1
|
De Schrijver S, Decramer T, Janssen P. Simple visual stimuli are sufficient to drive responses in action observation and execution neurons in macaque ventral premotor cortex. PLoS Biol 2024; 22:e3002358. [PMID: 38768251 PMCID: PMC11142659 DOI: 10.1371/journal.pbio.3002358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Neurons responding during action execution and action observation were discovered in the ventral premotor cortex 3 decades ago. However, the visual features that drive the responses of action observation/execution neurons (AOENs) have not been revealed at present. We investigated the neural responses of AOENs in ventral premotor area F5c of 4 macaques during the observation of action videos and crucial control stimuli. The large majority of AOENs showed highly phasic responses during the action videos, with a preference for the moment that the hand made contact with the object. They also responded to an abstract shape moving towards but not interacting with an object, even when the shape moved on a scrambled background, implying that most AOENs in F5c do not require the perception of causality or a meaningful action. Additionally, the majority of AOENs responded to static frames of the videos. Our findings show that very elementary stimuli, even without a grasping context, are sufficient to drive responses in F5c AOENs.
Collapse
Affiliation(s)
- Sofie De Schrijver
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Thomas Decramer
- Research group Experimental Neurosurgery and Neuroanatomy, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
2
|
Zhu Z, Kim B, Doudlah R, Chang TY, Rosenberg A. Differential clustering of visual and choice- and saccade-related activity in macaque V3A and CIP. J Neurophysiol 2024; 131:709-722. [PMID: 38478896 PMCID: PMC11305645 DOI: 10.1152/jn.00285.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Neurons in sensory and motor cortices tend to aggregate in clusters with similar functional properties. Within the primate dorsal ("where") pathway, an important interface between three-dimensional (3-D) visual processing and motor-related functions consists of two hierarchically organized areas: V3A and the caudal intraparietal (CIP) area. In these areas, 3-D visual information, choice-related activity, and saccade-related activity converge, often at the single-neuron level. Characterizing the clustering of functional properties in areas with mixed selectivity, such as these, may help reveal organizational principles that support sensorimotor transformations. Here we quantified the clustering of visual feature selectivity, choice-related activity, and saccade-related activity by performing correlational and parametric comparisons of the responses of well-isolated, simultaneously recorded neurons in macaque monkeys. Each functional domain showed statistically significant clustering in both areas. However, there were also domain-specific differences in the strength of clustering across the areas. Visual feature selectivity and saccade-related activity were more strongly clustered in V3A than in CIP. In contrast, choice-related activity was more strongly clustered in CIP than in V3A. These differences in clustering may reflect the areas' roles in sensorimotor processing. Stronger clustering of visual and saccade-related activity in V3A may reflect a greater role in within-domain processing, as opposed to cross-domain synthesis. In contrast, stronger clustering of choice-related activity in CIP may reflect a greater role in synthesizing information across functional domains to bridge perception and action.NEW & NOTEWORTHY The occipital and parietal cortices of macaque monkeys are bridged by hierarchically organized areas V3A and CIP. These areas support 3-D visual transformations, carry choice-related activity during 3-D perceptual tasks, and possess saccade-related activity. This study quantifies the functional clustering of neuronal response properties within V3A and CIP for each of these domains. The findings reveal domain-specific cross-area differences in clustering that may reflect the areas' roles in sensorimotor processing.
Collapse
Affiliation(s)
- Zikang Zhu
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Byounghoon Kim
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Raymond Doudlah
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ting-Yu Chang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
3
|
Sypré L, Sharma S, Mantini D, Nelissen K. Intrinsic functional clustering of the macaque insular cortex. Front Integr Neurosci 2024; 17:1272529. [PMID: 38250745 PMCID: PMC10797002 DOI: 10.3389/fnint.2023.1272529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The functional organization of the primate insula has been studied using a variety of techniques focussing on regional differences in either architecture, connectivity, or function. These complementary methods offered insights into the complex organization of the insula and proposed distinct parcellation schemes at varying levels of detail and complexity. The advent of imaging techniques that allow non-invasive assessment of structural and functional connectivity, has popularized data-driven connectivity-based parcellation methods to investigate the organization of the human insula. Yet, it remains unclear if the subdivisions derived from these data-driven clustering methods reflect meaningful descriptions of the functional specialization of the insula. In this study, we employed hierarchical clustering to examine the cluster parcellations of the macaque insula. As our aim was exploratory, we examined parcellations consisting of two up to ten clusters. Three different cluster validation methods (fingerprinting, silhouette, elbow) converged on a four-cluster solution as the most optimal representation of our data. Examining functional response properties of these clusters, in addition to their brain-wide functional connectivity suggested a functional specialization related to processing gustatory, somato-motor, vestibular and social visual cues. However, a more detailed functional differentiation aligning with previous functional investigations of insula subfields became evident at higher cluster numbers beyond the proposed optimal four clusters. Overall, our findings demonstrate that resting-state-based hierarchical clustering can provide a meaningful description of the insula's functional organization at some level of detail. Nonetheless, cluster parcellations derived from this method are best combined with data obtained through other modalities, to provide a more comprehensive and detailed account of the insula's complex functional organization.
Collapse
Affiliation(s)
- Lotte Sypré
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Dante Mantini
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Movement Control & Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Méndez JC, Perry BAL, Premereur E, Pelekanos V, Ramadan T, Mitchell AS. Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations. Sci Rep 2023; 13:16913. [PMID: 37805650 PMCID: PMC10560229 DOI: 10.1038/s41598-023-42752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Department of Clinical and Biomedical Sciences, University of Exeter, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Brook A L Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | | | - Tamara Ramadan
- Department of Biological Sciences, University of Oxford, Oxford, UK
| | - Anna S Mitchell
- Department of Psychology, Speech and Hearing, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
5
|
Zheng Y, Tang S, Zheng H, Wang X, Liu L, Yang Y, Zhen Y, Zheng Z. Noise improves the association between effects of local stimulation and structural degree of brain networks. PLoS Comput Biol 2023; 19:e1010866. [PMID: 37167331 PMCID: PMC10205011 DOI: 10.1371/journal.pcbi.1010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Stimulation to local areas remarkably affects brain activity patterns, which can be exploited to investigate neural bases of cognitive function and modify pathological brain statuses. There has been growing interest in exploring the fundamental action mechanisms of local stimulation. Nevertheless, how noise amplitude, an essential element in neural dynamics, influences stimulation-induced brain states remains unknown. Here, we systematically examine the effects of local stimulation by using a large-scale biophysical model under different combinations of noise amplitudes and stimulation sites. We demonstrate that noise amplitude nonlinearly and heterogeneously tunes the stimulation effects from both regional and network perspectives. Furthermore, by incorporating the role of the anatomical network, we show that the peak frequencies of unstimulated areas at different stimulation sites averaged across noise amplitudes are highly positively related to structural connectivity. Crucially, the association between the overall changes in functional connectivity as well as the alterations in the constraints imposed by structural connectivity with the structural degree of stimulation sites is nonmonotonically influenced by the noise amplitude, with the association increasing in specific noise amplitude ranges. Moreover, the impacts of local stimulation of cognitive systems depend on the complex interplay between the noise amplitude and average structural degree. Overall, this work provides theoretical insights into how noise amplitude and network structure jointly modulate brain dynamics during stimulation and introduces possibilities for better predicting and controlling stimulation outcomes.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing (BABEC), Beijing, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
7
|
Caprara I, Janssen P. Effect of viewing distance on object responses in macaque areas 45B, F5a and F5p. Sci Rep 2022; 12:16527. [PMID: 36192562 PMCID: PMC9530235 DOI: 10.1038/s41598-022-18482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
To perform tasks like grasping, the brain has to process visual object information so that the grip aperture can be adjusted before touching the object. Previous studies have demonstrated that the posterior subsector of the Anterior Intraparietal area is connected to area 45B, and its anterior counterpart to F5a. However, the role of area 45B and F5a in visually-guided grasping is poorly understood. Here, we investigated the role of area 45B, F5a and F5p in object processing during visually-guided grasping in two monkeys. We tested whether the presentation of an object in near peripersonal space activated F5p neurons more than objects with the same retinal size presented beyond reachable distance and conversely, whether neurons in 45B and F5a—which may encode a purely visual object representation—were less affected by viewing distance when equalizing retinal size. Contrary to our expectations, we found that most neurons in area 45B were object- and viewing distance-selective, and preferred mostly Near presentations. Area F5a showed much weaker object selectivity compared to 45B, with a similar preference for objects presented at the Near position. Finally, F5p neurons were less object selective and frequently Far-preferring. In sum, area 45B—but not F5p– prefers objects presented in peripersonal space.
Collapse
Affiliation(s)
- I Caprara
- Laboratorium Voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosurgery, Department of Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - P Janssen
- Laboratorium Voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium. .,The Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
8
|
Doudlah R, Chang TY, Thompson LW, Kim B, Sunkara A, Rosenberg A. Parallel processing, hierarchical transformations, and sensorimotor associations along the 'where' pathway. eLife 2022; 11:78712. [PMID: 35950921 PMCID: PMC9439678 DOI: 10.7554/elife.78712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and implement sensorimotor transformations. These processes are supported by the dorsal ‘where’ pathway. However, the specific functional contributions of areas along this pathway remain elusive due in part to methodological differences across studies. We previously showed that macaque caudal intraparietal (CIP) area neurons possess robust 3D visual representations, carry choice- and saccade-related activity, and exhibit experience-dependent sensorimotor associations (Chang et al., 2020b). Here, we used a common experimental design to reveal parallel processing, hierarchical transformations, and the formation of sensorimotor associations along the ‘where’ pathway by extending the investigation to V3A, a major feedforward input to CIP. Higher-level 3D representations and choice-related activity were more prevalent in CIP than V3A. Both areas contained saccade-related activity that predicted the direction/timing of eye movements. Intriguingly, the time course of saccade-related activity in CIP aligned with the temporally integrated V3A output. Sensorimotor associations between 3D orientation and saccade direction preferences were stronger in CIP than V3A, and moderated by choice signals in both areas. Together, the results explicate parallel representations, hierarchical transformations, and functional associations of visual and saccade-related signals at a key juncture in the ‘where’ pathway.
Collapse
Affiliation(s)
- Raymond Doudlah
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
| | - Ting-Yu Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
| | - Lowell W Thompson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
| | - Byounghoon Kim
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
| | | | - Ari Rosenberg
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
9
|
Chen X, Liao M, Jiang P, Sun H, Liu L, Gong Q. Abnormal effective connectivity in visual cortices underlies stereopsis defects in amblyopia. Neuroimage Clin 2022; 34:103005. [PMID: 35421811 PMCID: PMC9011166 DOI: 10.1016/j.nicl.2022.103005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 02/08/2023]
Abstract
Abnormal effective connectivity inherent stereopsis defects in amblyopia was studied. A weakened connection from V2v to LO2 relates to stereopsis defects in amblyopia. Higher-order visual cortices may serve as key nodes to the stereopsis defects. An independent longitudinal dataset was used to validate the obtained results.
The neural basis underlying stereopsis defects in patients with amblyopia remains unclear, which hinders the development of clinical therapy. This study aimed to investigate visual network abnormalities in patients with amblyopia and their associations with stereopsis function. Spectral dynamic causal modeling methods were employed for resting-state functional magnetic resonance imaging data to investigate the effective connectivity (EC) among 14 predefined regions of interest in the dorsal and ventral visual pathways. We adopted two independent datasets, including a cross-sectional and a longitudinal dataset. In the cross-sectional dataset, we compared group differences in EC between 31 patients with amblyopia (mean age: 26.39 years old) and 31 healthy controls (mean age: 25.71 years old) and investigated the association between EC and stereoacuity. In addition, we explored EC changes after perceptual learning in a novel longitudinal dataset including 9 patients with amblyopia (mean age: 15.78 years old). We found consistent evidence from the two datasets indicating that the aberrant EC from V2v to LO2 is crucial for the stereoscopic deficits in the patients with amblyopia: it was weaker in the patients than in the controls, showed a positive linear relationship with the stereoscopic function, and increased after perceptual learning in the patients. In addition, higher-level dorsal (V3d, V3A, and V3B) and ventral areas (LO1 and LO2) were important nodes in the network of abnormal ECs associated with stereoscopic deficits in the patients with amblyopia. Our research provides insights into the neural mechanism underlying stereopsis deficits in patients with amblyopia and provides candidate targets for focused stimulus interventions to enhance the efficacy of clinical treatment for the improvement of stereopsis deficiency.
Collapse
Affiliation(s)
- Xia Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Liao
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China.
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Imaging Research Core Facilities, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Longqian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
10
|
State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci 2022; 23:459-475. [PMID: 35577959 DOI: 10.1038/s41583-022-00598-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition. Here we review the concept of such 'state-dependent' changes in brain activity in response to neural stimulation, and consider examples from research on altered states of consciousness (for example, sleep and anaesthesia) and from task-based manipulations of selective attention and working memory. We relate relevant findings from non-invasive methods used in humans to those obtained from direct electrical and optogenetic stimulation of neuronal ensembles in animal models. Given the widespread use of brain stimulation as a research tool in the laboratory and as a means of augmenting or restoring brain function, consideration of the influence of changing physiological and cognitive states is crucial for increasing the reliability of these interventions.
Collapse
|
11
|
Wen H, Xu T, Wang X, Yu X, Bi Y. Brain intrinsic connection patterns underlying tool processing in human adults are present in neonates and not in macaques. Neuroimage 2022; 258:119339. [PMID: 35649467 PMCID: PMC9520606 DOI: 10.1016/j.neuroimage.2022.119339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022] Open
Abstract
Tool understanding and use are supported by a dedicated left-lateralized, intrinsically connected network in the human adult brain. To examine this network’s phylogenetic and ontogenetic origins, we compared resting-state functional connectivity (rsFC) among regions subserving tool processing in human adults to rsFC among homologous regions in human neonates and macaque monkeys (adolescent and mature). These homologous regions formed an intrinsic network in human neonates, but not in macaques. Network topological patterns were highly similar between human adults and neonates, and significantly less so between humans and macaques. The premotor-parietal rsFC had most significant contribution to the formation of the neonatal tool network. These results suggest that an intrinsic brain network potentially supporting tool processing exists in the human brain prior to individual tool use experiences, and that the premotor-parietal functional connection in particular offers a brain basis for complex tool behaviors specific to humans.
Collapse
|
12
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
13
|
Russ BE, Petkov CI, Kwok SC, Zhu Q, Belin P, Vanduffel W, Hamed SB. Common functional localizers to enhance NHP & cross-species neuroscience imaging research. Neuroimage 2021; 237:118203. [PMID: 34048898 PMCID: PMC8529529 DOI: 10.1016/j.neuroimage.2021.118203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Functional localizers are invaluable as they can help define regions of interest, provide cross-study comparisons, and most importantly, allow for the aggregation and meta-analyses of data across studies and laboratories. To achieve these goals within the non-human primate (NHP) imaging community, there is a pressing need for the use of standardized and validated localizers that can be readily implemented across different groups. The goal of this paper is to provide an overview of the value of localizer protocols to imaging research and we describe a number of commonly used or novel localizers within NHPs, and keys to implement them across studies. As has been shown with the aggregation of resting-state imaging data in the original PRIME-DE submissions, we believe that the field is ready to apply the same initiative for task-based functional localizers in NHP imaging. By coming together to collect large datasets across research group, implementing the same functional localizers, and sharing the localizers and data via PRIME-DE, it is now possible to fully test their robustness, selectivity and specificity. To do this, we reviewed a number of common localizers and we created a repository of well-established localizer that are easily accessible and implemented through the PRIME-RE platform.
Collapse
Affiliation(s)
- Brian E Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Department of Psychiatry, New York University at Langone, New York City, NY, United States.
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Qi Zhu
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium
| | - Pascal Belin
- Institut de Neurosciences de La Timone, Aix-Marseille Université et CNRS, Marseille, 13005, France
| | - Wim Vanduffel
- Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States; Department of Radiology, Harvard Medical School, Boston, MA 02144, United States.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France.
| |
Collapse
|
14
|
Caprara I, Janssen P. The Causal Role of Three Frontal Cortical Areas in Grasping. Cereb Cortex 2021; 31:4274-4288. [PMID: 33866360 DOI: 10.1093/cercor/bhab085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efficient object grasping requires the continuous control of arm and hand movements based on visual information. Previous studies have identified a network of parietal and frontal areas that is crucial for the visual control of prehension movements. Electrical microstimulation of 3D shape-selective clusters in AIP during functional magnetic resonance imaging activates areas F5a and 45B, suggesting that these frontal areas may represent important downstream areas for object processing during grasping, but the role of area F5a and 45B in grasping is unknown. To assess their causal role in the frontal grasping network, we reversibly inactivated 45B, F5a, and F5p during visually guided grasping in macaque monkeys. First, we recorded single neuron activity in 45B, F5a, and F5p to identify sites with object responses during grasping. Then, we injected muscimol or saline to measure the grasping deficit induced by the temporary disruption of each of these three nodes in the grasping network. The inactivation of all three areas resulted in a significant increase in the grasping time in both animals, with the strongest effect observed in area F5p. These results not only confirm a clear involvement of F5p, but also indicate causal contributions of area F5a and 45B in visually guided object grasping.
Collapse
Affiliation(s)
- I Caprara
- Laboratorium voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.,Division of Biology and Biological Engineering, Computation and Neural Systems, Caltech, Pasadena, CA 91125, USA
| | - P Janssen
- Laboratorium voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.,The Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
16
|
Kagan I, Gibson L, Spanou E, Wilke M. Effective connectivity and spatial selectivity-dependent fMRI changes elicited by microstimulation of pulvinar and LIP. Neuroimage 2021; 240:118283. [PMID: 34147628 DOI: 10.1016/j.neuroimage.2021.118283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
The thalamic pulvinar and the lateral intraparietal area (LIP) share reciprocal anatomical connections and are part of an extensive cortical and subcortical network involved in spatial attention and oculomotor processing. The goal of this study was to compare the effective connectivity of dorsal pulvinar (dPul) and LIP and to probe the dependency of microstimulation effects on task demands and spatial tuning properties of a given brain region. To this end, we applied unilateral electrical microstimulation in the dPul (mainly medial pulvinar) and LIP in combination with event-related BOLD fMRI in monkeys performing fixation and memory-guided saccade tasks. Microstimulation in both dPul and LIP enhanced task-related activity in monosynaptically-connected fronto-parietal cortex and along the superior temporal sulcus (STS) including putative face patch locations, as well as in extrastriate cortex. LIP microstimulation elicited strong activity in the opposite homotopic LIP while no homotopic activation was found with dPul stimulation. Both dPul and LIP stimulation also elicited activity in several heterotopic cortical areas in the opposite hemisphere, implying polysynaptic propagation of excitation. Despite extensive activation along the intraparietal sulcus evoked by LIP stimulation, there was a difference in frontal and occipital connectivity elicited by posterior and anterior LIP stimulation sites. Comparison of dPul stimulation with the adjacent but functionally dissimilar ventral pulvinar also showed distinct connectivity. On the level of single trial timecourses within each region of interest (ROI), most ROIs did not show task-dependence of stimulation-elicited response modulation. Across ROIs, however, there was an interaction between task and stimulation, and task-specific correlations between the initial spatial selectivity and the magnitude of stimulation effect were observed. Consequently, stimulation-elicited modulation of task-related activity was best fitted by an additive model scaled down by the initial response amplitude. In summary, we identified overlapping and distinct patterns of thalamocortical and corticocortical connectivity of pulvinar and LIP, highlighting the dorsal bank and fundus of STS as a prominent node of shared circuitry. Spatial task-specific and partly polysynaptic modulations of cue and saccade planning delay period activity in both hemispheres exerted by unilateral pulvinar and parietal stimulation provide insight into the distributed interhemispheric processing underlying spatial behavior.
Collapse
Affiliation(s)
- Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany.
| | - Lydia Gibson
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Elena Spanou
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
| | - Melanie Wilke
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| |
Collapse
|
17
|
Decramer T, Premereur E, Caprara I, Theys T, Janssen P. Temporal dynamics of neural activity in macaque frontal cortex assessed with large-scale recordings. Neuroimage 2021; 236:118088. [PMID: 33915276 DOI: 10.1016/j.neuroimage.2021.118088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The cortical network controlling the arm and hand when grasping objects consists of several areas in parietal and frontal cortex. Recently, more anterior prefrontal areas have also been implicated in object grasping, but their exact role is currently unclear. To investigate the neuronal encoding of objects during grasping in these prefrontal regions and their relation with other cortical areas of the grasping network, we performed large-scale recordings (more than 2000 responsive sites) in frontal cortex of monkeys during a saccade-reach-grasp task. When an object appeared in peripheral vision, the first burst of activity emerged in prearcuate areas (the FEF and area 45B), followed by dorsal and ventral premotor cortex, and a buildup of activity in primary motor cortex. After the saccade, prearcuate activity remained elevated while primary motor and premotor activity rose in anticipation of the upcoming arm and hand movement. Remarkably, a large number of premotor and prearcuate sites responded when the object appeared in peripheral vision and remained active when the object came into foveal vision. Thus, prearcuate and premotor areas continuously encode object information when directing gaze and grasping objects.
Collapse
Affiliation(s)
- Thomas Decramer
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven and the Leuven Brain Institute, Belgium
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium.
| | - Irene Caprara
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Tom Theys
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven and the Leuven Brain Institute, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Baeg E, Doudlah R, Swader R, Lee H, Han M, Kim SG, Rosenberg A, Kim B. MRI Compatible, Customizable, and 3D-Printable Microdrive for Neuroscience Research. eNeuro 2021; 8:ENEURO.0495-20.2021. [PMID: 33593730 PMCID: PMC7986532 DOI: 10.1523/eneuro.0495-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 02/02/2023] Open
Abstract
The effective connectivity of brain networks can be assessed using functional magnetic resonance imaging (fMRI) to quantify the effects of local electrical microstimulation (EM) on distributed neuronal activity. The delivery of EM to specific brain regions, particularly with layer specificity, requires MRI compatible equipment that provides fine control of a stimulating electrode's position within the brain while minimizing imaging artifacts. To this end, we developed a microdrive made entirely of MRI compatible materials. The microdrive uses an integrated penetration grid to guide electrodes and relies on a microdrilling technique to eliminate the need for large craniotomies, further reducing implant maintenance and image distortions. The penetration grid additionally serves as a built-in MRI marker, providing a visible fiducial reference for estimating probe trajectories. Following the initial implant procedure, these features allow for multiple electrodes to be inserted, removed, and repositioned with minimal effort, using a screw-type actuator. To validate the design of the microdrive, we conducted an EM-coupled fMRI study with a male macaque monkey. The results verified that the microdrive can be used to deliver EM during MRI procedures with minimal imaging artifacts, even within a 7 Tesla (7T) environment. Future applications of the microdrive include neuronal recordings and targeted drug delivery. We provide computer aided design (CAD) templates and a parts list for modifying and fabricating the microdrive for specific research needs. These designs provide a convenient, cost-effective approach to fabricating MRI compatible microdrives for neuroscience research.
Collapse
Affiliation(s)
- Eunha Baeg
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea 16060
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea 16419
| | - Raymond Doudlah
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | | | - Hyowon Lee
- System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Minjun Han
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea 16419
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea 16060
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea 16419
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Byounghoon Kim
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
19
|
Rima S, Cottereau BR, Héjja-Brichard Y, Trotter Y, Durand JB. Wide-field retinotopy reveals a new visuotopic cluster in macaque posterior parietal cortex. Brain Struct Funct 2020; 225:2447-2461. [PMID: 32875354 PMCID: PMC7544618 DOI: 10.1007/s00429-020-02134-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/22/2020] [Indexed: 12/31/2022]
Abstract
We investigated the visuotopic organization of macaque posterior parietal cortex (PPC) by combining functional imaging (fMRI) and wide-field retinotopic mapping in two macaque monkeys. Whole brain blood-oxygen-level-dependent (BOLD) signal was recorded while monkeys maintained central fixation during the presentation of large rotating wedges and expending/contracting annulus of a "shaking" fruit basket, designed to maximize the recruitment of PPC neurons. Results of the surface-based population receptive field (pRF) analysis reveal a new cluster of four visuotopic areas at the confluence of the parieto-occipital and intra-parietal sulci, in a location previously defined histologically and anatomically as the posterior intra-parietal (PIP) region. This PIP cluster groups together two recently described areas (CIP1/2) laterally and two newly identified ones (PIP1/2) medially, whose foveal representations merge in the fundus of the intra-parietal sulcus. The cluster shares borders with other visuotopic areas: V3d posteriorly, V3A/DP laterally, V6/V6A medially and LIP anteriorly. Together, these results show that monkey PPC is endowed with a dense set of visuotopic areas, as its human counterpart. The fact that fMRI and wide-field stimulation allows a functional parsing of monkey PPC offers a new framework for studying functional homologies with human PPC.
Collapse
Affiliation(s)
- Samy Rima
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France.
- Centre National de la Recherche Scientifique, Toulouse Cedex, France.
| | - Benoit R Cottereau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - Yseut Héjja-Brichard
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - Yves Trotter
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - Jean-Baptiste Durand
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France.
- Centre National de la Recherche Scientifique, Toulouse Cedex, France.
| |
Collapse
|
20
|
Effective Connectivity Reveals an Interconnected Inferotemporal Network for Three-Dimensional Structure Processing. J Neurosci 2020; 40:8501-8512. [PMID: 33028641 DOI: 10.1523/jneurosci.3024-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Disparity-defined 3D shape is processed in both the ventral and the dorsal visual stream. The network of cortical areas that is activated during the processing of disparity-defined 3D shape includes, in addition to parietal and premotor areas, three clearly distinct regions in inferotemporal cortex (ITC). To investigate the connectivity of the latter regions, we combined electrical stimulation with fMRI in male macaque monkeys. Electrical stimulation of each of the 3D-structure nodes in ITC mainly elicited increased fMRI activations in the other 3D-structure nodes and more variably in other parts of ventral visual cortex. Importantly, no increased activation was found in parietal areas, nor in PFC, whereas microstimulation in posterior parietal cortex did activate the ITC. Our results indicate that 3D-structure nodes in ITC form a strongly interconnected network, receiving input from parietal areas implicated in 3D-structure processing.SIGNIFICANCE STATEMENT Previous studies combining electrical microstimulation with functional imaging showed an interconnected set of regions in the ventral stream processing faces or bodies, but is has been unclear whether the same is true for other visual categories. Here the authors show that there is a connected system of stereo-selective regions in inferotemporal cortex, receiving input from parietal areas in the dorsal stream.
Collapse
|
21
|
Motor resonance in monkey parietal and premotor cortex during action observation: Influence of viewing perspective and effector identity. Neuroimage 2020; 224:117398. [PMID: 32971263 DOI: 10.1016/j.neuroimage.2020.117398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022] Open
Abstract
Observing others performing motor acts like grasping has been shown to elicit neural responses in the observer`s parieto-frontal motor network, which typically becomes active when the observer would perform these actions him/herself. While some human studies suggested strongest motor resonance during observation of first person or egocentric perspectives compared to third person or allocentric perspectives, other research either report the opposite or did not find any viewpoint-related preferences in parieto-premotor cortices. Furthermore, it has been suggested that these motor resonance effects are lateralized in the parietal cortex depending on the viewpoint and identity of the observed effector (left vs right hand). Other studies, however, do not find such straightforward hand identity dependent motor resonance effects. In addition to these conflicting findings in human studies, to date, little is known about the modulatory role of viewing perspective and effector identity (left or right hand) on motor resonance effects in monkey parieto-premotor cortices. Here, we investigated the extent to which different viewpoints of observed conspecific hand actions yield motor resonance in rhesus monkeys using fMRI. Observing first person, lateral and third person viewpoints of conspecific hand actions yielded significant activations throughout the so-called action observation network, including STS, parietal and frontal cortices. Although region-of-interest analysis of parietal and premotor motor/mirror neuron regions AIP, PFG and F5, showed robust responses in these regions during action observation in general, a clear preference for egocentric or allocentric perspectives was not evident. Moreover, except for lateralized effects due to visual field biases, motor resonance in the monkey brain during grasping observation did not reflect hand identity dependent coding.
Collapse
|
22
|
Koch G. Cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications. Exp Brain Res 2020; 238:1677-1684. [DOI: 10.1007/s00221-020-05844-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
|
23
|
Lanzilotto M, Ferroni CG, Livi A, Gerbella M, Maranesi M, Borra E, Passarelli L, Gamberini M, Fogassi L, Bonini L, Orban GA. Anterior Intraparietal Area: A Hub in the Observed Manipulative Action Network. Cereb Cortex 2020; 29:1816-1833. [PMID: 30766996 PMCID: PMC6418391 DOI: 10.1093/cercor/bhz011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys’ anterior intraparietal (AIP) area with tracer injections into the recorded sites. We found robust neural selectivity for 7 distinct OMAs, particularly in the posterior part of AIP (pAIP), where it was associated with motor coding of grip type and own-hand visual feedback. This cluster of functional properties appears to be specifically grounded in stronger direct connections of pAIP with the temporal regions of the ventral visual stream and the prefrontal cortex, as connections with skeletomotor related areas and regions of the dorsal visual stream exhibited opposite or no rostrocaudal gradients. Temporal and prefrontal areas may provide visual and contextual information relevant for manipulative action processing. These results revise existing models of the action observation network, suggesting that pAIP constitutes a parietal hub for routing information about OMA identity to the other nodes of the network.
Collapse
Affiliation(s)
- Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | | | - Alessandro Livi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Elena Borra
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| |
Collapse
|
24
|
Murris SR, Arsenault JT, Vanduffel W. Frequency- and State-Dependent Network Effects of Electrical Stimulation Targeting the Ventral Tegmental Area in Macaques. Cereb Cortex 2020; 30:4281-4296. [PMID: 32279076 PMCID: PMC7325806 DOI: 10.1093/cercor/bhaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
The ventral tegmental area (VTA) is a midbrain structure at the heart of the dopaminergic system underlying adaptive behavior. Endogenous firing rates of dopamine cells in the VTA vary from fast phasic bursts to slow tonic activity. Artificial perturbations of the VTA, through electrical or optogenetic stimulation methods, generate different and sometimes even contrasting behavioral outcomes depending on stimulation parameters such as frequency, amplitude, and pulse width. Here, we investigate the global functional effects of electrical stimulation frequency (10, 20, 50, and 100 Hz) of the VTA in rhesus monkeys. We stimulated 2 animals with chronic electrodes, either awake or anesthetized, while concurrently acquiring whole-brain functional magnetic resonance imaging (fMRI) signals. In the awake state, activity as a function of stimulation frequency followed an inverted U-shape in many cortical and subcortical structures, with highest activity observed at 20 and 50 Hz and lower activity at 10 and 100 Hz. Under anesthesia, the hemodynamic responses in connected brain areas were slightly positive at 10 Hz stimulation, but decreased linearly as a function of higher stimulation frequencies. A speculative explanation for the remarkable frequency dependence of stimulation-induced fMRI activity is that the VTA makes use of different frequency channels to communicate with different postsynaptic sites.
Collapse
Affiliation(s)
- Sjoerd R Murris
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - John T Arsenault
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
25
|
Chang TY, Doudlah R, Kim B, Sunkara A, Thompson LW, Lowe ME, Rosenberg A. Functional links between sensory representations, choice activity, and sensorimotor associations in parietal cortex. eLife 2020; 9:57968. [PMID: 33078705 PMCID: PMC7641584 DOI: 10.7554/elife.57968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/19/2020] [Indexed: 02/02/2023] Open
Abstract
Three-dimensional (3D) representations of the environment are often critical for selecting actions that achieve desired goals. The success of these goal-directed actions relies on 3D sensorimotor transformations that are experience-dependent. Here we investigated the relationships between the robustness of 3D visual representations, choice-related activity, and motor-related activity in parietal cortex. Macaque monkeys performed an eight-alternative 3D orientation discrimination task and a visually guided saccade task while we recorded from the caudal intraparietal area using laminar probes. We found that neurons with more robust 3D visual representations preferentially carried choice-related activity. Following the onset of choice-related activity, the robustness of the 3D representations further increased for those neurons. We additionally found that 3D orientation and saccade direction preferences aligned, particularly for neurons with choice-related activity, reflecting an experience-dependent sensorimotor association. These findings reveal previously unrecognized links between the fidelity of ecologically relevant object representations, choice-related activity, and motor-related activity.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–MadisonMadisonUnited States
| | - Raymond Doudlah
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–MadisonMadisonUnited States
| | - Byounghoon Kim
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–MadisonMadisonUnited States
| | | | - Lowell W Thompson
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–MadisonMadisonUnited States
| | - Meghan E Lowe
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–MadisonMadisonUnited States
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–MadisonMadisonUnited States
| |
Collapse
|
26
|
Localization of movable electrodes in a multi-electrode microdrive in nonhuman primates. J Neurosci Methods 2019; 330:108505. [PMID: 31711885 DOI: 10.1016/j.jneumeth.2019.108505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recently, large-scale semi-chronic recording systems have been developed, unique in their capability to record simultaneously from multiple individually moveable electrodes. As these recording systems can cover a large area, knowledge of the exact location of each individual electrode is crucial. Currently, the only method of keeping track of electrode depth and thus location is through detailed notebook keeping on neural activity. NEW METHOD We have improved the electrode localization by combining pre- and postoperative anatomical magnetic resonance imaging (MRI) scans with high resolution computed tomography (CT) scans throughout the experiment, and validated our method by comparing the resulting location estimates with traditional notebook-keeping. Finally, the actual location of a selection of electrodes was marked at the end of the experiment by creating small metallic depositions using electrical stimulation, and thereby made visible on MRI. RESULTS Combining CT scans with a high resolution, artefact reducing sequence during the experiment with a preoperative MRI scan provides crucial information about the exact electrode location of multielectrode arrays with individually moveable electrodes. COMPARISON WITH EXISTING METHODS The information obtained from the hybrid CT-MR image and the notes on spiking activity showed a similar pattern, with the clear advantage of the visualization of the exact position of the electrodes using our method. CONCLUSIONS The described technique allows for a precise anatomical identification of the recorded brain areas and thus to draw strong conclusions about the role of each targeted cortical area in the behavior under study.
Collapse
|
27
|
Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun 2019; 10:2642. [PMID: 31201331 PMCID: PMC6572776 DOI: 10.1038/s41467-019-10638-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can non-invasively modulate neural activity in humans. Despite three decades of research, the spatial extent of the cortical area activated by TMS is still controversial. Moreover, how TMS interacts with task-related activity during motor behavior is unknown. Here, we applied single-pulse TMS over macaque parietal cortex while recording single-unit activity at various distances from the center of stimulation during grasping. The spatial extent of TMS-induced activation is remarkably restricted, affecting the spiking activity of single neurons in an area of cortex measuring less than 2 mm in diameter. In task-related neurons, TMS evokes a transient excitation followed by reduced activity, paralleled by a significantly longer grasping time. Furthermore, TMS-induced activity and task-related activity do not summate in single neurons. These results furnish crucial experimental evidence for the neural effects of TMS at the single-cell level and uncover the neural underpinnings of behavioral effects of TMS. Transcranial Magnetic Stimulation (TMS) can modulate human brain activity, but the extent of the cortical area activated by TMS is unclear. Here, the authors show that TMS affects monkey single neuron activity in an area less than 2 mm diameter, while TMS-induced activity and task-related activity do not summate.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium. .,Onderzoeksgroep Bewegingscontrole & Neuroplasticiteit, Katholieke Universiteit Leuven, Leuven, Belgium. .,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Marco Davare
- Onderzoeksgroep Bewegingscontrole & Neuroplasticiteit, Katholieke Universiteit Leuven, Leuven, Belgium. .,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Marcelo Armendariz
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Armendariz M, Ban H, Welchman AE, Vanduffel W. Areal differences in depth cue integration between monkey and human. PLoS Biol 2019; 17:e2006405. [PMID: 30925163 PMCID: PMC6457573 DOI: 10.1371/journal.pbio.2006405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/10/2019] [Accepted: 03/12/2019] [Indexed: 11/22/2022] Open
Abstract
Electrophysiological evidence suggested primarily the involvement of the middle temporal (MT) area in depth cue integration in macaques, as opposed to human imaging data pinpointing area V3B/kinetic occipital area (V3B/KO). To clarify this conundrum, we decoded monkey functional MRI (fMRI) responses evoked by stimuli signaling near or far depths defined by binocular disparity, relative motion, and their combination, and we compared results with those from an identical experiment previously performed in humans. Responses in macaque area MT are more discriminable when two cues concurrently signal depth, and information provided by one cue is diagnostic of depth indicated by the other. This suggests that monkey area MT computes fusion of disparity and motion depth signals, exactly as shown for human area V3B/KO. Hence, these data reconcile previously reported discrepancies between depth processing in human and monkey by showing the involvement of the dorsal stream in depth cue integration using the same technique, despite the engagement of different regions. In everyday life, we interact with a three-dimensional world that we perceive via our two-dimensional retinas. Our brain can reconstruct the third dimension from these flat retinal images using multiple sources of visual information, or cues. The horizontal displacement of the two retinal images, known as binocular disparity, and the relative motion between different objects are two important depth cues. However, to make the most of the information provided by each cue, our brains must efficiently integrate across them. To examine this process, we used neuroimaging in monkeys to record brain responses evoked by stimuli signaling depths defined by either binocular disparity or relative motion in isolation, and also when the two cues are combined congruently or incongruently. We found that cortical area MT in monkeys is involved in the fusion of these two particular depth cues, in contrast to previous human imaging data that pinpoint a more posterior cortical area, V3B/KO. Our findings support the existence of depth cue integration mechanisms in primates; however, this fusion appears to be computed in slightly different areas in humans and monkeys.
Collapse
Affiliation(s)
- Marcelo Armendariz
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium
| | - Hiroshi Ban
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Andrew E. Welchman
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (WV); (AW)
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Leuven Brain Institute, Leuven, Belgium
- * E-mail: (WV); (AW)
| |
Collapse
|
29
|
Sharma S, Mantini D, Vanduffel W, Nelissen K. Functional specialization of macaque premotor F5 subfields with respect to hand and mouth movements: A comparison of task and resting-state fMRI. Neuroimage 2019; 191:441-456. [PMID: 30802514 DOI: 10.1016/j.neuroimage.2019.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/05/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022] Open
Abstract
Based on architectonic, tract-tracing or functional criteria, the rostral portion of ventral premotor cortex in the macaque monkey, also termed area F5, has been divided into several subfields. Cytoarchitectonical investigations suggest the existence of three subfields, F5c (convexity), F5p (posterior) and F5a (anterior). Electrophysiological investigations have suggested a gradual dorso-ventral transition from hand- to mouth-dominated motor fields, with F5p and ventral F5c strictly related to hand movements and mouth movements, respectively. The involvement of F5a in this respect, however, has received much less attention. Recently, data-driven resting-state fMRI approaches have also been used to examine the presence of distinct functional fields in macaque ventral premotor cortex. Although these studies have suggested several functional clusters in/near macaque F5, so far the parcellation schemes derived from these clustering methods do not completely retrieve the same level of F5 specialization as suggested by aforementioned invasive techniques. Here, using seed-based resting-state fMRI analyses, we examined the functional connectivity of different F5 seeds with key regions of the hand and face/mouth parieto-frontal-insular motor networks. In addition, we trained monkeys to perform either hand grasping or ingestive mouth movements in the scanner in order to compare resting-state with task-derived functional hand and mouth motor networks. In line with previous single-cell investigations, task-fMRI suggests involvement of F5p, dorsal F5c and F5a in the execution of hand grasping movements, while non-communicative mouth movements yielded particularly pronounced responses in ventral F5c. Corroborating with anatomical tracing data of macaque F5 subfields, seed-based resting-state fMRI suggests a transition from predominant functional correlations with the hand-motor network in F5p to mostly mouth-motor network functional correlations in ventral F5c. Dorsal F5c yielded robust functional correlations with both hand- and mouth-motor networks. In addition, the deepest part of the fundus of the inferior arcuate, corresponding to area 44, displayed a strikingly different functional connectivity profile compared to neighboring F5a, suggesting a different functional specialization for these two neighboring regions.
Collapse
Affiliation(s)
- S Sharma
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - D Mantini
- Movement Control & Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; Functional Neuroimaging Laboratory, Fondazione Ospedale San Camillo - IRCCS, Venezia, Italy
| | - W Vanduffel
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - K Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Asymmetric effective connectivity between primate anterior cingulate and lateral prefrontal cortex revealed by electrical microstimulation. Brain Struct Funct 2018; 224:779-793. [DOI: 10.1007/s00429-018-1806-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
31
|
Functional MRI in Macaque Monkeys during Task Switching. J Neurosci 2018; 38:10619-10630. [PMID: 30355629 DOI: 10.1523/jneurosci.1539-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
Nonhuman primates have proven to be a valuable animal model for exploring neuronal mechanisms of cognitive control. One important aspect of executive control is the ability to switch from one task to another, and task-switching paradigms have often been used in human volunteers to uncover the underlying neuronal processes. To date, however, no study has investigated task-switching paradigms in nonhuman primates during functional magnetic resonance imaging (fMRI). We trained two rhesus macaques to switch between arm movement, eye movement, and passive fixation tasks during fMRI. Similar to results obtained in human volunteers, task switching elicits increased fMRI activations in prefrontal cortex, anterior cingulate cortex, orbitofrontal cortex, and caudate nucleus. Our results indicate that the macaque monkey is a reliable model with which to investigate higher-order cognitive functioning such as task switching. As such, these results can pave the way for a detailed investigation of the neural basis of complex human behavior.SIGNIFICANCE STATEMENT Task switching is an important aspect of cognitive control, and task-switching paradigms have often been used to investigate higher-order executive functioning in human volunteers. We used a task-switching paradigm in the nonhuman primate during fMRI and found increased activation mainly in prefrontal areas (46, 45, frontal eye field, and anterior cingulate), in orbitofrontal area 12, and in the caudate nucleus. These data fit surprisingly well with previous human imaging data, proving that the monkey is an excellent model to study task switching with high spatiotemporal resolution tools that are currently not applicable in humans. As such, our results pave the way for a detailed interrogation of regions performing similar executive functions in humans and monkeys.
Collapse
|
32
|
Shape responses in a macaque frontal area connected to posterior parietal cortex. Neuroimage 2018; 179:298-312. [DOI: 10.1016/j.neuroimage.2018.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
|
33
|
Alizadeh AM, Van Dromme IC, Janssen P. Single-cell responses to three-dimensional structure in a functionally defined patch in macaque area TEO. J Neurophysiol 2018; 120:2806-2818. [PMID: 30230993 DOI: 10.1152/jn.00198.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both dorsal and ventral visual pathways harbor several areas sensitive to gradients of binocular disparity (i.e., higher-order disparity). Although a wealth of information exists about disparity processing in early visual (V1, V2, and V3) and end-stage areas, TE in the ventral stream, and the anterior intraparietal area (AIP) in the dorsal stream, little is known about midlevel area TEO in the ventral pathway. We recorded single-unit responses to disparity-defined curved stimuli in a functional magnetic resonance imaging (fMRI) activation elicited by curved surfaces compared with flat surfaces in the macaque area TEO. This fMRI activation contained a small proportion of disparity-selective neurons, with very few of them second-order disparity selective. Overall, this population of TEO neurons did not preserve its three-dimensional structure selectivity across positions in depth, indicating a lack of higher-order disparity selectivity, but showed stronger responses to flat surfaces than to curved surfaces, as predicted by the fMRI experiment. The receptive fields of the responsive TEO cells were relatively small and generally foveal. A linear support vector machine classifier showed that this population of disparity-selective TEO neurons contains reliable information about the sign of curvature and the position in depth of the stimulus. NEW & NOTEWORTHY We recorded in a part of the macaque area TEO that is activated more by curved surfaces than by flat surfaces at different disparities using the same stimuli. In contrast to previous studies, this functional magnetic resonance imaging-defined patch did not contain a large number of higher-order disparity-selective neurons. However, a linear support vector machine could reliably classify both the sign of the disparity gradient and the position in depth of the stimuli.
Collapse
Affiliation(s)
- Amir-Mohammad Alizadeh
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| | - Ilse C Van Dromme
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| | - Peter Janssen
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| |
Collapse
|
34
|
Erlikhman G, Caplovitz GP, Gurariy G, Medina J, Snow JC. Towards a unified perspective of object shape and motion processing in human dorsal cortex. Conscious Cogn 2018; 64:106-120. [PMID: 29779844 DOI: 10.1016/j.concog.2018.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
Abstract
Although object-related areas were discovered in human parietal cortex a decade ago, surprisingly little is known about the nature and purpose of these representations, and how they differ from those in the ventral processing stream. In this article, we review evidence for the unique contribution of object areas of dorsal cortex to three-dimensional (3-D) shape representation, the localization of objects in space, and in guiding reaching and grasping actions. We also highlight the role of dorsal cortex in form-motion interaction and spatiotemporal integration, possible functional relationships between 3-D shape and motion processing, and how these processes operate together in the service of supporting goal-directed actions with objects. Fundamental differences between the nature of object representations in the dorsal versus ventral processing streams are considered, with an emphasis on how and why dorsal cortex supports veridical (rather than invariant) representations of objects to guide goal-directed hand actions in dynamic visual environments.
Collapse
Affiliation(s)
| | | | - Gennadiy Gurariy
- Department of Psychology, University of Nevada, Reno, USA; Department of Psychology, University of Wisconsin, Milwaukee, USA
| | - Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA
| | | |
Collapse
|
35
|
Alizadeh AM, Van Dromme I, Verhoef BE, Janssen P. Caudal Intraparietal Sulcus and three-dimensional vision: A combined functional magnetic resonance imaging and single-cell study. Neuroimage 2018; 166:46-59. [DOI: 10.1016/j.neuroimage.2017.10.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022] Open
|
36
|
Verhoef BE, Vogels R, Janssen P. Binocular depth processing in the ventral visual pathway. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0259. [PMID: 27269602 DOI: 10.1098/rstb.2015.0259] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 11/12/2022] Open
Abstract
One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope.This article is part of the themed issue 'Vision in our three-dimensional world'.
Collapse
Affiliation(s)
- Bram-Ernst Verhoef
- Laboratorium voor Neuro en Psychofysiologie, KU Leuven, O&N2, Campus Gasthuisberg, 3000 Leuven, Belgium Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Rufin Vogels
- Laboratorium voor Neuro en Psychofysiologie, KU Leuven, O&N2, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro en Psychofysiologie, KU Leuven, O&N2, Campus Gasthuisberg, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Bernier PM, Whittingstall K, Grafton ST. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning. Front Hum Neurosci 2017; 11:249. [PMID: 28536517 PMCID: PMC5423362 DOI: 10.3389/fnhum.2017.00249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 12/04/2022] Open
Abstract
The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG) were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.
Collapse
Affiliation(s)
| | - Kevin Whittingstall
- Département de Radiologie Diagnostique, Université de Sherbrooke, SherbrookeQC, Canada
| | - Scott T Grafton
- Brain Imaging Center, Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa BarbaraCA, USA
| |
Collapse
|
38
|
Janssen P, Verhoef BE, Premereur E. Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision. Cortex 2017; 98:218-227. [PMID: 28258716 DOI: 10.1016/j.cortex.2017.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The division of labor between the dorsal and the ventral visual stream in the primate brain has inspired numerous studies on the visual system in humans and in nonhuman primates. However, how and under which circumstances the two visual streams interact is still poorly understood. Here we review evidence from anatomy, modelling, electrophysiology, electrical microstimulation (EM), reversible inactivation and functional imaging in the macaque monkey aimed at clarifying at which levels in the hierarchy of visual areas the two streams interact, and what type of information might be exchanged between the two streams during three-dimensional (3D) object viewing. Neurons in both streams encode 3D structure from binocular disparity, synchronized activity between parietal and inferotemporal areas is present during 3D structure categorization, and clusters of 3D structure-selective neurons in parietal cortex are anatomically connected to ventral stream areas. In addition, caudal intraparietal cortex exerts a causal influence on 3D-structure related activations in more anterior parietal cortex and in inferotemporal cortex. Thus, both anatomical and functional evidence indicates that the dorsal and the ventral visual stream interact during 3D object viewing.
Collapse
Affiliation(s)
- Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium.
| | - Bram-Ernst Verhoef
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium; Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Elsie Premereur
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Oya H, Howard MA, Magnotta VA, Kruger A, Griffiths TD, Lemieux L, Carmichael DW, Petkov CI, Kawasaki H, Kovach CK, Sutterer MJ, Adolphs R. Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI. J Neurosci Methods 2017; 277:101-112. [PMID: 28012852 PMCID: PMC5534177 DOI: 10.1016/j.jneumeth.2016.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Understanding brain function requires knowledge of how one brain region causally influences another. This information is difficult to obtain directly in the human brain, and is instead typically inferred from resting-state fMRI. NEW METHOD Here, we demonstrate the safety and scientific promise of a novel and complementary approach: concurrent electrical stimulation and fMRI (es-fMRI) at 3T in awake neurosurgical patients with implanted depth electrodes. RESULTS We document the results of safety testing, actual experimental setup, and stimulation parameters, that safely and reliably evoke activation in distal structures through stimulation of amygdala, cingulate, or prefrontal cortex. We compare connectivity inferred from the evoked patterns of activation with that estimated from standard resting-state fMRI in the same patients: while connectivity patterns obtained with each approach are correlated, each method produces unique results. Response patterns were stable over the course of 11min of es-fMRI runs. COMPARISON WITH EXISTING METHOD: es-fMRI in awake humans yields unique information about effective connectivity, complementing resting-state fMRI. Although our stimulations were below the level of inducing any apparent behavioral or perceptual effects, a next step would be to use es-fMRI to modulate task performances. This would reveal the acute network-level changes induced by the stimulation that mediate the behavioral and cognitive effects seen with brain stimulation. CONCLUSIONS es-fMRI provides a novel and safe approach for mapping effective connectivity in the human brain in a clinical setting, and will inform treatments for psychiatric and neurodegenerative disorders that use deep brain stimulation.
Collapse
Affiliation(s)
- Hiroyuki Oya
- Department of Neurosurgery, Human Brain Research Laboratory, University of Iowa, Iowa City, IA 52241, USA.
| | - Matthew A Howard
- Department of Neurosurgery, Human Brain Research Laboratory, University of Iowa, Iowa City, IA 52241, USA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa College of Medicine, Iowa City, IA 52241, USA
| | - Anton Kruger
- Department of Electrical and Computer Engineering, University of Iowa College of Engineering, USA
| | | | - Louis Lemieux
- UCL Institute of Neurology, University College London, London, UK
| | | | | | - Hiroto Kawasaki
- Department of Neurosurgery, Human Brain Research Laboratory, University of Iowa, Iowa City, IA 52241, USA
| | - Christopher K Kovach
- Department of Neurosurgery, Human Brain Research Laboratory, University of Iowa, Iowa City, IA 52241, USA
| | - Matthew J Sutterer
- Department of Neurosurgery, Human Brain Research Laboratory, University of Iowa, Iowa City, IA 52241, USA
| | - Ralph Adolphs
- Division of Biology and Biological Engineering, California Institute of Technology, USA
| |
Collapse
|
40
|
Premereur E, Taubert J, Janssen P, Vogels R, Vanduffel W. Effective Connectivity Reveals Largely Independent Parallel Networks of Face and Body Patches. Curr Biol 2016; 26:3269-3279. [DOI: 10.1016/j.cub.2016.09.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
|
41
|
Hutchison RM, Gallivan JP. Functional coupling between frontoparietal and occipitotemporal pathways during action and perception. Cortex 2016; 98:8-27. [PMID: 27890325 DOI: 10.1016/j.cortex.2016.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/16/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022]
Abstract
Several lines of evidence point to areas in the occipitotemporal pathway as being critical in the processes of visual perception and object recognition. Much less appreciated, however, is the role that this pathway plays in object-related processing for the purposes of visually guided action. Here, using functional MRI (fMRI) and functional connectivity (FC) measures, we examined interactions between areas in frontoparietal cortex (FPC) involved in grasping, reaching, eye movements, and tool use and areas in occipitotemporal cortex (OTC) involved in object-, face-, scene-, body-, tool-, and motion-related processing, both during the performance of sensorimotor and visual-perceptual tasks, as well as during passive fixation (resting-state). Cluster analysis of regional time course data identified correspondence in the patterns of FPC and OTC connectivity during the visual-perceptual tasks and rest that both tended to segregate regions along traditional dorsal/ventral pathway boundaries. During the sensorimotor tasks, however, we observed a notable separation in functional coupling between ventral-medial and ventral-lateral regions of OTC, with several of the latter areas often being clustered together with sensorimotor-defined areas in parietal cortex. These findings indicate that the functional coupling of ventral-lateral OTC areas to dorsal parietal and ventral-medial structures is flexible and task-dependent, and suggests that regions in lateral occipital cortex, in particular, may play an important role in mediating interactions between the dorsal and ventral pathways during tasks involving sensorimotor control.
Collapse
Affiliation(s)
- R Matthew Hutchison
- Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
42
|
Cleeren E, Premereur E, Casteels C, Goffin K, Janssen P, Van Paesschen W. The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys. NEUROIMAGE-CLINICAL 2016; 12:252-61. [PMID: 27489773 PMCID: PMC4959940 DOI: 10.1016/j.nicl.2016.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
Epileptic seizures are network-level phenomena. Hence, epilepsy may be regarded as a circuit-level disorder that cannot be understood outside this context. Better insight into the effective connectivity of the seizure onset zone and the manner in which seizure activity spreads could lead to specifically-tailored therapies for epilepsy. We applied the electrical amygdala kindling model in two rhesus monkeys until these animals displayed consistent stage IV seizures. At this stage, we investigated the effective connectivity of the amygdala by means of electrical microstimulation during fMRI (EM-fMRI). In addition, we imaged changes in perfusion during a seizure using ictal SPECT perfusion imaging. The spatial overlap between the connectivity network and the ictal perfusion network was assessed both at the regional level, by calculating Dice coefficients using anatomically defined regions of interest, and at the voxel level. The kindled amygdala was extensively connected to bilateral cortical and subcortical structures, which in many cases were connected multisynaptically to the amygdala. At the regional level, the spatial extents of many of these fMRI activations and deactivations corresponded to the respective increases and decreases in perfusion imaged during a stage IV seizure. At the voxel level, however, some regions showed residual seizure-specific activity (not overlapping with the EM-fMRI activations) or fMRI-specific activation (not overlapping with the ictal SPECT activations), indicating that frequently, only a part of a region anatomically connected to the seizure onset zone participated in seizure propagation. Thus, EM-fMRI in the amygdala of electrically-kindled monkeys reveals widespread areas that are often connected multisynaptically to the seizure focus. Seizure activity appears to spread, to a large extent, via these connected areas.
Collapse
Affiliation(s)
- Evy Cleeren
- Laboratory for Neuro- and Psychophysiology, KU Leuven, O&N II Herestraat 49 - bus 1021, 3000 Leuven, Belgium; Laboratory for Epilepsy Research, KU Leuven, UZ Herestraat 49 - bus 7003 48, 3000 Leuven, Belgium
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, O&N II Herestraat 49 - bus 1021, 3000 Leuven, Belgium
| | - Cindy Casteels
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, UZ Herestraat 49 - bus 7003 59, 3000 Leuven, Belgium; Molecular Small Animal Imaging Center (MoSAIC), O&N I Herestraat 49 - bus 505, 3000 Leuven, Belgium
| | - Karolien Goffin
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, UZ Herestraat 49 - bus 7003 59, 3000 Leuven, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, O&N II Herestraat 49 - bus 1021, 3000 Leuven, Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, UZ Herestraat 49 - bus 7003 48, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Van Dromme IC, Premereur E, Verhoef BE, Vanduffel W, Janssen P. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision. PLoS Biol 2016; 14:e1002445. [PMID: 27082854 PMCID: PMC4833303 DOI: 10.1371/journal.pbio.1002445] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Collapse
Affiliation(s)
- Ilse C. Van Dromme
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
| | - Elsie Premereur
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
| | - Bram-Ernst Verhoef
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Wim Vanduffel
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
- Harvard Medical School, Boston, Massachusetts, United States of America
- MGH Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States of America
| | - Peter Janssen
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
- * E-mail:
| |
Collapse
|
44
|
Chernov MM, Chen G, Torre-Healy LA, Friedman RM, Roe AW. Microelectrode array stimulation combined with intrinsic optical imaging: A novel tool for functional brain mapping. J Neurosci Methods 2016; 263:7-14. [PMID: 26820903 DOI: 10.1016/j.jneumeth.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/24/2015] [Accepted: 01/16/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Functional brain mapping via cortical microstimulation is a widely used clinical and experimental tool. However, data are traditionally collected point by point, making the technique very time consuming. Moreover, even in skilled hands, consistent penetration depths are difficult to achieve. Finally, the effects of microstimulation are assessed behaviorally, with no attempt to capture the activity of the local cortical circuits being stimulated. NEW METHOD We propose a novel method for functional brain mapping, which combines the use of a microelectrode array with intrinsic optical imaging. The precise spacing of electrodes allows for fast, accurate mapping of the area of interest in a regular grid. At the same time, the optical window allows for visualization of local neural connections when stimulation is combined with intrinsic optical imaging. RESULTS We demonstrate the efficacy of our technique using the primate motor cortex as a sample application, using a combination of microstimulation, imaging and electrophysiological recordings during wakefulness and under anesthesia. Comparison with current method: We find the data collected with our method is consistent with previous data published by others. We believe that our approach enables data to be collected faster and in a more consistent fashion and makes possible a number of studies that would be difficult to carry out with the traditional approach. CONCLUSIONS Our technique allows for simultaneous modulation and imaging of cortical sensorimotor networks in wakeful subjects over multiple sessions which is highly desirable for both the study of cortical organization and the design of brain machine interfaces.
Collapse
Affiliation(s)
- Mykyta M Chernov
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States.
| | - Gang Chen
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Luke A Torre-Healy
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Anna W Roe
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| |
Collapse
|
45
|
Romero MC, Janssen P. Receptive field properties of neurons in the macaque anterior intraparietal area. J Neurophysiol 2016; 115:1542-55. [PMID: 26792887 DOI: 10.1152/jn.01037.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/12/2016] [Indexed: 01/08/2023] Open
Abstract
Visual object information is necessary for grasping. In primates, the anterior intraparietal area (AIP) plays an essential role in visually guided grasping. Neurons in AIP encode features of objects, but no study has systematically investigated the receptive field (RF) of AIP neurons. We mapped the RF of posterior AIP (pAIP) neurons in the central visual field, using images of objects and small line fragments that evoked robust responses, together with less effective stimuli. The RF sizes we measured varied between 3°(2)and 90°(2), with the highest response either at the fixation point or at parafoveal positions. A large fraction of pAIP neurons showed nonuniform RFs, with multiple local maxima in both ipsilateral and contralateral hemifields. Moreover, the RF profile could depend strongly on the stimulus used to map the RF. Highly similar results were obtained with the smallest stimulus that evoked reliable responses (line fragments measuring 1-2°). The nonuniformity and dependence of the RF profile on the stimulus in pAIP were comparable to previous observations in the anterior part of the lateral intraparietal area (aLIP), but the average RF of pAIP neurons was located at the fovea whereas the average RF of aLIP neurons was located parafoveally. Thus nonuniformity and stimulus dependence of the RF may represent general RF properties of neurons in the dorsal visual stream involved in object analysis, which contrast markedly with those of neurons in the ventral visual stream.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Neural representation for object recognition in inferotemporal cortex. Curr Opin Neurobiol 2016; 37:23-35. [PMID: 26771242 DOI: 10.1016/j.conb.2015.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
Abstract
We suggest that population representation of objects in inferotemporal cortex lie on a continuum between a purely structural, parts-based description and a purely holistic description. The intrinsic dimensionality of object representation is estimated to be around 100, perhaps with lower dimensionalities for object representations more toward the holistic end of the spectrum. Cognitive knowledge in the form of semantic information and task information feed back to inferotemporal cortex from perirhinal and prefrontal cortex respectively, providing high-level multimodal-based expectations that assist in the interpretation of object stimuli. Integration of object information across eye movements may also contribute to object recognition through a process of active vision.
Collapse
|
47
|
Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network. J Neurosci 2015; 35:11415-32. [PMID: 26269647 DOI: 10.1523/jneurosci.1714-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neural networks of the brain involved in the planning and execution of grasping movements are not fully understood. The network formed by macaque anterior intraparietal area (AIP) and hand area (F5) of the ventral premotor cortex is implicated strongly in the generation of grasping movements. However, the differential role of each area in this frontoparietal network is unclear. We recorded spiking activity from many electrodes in parallel in AIP and F5 while three macaque monkeys (Macaca mulatta) performed a delayed grasping task. By analyzing neural population activity during action preparation, we found that state space analysis of simultaneously recorded units is significantly more predictive of subsequent reaction times (RTs) than traditional methods. Furthermore, because we observed a wide variety of individual unit characteristics, we developed the sign-corrected average rate (SCAR) method of neural population averaging. The SCAR method was able to explain at least as much variance in RT overall as state space methods. Overall, F5 activity predicted RT (18% variance explained) significantly better than AIP (6%). The SCAR methods provides a straightforward interpretation of population activity, although other state space methods could provide richer descriptions of population dynamics. Together, these results lend support to the differential role of the parietal and frontal cortices in preparation for grasping, suggesting that variability in preparatory activity in F5 has a more potent effect on trial-to-trial RT variability than AIP. SIGNIFICANCE STATEMENT Grasping movements are planned before they are executed, but how is the preparatory activity in a population of neurons related to the subsequent reaction time (RT)? A population analysis of the activity of many neurons recorded in parallel in macaque premotor (F5) and parietal (AIP) cortices during a delayed grasping task revealed that preparatory activity in F5 could explain a threefold larger fraction of variability in trial-to-trial RT than AIP. These striking differences lend additional support to a differential role of the parietal and premotor cortices in grasp movement preparation, suggesting that F5 has a more direct influence on trial-to-trial variability and movement timing, whereas AIP might be more closely linked to overall movement intentions.
Collapse
|
48
|
Verhoef BE, Vogels R, Janssen P. Effects of Microstimulation in the Anterior Intraparietal Area during Three-Dimensional Shape Categorization. PLoS One 2015; 10:e0136543. [PMID: 26295941 PMCID: PMC4546616 DOI: 10.1371/journal.pone.0136543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
The anterior intraparietal area (AIP) of rhesus monkeys is part of the dorsal visual stream and contains neurons whose visual response properties are commensurate with a role in three-dimensional (3D) shape perception. Neuronal responses in AIP signal the depth structure of disparity-defined 3D shapes, reflect the choices of monkeys while they categorize 3D shapes, and mirror the behavioral variability across different stimulus conditions during 3D-shape categorization. However, direct evidence for a role of AIP in 3D-shape perception has been lacking. We trained rhesus monkeys to categorize disparity-defined 3D shapes and examined AIP's contribution to 3D-shape categorization by microstimulating in clusters of 3D-shape selective AIP neurons during task performance. We find that microstimulation effects on choices (monkey M1) and reaction times (monkey M1 and M2) depend on the 3D-shape preference of the stimulated site. Moreover, electrical stimulation of the same cells, during either the 3D-shape-categorization task or a saccade task, could affect behavior differently. Interestingly, in one monkey we observed a strong correlation between the strength of choice-related AIP activity (choice probabilities) and the influence of microstimulation on 3D-shape-categorization behavior (choices and reaction time). These findings propose AIP as part of the network responsible for 3D-shape perception. The results also show that the anterior intraparietal cortex contains cells with different tuning properties, i.e. 3D-shape- or saccade-related, that can be dynamically read out depending on the requirements of the task at hand.
Collapse
Affiliation(s)
- Bram-Ernst Verhoef
- Laboratorium voor Neuro- en Psychofysiologie, O&N2, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
- Department of Neurobiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Rufin Vogels
- Laboratorium voor Neuro- en Psychofysiologie, O&N2, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, O&N2, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
49
|
Temporal and spatial constraints of action effect on sensory binding. Exp Brain Res 2015; 233:3379-92. [DOI: 10.1007/s00221-015-4402-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
50
|
Affiliation(s)
- Peter Janssen
- Department of Neuroscience, Laboratory for Neuro- and Psychophysiology, KU Leuven, B-3000 Leuven, Belgium;
| | - Hansjörg Scherberger
- German Primate Center, Leibniz Institute for Primate Research, D-37077 Göttingen, Germany;
- Department of Biology, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|