1
|
Castelli M, Gammuto L, Podushkina D, Vecchi M, Altiero T, Clementi E, Guidetti R, Rebecchi L, Sassera D. Hepatincolaceae (Alphaproteobacteria) are Distinct From Holosporales and Independently Evolved to Associate With Ecdysozoa. Environ Microbiol 2025; 27:e70028. [PMID: 39797518 DOI: 10.1111/1462-2920.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025]
Abstract
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages. In this study, the number of available Hepatincolaceae genomes was increased to examine their evolutionary and functional characteristics. It was found that the previous phylogenetic grouping with Holosporales was incorrect due to sequence compositional biases and that Hepatincolaceae form an independent branch within the Hepatincolaceae. This led to a reinterpretation of their features, proposing a new evolutionary scenario that involves an independent adaptation to host association compared to the Holosporales, with distinct specificities. The Hepatincolaceae exhibit greater nutritional flexibility, utilising various molecules available in the host gut and thriving in anaerobic conditions. However, they have a less complex mechanism for modulating host interactions, which are likely less direct than those of intracellular bacteria. In addition, representatives of Hepatincolaceae show several lineage-specific traits related to differences in host species and life conditions.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Leandro Gammuto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Diona Podushkina
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Matteo Vecchi
- Dipartimento di Scienze Della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Tiziana Altiero
- Dipartimento Educazione e Scienze Umane, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Emanuela Clementi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Roberto Guidetti
- Dipartimento di Scienze Della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Lorena Rebecchi
- Dipartimento di Scienze Della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
2
|
Tan J, Neupert S, Paluzzi JP. Functional characterization of CCHamides and deorphanization of their receptors in the yellow fever mosquito, Aedes aegypti. Gen Comp Endocrinol 2024; 359:114618. [PMID: 39368756 DOI: 10.1016/j.ygcen.2024.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
As a widely distributed anthropophilic mosquito species and vector of various arboviruses, Aedes aegypti poses a significant threat to human health on a global scale. Investigating mosquito neuropeptides allows us to better understand their physiology. The neuropeptides CCHamide1 (CCHa1) and CCHamide2 (CCHa2) along with their associated G protein-coupled receptors (CCHa1R and CCHa2R) were recently identified and studied across insects. However, expression profiles and physiological roles of CCHamides and their receptors in many other insects, including A. aegypti, remain unclear. This research aimed to quantify and localize the expression of CCHamides along with their receptors and gain insight on their physiological function in the yellow fever mosquito. RT-qPCR analysis revealed transcript abundance of CCHamides and receptors changes over development. Differential expression was also observed in tissues/organs of adult mosquitoes indicating CCHa1 and CCHa2 transcripts are enriched in the midgut, while receptors are expressed across various tissues. CCHamide immunoreactivity was observed in neurons in the brain and ventral nerve cord along with enteroendocrine cells in the posterior midgut adjacent to the midgut-hindgut junction, corroborating their transcript expression profiles. Using different mass spectrometrical approaches, presence of CCHamides were confirmed in the brain of both sexes, including the pars intercerebralis of female mosquitoes, as well as in the gut of adult mosquitoes. For chemical identification of predicted CCHamides, we analyzed brain and gut extracts by ESI-Q Exactive Orbitrap MS and resulting fragmentations confirmed CCHa1 and CCHa2 in brain and midgut samples of both male and female mosquitoes. A heterologous functional assay was used to confirm the specificity and sensitivity of the two CCHamide receptors by assessing their activation in response to diverse mosquito peptides, which confirmed CCHa1 and CCHa2 as natural ligands. Finally, using a capillary feeder (CAFE) bioassay, our results suggest that CCHa2 modulates feeding behaviour in female mosquitoes.
Collapse
Affiliation(s)
- Jinghan Tan
- Department of Biology, York University, Toronto, ON, Canada
| | - Susanne Neupert
- Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
3
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Zhang L, Zhang K, Yang F, Dayananda B, Cao Y, Hu Z, Liu Y. Chromosome-level genome of Scolopendra mutilans provides insights into its evolution. Integr Zool 2024. [PMID: 39075924 DOI: 10.1111/1749-4877.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Report the first chromosome level genome of myriapod Scolopendra mutilans. Reveal gene expansions for importance to adapt. Annotate nine Hox cluster genes in this genome.
Collapse
Affiliation(s)
- Lin Zhang
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Kai Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Kulakova MA, Maslakov GP, Poliushkevich LO. Irreducible Complexity of Hox Gene: Path to the Canonical Function of the Hox Cluster. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:987-1001. [PMID: 38981695 DOI: 10.1134/s0006297924060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 07/11/2024]
Abstract
The evolution of major taxa is often associated with the emergence of new gene families. In all multicellular animals except sponges and comb jellies, the genomes contain Hox genes, which are crucial regulators of development. The canonical function of Hox genes involves colinear patterning of body parts in bilateral animals. This general function is implemented through complex, precisely coordinated mechanisms, not all of which are evolutionarily conserved and fully understood. We suggest that the emergence of this regulatory complexity was preceded by a stage of cooperation between more ancient morphogenetic programs or their individual elements. Footprints of these programs may be present in modern animals to execute non-canonical Hox functions. Non-canonical functions of Hox genes are involved in maintaining terminal nerve cell specificity, autophagy, oogenesis, pre-gastrulation embryogenesis, vertical signaling, and a number of general biological processes. These functions are realized by the basic properties of homeodomain protein and could have triggered the evolution of ParaHoxozoa and Nephrozoa subsequently. Some of these non-canonical Hox functions are discussed in our review.
Collapse
Affiliation(s)
- Milana A Kulakova
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Georgy P Maslakov
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Liudmila O Poliushkevich
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
6
|
Han Z, Wang Z, Rittschof D, Huang Z, Chen L, Hao H, Yao S, Su P, Huang M, Zhang YY, Ke C, Feng D. New genes helped acorn barnacles adapt to a sessile lifestyle. Nat Genet 2024; 56:970-981. [PMID: 38654131 DOI: 10.1038/s41588-024-01733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Barnacles are the only sessile lineages among crustaceans, and their sessile life begins with the settlement of swimming larvae (cyprids) and the formation of protective shells. These processes are crucial for adaptation to a sessile lifestyle, but the underlying molecular mechanisms remain poorly understood. While investigating these mechanisms in the acorn barnacle, Amphibalanus amphitrite, we discovered a new gene, bcs-6, which is involved in the energy metabolism of cyprid settlement and originated from a transposon by acquiring the promoter and cis-regulatory element. Unlike mollusks, the barnacle shell comprises alternate layers of chitin and calcite and requires another new gene, bsf, which generates silk-like fibers that efficiently bind chitin and aggregate calcite in the aquatic environment. Our findings highlight the importance of exploring new genes in unique adaptative scenarios, and the results will provide important insights into gene origin and material development.
Collapse
Affiliation(s)
- Zhaofang Han
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixuan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Daniel Rittschof
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Liying Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Shanshan Yao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Pei Su
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Miaoqin Huang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Danqing Feng
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Li G, Qiu J, Cao H, Zheng L, Chi C, Li S, Zhou X. Molecular Characterization, Expression and In Situ Hybridization Analysis of a Pedal Peptide/Orcokinin-type Neuropeptide in Cuttlefish Sepiella japonica. Curr Protein Pept Sci 2024; 25:326-338. [PMID: 38243942 DOI: 10.2174/0113892037255378231101065721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Neuropeptide pedal peptide (PP) and orcokinin (OK), which are structurally related active peptides, have been widely discovered in invertebrates and constitute the PP/OK neuropeptide family. They have complex structures and play myriad roles in physiological processes. To date, there have been no related reports of PP/OK-type neuropeptide in cephalopods, which possess a highly differentiated multi-lobular brain. METHODS Rapid Amplification of cDNA Ends (RACE) was employed to obtain the open reading frame (ORF) of PP/OK-type neuropeptide in Sepiella japonica (termed as Sj-PP/OK). Various software were used for sequence analysis. Semi-quantitative PCR was applied to analyze the tissue distribution profile, quantitative real-time PCR (qRT-PCR) was used to study spatio-temporal expression throughout the entire growth and development period, and in situ hybridization (ISH) was employed to observe the tissue location of Sj-PP/OK. RESULTS in the present study, we identified the ORF of Sj-PP/OK. The putative precursor of Sj-PP/ OK encodes 22 mature peptides, of which only tridecapeptides could undergo post-translationally amidated at C-terminus. Each of these tridecapeptides possesses the most conserved and frequent N-terminus Asp-Ser-Ile (DSI). Sequence analysis revealed that Sj-PP/OK shared comparatively low identity with other invertebrates PP or OK. The tissue distribution profile showed differences in the expression level of Sj-PP/OK between male and female. qRT-PCR data demonstrated that Sj-PP/OK was widely distributed in various tissues, with its expression level increasing continuously in the brain, optic lobe, liver, and nidamental gland throughout the entire growth and development stages until gonad maturation. ISH detected that Sj-PP/OK positive signals existed in almost all regions of the optic lobe except the plexiform zone, the outer edge of all functional lobes in the brain, epithelial cells and the outer membrane layer of the accessory nidamental gland. These findings suggest that Sj-PP/OK might play a role in the regulation of reproduction, such as vitellogenin synthesis, restoration, and ova encapsulation. CONCLUSION The study indicated that Sj-PP/OK may be involved in the neuroendocrine regulation in cephalopods, providing primary theoretical basis for further studies of its regulation role in reproduction.
Collapse
Affiliation(s)
- Gong Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiayin Qiu
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huimin Cao
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Libing Zheng
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Changfeng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuang Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xu Zhou
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
8
|
Legras M, Ghisleni G, Regnard L, Dias M, Soilihi R, Celmar E, Balavoine G. Fast cycling culture of the annelid model Platynereis dumerilii. PLoS One 2023; 18:e0295290. [PMID: 38127889 PMCID: PMC10735030 DOI: 10.1371/journal.pone.0295290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Platynereis dumerilii, a marine annelid, is a model animal that has gained popularity in various fields such as developmental biology, biological rhythms, nervous system organization and physiology, behaviour, reproductive biology, and epigenetic regulation. The transparency of P. dumerilii tissues at all developmental stages makes it easy to perform live microscopic imaging of all cell types. In addition, the slow-evolving genome of P. dumerilii and its phylogenetic position as a representative of the vast branch of Lophotrochozoans add to its evolutionary significance. Although P. dumerilii is amenable to transgenesis and CRISPR-Cas9 knockouts, its relatively long and indefinite life cycle, as well as its semelparous reproduction have been hindrances to its adoption as a reverse genetics model. To overcome this limitation, an adapted culturing method has been developed allowing much faster life cycling, with median reproductive age at 13-14 weeks instead of 25-35 weeks using the traditional protocol. A low worm density in boxes and a strictly controlled feeding regime are important factors for the rapid growth and health of the worms. This culture method has several advantages, such as being much more compact, not requiring air bubbling or an artificial moonlight regime for synchronized sexual maturation and necessitating only limited water change. A full protocol for worm care and handling is provided.
Collapse
Affiliation(s)
- Mathieu Legras
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Giulia Ghisleni
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Léna Regnard
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Manon Dias
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Rabouant Soilihi
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Enzo Celmar
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
9
|
Aase-Remedios ME, Janssen R, Leite DJ, Sumner-Rooney L, McGregor AP. Evolution of the Spider Homeobox Gene Repertoire by Tandem and Whole Genome Duplication. Mol Biol Evol 2023; 40:msad239. [PMID: 37935059 PMCID: PMC10726417 DOI: 10.1093/molbev/msad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Uppsala University, Uppsala, 752 36, Sweden
| | - Daniel J Leite
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Lauren Sumner-Rooney
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, 10115, Germany
| | - Alistair P McGregor
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
10
|
Dong H, Li J, Wu Q, Jin Y. Confluence and convergence of Dscam and Pcdh cell-recognition codes. Trends Biochem Sci 2023; 48:1044-1057. [PMID: 37839971 DOI: 10.1016/j.tibs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The ability of neurites of the same neuron to avoid each other (self-avoidance) is a conserved feature in both invertebrates and vertebrates. The key to self-avoidance is the generation of a unique subset of cell-surface proteins in individual neurons engaging in isoform-specific homophilic interactions that drive neurite repulsion rather than adhesion. Among these cell-surface proteins are fly Dscam1 and vertebrate clustered protocadherins (cPcdhs), as well as the recently characterized shortened Dscam (sDscam) in the Chelicerata. Herein, we review recent advances in our understanding of how cPcdh, Dscam, and sDscam cell-surface recognition codes are expressed and translated into cellular functions essential for neural wiring.
Collapse
Affiliation(s)
- Haiyang Dong
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| | - Jinhuan Li
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongfeng Jin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China.
| |
Collapse
|
11
|
Law STS, Yu Y, Nong W, So WL, Li Y, Swale T, Ferrier DEK, Qiu J, Qian P, Hui JHL. The genome of the deep-sea anemone Actinernus sp. contains a mega-array of ANTP-class homeobox genes. Proc Biol Sci 2023; 290:20231563. [PMID: 37876192 PMCID: PMC10598428 DOI: 10.1098/rspb.2023.1563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.
Collapse
Affiliation(s)
- Sean Tsz Sum Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yifei Yu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, CA 95066, USA
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Jianwen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
12
|
Edgecombe GD, Sivell D. The genome sequence of the centipede Strigamia acuminata (Leach, 1816). Wellcome Open Res 2023; 8:420. [PMID: 37808388 PMCID: PMC10556566 DOI: 10.12688/wellcomeopenres.19941.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
We present a genome assembly from an individual male Strigamia acuminata (centipede; Arthropoda; Chilopoda; Geophilomorpha; Geophilidae; Linotaeniinae). The genome sequence is 237.5 megabases in span. Most of the assembly is scaffolded into 11 chromosomal pseudomolecules, including the X and Y sex chromosomes. The mitochondrial genome has also been assembled and is 15.07 kilobases in length.
Collapse
|
13
|
Zhu B, Jin P, Zhang Y, Shen Y, Wang W, Li S. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands. BMC Biol 2023; 21:82. [PMID: 37055766 PMCID: PMC10099834 DOI: 10.1186/s12915-023-01581-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Spiders comprise a hyperdiverse lineage of predators with venom systems, yet the origin of functionally novel spider venom glands remains unclear. Previous studies have hypothesized that spider venom glands originated from salivary glands or evolved from silk-producing glands present in early chelicerates. However, there is insufficient molecular evidence to indicate similarity among them. Here, we provide comparative analyses of genome and transcriptome data from various lineages of spiders and other arthropods to advance our understanding of spider venom gland evolution. RESULTS We generated a chromosome-level genome assembly of a model spider species, the common house spider (Parasteatoda tepidariorum). Module preservation, GO semantic similarity, and differentially upregulated gene similarity analyses demonstrated a lower similarity in gene expressions between the venom glands and salivary glands compared to the silk glands, which questions the validity of the salivary gland origin hypothesis but unexpectedly prefers to support the ancestral silk gland origin hypothesis. The conserved core network in the venom and silk glands was mainly correlated with transcription regulation, protein modification, transport, and signal transduction pathways. At the genetic level, we found that many genes in the venom gland-specific transcription modules show positive selection and upregulated expressions, suggesting that genetic variation plays an important role in the evolution of venom glands. CONCLUSIONS This research implies the unique origin and evolutionary path of spider venom glands and provides a basis for understanding the diverse molecular characteristics of venom systems.
Collapse
Affiliation(s)
- Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Shao C, Sun S, Liu K, Wang J, Li S, Liu Q, Deagle BE, Seim I, Biscontin A, Wang Q, Liu X, Kawaguchi S, Liu Y, Jarman S, Wang Y, Wang HY, Huang G, Hu J, Feng B, De Pittà C, Liu S, Wang R, Ma K, Ying Y, Sales G, Sun T, Wang X, Zhang Y, Zhao Y, Pan S, Hao X, Wang Y, Xu J, Yue B, Sun Y, Zhang H, Xu M, Liu Y, Jia X, Zhu J, Liu S, Ruan J, Zhang G, Yang H, Xu X, Wang J, Zhao X, Meyer B, Fan G. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell 2023; 186:1279-1294.e19. [PMID: 36868220 DOI: 10.1016/j.cell.2023.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.
Collapse
Affiliation(s)
- Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiahao Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Qun Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Bruce E Deagle
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Fish Collection, National Research Collections Australia, Hobart, TAS 7000, Australia; Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | | | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Beijing, Beijing 102601, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| | - So Kawaguchi
- Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
| | - Yalin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Simon Jarman
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6009, Australia
| | - Yue Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Hong-Yan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | | | - Jiang Hu
- Nextomics Biosciences Institute, Wuhan, Hubei 430073, China
| | - Bo Feng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | | | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Rui Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Kailong Ma
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yiping Ying
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Gabrielle Sales
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Tao Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinliang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yunxia Zhao
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xiancai Hao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yang Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jiakun Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Bowen Yue
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yanxu Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Mengyang Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yuyan Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Jiancheng Zhu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shufang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; James D. Watson Institute of Genome Science, Hangzhou 310058, China
| | - Xun Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jun Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xianyong Zhao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, 26111 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129 Oldenburg, Germany.
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen 518120, China.
| |
Collapse
|
15
|
Nicolini F, Martelossi J, Forni G, Savojardo C, Mantovani B, Luchetti A. Comparative genomics of Hox and ParaHox genes among major lineages of Branchiopoda with emphasis on tadpole shrimps. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1046960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hox and ParaHox genes (HPHGs) are key developmental genes that pattern regional identity along the anterior–posterior body axis of most animals. Here, we identified HPHGs in tadpole shrimps (Pancrustacea, Branchiopoda, Notostraca), an iconic example of the so-called “living fossils” and performed a comparative genomics analysis of HPHGs and the Hox cluster among major branchiopod lineages. Notostraca possess the entire Hox complement, and the Hox cluster seems to be split into two different subclusters, although we were not able to support this finding with chromosome-level assemblies. However, the genomic structure of Hox genes in Notostraca appears more derived than that of Daphnia spp., which instead retains the plesiomorphic condition of a single compact cluster. Spinicaudata and Artemia franciscana show instead a Hox cluster subdivided across two or more genomic scaffolds with some orthologs either duplicated or missing. Yet, branchiopod HPHGs are similar among the various clades in terms of both intron length and number, as well as in their pattern of molecular evolution. Sequence substitution rates are in fact generally similar for most of the branchiopod Hox genes and the few differences we found cannot be traced back to natural selection, as they are not associated with any signals of diversifying selection or substantial switches in selective modes. Altogether, these findings do not support a significant stasis in the Notostraca Hox cluster and further confirm how morphological evolution is not tightly associated with genome dynamics.
Collapse
|
16
|
Mulhair PO, Crowley L, Boyes DH, Harper A, Lewis OT, Holland PWH. Diversity, duplication, and genomic organization of homeobox genes in Lepidoptera. Genome Res 2023; 33:32-44. [PMID: 36617663 PMCID: PMC9977156 DOI: 10.1101/gr.277118.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Homeobox genes encode transcription factors with essential roles in patterning and cell fate in developing animal embryos. Many homeobox genes, including Hox and NK genes, are arranged in gene clusters, a feature likely related to transcriptional control. Sparse taxon sampling and fragmentary genome assemblies mean that little is known about the dynamics of homeobox gene evolution across Lepidoptera or about how changes in homeobox gene number and organization relate to diversity in this large order of insects. Here we analyze an extensive data set of high-quality genomes to characterize the number and organization of all homeobox genes in 123 species of Lepidoptera from 23 taxonomic families. We find most Lepidoptera have around 100 homeobox loci, including an unusual Hox gene cluster in which the lab gene is repositioned and the ro gene is next to pb A topologically associating domain spans much of the gene cluster, suggesting deep regulatory conservation of the Hox cluster arrangement in this insect order. Most Lepidoptera have four Shx genes, divergent zen-derived loci, but these loci underwent dramatic duplication in several lineages, with some moths having over 165 homeobox loci in the Hox gene cluster; this expansion is associated with local LINE element density. In contrast, the NK gene cluster content is more stable, although there are differences in organization compared with other insects, as well as major rearrangements within butterflies. Our analysis represents the first description of homeobox gene content across the order Lepidoptera, exemplifying the potential of newly generated genome assemblies for understanding genome and gene family evolution.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Liam Crowley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Douglas H Boyes
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Amber Harper
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Peter W H Holland
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
17
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
18
|
Wang JJ, Bai Y, Dong Y. A Rearrangement of the Mitochondrial Genes of Centipedes (Arthropoda, Myriapoda) with a Phylogenetic Analysis. Genes (Basel) 2022; 13:1787. [PMID: 36292672 PMCID: PMC9601646 DOI: 10.3390/genes13101787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 09/12/2024] Open
Abstract
Due to the limitations of taxon sampling and differences in results from the available data, the phylogenetic relationships of the Myriapoda remain contentious. Therefore, we try to reconstruct and analyze the phylogenetic relationships within the Myriapoda by examining mitochondrial genomes (the mitogenome). In this study, typical circular mitogenomes of Mecistocephalus marmoratus and Scolopendra subspinipes were sequenced by Sanger sequencing; they were 15,279 bp and 14,637 bp in length, respectively, and a control region and 37 typical mitochondrial genes were annotated in the sequences. The results showed that all 13 PCGs started with ATN codons and ended with TAR codons or a single T; what is interesting is that the gene orders of M. marmoratus have been extensively rearranged compared with most Myriapoda. Thus, we propose a simple duplication/loss model to explain the extensively rearranged genes of M. marmoratus, hoping to provide insights into mitogenome rearrangement events in Myriapoda. In addition, our mitogenomic phylogenetic analyses showed that the main myriapod groups are monophyletic and supported the combination of the Pauropoda and Diplopoda to form the Dignatha. Within the Chilopoda, we suggest that Scutigeromorpha is a sister group to the Lithobiomorpha, Geophilomorpha, and Scolopendromorpha. We also identified a close relationship between the Lithobiomorpha and Geophilomorpha. The results also indicate that the mitogenome can be used as an effective mechanism to understand the phylogenetic relationships within Myriapoda.
Collapse
Affiliation(s)
| | | | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
19
|
Zhou Z, Mo L, Li D, Zeng W, Wu H, Wu Z, Huang J. Comparative transcriptomics analyses of chemosensory genes of antenna in male red swamp crayfish Procambarus clarkii. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.976448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The red swamp crayfish, Procambarus clarkii, is a globally invasive species and has caused huge damage to aquaculture, biodiversity, and ecology worldwide. Antenna-expressed receptors are important for P. clarkii to detect chemosensory cues for mate attraction. In this study, we tested the behavior of male P. clarkii to the conditioned water from female P. clarkii during the mating and non-mating periods, and performed RNA sequencing to investigate the chemosensory-related genes of the antenna of male P. clarkii. The results of the behavioral assay have shown that for the female-conditioned water, male P. clarkii within the mating period can be significantly attracted, but not during the non-mating period. This suggested that the expressions of chemosensory-related genes in the antenna of male P. clarkii may change significantly with mating seasonal variation. Antenna transcriptomes found that a total of 59,218 unigenes with an average length of 1,056.41 bp, and 4,889 differentially expressed unigenes (DEGs), among which 2,128 were upregulated, while 2,761 were downregulated were obtained. A total of 12 upregulated and nine downregulated DEGs were associated with chemical reception, including four ionotropic receptors (IRs) or ionotropic glutamate receptors (iGluRs), eight G-protein-coupled receptors (GPCRs), five transient receptor potential channels (TRP channels), one sodium–calcium exchanger, one isomerase, and two uncharacterized proteins (chemosensory proteins-like, CSPs). CSPs were preliminarily classified as pheromone receptors in the antenna of male P. clarkii. Furthermore, the calcium transduction-related pathways may play an important role in the sex pheromone reception of the male P. clarkii’s antenna. The results of quantitative real-time reverse transcriptase PCR (RT-qPCR) showed that the trends of expression of eight selected unigenes were consistent with RNA-Seq results. Our results provide more comprehensive data for chemical communication mechanisms after P. clarkii enter the mating period and eventually would develop better control strategies in further.
Collapse
|
20
|
Myriapod genomes reveal ancestral horizontal gene transfer and hormonal gene loss in millipedes. Nat Commun 2022; 13:3010. [PMID: 35637228 PMCID: PMC9151784 DOI: 10.1038/s41467-022-30690-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/12/2022] [Indexed: 01/08/2023] Open
Abstract
Animals display a fascinating diversity of body plans. Correspondingly, genomic analyses have revealed dynamic evolution of gene gains and losses among animal lineages. Here we sequence six new myriapod genomes (three millipedes, three centipedes) at key phylogenetic positions within this major but understudied arthropod lineage. We combine these with existing genomic resources to conduct a comparative analysis across all available myriapod genomes. We find that millipedes generally have considerably smaller genomes than centipedes, with the repeatome being a major contributor to genome size, driven by independent large gains of transposons in three centipede species. In contrast to millipedes, centipedes gained a large number of gene families after the subphyla diverged, with gains contributing to sensory and locomotory adaptations that facilitated their ecological shift to predation. We identify distinct horizontal gene transfer (HGT) events from bacteria to millipedes and centipedes, with no identifiable HGTs shared among all myriapods. Loss of juvenile hormone O-methyltransferase, a key enzyme in catalysing sesquiterpenoid hormone production in arthropods, was also revealed in all millipede lineages. Our findings suggest that the rapid evolution of distinct genomic pathways in centipede and millipede lineages following their divergence from the myriapod ancestor, was shaped by differing ecological pressures. Myriapods play an important ecological role in soil and forest ecosystems. Here the authors analyse nine myriapod genomes, showing rapid evolution of distinct genomic pathways in centipede and millipede lineages, shaped by differing ecological pressures.
Collapse
|
21
|
So WL, Kai Z, Qu Z, Bendena WG, Hui JHL. Rethinking Sesquiterpenoids: A Widespread Hormone in Animals. Int J Mol Sci 2022; 23:ijms23115998. [PMID: 35682678 PMCID: PMC9181382 DOI: 10.3390/ijms23115998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
The sesquiterpenoid hormone juvenile hormone (JH) controls development, reproduction, and metamorphosis in insects, and has long been thought to be confined to the Insecta. While it remains true that juvenile hormone is specifically synthesized in insects, other types or forms of sesquiterpenoids have also been discovered in distantly related animals, such as the jellyfish. Here, we combine the latest literature and annotate the sesquiterpenoid biosynthetic pathway genes in different animal genomes. We hypothesize that the sesquiterpenoid hormonal system is an ancestral system established in an animal ancestor and remains widespread in many animals. Different animal lineages have adapted different enzymatic routes from a common pathway, with cnidarians producing farnesoic acid (FA); non-insect protostomes and non-vertebrate deuterostomes such as cephalochordate and echinoderm synthesizing FA and methyl farnesoate (MF); and insects producing FA, MF, and JH. Our hypothesis revolutionizes the current view on the sesquiterpenoids in the metazoans, and forms a foundation for a re-investigation of the roles of this important and yet neglected type of hormone in different animals.
Collapse
Affiliation(s)
- Wai Lok So
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenpeng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Zhe Qu
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William G. Bendena
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: (W.G.B.); (J.H.L.H.)
| | - Jerome H. L. Hui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (W.G.B.); (J.H.L.H.)
| |
Collapse
|
22
|
Liu H, Jiang F, Wang S, Wang H, Wang A, Zhao H, Xu D, Yang B, Fan W. Chromosome-level genome of the globe skimmer dragonfly (Pantala flavescens). Gigascience 2022; 11:giac009. [PMID: 35373834 PMCID: PMC8978299 DOI: 10.1093/gigascience/giac009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The globe skimmer dragonfly (Pantala flavescens) is a notable Odonata insect distributed in nature fields and farmlands worldwide, and it is commonly recognized as a natural enemy because it preys on agricultural pests and health pests. As one of the sister groups of winged insects, odonatan species are key to understanding the evolution of insect wings. FINDINGS We present a high-quality reference genome of P. flavescens, which is the first chromosome-level genome in the Palaeoptera (Odonata and Ephemeroptera). The assembled genome size was 662 Mb, with a contig N50 of 16.2 Mb. Via Hi-C scaffolding, 648 Mb (97.9%) of contig sequences were clustered, ordered, and assembled into 12 large scaffolds, each corresponding to a natural chromosome. The X chromosome was identified by sequence coverage depth. The repetitive sequences and gene density of the X chromosome are similar to those of autosomal sequences, but the X chromosome shows a much lower degree of heterozygosity. Our analysis shows that the effective population size experienced 3 declining events, which may have been caused by climate change and environmental pollution. CONCLUSIONS The genome of P. flavescens provides more information on the biology and evolution of insects and will help for the use of this species in pest control.
Collapse
Affiliation(s)
- Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hanbo Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Boyuan Yang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
23
|
Zuo Q, Zhang Z, Shen Y. Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS-2019 and phylogenetic analysis of the Myriapoda. Ecol Evol 2022; 12:e8764. [PMID: 35356579 PMCID: PMC8948135 DOI: 10.1002/ece3.8764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/29/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS-2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT-skew (-0.236). Several genes rearrangements were detected and we propose a new rearrangement model: "TD (N\R) L + C" based on the genome-scale duplication + (non-random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
Collapse
Affiliation(s)
- Qing Zuo
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Zhisheng Zhang
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal BiologySchool of Life SciencesChongqing Normal UniversityChongqingChina
| |
Collapse
|
24
|
Nong W, Yu Y, Aase-Remedios ME, Xie Y, So WL, Li Y, Wong CF, Baril T, Law STS, Lai SY, Haimovitz J, Swale T, Chen SS, Kai ZP, Sun X, Wu Z, Hayward A, Ferrier DEK, Hui JHL. Genome of the ramshorn snail Biomphalaria straminea-an obligate intermediate host of schistosomiasis. Gigascience 2022; 11:giac012. [PMID: 35166339 PMCID: PMC8848322 DOI: 10.1093/gigascience/giac012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/02/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. FINDINGS Using a combination of Illumina short-read, 10X Genomics linked-read, and Hi-C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage. CONCLUSION This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely.
Collapse
Affiliation(s)
- Wenyan Nong
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifei Yu
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Yichun Xie
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiqian Li
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk Fung Wong
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Sean T S Law
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung Yee Lai
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | - Shan-shan Chen
- Institute of Agro-food Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhen-peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Xi Sun
- Sun Yat-sen University, Guangdong, China
| | | | | | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Jerome H L Hui
- School of Life Science, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Simakov O, Bredeson J, Berkoff K, Marletaz F, Mitros T, Schultz DT, O’Connell BL, Dear P, Martinez DE, Steele RE, Green RE, David CN, Rokhsar DS. Deeply conserved synteny and the evolution of metazoan chromosomes. SCIENCE ADVANCES 2022; 8:eabi5884. [PMID: 35108053 PMCID: PMC8809688 DOI: 10.1126/sciadv.abi5884] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Animal genomes show networks of deeply conserved gene linkages whose phylogenetic scope and chromosomal context remain unclear. Here, we report chromosome-scale conservation of synteny among bilaterians, cnidarians, and sponges and use comparative analysis to reconstruct ancestral chromosomes across major animal groups. Comparisons among diverse metazoans reveal the processes of chromosome evolution that produced contemporary karyotypes from their Precambrian progenitors. On the basis of these findings, we introduce a simple algebraic representation of chromosomal change and use it to establish a unified systematic framework for metazoan chromosome evolution. We find that fusion-with-mixing, a previously unappreciated mode of chromosome change, has played a central role. We find that relicts of several metazoan chromosomal units are preserved in unicellular eukaryotes. These conserved pre-metazoan linkages include the chromosomal unit that encodes the most diverse set of metazoan homeobox genes, suggesting a candidate genomic context for the early diversification of this key gene family.
Collapse
Affiliation(s)
- Oleg Simakov
- Department for Neurosciences and Developmental
Biology, University of Vienna, Vienna 1010, Austria
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Kodiak Berkoff
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdinand Marletaz
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Division of Biosciences, University College London,
Gower St., London WC1E 6BT, UK
| | - Therese Mitros
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Darrin T. Schultz
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
- Monterey Bay Aquarium Research Institute, Moss
Landing, CA 95039, USA
| | - Brendan L. O’Connell
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Paul Dear
- Mote Research Ltd, Babraham Hall, Babraham, Cambridge
CB2 4AT, UK
| | | | - Robert E. Steele
- Department of Biological Chemistry, University of
California, Irvine, Irvine, CA 92697-1700, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charles N. David
- Faculty of Biology, Ludwig Maximilian University of
Munich, Munich 80539, Germany
| | - Daniel S. Rokhsar
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Chan Zuckerberg Biohub, 499 Illinois St., San
Francisco, CA 94158, USA
- U.S. Department of Energy Joint Genome Institute,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720,
USA
| |
Collapse
|
26
|
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T. Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proc Biol Sci 2022; 289:20212183. [PMID: 35042416 PMCID: PMC8767184 DOI: 10.1098/rspb.2021.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.
Collapse
Affiliation(s)
- José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Pablo M. González
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Ryan N. Su
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Sarah J. Bedford
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Wang J, Bai Y, Zhao H, Mu R, Dong Y. Reinvestigating the phylogeny of Myriapoda with more extensive taxon sampling and novel genetic perspective. PeerJ 2022; 9:e12691. [PMID: 35036164 PMCID: PMC8710254 DOI: 10.7717/peerj.12691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background There have been extensive debates on the interrelationships among the four major classes of Myriapoda-Chilopoda, Symphyla, Diplopoda, and Pauropoda. The core controversy is the position of Pauropoda; that is, whether it should be grouped with Symphyla or Diplopoda as a sister group. Two recent phylogenomic studies separately investigated transcriptomic data from 14 and 29 Myriapoda species covering all four groups along with outgroups, and proposed two different topologies of phylogenetic relationships. Methods Building on these studies, we extended the taxon sampling by investigating 39 myriapods and integrating the previously available data with three new transcriptomic datasets generated in this study. Our analyses present the phylogenetic relationships among the four major classes of Myriapoda with a more abundant taxon sampling and provide a new perspective to investigate the above-mentioned question, where visual genes' identification were conducted. We compared the appearance pattern of genes, grouping them according to their classes and the visual pathways involved. Positive selection was detected for all identified visual genes between every pair of 39 myriapods, and 14 genes showed positive selection among 27 pairs. Results From the results of phylogenomic analyses, we propose that Symphyla is a sister group of Pauropoda. This stance has also received strong support from tree inference and topology tests.
Collapse
Affiliation(s)
- Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yu Bai
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Haifeng Zhao
- Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Ruinan Mu
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
28
|
Lee J, Cho BC, Park JS. Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities. Mar Genomics 2021; 61:100919. [PMID: 34965493 DOI: 10.1016/j.margen.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Brine shrimp Artemia franciscana, a commercially important species, can thrive in a wide range of salinities and is commonly found in hypersaline lakes and solar salterns. Transcriptome analysis can enhance the understanding of the adaptative mechanisms of brine shrimp in aquaculture. RNA sequencing (RNAseq) data was generated from A. franciscana adults that were salt-adapted for 2-4 weeks at five salinities: 35, 50, 100, 150, and 230 psu. Long-read isoform sequencing (IsoSeq) data was used to construct a high-quality transcriptome assembly. Also, the gene expression patterns in A. franciscana adults were examined. Notably, the transcriptional response of A. franciscana's acclimation to intermediate salinities (50-150 psu) displayed frequently and differentially U-shaped or inverted U-shaped expression patterns. In addition, the types of genes showing two nonmonotonic expression patterns were distinct from each other. The coordinated shifts in gene expression suggest different homeostatic strategies of A. franciscana at specific salinities; such strategies may enhance population fitness at extreme salinities. Our study should promote a scientific concept for the gene expression patterns of A. franciscana along a broad salinity gradient, and a variety of salinity and prey should be monitored for testing the gene expression pattern of this important aquaculture species.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jong Soo Park
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
29
|
Harper A, Baudouin Gonzalez L, Schönauer A, Janssen R, Seiter M, Holzem M, Arif S, McGregor AP, Sumner-Rooney L. Widespread retention of ohnologs in key developmental gene families following whole-genome duplication in arachnopulmonates. G3 (BETHESDA, MD.) 2021; 11:jkab299. [PMID: 34849767 PMCID: PMC8664421 DOI: 10.1093/g3journal/jkab299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023]
Abstract
Whole-genome duplications (WGDs) have occurred multiple times during animal evolution, including in lineages leading to vertebrates, teleosts, horseshoe crabs, and arachnopulmonates. These dramatic events initially produce a wealth of new genetic material, generally followed by extensive gene loss. It appears, however, that developmental genes such as homeobox genes, signaling pathway components and microRNAs are frequently retained as duplicates (so-called ohnologs) following WGD. These not only provide the best evidence for WGD, but an opportunity to study its evolutionary consequences. Although these genes are well studied in the context of vertebrate WGD, similar comparisons across the extant arachnopulmonate orders are patchy. We sequenced embryonic transcriptomes from two spider species and two amblypygid species and surveyed three important gene families, Hox, Wnt, and frizzled, across these and 12 existing transcriptomic and genomic resources for chelicerates. We report extensive retention of putative ohnologs, further supporting the ancestral arachnopulmonate WGD. We also found evidence of consistent evolutionary trajectories in Hox and Wnt gene repertoires across three of the six arachnopulmonate orders, with interorder variation in the retention of specific paralogs. We identified variation between major clades in spiders and are better able to reconstruct the chronology of gene duplications and losses in spiders, amblypygids, and scorpions. These insights shed light on the evolution of the developmental toolkit in arachnopulmonates, highlight the importance of the comparative approach within lineages, and provide substantial new transcriptomic data for future study.
Collapse
Affiliation(s)
- Amber Harper
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Luis Baudouin Gonzalez
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Ralf Janssen
- Department of Earth Sciences, Uppsala University, Geocentrum, 752 36 Uppsala, Sweden
| | - Michael Seiter
- Department of Evolutionary Biology, Unit Integrative Zoology, University of Vienna, 1090 Vienna, Austria
| | - Michaela Holzem
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Saad Arif
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| |
Collapse
|
30
|
Fuentes D, Molina M, Chorostecki U, Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T. PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies. Nucleic Acids Res 2021; 50:D1062-D1068. [PMID: 34718760 PMCID: PMC8728271 DOI: 10.1093/nar/gkab966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
PhylomeDB is a unique knowledge base providing public access to minable and browsable catalogues of pre-computed genome-wide collections of annotated sequences, alignments and phylogenies (i.e. phylomes) of homologous genes, as well as to their corresponding phylogeny-based orthology and paralogy relationships. In addition, PhylomeDB trees and alignments can be downloaded for further processing to detect and date gene duplication events, infer past events of inter-species hybridization and horizontal gene transfer, as well as to uncover footprints of selection, introgression, gene conversion, or other relevant evolutionary processes in the genes and organisms of interest. Here, we describe the latest evolution of PhylomeDB (version 5). This new version includes a newly implemented web interface and several new functionalities such as optimized searching procedures, the possibility to create user-defined phylome collections, and a fully redesigned data structure. This release also represents a significant core data expansion, with the database providing access to 534 phylomes, comprising over 8 million trees, and homology relationships for genes in over 6000 species. This makes PhylomeDB the largest and most comprehensive public repository of gene phylogenies. PhylomeDB is available at http://www.phylomedb.org.
Collapse
Affiliation(s)
- Diego Fuentes
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Manuel Molina
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Uciel Chorostecki
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY, Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh YW, Hui J, Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K, Raible F, Arendt D. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021; 12:10. [PMID: 34579780 PMCID: PMC8477482 DOI: 10.1186/s13227-021-00180-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
Collapse
Affiliation(s)
- B. Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Nadine Randel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Elizabeth A. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Guillaume Balavoine
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Paola Y. Bertucci
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David E. K. Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | | | - Eve Gazave
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jörg Hardege
- Department of Biological & Marine Sciences, Hull University, Cottingham Road, Hull, HU67RX UK
| | - Cameron Hird
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Yu-Wen Hsieh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Q. Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hernando M. Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, Howland Street 25, London, W1T 4JG UK
| | - Michel Vervoort
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | | | - Florian Raible
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Maslakov GP, Kulishkin NS, Surkova AA, Kulakova MA. Maternal Transcripts of Hox Genes Are Found in Oocytes of Platynereis dumerilii (Annelida, Nereididae). J Dev Biol 2021; 9:jdb9030037. [PMID: 34564086 PMCID: PMC8482071 DOI: 10.3390/jdb9030037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Hox genes are some of the best studied developmental control genes. In the overwhelming majority of bilateral animals, these genes are sequentially activated along the main body axis during the establishment of the ground plane, i.e., at the moment of gastrulation. Their activation is necessary for the correct differentiation of cell lines, but at the same time it reduces the level of stemness. That is why the chromatin of Hox loci in the pre-gastrulating embryo is in a bivalent state. It carries both repressive and permissive epigenetic markers at H3 histone residues, leading to transcriptional repression. There is a paradox that maternal RNAs, and in some cases the proteins of the Hox genes, are present in oocytes and preimplantation embryos in mammals. Their functions should be different from the zygotic ones and have not been studied to date. Our object is the errant annelid Platynereis dumerilii. This model is convenient for studying new functions and mechanisms of regulation of Hox genes, because it is incomparably simpler than laboratory vertebrates. Using a standard RT-PCR on cDNA template which was obtained by reverse transcription using random primers, we found that maternal transcripts of almost all Hox genes are present in unfertilized oocytes of worm. We assessed the localization of these transcripts using WMISH.
Collapse
Affiliation(s)
- Georgy P. Maslakov
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
| | - Nikita S. Kulishkin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
| | - Alina A. Surkova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab., 1, 199034 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
33
|
Gainett G, González VL, Ballesteros JA, Setton EVW, Baker CM, Barolo Gargiulo L, Santibáñez-López CE, Coddington JA, Sharma PP. The genome of a daddy-long-legs (Opiliones) illuminates the evolution of arachnid appendages. Proc Biol Sci 2021; 288:20211168. [PMID: 34344178 PMCID: PMC8334856 DOI: 10.1098/rspb.2021.1168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Chelicerate arthropods exhibit dynamic genome evolution, with ancient whole-genome duplication (WGD) events affecting several orders. Yet, genomes remain unavailable for a number of poorly studied orders, such as Opiliones (daddy-long-legs), which has hindered comparative study. We assembled the first harvestman draft genome for the species Phalangium opilio, which bears elongate, prehensile appendages, made possible by numerous distal articles called tarsomeres. Here, we show that the genome of P. opilio exhibits a single Hox cluster and no evidence of WGD. To investigate the developmental genetic basis for the quintessential trait of this group-the elongate legs-we interrogated the function of the Hox genes Deformed (Dfd) and Sex combs reduced (Scr), and a homologue of Epidermal growth factor receptor (Egfr). Knockdown of Dfd incurred homeotic transformation of two pairs of legs into pedipalps, with dramatic shortening of leg segments in the longest leg pair, whereas homeosis in L3 is only achieved upon double Dfd + Scr knockdown. Knockdown of Egfr incurred shortened appendages and the loss of tarsomeres. The similarity of Egfr loss-of-function phenotypic spectra in insects and this arachnid suggest that repeated cooption of EGFR signalling underlies the independent gains of supernumerary tarsomeres across the arthropod tree of life.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | - Vanessa L. González
- Global Genome Initiative, Smithsonian Institution, National Museum of Natural History, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Jesús A. Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | - Emily V. W. Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | - Caitlin M. Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | | | - Carlos E. Santibáñez-López
- Department of Biological and Environmental Sciences, Western Connecticut State University, 181 White St, Danbury, CT 06810, USA
| | - Jonathan A. Coddington
- Global Genome Initiative, Smithsonian Institution, National Museum of Natural History, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| |
Collapse
|
34
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
35
|
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, Calevro F, Cash EI, Chao H, Charles H, Chen MJM, Childers C, Cridge AG, Dearden P, Dinh H, Doddapaneni HV, Dolan A, Donath A, Dowling D, Dugan S, Duncan E, Elpidina EN, Friedrich M, Geuverink E, Gibson JD, Grath S, Grimmelikhuijzen CJP, Große-Wilde E, Gudobba C, Han Y, Hansson BS, Hauser F, Hughes DST, Ioannidis P, Jacquin-Joly E, Jennings EC, Jones JW, Klasberg S, Lee SL, Lesný P, Lovegrove M, Martin S, Martynov AG, Mayer C, Montagné N, Moris VC, Munoz-Torres M, Murali SC, Muzny DM, Oppert B, Parisot N, Pauli T, Peters RS, Petersen M, Pick C, Persyn E, Podsiadlowski L, Poelchau MF, Provataris P, Qu J, Reijnders MJMF, von Reumont BM, Rosendale AJ, Simao FA, Skelly J, Sotiropoulos AG, Stahl AL, Sumitani M, Szuter EM, Tidswell O, Tsitlakidis E, Vedder L, Waterhouse RM, Werren JH, Wilbrandt J, Worley KC, Yamamoto DS, van de Zande L, Zdobnov EM, Ziesmann T, Gibbs RA, Richards S, Hatakeyama M, Misof B, Niehuis O. Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biol Evol 2021; 12:1099-1188. [PMID: 32442304 PMCID: PMC7455281 DOI: 10.1093/gbe/evaa106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.
Collapse
Affiliation(s)
- Jan Philip Oeyen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Lead Contact
| | | | | | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Anja Buttstedt
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | - Federica Calevro
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Elizabeth I Cash
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University.,Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Hubert Charles
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | - Andrew G Cridge
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Daniel Dowling
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Biology, Georgia Southern University, Statesboro.,Department of Entomology, Purdue University, West Lafayette
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CULS), Praha 6-Suchdol, Czech Republic
| | - Cameron Gudobba
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Frank Hauser
- Department of Biology, University of Copenhagen, Denmark
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Versailles, France
| | | | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Peter Lesný
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | - Mackenzie Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Sebastian Martin
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | | | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Victoria C Moris
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Monica Munoz-Torres
- Berkeley Bioinformatics Open-source Projects (BBOP), Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Shwetha Canchi Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - Nicolas Parisot
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Ralph S Peters
- Arthropoda Department, Center for Taxonomy and Evolutionary Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Emma Persyn
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Institute for Insect Biotechnology, University of Gießen, Germany.,Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | | | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - John Skelly
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | - Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Megumi Sumitani
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi, Tsukuba, Japan
| | - Elise M Szuter
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University
| | - Olivia Tidswell
- Biochemistry Department, University of Otago, Dunedin, New Zealand.,Zoology Department, University of Cambridge, United Kingdom
| | | | - Lucia Vedder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jeanne Wilbrandt
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Tanja Ziesmann
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| |
Collapse
|
36
|
Fritzsche S, Hunnekuhl VS. Cell-specific expression and individual function of prohormone convertase PC1/3 in Tribolium larval growth highlights major evolutionary changes between beetle and fly neuroendocrine systems. EvoDevo 2021; 12:9. [PMID: 34187565 PMCID: PMC8244231 DOI: 10.1186/s13227-021-00179-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background The insect neuroendocrine system acts in the regulation of physiology, development and growth. Molecular evolution of this system hence has the potential to allow for major biological differences between insect groups. Two prohormone convertases, PC1/3 and PC2, are found in animals and both function in the processing of neuropeptide precursors in the vertebrate neurosecretory pathway. Whereas PC2-function is conserved between the fly Drosophila and vertebrates, ancestral PC1/3 was lost in the fly lineage and has not been functionally studied in any protostome. Results In order to understand its original functions and the changes accompanying the gene loss in the fly, we investigated PC1/3 and PC2 expression and function in the beetle Tribolium castaneum. We found that PC2 is broadly expressed in the nervous system, whereas surprisingly, PC1/3 expression is restricted to specific cell groups in the posterior brain and suboesophageal ganglion. Both proteases have parallel but non-redundant functions in adult beetles’ viability and fertility. Female infertility following RNAi is caused by a failure to deposit sufficient yolk to the developing oocytes. Larval RNAi against PC2 produced moulting defects where the larvae were not able to shed their old cuticle. This ecdysis phenotype was also observed in a small subset of PC1/3 knockdown larvae and was strongest in a double knockdown. Unexpectedly, most PC1/3-RNAi larvae showed strongly reduced growth, but went through larval moults despite minimal to zero weight gain. Conclusions The cell type-specific expression of PC1/3 and its essential requirement for larval growth highlight the important role of this gene within the insect neuroendocrine system. Genomic conservation in most insect groups suggests that it has a comparable individual function in other insects as well, which has been replaced by alternative mechanisms in flies. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00179-w.
Collapse
Affiliation(s)
- Sonja Fritzsche
- Johann-Friedrich-Blumenbach Institute, GZMB, Göttingen University, Göttingen, Germany
| | - Vera S Hunnekuhl
- Johann-Friedrich-Blumenbach Institute, GZMB, Göttingen University, Göttingen, Germany.
| |
Collapse
|
37
|
Wang P, Cui Q, Zhang Y, Wang X, Huang X, Li X, Zhao Q, Lei G, Li B, Wei W. A Review of Pedal Peptide/Orcokinin-type Neuropeptides. Curr Protein Pept Sci 2021; 22:41-49. [PMID: 33167831 DOI: 10.2174/1389203721666201109112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Neuropeptides are endogenous active substances that play important roles in a number of physiological processes and are ubiquitous in the nervous tissue in vivo. The gene encoding pedal peptide/orcokinin-type (PP/OK-type) neuropeptide is an important member of the neuropeptide gene family and is ubiquitous in invertebrates of Bilateria; orcokinin (OK) is mainly found in Arthropoda, while pedal peptide (PP) is mainly found in Mollusca. OK and PP are also present in other animals. PP/OK-type neuropeptides are a kind of multifunctional neuropeptides predominantly expressed in the nervous tissue and play important roles in the nerve regulation of movement. Moreover, OK has a number of other physiological functions. This review describes the distribution, expression, function and maturation of PP/OK-type neuropeptides to facilitate investigations of new functions and receptors of PP/OK-type neuropeptides, providing the theoretical foundation for the potential use of PP/OK-type neuropeptides in the prevention and control of agricultural and forestry pests, as an additive for skin care products and in the screening of drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Pingyang Wang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Qiuying Cui
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Yuli Zhang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Xia Wang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Xuhua Huang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Xiaoxia Li
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultrual Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
| | - Guisheng Lei
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Biao Li
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Wei Wei
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| |
Collapse
|
38
|
Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR, Corbett KF, Gavish-Regev E, Harvey MS, Monsma S, Santibáñez-López CE, Setton EVW, Zehms JT, Zeh JA, Zeh DW, Sharma PP. Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Mol Biol Evol 2021; 38:2446-2467. [PMID: 33565584 PMCID: PMC8136511 DOI: 10.1093/molbev/msab038] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets. Pseudoscorpion placement is particularly variable across data sets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount long-branch attraction, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones.
Collapse
Affiliation(s)
- Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | | | | | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeanne A Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - David W Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Phylogenetic analyses suggest centipede venom arsenals were repeatedly stocked by horizontal gene transfer. Nat Commun 2021; 12:818. [PMID: 33547293 PMCID: PMC7864903 DOI: 10.1038/s41467-021-21093-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Venoms have evolved over a hundred times in animals. Venom toxins are thought to evolve mostly by recruitment of endogenous proteins with physiological functions. Here we report phylogenetic analyses of venom proteome-annotated venom gland transcriptome data, assisted by genomic analyses, to show that centipede venoms have recruited at least five gene families from bacterial and fungal donors, involving at least eight horizontal gene transfer events. These results establish centipedes as currently the only known animals with venoms used in predation and defence that contain multiple gene families derived from horizontal gene transfer. The results also provide the first evidence for the implication of horizontal gene transfer in the evolutionary origin of venom in an animal lineage. Three of the bacterial gene families encode virulence factors, suggesting that horizontal gene transfer can provide a fast track channel for the evolution of novelty by the exaptation of bacterial weapons into animal venoms.
Collapse
|
40
|
Querat B. Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Front Endocrinol (Lausanne) 2021; 12:731966. [PMID: 34671318 PMCID: PMC8522476 DOI: 10.3389/fendo.2021.731966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023] Open
Abstract
The glycoprotein hormones (GPH) are heterodimers composed of a common α subunit and a specific β subunit. They act by activating specific leucine-rich repeat G protein-coupled receptors. However, individual subunits have been shown to elicit responses in cells devoid of the receptor for the dimeric hormones. The α subunit is involved in prolactin production from different tissues. The human chorionic gonadotropin β subunit (βhCG) plays determinant roles in placentation and in cancer development and metastasis. A truncated form of the thyrotropin (TSH) β subunit is also reported to have biological effects. The GPH α- and β subunits are derived from precursor genes (gpa and gpb, respectively), which are expressed in most invertebrate species and are still represented in vertebrates as GPH subunit paralogs (gpa2 and gpb5, respectively). No specific receptor has been found for the vertebrate GPA2 and GPB5 even if their heterodimeric form is able to activate the TSH receptor in mammals. Interestingly, GPA and GPB are phylogenetically and structurally related to cysteine-knot growth factors (CKGF) and particularly to a group of antagonists that act independently on any receptor. This review article summarizes the observed actions of individual GPH subunits and presents the current hypotheses of how these actions might be induced. New approaches are also proposed in light of the evolutionary relatedness with antagonists of the CKGF family of proteins.
Collapse
|
41
|
Szucsich NU, Bartel D, Blanke A, Böhm A, Donath A, Fukui M, Grove S, Liu S, Macek O, Machida R, Misof B, Nakagaki Y, Podsiadlowski L, Sekiya K, Tomizuka S, Von Reumont BM, Waterhouse RM, Walzl M, Meng G, Zhou X, Pass G, Meusemann K. Four myriapod relatives - but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evol Biol 2020; 20:144. [PMID: 33148176 PMCID: PMC7640414 DOI: 10.1186/s12862-020-01699-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data. Results We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda. Conclusions Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.
Collapse
Affiliation(s)
- Nikolaus U Szucsich
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria. .,Central Research Laboratories, Natural History Museum of Vienna, A-1010, Vienna, Austria.
| | - Daniela Bartel
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Alexander Blanke
- Institute for Zoology, Biocenter, University of Cologne, D-50674, Cologne, Germany.,Institute of Evolutionary Biology and Animal Ecology, University of Bonn, D-53121, Bonn, Germany
| | - Alexander Böhm
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Makiko Fukui
- Department of Biology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Simon Grove
- Invertebrate Zoology, Collections and Research Facility, Tasmanian Museum and Art Gallery, Rosny, Tasmania, 7018, Australia
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Oliver Macek
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria.,Central Research Laboratories, Natural History Museum of Vienna, A-1010, Vienna, Austria
| | - Ryuichiro Machida
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira, Ueda, Nagano, 386-2204, Japan
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Yasutaka Nakagaki
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira, Ueda, Nagano, 386-2204, Japan
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Kaoru Sekiya
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira, Ueda, Nagano, 386-2204, Japan
| | | | - Björn M Von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.,Animal Venomics, Institute for Insect Biotechnology, University of Giessen, Heinrich Buff Ring 26-32, D-35394, Giessen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Manfred Walzl
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Guanliang Meng
- Centre of Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Günther Pass
- Department of Evolutionary Biology, University of Vienna, A-1090, Vienna, Austria
| | - Karen Meusemann
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany. .,Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, D-79104, Freiburg, Germany. .,Australian National Insect Collection, National Research Collections Australia, CSIRO, ACT, Canberra, 2601, Australia.
| |
Collapse
|
42
|
Minh Nhut T, Mykles DL, Elizur A, Ventura T. Ecdysis triggering hormone modulates molt behaviour in the redclaw crayfish Cherax quadricarinatus, providing a mechanistic evidence for conserved function in molt regulation across Pancrustacea. Gen Comp Endocrinol 2020; 298:113556. [PMID: 32687930 DOI: 10.1016/j.ygcen.2020.113556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Molting enables growth and development across ecdysozoa. The molting process is strictly controlled by hormones - ecdysteroids. Ecdysteroidogenesis occurs in theprothoracic glands and stimulated by prothoracicotropic hormone in insects, while it ensues in the Y-organ and regulated by the molt inhibiting hormone in crustaceans. A peak in ecdysteroids in the hemolymph induces a cascade of multiple neuropeptides including Ecdysis Triggering Hormone (ETH) and Corazonin. The role of ETH is well defined in controlling the molt process in insects, but it is yet to be defined in crustaceans. In this study, we investigated the behavioral response of intermolt crayfish to ETH and Corazonin injections as well as the impact of ETH on the molt period using in vivo assays. Injection of Corazonin and ETH resulted in a clear and immediate eye twitching response to these two neuropeptides. The Corazonin injection induced eye twitching in slow and asynchronous manner, while ETH injection caused eye twitching in a relatively fast and synchronous way. A single injection of ETH to crayfish resulted in a remarkable prolong molt period, at twice the normal molting cycle, suggesting that ETH plays a key role in controlling the molt cycle in decapod crustaceans. Given the key significance of ETH in molt regulation and its plausible application in pest control, we characterized ETH across the pancrustacean orders. Bioinformatic analysis shows the mature ETH sequence is identical in all studied decapod species. ETH can be classified into specific groups based on the associated motif in each insect order and shows an insect motif -KxxPRx to be conserved in crustaceans.
Collapse
Affiliation(s)
- Tran Minh Nhut
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Abigail Elizur
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| | - Tomer Ventura
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| |
Collapse
|
43
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Li Y, Nong W, Baril T, Yip HY, Swale T, Hayward A, Ferrier DEK, Hui JHL. Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics 2020; 21:713. [PMID: 33059600 PMCID: PMC7566022 DOI: 10.1186/s12864-020-07027-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Homeobox-containing genes encode crucial transcription factors involved in animal, plant and fungal development, and changes to homeobox genes have been linked to the evolution of novel body plans and morphologies. In animals, some homeobox genes are clustered together in the genome, either as remnants from ancestral genomic arrangements, or due to coordinated gene regulation. Consequently, analyses of homeobox gene organization across animal phylogeny provide important insights into the evolution of genome organization and developmental gene control, and their interaction. However, homeobox gene organization remains to be fully elucidated in several key animal ancestors, including those of molluscs, lophotrochozoans and bilaterians. RESULTS Here, we present a high-quality chromosome-level genome assembly of the Hong Kong oyster, Magallana hongkongensis (2n = 20), for which 93.2% of the genomic sequences are contained on 10 pseudomolecules (~ 758 Mb, scaffold N50 = 72.3 Mb). Our genome assembly was scaffolded using Hi-C reads, facilitating a larger scaffold size compared to the recently published M. hongkongensis genome of Peng et al. (Mol Ecol Resources, 2020), which was scaffolded using the Crassostrea gigas assembly. A total of 46,963 predicted gene models (45,308 protein coding genes) were incorporated in our genome, and genome completeness estimated by BUSCO was 94.6%. Homeobox gene linkages were analysed in detail relative to available data for other mollusc lineages. CONCLUSIONS The analyses performed in this study and the accompanying genome sequence provide important genetic resources for this economically and culturally valuable oyster species, and offer a platform to improve understanding of animal biology and evolution more generally. Transposable element content is comparable to that found in other mollusc species, contrary to the conclusion of another recent analysis. Also, our chromosome-level assembly allows the inference of ancient gene linkages (synteny) for the homeobox-containing genes, even though a number of the homeobox gene clusters, like the Hox/ParaHox clusters, are undergoing dispersal in molluscs such as this oyster.
Collapse
Affiliation(s)
- Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tobias Baril
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Alexander Hayward
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK.
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Martine Laboratory, University of St. Andrews, St Andrews, UK.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
45
|
Qu Z, Nong W, So WL, Barton-Owen T, Li Y, Leung TCN, Li C, Baril T, Wong AYP, Swale T, Chan TF, Hayward A, Ngai SM, Hui JHL. Millipede genomes reveal unique adaptations during myriapod evolution. PLoS Biol 2020; 18:e3000636. [PMID: 32991578 PMCID: PMC7523956 DOI: 10.1371/journal.pbio.3000636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/24/2020] [Indexed: 01/27/2023] Open
Abstract
The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly understood branch of life, including species with a highly unusual body plan and a range of unique adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaffold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudomolecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on 17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence systems in millipedes, not observed in other arthropods, are revealed. Both repeat content and intron size are major contributors to the observed differences in millipede genome size. Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute (AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects, an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification in small RNAs—including species-specific microRNA arm switching—providing differential gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland unlike the venomous forcipules found in centipedes. We identify sets of genes associated with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-quality millipede genomes provided here shed new light on the conserved and lineage-specific features of millipedes and centipedes. These findings demonstrate the importance of the consideration of both centipede and millipede genomes—and in particular the reconstruction of the myriapod ancestral situation—for future research to improve understanding of arthropod evolution, and animal evolutionary genomics more widely. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes. This study describes the genome sequences of two millipedes, Helicorthomorpha holstii and Trigoniulus corallinus, revealing unique adaptations not found in other arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Tom Barton-Owen
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Thomas C. N. Leung
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Chade Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Tobias Baril
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, United Kingdom
| | - Annette Y. P. Wong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Thomas Swale
- Dovetail Genomics, Scotts Valley, California, United States of America
| | - Ting-Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Alexander Hayward
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, United Kingdom
| | - Sai-Ming Ngai
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jerome H. L. Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
46
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
47
|
Gainett G, Sharma PP. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo 2020; 11:18. [PMID: 32874529 PMCID: PMC7455915 DOI: 10.1186/s13227-020-00163-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The resurgence of interest in the comparative developmental study of chelicerates has led to important insights, such as the discovery of a genome duplication shared by spiders and scorpions, inferred to have occurred in the most recent common ancestor of Arachnopulmonata (a clade comprising the five arachnid orders that bear book lungs). Nonetheless, several arachnid groups remain understudied in the context of development and genomics, such as the order Amblypygi (whip spiders). The phylogenetic position of Amblypygi in Arachnopulmonata posits them as an interesting group to test the incidence of the proposed genome duplication in the common ancestor of Arachnopulmonata, as well as the degree of retention of duplicates over 450 Myr. Moreover, whip spiders have their first pair of walking legs elongated and modified into sensory appendages (a convergence with the antennae of mandibulates), but the genetic patterning of these antenniform legs has never been investigated. RESULTS We established genomic resources and protocols for cultivation of embryos and gene expression assays by in situ hybridization to study the development of the whip spider Phrynus marginemaculatus. Using embryonic transcriptomes from three species of Amblypygi, we show that the ancestral whip spider exhibited duplications of all ten Hox genes. We deploy these resources to show that paralogs of the leg gap genes dachshund and homothorax retain arachnopulmonate-specific expression patterns in P. marginemaculatus. We characterize the expression of leg gap genes Distal-less, dachshund-1/2 and homothorax-1/2 in the embryonic antenniform leg and other appendages, and provide evidence that allometry, and by extension the antenniform leg fate, is specified early in embryogenesis. CONCLUSION This study is the first step in establishing P. marginemaculatus as a chelicerate model for modern evolutionary developmental study, and provides the first resources sampling whip spiders for comparative genomics. Our results suggest that Amblypygi share a genome duplication with spiders and scorpions, and set up a framework to study the genetic specification of antenniform legs. Future efforts to study whip spider development must emphasize the development of tools for functional experiments in P. marginemaculatus.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
48
|
Vizueta J, Escuer P, Frías-López C, Guirao-Rico S, Hering L, Mayer G, Rozas J, Sánchez-Gracia A. Evolutionary History of Major Chemosensory Gene Families across Panarthropoda. Mol Biol Evol 2020; 37:3601-3615. [DOI: 10.1093/molbev/msaa197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Chemosensory perception is a fundamental biological process of particular relevance in basic and applied arthropod research. However, apart from insects, there is little knowledge of specific molecules involved in this system, which is restricted to a few taxa with uneven phylogenetic sampling across lineages. From an evolutionary perspective, onychophorans (velvet worms) and tardigrades (water bears) are of special interest since they represent the closest living relatives of arthropods, altogether comprising the Panarthropoda. To get insights into the evolutionary origin and diversification of the chemosensory gene repertoire in panarthropods, we sequenced the antenna- and head-specific transcriptomes of the velvet worm Euperipatoides rowelli and analyzed members of all major chemosensory families in representative genomes of onychophorans, tardigrades, and arthropods. Our results suggest that the NPC2 gene family was the only family encoding soluble proteins in the panarthropod ancestor and that onychophorans might have lost many arthropod-like chemoreceptors, including the highly conserved IR25a receptor of protostomes. On the other hand, the eutardigrade genomes lack genes encoding the DEG-ENaC and CD36-sensory neuron membrane proteins, the chemosensory members of which have been retained in arthropods; these losses might be related to lineage-specific adaptive strategies of tardigrades to survive extreme environmental conditions. Although the results of this study need to be further substantiated by an increased taxon sampling, our findings shed light on the diversification of chemosensory gene families in Panarthropoda and contribute to a better understanding of the evolution of animal chemical senses.
Collapse
Affiliation(s)
- Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristina Frías-López
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Oliphant A, Hawkes MKN, Cridge AG, Dearden PK. Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus. Gen Comp Endocrinol 2020; 292:113443. [PMID: 32097662 DOI: 10.1016/j.ygcen.2020.113443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
We de novo assembled a transcriptome for early life-stages of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus, establishing the first genetic resource for this under-developed aquaculture species and for the Paranephrops genus. Mining of this transcriptome for neuropeptides and their putative cognate G protein-coupled receptors (GPCRs) yielded a comprehensive catalogue of neuropeptides, but few putative neuropeptide GPCRs. Of the neuropeptides commonly identified from decapod transcriptomes, only crustacean female sex hormone and insulin-like peptide were absent from our trinity de novo transcriptome assembly, and also RNA-sequence reads. We identified 63 putative neuropeptide precursors from 43 families, predicted to yield 122 active peptides. Transcripts encoding 26 putative neuropeptide GPCRs were identified but were often incomplete. Putative GPCRs for 15 of the neuropeptides identified here were absent from our transcriptome and RNAseq reads. These data highlight the diverse neuropeptide systems already present at the early development life stages sampled here for P. zealandicus.
Collapse
Affiliation(s)
- Andrew Oliphant
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| | - Mary K N Hawkes
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Andrew G Cridge
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
50
|
Miller SW, Posakony JW. Disparate expression specificities coded by a shared Hox-C enhancer. eLife 2020; 9:39876. [PMID: 32342858 PMCID: PMC7188484 DOI: 10.7554/elife.39876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Can a single regulatory sequence be shared by two genes undergoing functional divergence? Here we describe a single promiscuous enhancer within the Drosophila Antennapedia Complex, EO053, that directs aspects of the expression of two adjacent genes, pb (a Hox2 ortholog) and zen2 (a divergent Hox3 paralog), with disparate spatial and temporal expression patterns. We were unable to separate the pb-like and zen2-like specificities within EO053, and we identify sequences affecting both expression patterns. Importantly, genomic deletion experiments demonstrate that EO053 cooperates with additional pb- and zen2-specific enhancers to regulate the mRNA expression of both genes. We examine sequence conservation of EO053 within the Schizophora, and show that patterns of synteny between the Hox2 and Hox3 orthologs in Arthropods are consistent with a shared regulatory relationship extending prior to the Hox3/zen divergence. Thus, EO053 represents an example of two genes having evolved disparate outputs while utilizing this shared regulatory region. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Steve W Miller
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| | - James W Posakony
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| |
Collapse
|