1
|
Peterson DB, Chaston J, Call AT. Dietary B vitamins influence the Drosophila melanogaster preference for dietary yeast. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001354. [PMID: 39712930 PMCID: PMC11659879 DOI: 10.17912/micropub.biology.001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
The microbiota influences the Drosophila melanogaster dietary preference for yeast (DPY). We previously identified four transposon insertion mutants in Acetobacter fabarum that significantly influence fly DPY, and three of these insertions were in genes that are associated with thiamine metabolism. Here, we tested if thiamine influences fly DPY in monoassociated flies. We show that thiamine and other B vitamins influence fly DPY and that the different mutants have distinct DPY responses to thiamine supplementation. Together, these experiments identify specific nutritional effectors of D. melanogaster DPY.
Collapse
Affiliation(s)
- Dean B Peterson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - John Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Andrew T Call
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| |
Collapse
|
2
|
Karim S, Zenzal TJ, Beati L, Sen R, Adegoke A, Kumar D, Downs LP, Keko M, Nussbaum A, Becker DJ, Moore FR. Ticks without borders: microbiome of immature neotropical tick species parasitizing migratory songbirds along northern Gulf of Mexico. Front Cell Infect Microbiol 2024; 14:1472598. [PMID: 39624265 PMCID: PMC11609183 DOI: 10.3389/fcimb.2024.1472598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can cause the emergence of novel tick-borne pathogens. This study examined the prevalence of exotic tick species parasitizing migratory songbirds at stopover sites along the northern Gulf of Mexico using the mitochondrial 12S rRNA gene. Methods Overall, 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre were the most abundant tick genera and species, respectively. A high throughput 16S ribosomal RNA sequencing approach characterized the microbial communities and identified pathogenic microbes in all tick samples. Results and discussion Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant pathogens were Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also noted a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing mean dispersal distances from 421-5003 kilometers. These findings spotlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.
Collapse
Affiliation(s)
- Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Theodore J. Zenzal
- United States Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, United States
| | - Lorenza Beati
- Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, United States
| | - Raima Sen
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Latoyia P. Downs
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mario Keko
- Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, United States
| | - Ashly Nussbaum
- Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, United States
| | - Daniel J. Becker
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - Frank R. Moore
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
3
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
4
|
Gale JT, Kreutz R, Gottfredson Morgan SJ, Davis EK, Hough C, Cisneros Cancino WA, Burnside B, Barney R, Hunsaker R, Hoyt AT, Cluff A, Nosker M, Sefcik C, Beales E, Beltz J, Frandsen PB, Schmidt P, Chaston JM. Environment and diet shape the geography-specific Drosophila melanogaster microbiota composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617096. [PMID: 39416031 PMCID: PMC11482821 DOI: 10.1101/2024.10.07.617096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Geographic and environmental variation in the animal microbiota can be directly linked to the evolution and wild fitness of their hosts but often appears to be disordered. Here, we sought to better understand patterns that underlie wild variation in the microbiota composition of Drosophila melanogaster . First, environmental temperature predicted geographic variation in fly microbial communities better than latitude did. The microbiota also differed between wild flies and their diets, supporting previous conclusions that the fly microbiota is not merely a reflection of diet. Flies feeding on different diets varied significantly in their microbiota composition, and flies sampled from individual apples were exceptionally depauperate for the Lactic Acid Bacteria (LAB), a major bacterial group in wild and laboratory flies. However, flies bore significantly more LAB when sampled from other fruits or compost piles. Follow-up analyses revealed that LAB abundance in the flies uniquely responds to fruit decomposition, whereas other microbiota members better indicate temporal seasonal progression. Finally, we show that diet-dependent variation in the fly microbiota is associated with phenotypic differentiation of fly lines collected in a single orchard. These last findings link covariation between the flies' dietary history, microbiota composition, and genetic variation across relatively small (single-orchard) landscapes, reinforcing the critical role that environment-dependent variation in microbiota composition can play in local adaptation and genomic differentiation of a model animal host. SIGNIFICANCE STATEMENT The microbial communities of animals influence their hosts' evolution and wild fitness, but it is hard to predict and explain how the microbiota varies in wild animals. Here, we describe that the microbiota composition of wild Drosophila melanogaster can be ordered by temperature, humidity, geographic distance, diet decomposition, and diet type. We show how these determinants of microbiota variation can help explain lactic acid bacteria (LAB) abundance in the flies, including the rarity of LAB in some previous studies. Finally, we show that wild fly phenotypes segregate with the flies' diet and microbiota composition, illuminating links between the microbiota and host evolution. Together, these findings help explain how variation in microbiota compositions can shape an animal's life history.
Collapse
|
5
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Wu G, Ma T, Hancock CE, Gonzalez S, Aryal B, Vaz S, Chan G, Palarca-Wong M, Allen N, Chung CI, Shu X, Liu Q. Opposing GPCR signaling programs protein intake setpoint in Drosophila. Cell 2024; 187:5376-5392.e17. [PMID: 39197448 PMCID: PMC11437785 DOI: 10.1016/j.cell.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tianji Ma
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clare E Hancock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Santiago Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Binod Aryal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Vaz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Chan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madison Palarca-Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Kosakamoto H, Sakuma C, Okada R, Miura M, Obata F. Context-dependent impact of the dietary non-essential amino acid tyrosine on Drosophila physiology and longevity. SCIENCE ADVANCES 2024; 10:eadn7167. [PMID: 39213345 PMCID: PMC11364096 DOI: 10.1126/sciadv.adn7167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Dietary protein intake modulates growth, reproduction, and longevity by stimulating amino acid (AA)-sensing pathways. Essential AAs are often considered as limiting nutrients during protein scarcity, and the role of dietary non-essential AAs (NEAAs) is less explored. Although tyrosine has been reported to be crucial for sensing protein restriction in Drosophila larvae, its effect on adult physiology and longevity remains unclear. Here, using a synthetic diet, we perform a systematic investigation of the effect of single NEAA deprivation on nutrient-sensing pathways, reproductive ability, starvation resistance, feeding behavior, and life span in adult female flies. Specifically, dietary tyrosine deprivation decreases internal tyrosine levels and fecundity, influences AA-sensing machineries, and extends life span. These nutritional responses are not observed under higher total AA intake or in infertile female flies, suggesting a context-dependent influence of dietary tyrosine. Our findings highlight the unique role of tyrosine as a potentially limiting nutrient, underscoring its value for dietary interventions aimed at enhancing health span.
Collapse
Affiliation(s)
- Hina Kosakamoto
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chisako Sakuma
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Rina Okada
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Shekarabi A, Qureishy I, Puglisi CH, Dalseth M, Vuong HE. Host-microbe interactions: communication in the microbiota-gut-brain axis. Curr Opin Microbiol 2024; 80:102494. [PMID: 38824840 PMCID: PMC11323153 DOI: 10.1016/j.mib.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Animals harbor a diverse array of symbiotic micro-organisms that coexist in communities across different body sites. These microbes maintain host homeostasis and respond to environmental insults to impact host physiological processes. Trillions of indigenous microbes reside in the gastrointestinal tract and engage with the host central nervous system (microbiota-gut-brain axis) by modulating immune responses, interacting with gut intrinsic and extrinsic nervous system, and regulating neuromodulators and biochemicals. These gut microbiota to brain signaling pathways are constantly informed by each other and are hypothesized to mediate brain health across the lifespan. In this review, we will examine the crosstalk of gut microbiota to brain communications in neurological pathologies, with an emphasis on microbial metabolites and neuromodulators, and provide a discussion of recent advances that help elucidate the microbiota as a therapeutic target for treating brain and behavioral disorders.
Collapse
Affiliation(s)
- Aryan Shekarabi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Izhan Qureishy
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Chloe H Puglisi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Marge Dalseth
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Helen E Vuong
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA.
| |
Collapse
|
9
|
Viagem LDA, Hakizimana JN, Rumisha C, Cerozi BDS, Misinzo G. Effect of soybean and seaweed-based diets on growth performance, feed utilization, and gut microbiota of tilapia: A systematic review and meta-analysis. PLoS One 2024; 19:e0293775. [PMID: 39046994 PMCID: PMC11268637 DOI: 10.1371/journal.pone.0293775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Tilapia, a significant aquaculture species globally, relies heavily on feed for its production. While numerous studies have investigated the impact of soybean and seaweed-based diets on tilapia, a comprehensive understanding remains elusive. This review aimed at evaluating and synthesizing the existing literature on these diets' effects, focusing on growth performance, feed utilization, and gut microbiota. A systematic search of databases was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a total of 57 studies were included in the qualitative analysis and 24 in the meta-analysis. The results indicated that soybean-based diets, at a 59.4% inclusion level improved the Specific Growth Rate (SGR) of tilapia with an effect size of -2.14 (95% CI: -2.92, -1.37; p < 0.00001; I2 = 99%) and did not improve the feed conversion rate (FCR), as the effect size was 1.80 (95% CI: 0.72, 2.89; p = 0.001; I2 = 100%). For seaweed-based diets, at a 15,9% inclusion level did not improve SGR, with an effect size of -0.74 (95% CI: -1.70, 0.22; p = 0.13; I2 = 99%), and the FCR with an effect size of -0.70 (95% CI: -1.94, 0.54; p = 0.27; I2 = 100%). Regarding the gut microbiota, was noted a lack of studies meeting the inclusion criteria for tilapia. However, findings from studies on other farmed fishes suggested that soybean and seaweed-based diets could have diverse effects on gut microbiota composition and promote the growth of beneficial microbiota. This study suggests that incorporating soybean-based diets at 59.4% inclusion can improve the SGR of tilapia. Seaweed-based diets, while not demonstrating improvement in the analyzed parameters with an inclusion level of 15.9%, have the potential to contribute to the sustainability of the aquaculture industry when incorporated at lower levels.
Collapse
Affiliation(s)
- Leonildo dos Anjo Viagem
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Food and Agricultural Sciences, Rovuma University, Cabo Delgado, Mozambique
| | - Jean Nepomuscene Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Cyrus Rumisha
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Brunno da Silva Cerozi
- Department of Animal Science, College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
10
|
Kondo K, Suzuki M, Amadaira M, Araki C, Watanabe R, Murakami K, Ochiai S, Ogura T, Hayakawa T. Association of maternal genetics with the gut microbiome and eucalypt diet selection in captive koalas. PeerJ 2024; 12:e17385. [PMID: 38818452 PMCID: PMC11138522 DOI: 10.7717/peerj.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background Koalas, an Australian arboreal marsupial, depend on eucalypt tree leaves for their diet. They selectively consume only a few of the hundreds of available eucalypt species. Since the koala gut microbiome is essential for the digestion and detoxification of eucalypts, their individual differences in the gut microbiome may lead to variations in their eucalypt selection and eucalypt metabolic capacity. However, research focusing on the relationship between the gut microbiome and differences in food preferences is very limited. We aimed to determine whether individual and regional differences exist in the gut microbiome of koalas as well as the mechanism by which these differences influence eucalypt selection. Methods Foraging data were collected from six koalas and a total of 62 feces were collected from 15 koalas of two zoos in Japan. The mitochondrial phylogenetic analysis was conducted to estimate the mitochondrial maternal origin of each koala. In addition, the 16S-based gut microbiome of 15 koalas was analyzed to determine the composition and diversity of each koala's gut microbiome. We used these data to investigate the relationship among mitochondrial maternal origin, gut microbiome and eucalypt diet selection. Results and Discussion This research revealed that diversity and composition of the gut microbiome and that eucalypt diet selection of koalas differs among regions. We also revealed that the gut microbiome alpha diversity was correlated with foraging diversity in koalas. These individual and regional differences would result from vertical (maternal) transmission of the gut microbiome and represent an intraspecific variation in koala foraging strategies. Further, we demonstrated that certain gut bacteria were strongly correlated with both mitochondrial maternal origin and eucalypt foraging patterns. Bacteria found to be associated with mitochondrial maternal origin included bacteria involved in fiber digestion and degradation of secondary metabolites, such as the families Rikenellaceae and Synergistaceae. These bacteria may cause differences in metabolic capacity between individual and regional koalas and influence their eucalypt selection. Conclusion We showed that the characteristics (composition and diversity) of the gut microbiome and eucalypt diet selection of koalas differ by individuals and regional origins as we expected. In addition, some gut bacteria that could influence eucalypt foraging of koalas showed the relationships with both mitochondrial maternal origin and eucalypt foraging pattern. These differences in the gut microbiome between regional origins may make a difference in eucalypt selection. Given the importance of the gut microbiome to koalas foraging on eucalypts and their strong symbiotic relationship, future studies should focus on the symbiotic relationship and coevolution between koalas and the gut microbiome to understand individual and regional differences in eucalypt diet selection by koalas.
Collapse
Affiliation(s)
- Kotaro Kondo
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mirei Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mana Amadaira
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Chiharu Araki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Rie Watanabe
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | | | | | - Tadatoshi Ogura
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Massey C, Nosker ME, Gale J, Scott S, Walker CJ, Cluff A, Wilcox S, Morrison A, Gottfredson Morgan SJ, Beltz J, Schmidt P, Chaston JM. Humidity determines penetrance of a latitudinal gradient in genetic selection on the microbiota by Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591907. [PMID: 38746372 PMCID: PMC11092659 DOI: 10.1101/2024.05.02.591907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as the host adapts to wild environments. These interactions are readily interrogated because of the low taxonomic and numeric complexity of the flies' bacterial communities. Previous work has established that host genotype, the environment, diet, and interspecies microbial interactions can all influence host fitness and microbiota composition, but the specific processes and characters mediating these processes are incompletely understood. Here, we compared the variation in microbiota composition between wild-derived fly populations when flies could choose between the microorganisms in their diets and when flies were reared under environmental perturbation (different humidities). We also compared the colonization of the resident and transient microorganisms. We show that the ability to choose between microorganisms in the diet and the environmental condition of the flies can influence the relative abundance of the microbiota. There were also key differences in the abundances of the resident and transient microbiota. However, the microbiota only differed between populations when the flies were reared at humidities at or above 50% relative humidity. We also show that elevated humidity determined the penetrance of a gradient in host genetic selection on the microbiota that is associated with the latitude the flies were collected from. Finally, we show that the treatment-dependent variation in microbiota composition is associated with variation in host stress survival. Together, these findings emphasize that host genetic selection on the microbiota composition of a model animal host can be patterned with the source geography, and that such variation has the potential to influence their survival in the wild. Importance The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as hosts adapt in wild environments. Our understanding of what causes geographic variation in the fruit fly microbiota remains incomplete. Previous work has shown that the D. melanogaster microbiota has relatively low numerical and taxonomic complexity. Variation in the fly microbiota composition can be attributed to environmental characters and host genetic variation, and variation in microbiota composition can be patterned with the source location of the flies. In this work we explored three possible causes of patterned variation in microbiota composition. We show that host feeding choices, the host niche colonized by the bacteria, and a single environmental character can all contribute to variation in microbiota composition. We also show that penetrance of latitudinally-patterned host genetic selection is only observed at elevated humidities. Together, these results identify several factors that influence microbiota composition in wild fly genotypes and emphasize the interplay between environmental and host genetic factors in determining the microbiota composition of these model hosts.
Collapse
|
12
|
Wang J, Gu J, Yi J, Li J, Li W, Zhai Z. High-fat diets induce inflammatory IMD/NFκB signaling via gut microbiota remodeling in Drosophila. Front Cell Infect Microbiol 2024; 14:1347716. [PMID: 38716198 PMCID: PMC11074423 DOI: 10.3389/fcimb.2024.1347716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024] Open
Abstract
High-fat diets (HFDs), a prevailing daily dietary style worldwide, induce chronic low-grade inflammation in the central nervous system and peripheral tissues, promoting a variety of diseases including pathologies associated with neuroinflammation. However, the mechanisms linking HFDs to inflammation are not entirely clear. Here, using a Drosophila HFD model, we explored the mechanism of HFD-induced inflammation in remote tissues. We found that HFDs activated the IMD/NFκB immune pathway in the head through remodeling of the commensal gut bacteria. Removal of gut microbiota abolished such HFD-induced remote inflammatory response. Further experiments revealed that HFDs significantly increased the abundance of Acetobacter malorum in the gut, and the re-association of this bacterium was sufficient to elicit inflammatory response in remote tissues. Mechanistically, Acetobacter malorum produced a greater amount of peptidoglycan (PGN), a well-defined microbial molecular pattern that enters the circulation and remotely activates an inflammatory response. Our results thus show that HFDs trigger inflammation mediated by a bacterial molecular pattern that elicits host immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Hu J, Bi R, Luo Y, Wu K, Jin S, Liu Z, Jia Y, Mao CX. The gut microbiome promotes locomotion of Drosophila larvae via octopamine signaling. INSECT SCIENCE 2024. [PMID: 38643372 DOI: 10.1111/1744-7917.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
The gut microbiome is a key partner of animals, influencing various aspects of their physiology and behaviors. Among the diverse behaviors regulated by the gut microbiome, locomotion is vital for survival and reproduction, although the underlying mechanisms remain unclear. Here, we reveal that the gut microbiome modulates the locomotor behavior of Drosophila larvae via a specific neuronal type in the brain. The crawling speed of germ-free (GF) larvae was significantly reduced compared to the conventionally reared larvae, while feeding and excretion behaviors were unaffected. Recolonization with Acetobacter and Lactobacillus can fully and partially rescue the locomotor defects in GF larvae, respectively, probably due to the highest abundance of Acetobacter as a symbiotic bacterium in the larval gut, followed by Lactobacillus. Moreover, the gut microbiome promoted larval locomotion, not by nutrition, but rather by enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA). Overexpression of Tdc2 rescued locomotion ability in GF larvae. These findings together demonstrate that the gut microbiome specifically modulates larval locomotor behavior through the OA signaling pathway, revealing a new mechanism underlying larval locomotion regulated by the gut microbiome.
Collapse
Affiliation(s)
- Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ran Bi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuxuan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kaihong Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shan Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yicong Jia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
14
|
Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci 2024; 11:49-62. [PMID: 38617041 PMCID: PMC11007408 DOI: 10.3934/neuroscience.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.
Collapse
Affiliation(s)
- Temitope Awe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Caleb Sawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Adedayo Ogunware
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Michael Allen
- Department of Physiology, College of Medicine, Lagos State University, Lagos, Nigeria
| |
Collapse
|
15
|
Martelli F, Quig A, Mele S, Lin J, Fulton TL, Wansbrough M, Barlow CK, Schittenhelm RB, Johnson TK, Piper MDW. A defined diet for pre-adult Drosophila melanogaster. Sci Rep 2024; 14:6974. [PMID: 38521863 PMCID: PMC10960813 DOI: 10.1038/s41598-024-57681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Drosophila melanogaster is unique among animal models because it has a fully defined synthetic diet available to study nutrient-gene interactions. However, use of this diet is limited to adult studies due to impaired larval development and survival. Here, we provide an adjusted formula that reduces the developmental period, restores fat levels, enhances body mass, and fully rescues survivorship without compromise to adult lifespan. To demonstrate an application of this formula, we explored pre-adult diet compositions of therapeutic potential in a model of an inherited metabolic disorder affecting the metabolism of branched-chain amino acids. We reveal rapid, specific, and predictable nutrient effects on the disease state consistent with observations from mouse and patient studies. Together, our diet provides a powerful means with which to examine the interplay between diet and metabolism across all life stages in an animal model.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Annelise Quig
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Tahlia L Fulton
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Mia Wansbrough
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
16
|
Pfefferkorn RM, Mortzfeld BM, Fink C, von Frieling J, Bossen J, Esser D, Kaleta C, Rosenstiel P, Heine H, Roeder T. Recurrent Phases of Strict Protein Limitation Inhibit Tumor Growth and Restore Lifespan in A Drosophila Intestinal Cancer Model. Aging Dis 2024; 15:226-244. [PMID: 37962464 PMCID: PMC10796089 DOI: 10.14336/ad.2023.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 11/15/2023] Open
Abstract
Diets that restrict caloric or protein intake offer a variety of benefits, including decreasing the incidence of cancer. However, whether such diets pose a substantial therapeutic benefit as auxiliary cancer treatments remains unclear. We determined the effects of severe protein depletion on tumorigenesis in a Drosophila melanogaster intestinal tumor model, using a human RAF gain-of-function allele. Severe and continuous protein restriction significantly reduced tumor growth but resulted in premature death. Therefore, we developed a diet in which short periods of severe protein restriction alternated cyclically with periods of complete feeding. This nutritional regime reduced tumor mass, restored gut functionality, and rescued the lifespan of oncogene-expressing flies to the levels observed in healthy flies on a continuous, fully nutritious diet. Furthermore, this diet reduced the chemotherapy-induced stem cell activity associated with tumor recurrence. Transcriptome analysis revealed long-lasting changes in the expression of key genes involved in multiple major developmental signaling pathways. Overall, the data suggest that recurrent severe protein depletion effectively mimics the health benefits of continuous protein restriction, without undesired nutritional shortcomings. This provides seminal insights into the mechanisms of the memory effect required to maintain the positive effects of protein restriction throughout the phases of a full diet. Finally, the repetitive form of strict protein restriction is an ideal strategy for adjuvant cancer therapy that is useful in many tumor contexts.
Collapse
Affiliation(s)
- Roxana M. Pfefferkorn
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Benedikt M. Mortzfeld
- Department of Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Christine Fink
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Jakob von Frieling
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Judith Bossen
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Daniela Esser
- Department of Neuroimmunology, Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Christoph Kaleta
- Department Medical Systems Biology, Institute for Experimental Medicine, Kiel University, Germany.
| | - Philip Rosenstiel
- Department Molecular Cell Biology, Institute for Clinical Molecular Biology, Kiel University, Germany.
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| | - Thomas Roeder
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| |
Collapse
|
17
|
Sreejith P, Lolo S, Patten KR, Gunasinghe M, More N, Pallanck LJ, Bharadwaj R. Nazo, the Drosophila homolog of the NBIA-mutated protein-c19orf12, is required for triglyceride homeostasis. PLoS Genet 2024; 20:e1011137. [PMID: 38335241 PMCID: PMC10883546 DOI: 10.1371/journal.pgen.1011137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/22/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Lipid dyshomeostasis has been implicated in a variety of diseases ranging from obesity to neurodegenerative disorders such as Neurodegeneration with Brain Iron Accumulation (NBIA). Here, we uncover the physiological role of Nazo, the Drosophila melanogaster homolog of the NBIA-mutated protein-c19orf12, whose function has been elusive. Ablation of Drosophila c19orf12 homologs leads to dysregulation of multiple lipid metabolism genes. nazo mutants exhibit markedly reduced gut lipid droplet and whole-body triglyceride contents. Consequently, they are sensitive to starvation and oxidative stress. Nazo is required for maintaining normal levels of Perilipin-2, an inhibitor of the lipase-Brummer. Concurrent knockdown of Brummer or overexpression of Perilipin-2 rescues the nazo phenotype, suggesting that this defect, at least in part, may arise from diminished Perilipin-2 on lipid droplets leading to aberrant Brummer-mediated lipolysis. Our findings potentially provide novel insights into the role of c19orf12 as a possible link between lipid dyshomeostasis and neurodegeneration, particularly in the context of NBIA.
Collapse
Affiliation(s)
- Perinthottathil Sreejith
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sara Lolo
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kristen R. Patten
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Maduka Gunasinghe
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Neya More
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rajnish Bharadwaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
18
|
Bai J, Zuo Z, DuanMu H, Li M, Tong H, Mei Y, Xiao Y, He K, Jiang M, Wang S, Li F. Endosymbiont Tremblaya phenacola influences the reproduction of cotton mealybugs by regulating the mechanistic target of rapamycin pathway. THE ISME JOURNAL 2024; 18:wrae052. [PMID: 38519099 PMCID: PMC11014885 DOI: 10.1093/ismejo/wrae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/24/2024]
Abstract
The intricate evolutionary dynamics of endosymbiotic relationships result in unique characteristics among the genomes of symbionts, which profoundly influence host insect phenotypes. Here, we investigated an endosymbiotic system in Phenacoccus solenopsis, a notorious pest of the subfamily Phenacoccinae. The endosymbiont, "Candidatus Tremblaya phenacola" (T. phenacola PSOL), persisted throughout the complete life cycle of female hosts and was more active during oviposition, whereas there was a significant decline in abundance after pupation in males. Genome sequencing yielded an endosymbiont genome of 221.1 kb in size, comprising seven contigs and originating from a chimeric arrangement between betaproteobacteria and gammaproteobacteria. A comprehensive analysis of amino acid metabolic pathways demonstrated complementarity between the host and endosymbiont metabolism. Elimination of T. phenacola PSOL through antibiotic treatment significantly decreased P. solenopsis fecundity. Weighted gene coexpression network analysis demonstrated a correlation between genes associated with essential amino acid synthesis and those associated with host meiosis and oocyte maturation. Moreover, altering endosymbiont abundance activated the host mechanistic target of rapamycin pathway, suggesting that changes in the amino acid abundance affected the host reproductive capabilities via this signal pathway. Taken together, these findings demonstrate a mechanism by which the endosymbiont T. phenacola PSOL contributed to high fecundity in P. solenopsis and provide new insights into nutritional compensation and coevolution of the endosymbiotic system.
Collapse
Affiliation(s)
- Jianyang Bai
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhangqi Zuo
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haonan DuanMu
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Meizhen Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haojie Tong
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiqi Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mingxing Jiang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuping Wang
- Technical Centre for Animal, Plant & Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Liu Q, Sun T, Wang P, Wang L, Frantova H, Hartmann D, Perner J, Sun W, Pan B. Significant role of symbiotic bacteria in the blood digestion and reproduction of Dermanyssus gallinae mites. ISME COMMUNICATIONS 2024; 4:ycae127. [PMID: 39526132 PMCID: PMC11550332 DOI: 10.1093/ismeco/ycae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Endosymbiotic bacteria significantly impact the fitness of their arthropod hosts. Dermanyssus gallinae, the poultry red mite, is a blood-feeding ectoparasite that exclusively feeds on avian blood. While there is a relatively comprehensive understanding of its microbial community structures across developmental stages based on 16S rRNA sequencing, the functional integration of these microbes within the host's physiology remains elusive. This study aims to elucidate the role of symbiotic bacteria in D. gallinae biology. 16S rRNA amplicon sequencing and fluorescence in situ hybridization revealed a prominent midgut-confinement bacterial microbiota with considerable diversity, out of which Kocuria and Bartonella A acted as the predominant bacterial genera inhabiting D. gallinae. The relative abundance of Bartonella A increased rapidly after blood-sucking, suggesting its adaptation to a blood-based diet and its pivotal role in post-engorgement activities. Some of the isolated bacterial strains from D. gallinae display hemolytic activity on blood agar, potentially aiding blood digestion. To corroborate this in vivo, antibiotic-mediated clearance was exploited to generate dysbiosed cohorts of D. gallinae mites, lacking some of the key bacterial species. Phenotypic assessments revealed that dysbiosed mites experienced delayed blood digestion and diminished reproductive capacity. Whole-genome sequencing identified Bartonella A as a new species within the genus Bartonella, exhibiting characteristics of an obligate symbiont. These findings underscore the significance of microbiota in poultry red mites and suggest microbiota-targeted strategies for controlling mite populations in poultry farms.
Collapse
Affiliation(s)
- Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Lifang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Helena Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Hartmann
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| |
Collapse
|
20
|
Suenami S, Sato M, Miyazaki R. Gustatory Responsiveness of Honey Bees Colonized with a Defined or Conventional Gut Microbiota. Microbes Environ 2024; 39:ME23081. [PMID: 38447985 PMCID: PMC10982108 DOI: 10.1264/jsme2.me23081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024] Open
Abstract
Gut microbes have many beneficial functions for host animals, such as food digestion and development of the immune system. An increasing number of studies report that gut bacteria also affect host neural function and behavior. The sucrose responsiveness of the western honey bee Apis mellifera, which harbors a characteristic gut microbiota, was recently reported to be increased by the presence of gut microbes. However, this responsiveness may vary depending on the experimental design, as animal behavior may be modulated by physiological states and environmental conditions. To evaluate the robustness of the effects of the gut microbiota on host gustatory responsiveness, we herein examined the sucrose responsiveness of honey bees colonized with a defined bacterial community or a conventional gut microbiota extracted from a field-collected bee. Although colonization was experimentally verified, sucrose responsiveness did not significantly differ among treatments after the 2- or 5-h starvation period. We concluded that the sucrose responsiveness of A. mellifera is not always affected by its gut microbiota. Therefore, host physiological conditions and environmental factors need to be considered when evaluating the impact of the gut microbiota on host neural function and behavior.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Masato Sato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169–8555, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305–8572, Japan
| |
Collapse
|
21
|
Bing XL, Liang ZJ, Tian J, Gong X, Huang SQ, Chen J, Hong XY. The influence of Acetobacter pomorum bacteria on the developmental progression of Drosophila suzukii via gluconic acid secretion. Mol Ecol 2024; 33:e17202. [PMID: 37947376 DOI: 10.1111/mec.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zi-Jian Liang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xue Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shao-Qiu Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Suyama R, Cetraro N, Yew JY, Kai T. Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun Biol 2023; 6:1287. [PMID: 38123715 PMCID: PMC10733356 DOI: 10.1038/s42003-023-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reproduction is highly dependent on environmental and physiological factors including nutrition, mating stimuli and microbes. Among these factors, microbes facilitate vital functions for host animals such as nutritional intake, metabolic regulation, and enhancing fertility under poor nutrition conditions. However, detailed molecular mechanisms by which microbes control germline maturation, leading to reproduction, remain largely unknown. In this study, we show that environmental microbes exert a beneficial effect on Drosophila oogenesis by promoting germline stem cell (GSC) proliferation and subsequent egg maturation via acceleration of ovarian cell division and suppression of apoptosis. Moreover, insulin-related signaling is not required; rather, the ecdysone pathway is necessary for microbe-induced increase of GSCs and promotion of egg maturation, while juvenile hormone contributes only to increasing GSC numbers, suggesting that hormonal pathways are activated at different stages of oogenesis. Our findings reveal that environmental microbes can enhance host reproductivity by modulating host hormone release and promoting oogenesis.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| | - Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
Dorsey AF, Miller EM. Revisiting geophagy: An evolved sickness behavior to microbiome-mediated gastrointestinal inflammation. Evol Anthropol 2023; 32:325-335. [PMID: 37661330 DOI: 10.1002/evan.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Geophagy, the consumption of clay or similar substances, is known as an evolved behavior that protects vulnerable populations, such as pregnant women and children, against gastrointestinal injury. However, perplexing questions remain, like the presence of geophagy in the absence of overt gastrointestinal infection and the potential causal relationship between geophagy and iron deficiency anemia. In this review, we hypothesize that geophagy is an inflammation-mediated sickness behavior regulated via the vagus nerve. We further hypothesize that the gut microbiome plays a critical role in mediating the relationship between inflammation and geophagy. By including inflammation and the microbiome within the existing protection hypothesis, we can explain how subclinical gastrointestinal states induce geophagy. Furthermore, we can explain how gastrointestinal inflammation is responsible for both geophagy and iron-deficiency anemia, explaining why the two phenomena frequently co-occur. Ultimately, defining geophagy as a sickness behavior allows us to integrate the gut-brain axis into geophagy research.
Collapse
Affiliation(s)
- Achsah F Dorsey
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Elizabeth M Miller
- Department of Anthropology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
24
|
Zhao Y, Johansson E, Duan J, Han Z, Alenius M. Fat- and sugar-induced signals regulate sweet and fat taste perception in Drosophila. Cell Rep 2023; 42:113387. [PMID: 37934669 PMCID: PMC11212107 DOI: 10.1016/j.celrep.2023.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
In this study, we investigate the interplay between taste perception and macronutrients. While sugar's and protein's self-regulation of taste perception is known, the role of fat remains unclear. We reveal that in Drosophila, fat overconsumption reduces fatty acid taste in favor of sweet perception. Conversely, sugar intake increases fatty acid perception and suppresses sweet taste. Genetic investigations show that the sugar signal, gut-secreted Hedgehog, suppresses sugar taste and enhances fatty acid perception. Fat overconsumption induces unpaired 2 (Upd2) secretion from adipose tissue to the hemolymph. We reveal taste neurons take up Upd2, which triggers Domeless suppression of fatty acid perception. We further show that the downstream JAK/STAT signaling enhances sweet perception and, via Socs36E, fine-tunes Domeless activity and the fatty acid taste perception. Together, our results show that sugar regulates Hedgehog signaling and fat induces Upd2 signaling to balance nutrient intake and to regulate sweet and fat taste perception.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Jianli Duan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
25
|
Tungadi TD, Powell G, Shaw B, Fountain MT. Factors influencing oviposition behaviour of the invasive pest, Drosophila suzukii, derived from interactions with other Drosophila species: potential applications for control. PEST MANAGEMENT SCIENCE 2023; 79:4132-4139. [PMID: 37516913 PMCID: PMC10952728 DOI: 10.1002/ps.7693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
Drosophila suzukii (Matsumura) or spotted wing Drosophila is a worldwide invasive pest of soft- and stone-fruit production. Female D. suzukii lay their eggs in ripening fruit and the hatched larvae damage fruit from the inside, rendering it unmarketable and causing significant economic loss. Current methods to reduce D. suzukii population in the field primarily rely on chemical insecticides which are not a sustainable long-term solution and increase the risk of resistance developing. Several studies demonstrate that when D. suzukii encounter or coexist with other Drosophila on a food source, this is usually a disadvantage to D. suzukii, leading to reduced oviposition and increased larval mortality. These effects have potential to be exploited from a pest management perspective. In this review we summarise recent research articles focusing on the interspecific interactions between D. suzukii and other Drosophila species aimed at understanding how this drives D. suzukii behaviour. Potential semiochemical and microbiome impacts are postulated as determinants of D. suzukii behaviour. Development of control practices focusing on reducing D. suzukii populations and deterring them from laying eggs by utilising factors that drive their behaviour are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Bethan Shaw
- NIABCambridgeUK
- New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | | |
Collapse
|
26
|
Sannino DR, Dobson AJ. Acetobacter pomorum in the Drosophila gut microbiota buffers against host metabolic impacts of dietary preservative formula and batch variation in dietary yeast. Appl Environ Microbiol 2023; 89:e0016523. [PMID: 37800920 PMCID: PMC10617557 DOI: 10.1128/aem.00165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/05/2023] [Indexed: 10/07/2023] Open
Abstract
Gut microbiota are fundamentally important for healthy function in animal hosts. Drosophila melanogaster is a powerful system for understanding host-microbiota interactions, with modulation of the microbiota inducing phenotypic changes that are conserved across animal taxa. Qualitative differences in diet, such as preservatives and dietary yeast batch variation, may affect fly health indirectly via microbiota, and may potentially have hitherto uncharacterized effects directly on the fly. These factors are rarely considered, controlled, and are not standardized among laboratories. Here, we show that the microbiota's impact on fly triacylglyceride (TAG) levels-a commonly-measured metabolic index-depends on both preservatives and yeast, and combinatorial interactions among the three variables. In studies of conventional, axenic, and gnotobiotic flies, we found that microbial impacts were apparent only on specific yeast-by-preservative conditions, with TAG levels determined by a tripartite interaction of the three experimental factors. When comparing axenic and conventional flies, we found that preservatives caused more variance in host TAG than microbiota status, and certain yeast-preservative combinations even reversed effects of microbiota on TAG. Preservatives had major effects in axenic flies, suggesting either direct effects on the fly or indirect effects via media. However, Acetobacter pomorum buffers the fly against this effect, despite the preservatives inhibiting growth, indicating that this bacterium benefits the host in the face of mutual environmental toxicity. Our results suggest that antimicrobial preservatives have major impacts on host TAG, and that microbiota modulates host TAG dependent on the combination of the dietary factors of preservative formula and yeast batch. IMPORTANCE Drosophila melanogaster is a premier model for microbiome science, which has greatly enhanced our understanding of the basic biology of host-microbe interactions. However, often overlooked factors such as dietary composition, including yeast batch variability and preservative formula, may confound data interpretation of experiments within the same lab and lead to different findings when comparing between labs. Our study supports this notion; we find that the microbiota does not alter host TAG levels independently. Rather, TAG is modulated by combinatorial effects of microbiota, yeast batch, and preservative formula. Specific preservatives increase TAG even in germ-free flies, showing that a commonplace procedure in fly husbandry alters metabolic physiology. This work serves as a cautionary tale that fly rearing methodology can mask or drive microbiota-dependent metabolic changes and also cause microbiota-independent changes.
Collapse
Affiliation(s)
- David R. Sannino
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adam J. Dobson
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Chen S, Zhou A, Xu Y. Symbiotic Bacteria Regulating Insect-Insect/Fungus/Virus Mutualism. INSECTS 2023; 14:741. [PMID: 37754709 PMCID: PMC10531535 DOI: 10.3390/insects14090741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Bacteria associated with insects potentially provide many beneficial services and have been well documented. Mutualism that relates to insects is widespread in ecosystems. However, the interrelation between "symbiotic bacteria" and "mutualism" has rarely been studied. We introduce three systems of mutualism that relate to insects (ants and honeydew-producing Hemiptera, fungus-growing insects and fungi, and plant persistent viruses and vector insects) and review the species of symbiotic bacteria in host insects, as well as their functions in host insects and the mechanisms underlying mutualism regulation. A deeper understanding of the molecular mechanisms and role of symbiotic bacteria, based on metagenomics, transcriptomics, proteomics, metabolomics, and microbiology, will be required for describing the entire interaction network.
Collapse
Affiliation(s)
- Siqi Chen
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China;
| | - Aiming Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management, Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijuan Xu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
28
|
Qush A, Al Khatib HA, Rachid H, Al-Tamimi H, Al-Eshaq A, Al-Adwi S, Yassine HM, Kamareddine L. Intake of caffeine containing sugar diet remodels gut microbiota and perturbs Drosophila melanogaster immunity and lifespan. Microbes Infect 2023; 25:105149. [PMID: 37169244 DOI: 10.1016/j.micinf.2023.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.
Collapse
Affiliation(s)
- Abeer Qush
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hajar Rachid
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hend Al-Tamimi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Alyaa Al-Eshaq
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shaima Al-Adwi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
29
|
Abstract
Overweight, obesity, undernutrition and their respective sequelae have devastating tolls on personal and public health worldwide. Traditional approaches for treating these conditions with diet, exercise, drugs and/or surgery have shown varying degrees of success, creating an urgent need for new solutions with long-term efficacy. Owing to transformative advances in sequencing, bioinformatics and gnotobiotic experimentation, we now understand that the gut microbiome profoundly impacts energy balance through diverse mechanisms affecting both sides of the energy balance equation. Our growing knowledge of microbial contributions to energy metabolism highlights new opportunities for weight management, including the microbiome-aware improvement of existing tools and novel microbiome-targeted therapies. In this Review, we synthesize current knowledge concerning the bidirectional influences between the gut microbiome and existing weight management strategies, including behaviour-based and clinical approaches, and incorporate a subject-level meta-analysis contrasting the effects of weight management strategies on microbiota composition. We consider how emerging understanding of the gut microbiome alters our prospects for weight management and the challenges that must be overcome for microbiome-focused solutions to achieve success.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Penn State Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
30
|
da Silva Soares NF, Quagliariello A, Yigitturk S, Martino ME. Gut microbes predominantly act as living beneficial partners rather than raw nutrients. Sci Rep 2023; 13:11981. [PMID: 37488173 PMCID: PMC10366161 DOI: 10.1038/s41598-023-38669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Animals and their gut microbes mutually benefit their health. Nutrition plays a central role in this, directly influencing both host and microbial fitness and the nature of their interactions. This makes nutritional symbioses a complex and dynamic tri-system of diet-microbiota-host. Despite recent discoveries on this field, full control over the interplay among these partners is challenging and hinders the resolution of fundamental questions, such as how to parse the gut microbes' effect as raw nutrition or as symbiotic partners? To tackle this, we made use of the well-characterized Drosophila melanogaster/Lactiplantibacillus plantarum experimental model of nutritional symbiosis to generate a quantitative framework of gut microbes' effect on the host. By coupling experimental assays and Random Forest analysis, we show that the beneficial effect of L. plantarum strains primarily results from the active relationship as symbionts rather than raw nutrients, regardless of the bacterial strain. Metabolomic analysis of both active and inactive bacterial cells further demonstrated the crucial role of the production of beneficial bacterial metabolites, such as N-acetylated-amino-acids, as result of active bacterial growth and function. Altogether, our results provide a ranking and quantification of the main bacterial features contributing to sustain animal growth. We demonstrate that bacterial activity is the predominant and necessary variable involved in bacteria-mediated benefit, followed by strain-specific properties and the nutritional potential of the bacterial cells. This contributes to elucidate the role of beneficial bacteria and probiotics, creating a broad quantitative framework for host-gut microbiome that can be expanded to other model systems.
Collapse
Affiliation(s)
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Seren Yigitturk
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.
| |
Collapse
|
31
|
Li H, Yu Y, Zhang J, Wang Y, Zhang L, Zhai J, Zhang Y. Gut microbiota influences feeding behavior via changes in olfactory receptor gene expression in Colorado potato beetles. Front Microbiol 2023; 14:1197700. [PMID: 37455752 PMCID: PMC10338844 DOI: 10.3389/fmicb.2023.1197700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
The Colorado potato beetle (CPB) is an internationally recognized plant quarantine pest that causes serious losses to potato agricultural production. The gut microbiota plays an important role in its growth and development, and the olfactory system plays an important role in insect feeding behavior. The gut microbiota is known to be capable of inducing changes in the olfactory systems of insects. However, the way these associated gut microbes influence the feeding-related behaviors of CPBs remains unclear. To explore the relationship between them, fresh potato leaves immersed in a mixture of five antibiotics (tetracycline, penicillin, ofloxacin, ciprofloxacin, and ampicillin) at specific concentrations for 1 h were fed to adult CPBs to reduce the abundance of gut microbes. We found that the feeding behavior of CPBs was significantly affected by the gut microbiota and that Pseudomonas was significantly higher in abundance in the control group than in the antibiotic group. We then used transcriptome sequencing to explore the differences in olfactory receptor genes in the heads of non-treatment and antibiotic-fed CPBs. Through Illumina Hiseq™ sequencing and screening of differential genes, we found that the olfactory receptor gene LdecOR9 was significantly upregulated and LdecOR17 was significantly downregulated after antibiotic feeding. A real-time polymerase chain reaction was used to verify the changes in olfactory receptor gene expression in the non-treatment groups and antibiotic-treated groups. The feeding behavior was partially rescued after CPBs were re-fed with intestinal bacteria. These results indicate that a certain amount of gut microbiota can result in the loss of the olfactory discrimination ability of CPBs to host plants. In summary, this study investigated the relationship between gut microbiota and olfactory genes, providing a reference for research on microbial control.
Collapse
Affiliation(s)
- Hongwei Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
- CAIQ Center for Biosafety in Sanya, Sanya, China
| | - Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Jian Zhang
- Technology Center of Suifenhe Customs District, Mudanjiang, China
| | | | - Liu Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junfeng Zhai
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yongjiang Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
32
|
Sami AS, Frazer LC, Miller CM, Singh DK, Clodfelter LG, Orgel KA, Good M. The role of human milk nutrients in preventing necrotizing enterocolitis. Front Pediatr 2023; 11:1188050. [PMID: 37334221 PMCID: PMC10272619 DOI: 10.3389/fped.2023.1188050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is an intestinal disease that primarily impacts preterm infants. The pathophysiology of NEC involves a complex interplay of factors that result in a deleterious immune response, injury to the intestinal mucosa, and in its most severe form, irreversible intestinal necrosis. Treatments for NEC remain limited, but one of the most effective preventative strategies for NEC is the provision of breast milk feeds. In this review, we discuss mechanisms by which bioactive nutrients in breast milk impact neonatal intestinal physiology and the development of NEC. We also review experimental models of NEC that have been used to study the role of breast milk components in disease pathophysiology. These models are necessary to accelerate mechanistic research and improve outcomes for neonates with NEC.
Collapse
Affiliation(s)
- Ahmad S. Sami
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lynda G. Clodfelter
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
33
|
Gavrilova E, Kostenko V, Zadorina I, Khusnutdinova D, Yarullina D, Ezhkova A, Bogachev M, Kayumov A, Nikitina E. Repression of Staphylococcus aureus and Escherichia coli by Lactiplantibacillus plantarum Strain AG10 in Drosophila melanogaster In Vivo Model. Microorganisms 2023; 11:1297. [PMID: 37317271 DOI: 10.3390/microorganisms11051297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Probiotic bacteria exhibiting antagonistic activities against pathogenic bacteria are widely considered as potential options for the prevention and treatment of various infectious diseases and represent potential substitutes of antibiotics. Here we show that the L. plantarum AG10 strain represses the growth of Staphylococcus aureus and Escherichia coli in vitro and diminishes their negative effects in vivo in a Drosophila melanogaster model of survival on embryonic (larvae) and pupa stages. In an agar drop diffusion test, L. plantarum AG10 exhibited antagonistic properties against Escherichia coli, Staphylococcus aureus, Serratia marcescens and Pseudomonas aeruginosa, and repressed the growth of E. coli and S. aureus during milk fermentation. In a Drosophila melanogaster model, L. plantarum AG10 alone did not provide any significant effect, either during the embryonic stage or during further development of the flies. Despite this, it was able to restore the viability of groups infected with either E. coli and S. aureus, almost to the level of non-treated control at all stages of development (larvae, pupa and adult). Moreover, in the presence of L. plantarum AG10, pathogens-induced mutation rates and recombination events reduced 1.5-2-fold. The genome of L. plantarum AG10 was sequenced and deposited at NCBI under the accession number PRJNA953814 and consists of annotated genome and raw sequence data. It consists of 109 contigs and is 3,479,919 bp in length with a GC content of 44.5%. The analysis of the genome has revealed considerably few putative virulence factors and three genes responsible for the biosynthesis of putative antimicrobial peptides, with one of them exhibiting a high probability of antimicrobial properties. Taken together, these data allow the suggestion that the L. plantarum AG10 strain is promising for use in both dairy production and probiotics as a preservative from foodborne infections.
Collapse
Affiliation(s)
- Elizaveta Gavrilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Victoria Kostenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Iva Zadorina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dina Yarullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Asya Ezhkova
- Department of Physiology and Patophysiology, Kazan State Academy of Veterinary Medicine Named after N.E. Bauman, 420029 Kazan, Russia
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Nikitina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Meat and Milk Technology, Kazan National Research Technological University, 420015 Kazan, Russia
| |
Collapse
|
34
|
Weaver KJ, Holt RA, Henry E, Lyu Y, Pletcher SD. Effects of hunger on neuronal histone modifications slow aging in Drosophila. Science 2023; 380:625-632. [PMID: 37167393 DOI: 10.1126/science.ade1662] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Hunger is an ancient drive, yet the molecular nature of pressures of this sort and how they modulate physiology are unknown. We find that hunger modulates aging in Drosophila. Limitation of branched-chain amino acids (BCAAs) or activation of hunger-promoting neurons induced a hunger state that extended life span despite increased feeding. Alteration of the neuronal histone acetylome was associated with BCAA limitation, and preventing these alterations abrogated the effect of BCAA limitation to increase feeding and extend life span. Hunger acutely increased feeding through usage of the histone variant H3.3, whereas prolonged hunger seemed to decrease a hunger set point, resulting in beneficial consequences for aging. Demonstration of the sufficiency of hunger to extend life span reveals that motivational states alone can be deterministic drivers of aging.
Collapse
Affiliation(s)
- K J Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - R A Holt
- College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - E Henry
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Lyu
- Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, NJ 08855, USA
| | - S D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Hoe Tay J, Asib N, Abd Aziz NA, Hun Tan G. Biodegradation of Expanded and Extruded Polystyrene with Different Diets by Using Zophobas atratus Larvae (Coleoptera: Tenebrionidae). PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2023; 46:459-483. [DOI: 10.47836/pjtas.46.2.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Polystyrene waste pollutes the environment and poses a significant health risk to humans, animals, and marine ecology. This study aims to evaluate the effectiveness of degradation on expanded (EPS) and extruded (XPS) polystyrene with different diets using superworms (Zophobas atratus larvae) obtained in Malaysia. The growth and development of the larvae after consumption of EPS and XPS and the gut microbial community changes in response to high polystyrene consumption diets were also identified. The oatmeal, wheat bran, and cornmeal were used as supplement diets and showed significantly enhanced EPS and XPS consumption and degradation compared to sole diet treatment. Gel permeation chromatography was carried out using egested frass of Z. atratus larvae to characterize depolymerization of EPS and XPS, indicating a significant reduction in the average molecular weight and average molecular weight. The highest reduction occurred in the presence of oatmeal. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses indicated functional group changes and chemical modification occurred with depolymerization and partial oxidation of EPS and XPS. The larvae length increased, while the number of instars and duration of larvae became shorter with the addition of supplement diets. Oatmeal is predominantly effective among other supplements in assisting Z. atratus larvae with EPS and XPS degradation. The results of this study support the ubiquity of polystyrene biodegradation in Z. atratus and the next-generation sequencing studies. Kluyvera sp., Klebsiella sp., and Enterobacter sp. were found to be strongly associated with degrading EPS and XPS polystyrene with oatmeal as a supplemental diet.
Collapse
|
36
|
Tierney AJ, Velazquez E, Johnson L, Hiranandani S, Pauly M, Souvignier M. Nutritional and reproductive status affect amino acid appetite in house crickets (Acheta domesticus). FRONTIERS IN INSECT SCIENCE 2023; 3:1120413. [PMID: 38469515 PMCID: PMC10926381 DOI: 10.3389/finsc.2023.1120413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 03/13/2024]
Abstract
We examined amino acid appetite in the omnivorous house cricket (Acheta domesticus), a common model organism for both research and teaching. Our first experiment addressed the hypothesis that house crickets can discriminate between sucrose and essential amino acids (EAA), and that preference for the latter would be affected by prior feeding experience. To test this hypothesis, we compared feeding responses of juvenile and adult crickets following pre-feeding with sucrose or an essential amino acid mixture, predicting that sucrose-only pre-feeding would enhance subsequent intake of amino acids in a two-choice preference test. Based on previous studies, we also predicted that amino acid consumption would be enhanced in females compared to males, and in mated compared to virgin females. Hence we compared responses in male and female last instar nymphs, adult males, virgin females, mated females, and mated females allowed to lay eggs. The second experiment examined how extended periods of essential amino acid deprivation (48 h to 6 days) affected appetite for these nutrients in adult male and female insects. Finally, we examined growth and survival of juvenile and adult crickets fed a holidic diet lacking all amino acids and protein. Our results demonstrated that house crickets can distinguish EAA from sucrose and that consumption of the former is enhanced following sucrose-only pre-feeding. We also found sex and developmental differences, with juvenile and virgin females showing a greater preference for EAA than juvenile or adult males. Contrary to expectation, mated females preferred sucrose over EAA both prior to and after egg laying. We also found that the crickets of both sexes increased their intake of EAA when exposed to longer periods of deprivation, indicating that they engage in compensatory feeding on these nutrients. Finally, as expected we found that growth was severely limited in juveniles fed a diet lacking all amino acids, but adults and many juveniles survived for 30 days on this diet.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, United States
| | | | | | | | | | | |
Collapse
|
37
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Piper MDW, Zanco B, Sgrò CM, Adler MI, Mirth CK, Bonduriansky R. Dietary restriction and lifespan: adaptive reallocation or somatic sacrifice? FEBS J 2023; 290:1725-1734. [PMID: 35466532 PMCID: PMC10952493 DOI: 10.1111/febs.16463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Reducing overall food intake, or lowering the proportion of protein relative to other macronutrients, can extend the lifespan of diverse organisms. A number of mechanistic theories have been developed to explain this phenomenon, mostly assuming that the molecules connecting diet to lifespan are evolutionarily conserved. A recent study using Drosophila melanogaster females has pinpointed a single essential micronutrient that can explain how lifespan is changed by dietary restriction. Here, we propose a likely mechanism for this observation, which involves a trade-off between lifespan and reproduction, but in a manner that is conditional on the dietary supply of an essential micronutrient - a sterol. Importantly, these observations argue against previous evolutionary theories that rely on constitutive resource reallocation or damage directly inflicted by reproduction. Instead, they are compatible with a model in which the inverse relationship between lifespan and food level is caused by the consumer suffering from varying degrees of malnutrition when maintained on lab food. The data also indicate that animals on different lab foods may suffer from different nutritional imbalances and that the mechanisms by which dietary restriction benefits the lifespan of different species may vary. This means that translating the mechanistic findings from lab animals to humans will not be simple and should be interpreted in light of the range of challenges that have shaped each organism's lifespan in the wild and the composition of the natural diets upon which they would feed.
Collapse
Affiliation(s)
| | - Brooke Zanco
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | | | - Christen K. Mirth
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Russell Bonduriansky
- School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
| |
Collapse
|
39
|
Axenic and gnotobiotic insect technologies in research on host-microbiota interactions. Trends Microbiol 2023:S0966-842X(23)00055-0. [PMID: 36906503 DOI: 10.1016/j.tim.2023.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Insects are one of the most important animal life forms on earth. Symbiotic microbes are closely related to the growth and development of the host insects and can affect pathogen transmission. For decades, various axenic insect-rearing systems have been developed, allowing further manipulation of symbiotic microbiota composition. Here we review the historical development of axenic rearing systems and the latest progress in using axenic and gnotobiotic approaches to study insect-microbe interactions. We also discuss the challenges of these emerging technologies, possible solutions to address these challenges, and future research directions that can contribute to a more comprehensive understanding of insect-microbe interactions.
Collapse
|
40
|
Hoshino R, Sano H, Yoshinari Y, Nishimura T, Niwa R. Circulating fructose regulates a germline stem cell increase via gustatory receptor-mediated gut hormone secretion in mated Drosophila. SCIENCE ADVANCES 2023; 9:eadd5551. [PMID: 36827377 PMCID: PMC9956130 DOI: 10.1126/sciadv.add5551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Oogenesis is influenced by multiple environmental factors. In the fruit fly, Drosophila melanogaster, nutrition and mating have large impacts on an increase in female germline stem cells (GSCs). However, it is unclear whether these two factors affect this GSC increase interdependently. Here, we report that dietary sugars are crucial for the GSC increase after mating. Dietary glucose is required for mating-induced release of neuropeptide F (NPF) from enteroendocrine cells (EECs), followed by NPF-mediated enhancement of GSC niche signaling. Unexpectedly, dietary glucose does not directly act on NPF-positive EECs. Rather, it contributes to elevation of hemolymph fructose generated through the polyol pathway. Elevated fructose stimulates the fructose-specific gustatory receptor, Gr43a, in NPF-positive EECs, leading to NPF secretion. This study demonstrates that circulating fructose, derived from dietary sugars, is a prerequisite for the GSC increase that leads to enhancement of egg production after mating.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Yuto Yoshinari
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Nishimura
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
41
|
Biosynthetic constraints on amino acid synthesis at the base of the food chain may determine their use in higher-order consumer genomes. PLoS Genet 2023; 19:e1010635. [PMID: 36780875 PMCID: PMC9956874 DOI: 10.1371/journal.pgen.1010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/24/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Dietary nutrient composition is essential for shaping important fitness traits and behaviours. Many organisms are protein limited, and for Drosophila melanogaster this limitation manifests at the level of the single most limiting essential Amino Acid (AA) in the diet. The identity of this AA and its effects on female fecundity is readily predictable by a procedure called exome matching in which the sum of AAs encoded by a consumer's exome is used to predict the relative proportion of AAs required in its diet. However, the exome matching calculation does not weight AA contributions to the overall profile by protein size or expression. Here, we update the exome matching calculation to include these weightings. Surprisingly, although nearly half of the transcriptome is differentially expressed when comparing male and female flies, we found that creating transcriptome-weighted exome matched diets for each sex did not enhance their fecundity over that supported by exome matching alone. These data indicate that while organisms may require different amounts of dietary protein across conditions, the relative proportion of the constituent AAs remains constant. Interestingly, we also found that exome matched AA profiles are generally conserved across taxa and that the composition of these profiles might be explained by energetic and elemental limitations on microbial AA synthesis. Thus, it appears that ecological constraints amongst autotrophs shape the relative proportion of AAs that are available across trophic levels and that this constrains biomass composition.
Collapse
|
42
|
Baldo L, Tavecchia G, Rotger A, Igual JM, Riera JL. Insular holobionts: persistence and seasonal plasticity of the Balearic wall lizard ( Podarcis lilfordi) gut microbiota. PeerJ 2023; 11:e14511. [PMID: 36620745 PMCID: PMC9817956 DOI: 10.7717/peerj.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
Background Integrative studies of animals and associated microbial assemblages (i.e., the holobiont) are rapidly changing our perspectives on organismal ecology and evolution. Insular vertebrates provide ideal natural systems to understand patterns of host-gut microbiota coevolution, the resilience and plasticity these microbial communities over temporal and spatial scales, and ultimately their role in the host ecological adaptation. Methods Here we used the endemic Balearic wall lizard Podarcis lilfordi to dissect the drivers of the microbial diversity within and across host allopatric populations/islets. By focusing on three extensively studied populations/islets of Mallorca (Spain) and fecal sampling from individually identified lizards along two years (both in spring and autumn), we sorted out the effect of islet, sex, life stage, year and season on the microbiota composition. We further related microbiota diversity to host genetics, trophic ecology and expected annual metabolic changes. Results All the three populations showed a remarkable conservation of the major microbial taxonomic profile, while carrying their unique microbial signature at finer level of taxonomic resolution (Amplicon Sequence Variants (ASVs)). Microbiota distances across populations were compatible with both host genetics (based on microsatellites) and trophic niche distances (based on stable isotopes and fecal content). Within populations, a large proportion of ASVs (30-50%) were recurrently found along the four sampling dates. The microbial diversity was strongly marked by seasonality, with no sex effect and a marginal life stage and annual effect. The microbiota showed seasonal fluctuations along the two sampled years, primarily due to changes in the relative abundances of fermentative bacteria (mostly families Lachnospiraceae and Ruminococcaceae), without any major compositional turnover. Conclusions These results support a large resilience of the major compositional aspects of the P. lilfordi gut microbiota over the short-term evolutionary divergence of their host allopatric populations (<10,000 years), but also indicate an undergoing process of parallel diversification of the both host and associated gut microbes. Predictable seasonal dynamics in microbiota diversity suggests a role of microbiota plasticity in the lizards' metabolic adaptation to their resource-constrained insular environments. Overall, our study supports the need for longitudinal and integrative studies of host and associated microbes in natural systems.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), Barcelona, Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Andreu Rotger
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - José Manuel Igual
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Diet Influences the Gut Microbial Diversity and Olfactory Preference of the German Cockroach Blattella germanica. Curr Microbiol 2022; 80:23. [PMID: 36460931 DOI: 10.1007/s00284-022-03123-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
The gut microbiota of insects has been proven to play a role in the host's nutrition and foraging. The German cockroach, Blattella germanica, is an important vector of various pathogens and causes severe allergic reactions in humans. Food bait is an effective and frequently used method of controlling this omnivorous insect. Thus, understanding the relationships among diet, gut microbiota, and olfactory preferences could be useful for optimizing this management strategy. In this study, B. germanica was exposed to different foods, i.e., high-fat diet, high-protein diet, high-starch diet, and dog food (as control). Then their gut microbial and olfactory responses were investigated. 16S rRNA gene sequencing confirmed that the gut microbiota significantly differed across the four treatments, especially in relation to bacteria associated with the metabolism and digestion of essential components. Behavioral tests and the antenna electrophysiological responses showed that insects had a greater preference for other types of diets compared with their long-term domesticated diet. Moreover, continuously providing a single-type diet could change almost all the OR genes' expression of B. germanica, especially BgORco, which was significantly repressed compared to control. These results indicate that diet can shape the gut microbiota diversity and drive the olfactory preference of B. germanica. The association between gut microbiota profiles and diets can be utilized in managing B. germanica according to their olfactory preference.
Collapse
|
44
|
Xu X, De Mandal S, Wu H, Zhu S, Kong J, Lin S, Jin F. Effect of Diet on the Midgut Microbial Composition and Host Immunity of the Fall Armyworm, Spodoptera frugiperda. BIOLOGY 2022; 11:1602. [PMID: 36358303 PMCID: PMC9687563 DOI: 10.3390/biology11111602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024]
Abstract
The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
45
|
Zhou S, Lu Y, Chen J, Pan Z, Pang L, Wang Y, Zhang Q, Strand MR, Chen XX, Huang J. Parasite reliance on its host gut microbiota for nutrition and survival. THE ISME JOURNAL 2022; 16:2574-2586. [PMID: 35941172 PMCID: PMC9561699 DOI: 10.1038/s41396-022-01301-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
Studying the microbial symbionts of eukaryotic hosts has revealed a range of interactions that benefit host biology. Most eukaryotes are also infected by parasites that adversely affect host biology for their own benefit. However, it is largely unclear whether the ability of parasites to develop in hosts also depends on host-associated symbionts, e.g., the gut microbiota. Here, we studied the parasitic wasp Leptopilina boulardi (Lb) and its host Drosophila melanogaster. Results showed that Lb successfully develops in conventional hosts (CN) with a gut microbiota but fails to develop in axenic hosts (AX) without a gut microbiota. We determined that developing Lb larvae consume fat body cells that store lipids. We also determined that much larger amounts of lipid accumulate in fat body cells of parasitized CN hosts than parasitized AX hosts. CN hosts parasitized by Lb exhibited large increases in the abundance of the bacterium Acetobacter pomorum in the gut, but did not affect the abundance of Lactobacillus fructivorans which is another common member of the host gut microbiota. However, AX hosts inoculated with A. pomorum and/or L. fructivorans did not rescue development of Lb. In contrast, AX larvae inoculated with A. pomorum plus other identified gut community members including a Bacillus sp. substantially rescued Lb development. Rescue was further associated with increased lipid accumulation in host fat body cells. Insulin-like peptides increased in brain neurosecretory cells of parasitized CN larvae. Lipid accumulation in the fat body of CN hosts was further associated with reduced Bmm lipase activity mediated by insulin/insulin-like growth factor signaling (IIS). Altogether, our results identify a previously unknown role for the gut microbiota in defining host permissiveness for a parasite. Our findings also identify a new paradigm for parasite manipulation of host metabolism that depends on insulin signaling and the gut microbiota.
Collapse
Affiliation(s)
- Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yueqi Lu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Ying Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qichao Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA.
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Sun X, Yuan Q, Du B, Jin X, Huang X, Li Q, Zhong Y, Pan Z, Xu S, Sima Y. Relationship between Changes in Intestinal Microorganisms and Effect of High Temperature on the Growth and Development of Bombyx mori Larvae. Int J Mol Sci 2022; 23:10289. [PMID: 36142203 PMCID: PMC9499401 DOI: 10.3390/ijms231810289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Temperature is an important environmental factor affecting the growth and development of silkworm (Bombyx mori). To analyze the effect of intestinal microbes on silkworm in response to a high-temperature environment, this study used a combination of high throughput sequencing and biochemical assays to detect silkworm intestinal microbes treated with high temperature for 72 h. The results show that high temperature affects the intestinal microbes of silkworm and that there are sex differences, specifically, females were more sensitive. The changes in the metabolism and transport ability of silkworm intestinal tissues under high temperature are related to the intestinal microbes. High temperatures may affect the intestinal microbes of silkworms, regulating the activity of related digestive enzymes and substance transport in the intestine, thereby affecting the silkworm's digestion and absorption of nutrients, and ultimately affecting growth and development.
Collapse
Affiliation(s)
- Xiaoning Sun
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Qian Yuan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Beibei Du
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xinye Jin
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiyun Huang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Qiuying Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yueqiao Zhong
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
47
|
Bacterial Metabolism and Transport Genes Are Associated with the Preference of Drosophila melanogaster for Dietary Yeast. Appl Environ Microbiol 2022; 88:e0072022. [PMID: 35913151 PMCID: PMC9397100 DOI: 10.1128/aem.00720-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many animal traits are influenced by their associated microorganisms ("microbiota"). To expand our understanding of the relationship between microbial genotype and host phenotype, we report an analysis of the influence of the microbiota on the dietary preference of the fruit fly Drosophila melanogaster. First, we confirmed through experiments on flies reared bacteria-free ("axenic") or in monoassociation with two different strains of bacteria that the microbiota significantly influences fruit fly dietary preference across a range of ratios of dietary yeast:dietary glucose. Then, focusing on microbiota-dependent changes in fly dietary preference for yeast (DPY), we performed a metagenome-wide association (MGWA) study to define microbial species specificity for this trait and to predict bacterial genes that influence it. In a subsequent mutant analysis, we confirmed that disrupting a subset of the MGWA-predicted genes influences fly DPY, including for genes involved in thiamine biosynthesis and glucose transport. Follow-up tests revealed that the bacterial influence on fly DPY did not depend on bacterial modification of the glucose or protein content of the fly diet, suggesting that the bacteria mediate their effects independent of the fly diet or through more specific dietary changes than broad ratios of protein and glucose. Together, these findings provide additional insight into bacterial determinants of host nutrition and behavior by revealing specific genetic disruptions that influence D. melanogaster DPY. IMPORTANCE Associated microorganisms ("microbiota") impact the physiology and behavior of their hosts, and defining the mechanisms underlying these interactions is a major gap in the field of host-microbe interactions. This study expands our understanding of how the microbiota can influence dietary preference for yeast (DPY) of a model host, Drosophila melanogaster. First, we show that fly preferences for a range of different dietary yeast:dietary glucose ratios vary significantly with the identity of the microbes that colonize the fruit flies. We then performed a metagenome-wide association study to identify candidate bacterial genes that contributed to some of these bacterial influences. We confirmed that disrupting some of the predicted genes, including genes involved in glucose transport and thiamine biosynthesis, resulted in changes to fly DPY and show that the influence of two of these genes is not through changes in dietary ratios of protein to glucose. Together, these efforts expand our understanding of the bacterial genetic influences on a feeding behavior of a model animal host.
Collapse
|
48
|
Abstract
The interaction between the metabolic activities of the intestinal microbiome and its host forms an important part of health. The basis of this interaction is in part mediated by the release of microbially-derived metabolites that enter the circulation. These products of microbial metabolism thereby interface with the immune, metabolic, or nervous systems of the host to influence physiology. Here, we review the interactions between the metabolic activities of the microbiome and the systemic metabolism of the host. The concept that the endocrine system includes more than just the eukaryotic host component enables the rational design of exogenous interventions that shape human metabolism. An improved mechanistic understanding of the metabolic microbiome-host interaction may therefore pioneer actionable microbiota-based diagnostics or therapeutics that allow the control of host systemic metabolism via the microbiome.
Collapse
Affiliation(s)
- Timothy O Cox
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirti Nath
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Masson F, Rommelaere S, Schüpfer F, Boquete JP, Lemaitre B. Disproportionate investment in Spiralin B production limits in-host growth and favors the vertical transmission of Spiroplasma insect endosymbionts. Proc Natl Acad Sci U S A 2022; 119:e2208461119. [PMID: 35858432 PMCID: PMC9335233 DOI: 10.1073/pnas.2208461119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 01/21/2023] Open
Abstract
Insects frequently harbor endosymbionts, which are bacteria housed within host tissues. These associations are stably maintained over evolutionary timescales through vertical transmission of endosymbionts from host mothers to their offspring. Some endosymbionts manipulate host reproduction to facilitate spread within natural populations. Consequently, such infections have major impacts on insect physiology and evolution. However, technical hurdles have limited our understanding of the molecular mechanisms underlying such insect-endosymbiont interactions. Here, we investigate the nutritional interactions between endosymbiotic partners using the tractable insect Drosophila melanogaster and its natural endosymbiont Spiroplasma poulsonii. Using a combination of functional assays, metabolomics, and proteomics, we show that the abundance and amino acid composition of a single Spiroplasma membrane lectin, Spiralin B (SpiB), dictates the amino acid requirements of the endosymbiont and determines its proliferation within host tissues. Ectopically increasing SpiB levels in host tissues disrupts localization of endosymbionts in the fly egg chambers and decreases vertical transmission. We find that SpiB is likely to be required by the endosymbiont to enter host oocytes, which may explain the massive investment of S. poulsonii in SpiB synthesis. SpiB both permits vertical transmission of the symbiont and limits its growth in nutrient-limiting conditions for the host; therefore, a single protein plays a pivotal role in ensuring durability of the interaction in a variable environment.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 1015 Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 1015 Switzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 1015 Switzerland
| | - Jean-Philippe Boquete
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 1015 Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 1015 Switzerland
| |
Collapse
|
50
|
The neuronal logic of how internal states control food choice. Nature 2022; 607:747-755. [DOI: 10.1038/s41586-022-04909-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
|