation of the acidic residue also abolishes auxin transport activity by ABCB1. All higher plant ABCBs for which auxin transport has been conclusively proven carry this conserved motif, underlining its predictive potential. Introduction of this D/E-P motif into malate importer, ABCB14, increases both its malate and its background auxin transport activity, suggesting that this motif has an impact on transport capacity. The D/E-P1008 motif is also important for ABCB1-TWD1 interactions and activation of ABCB1-mediated auxin transport by TWD1. In summary, our data imply a new function for TWD1 acting as a putative activator of ABCB-mediated auxin transport by cis-trans isomerization of peptidyl-prolyl bonds.
Collapse
Affiliation(s)
- Pengchao Hao
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | - Aurélien Bailly
- Institute for Plant and Microbial Biology, Zurich, Switzerland
| | - Michal Jasinski
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
48
|
Domain Organization in Plant Blue-Light Receptor Phototropin2 of Arabidopsis thaliana Studied by Small-Angle X-ray Scattering. Int J Mol Sci 2020; 21:ijms21186638. [PMID: 32927860 PMCID: PMC7555306 DOI: 10.3390/ijms21186638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Phototropin2 (phot2) is a blue-light (BL) receptor protein that regulates the BL-dependent activities of plants for efficient photosynthesis. Phot2 is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) to absorb BL, and a kinase domain. Photo-activated LOV domains, especially LOV2, play a major role in photo-dependent increase in the phosphorylation activity of the kinase domain. The atomic details of the overall structure of phot2 and the intramolecular mechanism to convert BL energy to a phosphorylation signal remain unknown. We performed structural studies on the LOV fragments LOV1, LOV2, LOV2-linker, and LOV2-kinase, and full-length phot2, using small-angle X-ray scattering (SAXS). The aim of the study was to understand structural changes under BL irradiation and discuss the molecular mechanism that enhance the phosphorylation activity under BL. SAXS is a suitable technique for visualizing molecular structures of proteins in solution at low resolution and is advantageous for monitoring their structural changes in the presence of external physical and/or chemical stimuli. Structural parameters and molecular models of the recombinant specimens were obtained from SAXS profiles in the dark, under BL irradiation, and after dark reversion. LOV1, LOV2, and LOV2-linker fragments displayed minimal structural changes. However, BL-induced rearrangements of functional domains were noted for LOV2-kinase and full-length phot2. Based on the molecular model together with the absorption measurements and biochemical assays, we discuss the intramolecular interactions and domain motions necessary for BL-enhanced phosphorylation activity of phot2.
Collapse
|
49
|
Boccaccini A, Legris M, Krahmer J, Allenbach-Petrolati L, Goyal A, Galvan-Ampudia C, Vernoux T, Karayekov E, Casal JJ, Fankhauser C. Low Blue Light Enhances Phototropism by Releasing Cryptochrome1-Mediated Inhibition of PIF4 Expression. PLANT PHYSIOLOGY 2020; 183:1780-1793. [PMID: 32554507 PMCID: PMC7401145 DOI: 10.1104/pp.20.00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 05/23/2023]
Abstract
Shade-avoiding plants, including Arabidopsis (Arabidopsis thaliana), display a number of growth responses, such as elongation of stem-like structures and repositioning of leaves, elicited by shade cues, including a reduction in the blue and red portions of the solar spectrum and a low-red to far-red ratio. Shade also promotes phototropism of de-etiolated seedlings through repression of phytochrome B, presumably to enhance capture of unfiltered sunlight. Here we show that both low blue light and a low-red to far-red light ratio are required to rapidly enhance phototropism in Arabidopsis seedlings. However, prolonged low blue light treatments are sufficient to promote phototropism through reduced cryptochrome1 (cry1) activation. The enhanced phototropic response of cry1 mutants in the lab and in response to natural canopies depends on PHYTOCHROME INTERACTING FACTORs (PIFs). In favorable light conditions, cry1 limits the expression of PIF4, while in low blue light, PIF4 expression increases, which contributes to phototropic enhancement. The analysis of quantitative DII-Venus, an auxin signaling reporter, indicates that low blue light leads to enhanced auxin signaling in the hypocotyl and, upon phototropic stimulation, a steeper auxin signaling gradient across the hypocotyl. We conclude that phototropic enhancement by canopy shade results from the combined activities of phytochrome B and cry1 that converge on PIF regulation.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Johanna Krahmer
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laure Allenbach-Petrolati
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anupama Goyal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlos Galvan-Ampudia
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon, France
| | - Elizabeth Karayekov
- IFEVA, Facultad de Agronomia, Universidad de Buenos Aires and CONICET, Av. San Martin 4453, 1417 Buenos Aires, Argentina
| | - Jorge J Casal
- IFEVA, Facultad de Agronomia, Universidad de Buenos Aires and CONICET, Av. San Martin 4453, 1417 Buenos Aires, Argentina
- Fundacion Instituto Leloir, Instituto de Investigaciones Bioquimicas de Buenos Aires-CONICET, 1405 Buenos Aires, Argentina
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Küpers JJ, Oskam L, Pierik R. Photoreceptors Regulate Plant Developmental Plasticity through Auxin. PLANTS 2020; 9:plants9080940. [PMID: 32722230 PMCID: PMC7463442 DOI: 10.3390/plants9080940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Light absorption by plants changes the composition of light inside vegetation. Blue (B) and red (R) light are used for photosynthesis whereas far-red (FR) and green light are reflected. A combination of UV-B, blue and R:FR-responsive photoreceptors collectively measures the light and temperature environment and adjusts plant development accordingly. This developmental plasticity to photoreceptor signals is largely regulated through the phytohormone auxin. The phytochrome, cryptochrome and UV Resistance Locus 8 (UVR8) photoreceptors are inactivated in shade and/or elevated temperature, which releases their repression of Phytochrome Interacting Factor (PIF) transcription factors. Active PIFs stimulate auxin synthesis and reinforce auxin signalling responses through direct interaction with Auxin Response Factors (ARFs). It was recently discovered that shade-induced hypocotyl elongation and petiole hyponasty depend on long-distance auxin transport towards target cells from the cotyledon and leaf tip, respectively. Other responses, such as phototropic bending, are regulated by auxin transport and signalling across only a few cell layers. In addition, photoreceptors can directly interact with components in the auxin signalling pathway, such as Auxin/Indole Acetic Acids (AUX/IAAs) and ARFs. Here we will discuss the complex interactions between photoreceptor and auxin signalling, addressing both mechanisms and consequences of these highly interconnected pathways.
Collapse
|