1
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Wu Q, Liao R, Miao C, Hasnat M, Li L, Sun L, Wang X, Yuan Z, Jiang Z, Zhang L, Yu Q. Oncofetal SNRPE promotes HCC tumorigenesis by regulating the FGFR4 expression through alternative splicing. Br J Cancer 2024; 131:77-89. [PMID: 38796598 PMCID: PMC11231362 DOI: 10.1038/s41416-024-02689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Alternative Splicing
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Mice, Nude
- Prognosis
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
Collapse
Affiliation(s)
- Qipeng Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Ruyan Liao
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Chunmeng Miao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan
| | - Le Li
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Xinru Wang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| | - Luyong Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Qinwei Yu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Bei M, Xu J. SR proteins in cancer: function, regulation, and small inhibitor. Cell Mol Biol Lett 2024; 29:78. [PMID: 38778254 PMCID: PMC11110342 DOI: 10.1186/s11658-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Alternative splicing of pre-mRNAs is a fundamental step in RNA processing required for gene expression in most metazoans. Serine and arginine-rich proteins (SR proteins) comprise a family of multifunctional proteins that contain an RNA recognition motif (RRM) and the ultra-conserved arginine/serine-rich (RS) domain, and play an important role in precise alternative splicing. Increasing research supports SR proteins as also functioning in other RNA-processing-related mechanisms, such as polyadenylation, degradation, and translation. In addition, SR proteins interact with N6-methyladenosine (m6A) regulators to modulate the methylation of ncRNA and mRNA. Dysregulation of SR proteins causes the disruption of cell differentiation and contributes to cancer progression. Here, we review the distinct biological characteristics of SR proteins and their known functional mechanisms during carcinogenesis. We also summarize the current inhibitors that directly target SR proteins and could ultimately turn SR proteins into actionable therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Mingrong Bei
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China.
| |
Collapse
|
4
|
Chen Y, Xu X, Ding K, Tang T, Cai F, Zhang H, Chen Z, Qi Y, Fu Z, Zhu G, Dou Z, Xu J, Chen G, Wu Q, Ji J, Zhang J. TRIM25 promotes glioblastoma cell growth and invasion via regulation of the PRMT1/c-MYC pathway by targeting the splicing factor NONO. J Exp Clin Cancer Res 2024; 43:39. [PMID: 38303029 PMCID: PMC10835844 DOI: 10.1186/s13046-024-02964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. METHODS Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. RESULTS We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. CONCLUSIONS Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Xiaohui Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Kaikai Ding
- Department of Radiation Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Feng Cai
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Haocheng Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Yangjian Qi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Ganggui Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Jinfang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
| | - Jianxiong Ji
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
- Brain Research Institute, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
| |
Collapse
|
5
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
6
|
Khalifah BA, Alghamdi SA, Alhasan AH. Unleashing the potential of catalytic RNAs to combat mis-spliced transcripts. Front Bioeng Biotechnol 2023; 11:1244377. [PMID: 38047291 PMCID: PMC10690607 DOI: 10.3389/fbioe.2023.1244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Human transcriptome can undergo RNA mis-splicing due to spliceopathies contributing to the increasing number of genetic diseases including muscular dystrophy (MD), Alzheimer disease (AD), Huntington disease (HD), myelodysplastic syndromes (MDS). Intron retention (IR) is a major inducer of spliceopathies where two or more introns remain in the final mature mRNA and account for many intronic expansion diseases. Potential removal of such introns for therapeutic purposes can be feasible when utilizing bioinformatics, catalytic RNAs, and nano-drug delivery systems. Overcoming delivery challenges of catalytic RNAs was discussed in this review as a future perspective highlighting the significance of utilizing synthetic biology in addition to high throughput deep sequencing and computational approaches for the treatment of mis-spliced transcripts.
Collapse
Affiliation(s)
- Bashayer A. Khalifah
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ali H. Alhasan
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Li Z, Qin C, Zhao B, Wang Y, Li T, Zhao Y, Wang W. DHX38 restricts chemoresistance by regulating the alternative pre-mRNA splicing of RELL2 in pancreatic ductal adenocarcinoma. PLoS Genet 2023; 19:e1010847. [PMID: 37506056 PMCID: PMC10381071 DOI: 10.1371/journal.pgen.1010847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Intron retention plays an important role in cancer progression and chemotherapy resistance and seems to be essential for the maintenance of genome stability in cancer. Here, our goal was to analyze the role of receptor expressed in lymphoid tissue (Relt)-like 2 (RELL2) intron 4 retention in promoting pancreatic ductal adenocarcinoma (PDAC) progression. Our results showed that intron retention (IR) occurs at the fourth intron of RELL2 transcript in gemcitabine resistant PDAC cells, however, the regulatory mechanism and the clinical implications of IR of RELL2 are unclear. Firstly, we found that RELL2 plays an anti-oncogenic role in PDAC by performing in vitro functional assays including cell proliferation, GEM cytotoxicity assay and apoptosis. Subsequently, we identified the upstream gene of RELL2, DEAH-Box Helicase 38 (DHX38), and demonstrated the direct interaction between DHX38 and RELL2 by RIP-qPCR. We also found that altered expression of DHX38 resulted in corresponding changes in intron 4 retention of RELL2. Importantly, we unveiled that overexpression of DHX38 on the basis of knocking down of the fourth intron of RELL2 resulted in an impaired intron 4 intention. Overall, our study identified a new IR site in PDAC, which could be a possible target for PDAC therapy.
Collapse
Affiliation(s)
- Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
8
|
Jia R, Zheng ZM. Oncogenic SRSF3 in health and diseases. Int J Biol Sci 2023; 19:3057-3076. [PMID: 37416784 PMCID: PMC10321290 DOI: 10.7150/ijbs.83368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Serine/arginine rich splicing factor 3 (SRSF3) is an important multi-functional splicing factor, and has attracted increasing attentions in the past thirty years. The importance of SRSF3 is evidenced by its impressively conserved protein sequences in all animals and alternative exon 4 which represents an autoregulatory mechanism to maintain its proper cellular expression level. New functions of SRSF3 have been continuously discovered recently, especially its oncogenic function. SRSF3 plays essential roles in many cellular processes by regulating almost all aspects of RNA biogenesis and processing of many target genes, and thus, contributes to tumorigenesis when overexpressed or disregulated. This review updates and highlights the gene, mRNA, and protein structure of SRSF3, the regulatory mechanisms of SRSF3 expression, and the characteristics of SRSF3 targets and binding sequences that contribute to SRSF3's diverse molecular and cellular functions in tumorigenesis and human diseases.
Collapse
Affiliation(s)
- Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
9
|
de Oliveira Freitas Machado C, Schafranek M, Brüggemann M, Hernández Cañás M, Keller M, Di Liddo A, Brezski A, Blümel N, Arnold B, Bremm A, Wittig I, Jaé N, McNicoll F, Dimmeler S, Zarnack K, Müller-McNicoll M. Poison cassette exon splicing of SRSF6 regulates nuclear speckle dispersal and the response to hypoxia. Nucleic Acids Res 2023; 51:870-890. [PMID: 36620874 PMCID: PMC9881134 DOI: 10.1093/nar/gkac1225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.
Collapse
Affiliation(s)
- Camila de Oliveira Freitas Machado
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Michal Schafranek
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Mirko Brüggemann
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | | | - Mario Keller
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Antonella Di Liddo
- Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Andre Brezski
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Nicole Blümel
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Correspondence may also be addressed to Kathi Zarnack.
| | | |
Collapse
|
10
|
Abou Khouzam R, Sharda M, Rao SP, Kyerewah-Kersi SM, Zeinelabdin NA, Mahmood AS, Nawafleh H, Khan MS, Venkatesh GH, Chouaib S. Chronic hypoxia is associated with transcriptomic reprogramming and increased genomic instability in cancer cells. Front Cell Dev Biol 2023; 11:1095419. [PMID: 36968212 PMCID: PMC10033758 DOI: 10.3389/fcell.2023.1095419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Hypoxia afflicts the microenvironment of solid tumors fueling malignancy. We investigated the impact of long hypoxia exposure on transcriptional remodeling, tumor mutational burden (TMB), and genomic instability of cancer cells that were grouped based on their inherent sensitivity or resistance to hypoxia. A hypoxia score was used as a metric to distinguish between the most hypoxia-sensitive (hypoxia high (HH)), and most resistant (hypoxia low (HL)) cancer cells. By applying whole exome sequencing and microarray analysis, we showed that the HH group was indeed more sensitive to hypoxia, having significantly higher TMB (p = 0.03) and copy number losses (p = 0.03), as well as a trend of higher transcriptional response. Globally cells adapted by decreasing expression of genes involved in metabolism, proliferation, and protein maturation, and increasing alternative splicing. They accumulated mutations, especially frameshift insertions, and harbored increased copy number alterations, indicating increased genomic instability. Cells showing highest TMB simultaneously experienced a significant downregulation of DNA replication and repair and chromosomal maintenance pathways. A sixteen-gene common response to chronic hypoxia was put forth, including genes regulating angiogenesis and proliferation. Our findings show that chronic hypoxia enables survival of tumor cells by metabolic reprogramming, modulating proliferation, and increasing genomic instability. They additionally highlight key adaptive pathways that can potentially be targeted to prevent cancer cells residing in chronically hypoxic tumor areas from thriving.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Mohak Sharda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- School of Life Science, The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore, India
| | - Shyama Prasad Rao
- Center for Bioinformatics, NITTE deemed to be University, Mangaluru, India
| | | | - Nagwa Ahmed Zeinelabdin
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ayda Shah Mahmood
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Husam Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Munazza Samar Khan
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Cancer Immunotherapy, Gustave Roussy, EPHE, Faculty De médecine University Paris-Sud, University Paris-Saclay, Villejuif, France
- *Correspondence: Salem Chouaib, ,
| |
Collapse
|
11
|
Trieu-Duc V, Oshima K, Matsumura K, Iwasaki Y, Chiu MT, Nikaido M, Okada N. Alternative splicing plays key roles in response to stress across different stages of fighting in the fish Betta splendens. BMC Genomics 2022; 22:920. [PMID: 35637454 PMCID: PMC9150285 DOI: 10.1186/s12864-022-08609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Background Aggression is an evolutionarily conserved behavior critical for animal survival. In the fish Betta splendens, across different stages of fighting interactions, fighting opponents suffer from various stressors, especially from the great demand for oxygen. Using RNA sequencing, we profiled differential alternative splicing (DAS) events in the brains of fish collected before fighting, during fighting, and after fighting to study the involvement of alternative splicing (AS) in the response to stress during the fight. Results We found that fighting interactions induced the greatest increase in AS in the ‘during-fighting’ fish, followed by that of the ‘after-fighting’ fish. Intron retention (IR) was the most enriched type among all the basic AS events. DAS genes were mainly associated with synapse assembly, ion transport, and regulation of protein secretion. We further observed that IR events significantly differentiated between winners and losers for 19 genes, which were associated with messenger RNA biogenesis, DNA repair, and transcription machinery. These genes share many common features, including shorter intron length and higher GC content. Conclusions This study is the first comprehensive view of AS induced by fighting interactions in a fish species across different stages of those interactions, especially with respect to IR events in winners and losers. Together, these findings facilitate future investigations into transcriptome complexity and AS regulation in response to stress under the context of aggression in vertebrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08609-2.
Collapse
Affiliation(s)
- Vu Trieu-Duc
- School of Pharmacy, Kitasato University, Tokyo, Japan.,Life Sciences and Biotechnology Department, Tokyo Institute of Technology, Tokyo, Japan.,Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | - Yuri Iwasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Ming-Tzu Chiu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masato Nikaido
- Life Sciences and Biotechnology Department, Tokyo Institute of Technology, Tokyo, Japan
| | - Norihiro Okada
- School of Pharmacy, Kitasato University, Tokyo, Japan. .,Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. .,Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| |
Collapse
|
12
|
Xiong J, Chen Y, Wang W, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett 2021; 23:21. [PMID: 34858525 PMCID: PMC8617561 DOI: 10.3892/ol.2021.13139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3; also known as SRp20), an important member of the family of SRSFs, is abnormally expressed in tumors, resulting in aberrant splicing of hub genes, such as CD44, HER2, MDM4, Rac family small GTPase 1 and tumor protein p53. Under normal conditions, the splicing and expression of SRSF3 are strictly regulated. However, the splicing, expression and phosphorylation of SRSF3 are abnormal in tumors. SRSF3 plays important roles in the occurrence and development of tumors, including the promotion of tumorigenesis, cellular proliferation, the cell cycle and metastasis, as well as inhibition of cell senescence, apoptosis and autophagy. SRSF3-knockdown significantly inhibits the proliferation and metastatic characteristics of tumor cells. Therefore, SRSF3 may be suggested as a novel anti-tumor target. The other biological functions of SRSF3 and its regulatory mechanisms are also summarized in the current review.
Collapse
Affiliation(s)
- Jian Xiong
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jing Sun
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| |
Collapse
|
13
|
Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel) 2021; 12:genes12020264. [PMID: 33670352 PMCID: PMC7918513 DOI: 10.3390/genes12020264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA) is a xenoestrogen chemical commonly used to manufacture polycarbonate plastics and epoxy resin and might affect various human organs. However, the cellular effects of BPA on the eyes have not been widely investigated. This study aimed to investigate the cellular cytotoxicity by BPA exposure on human retinoblastoma cells. BPA did not show cytotoxic effects, such as apoptosis, alterations to cell viability and cell cycle regulation. Comparative analysis of the transcriptome and proteome profiles were investigated after long-term exposure of Y79 cells to low doses of BPA. Transcriptome analysis using RNA-seq revealed that mRNA expression of the post-transcriptional regulation-associated gene sets was significantly upregulated in the BPA-treated group. Cell cycle regulation-associated gene sets were significantly downregulated by exposure to BPA. Interestingly, RNA-seq analysis at the transcript level indicated that alternative splicing events, particularly retained introns, were noticeably altered by low-dose BPA treatment. Additionally, proteome profiling using MALDI-TOF-MS identified a total of nine differentially expressed proteins. These results suggest that alternative splicing events and altered gene/protein expression patterns are critical phenomena affected by long-term low-dose BPA exposure. This represents a novel marker for the detection of various diseases associated with environmental pollutants such as BPA.
Collapse
|
14
|
Keefe MD, Soderholm HE, Shih HY, Stevenson TJ, Glaittli KA, Bowles DM, Scholl E, Colby S, Merchant S, Hsu EW, Bonkowsky JL. Vanishing white matter disease expression of truncated EIF2B5 activates induced stress response. eLife 2020; 9:56319. [PMID: 33300869 PMCID: PMC7752137 DOI: 10.7554/elife.56319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Vanishing white matter disease (VWM) is a severe leukodystrophy of the central nervous system caused by mutations in subunits of the eukaryotic initiation factor 2B complex (eIF2B). Current models only partially recapitulate key disease features, and pathophysiology is poorly understood. Through development and validation of zebrafish (Danio rerio) models of VWM, we demonstrate that zebrafish eif2b mutants phenocopy VWM, including impaired somatic growth, early lethality, effects on myelination, loss of oligodendrocyte precursor cells, increased apoptosis in the CNS, and impaired motor swimming behavior. Expression of human EIF2B2 in the zebrafish eif2b2 mutant rescues lethality and CNS apoptosis, demonstrating conservation of function between zebrafish and human. In the mutants, intron 12 retention leads to expression of a truncated eif2b5 transcript. Expression of the truncated eif2b5 in wild-type larva impairs motor behavior and activates the ISR, suggesting that a feed-forward mechanism in VWM is a significant component of disease pathophysiology.
Collapse
Affiliation(s)
- Matthew D Keefe
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Haille E Soderholm
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Hung-Yu Shih
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Tamara J Stevenson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Kathryn A Glaittli
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - D Miranda Bowles
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Erika Scholl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Samuel Colby
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Samer Merchant
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Edward W Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, United States.,Brain and Spine Center, Primary Children's Hospital, Salt Lake City, United States
| |
Collapse
|
15
|
Di Matteo A, Belloni E, Pradella D, Cappelletto A, Volf N, Zacchigna S, Ghigna C. Alternative splicing in endothelial cells: novel therapeutic opportunities in cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:275. [PMID: 33287867 PMCID: PMC7720527 DOI: 10.1186/s13046-020-01753-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
16
|
Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 2020; 18:175. [PMID: 33148274 PMCID: PMC7640403 DOI: 10.1186/s12964-020-00607-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of the translation of messenger RNA (mRNA) in eukaryotic cells is critical for gene expression, and occurs principally at the initiation phase which is mainly regulated by eukaryotic initiation factors (eIFs). eIFs are fundamental for the translation of mRNA and as such act as the primary targets of several signaling pathways to regulate gene expression. Mis-regulated mRNA expression is a common feature of tumorigenesis and the abnormal activity of eIF complexes triggered by upstream signaling pathways is detected in many tumors, leading to the selective translation of mRNA encoding proteins involved in tumorigenesis, metastasis, or resistance to anti-cancer drugs, and making eIFs a promising therapeutic target for various types of cancers. Here, we briefly outline our current understanding of the biology of eIFs, mainly focusing on the effects of several signaling pathways upon their functions and discuss their contributions to the initiation and progression of tumor growth. An overview of the progress in developing agents targeting the components of translation machinery for cancer treatment is also provided. Video abstract
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaojiao Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Yin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiao Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
17
|
Monteuuis G, Schmitz U, Petrova V, Kearney PS, Rasko JEJ. Holding on to Junk Bonds: Intron Retention in Cancer and Therapy. Cancer Res 2020; 81:779-789. [PMID: 33046441 DOI: 10.1158/0008-5472.can-20-1943] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
Intron retention (IR) in cancer was for a long time overlooked by the scientific community, as it was previously considered to be an artifact of a dysfunctional spliceosome. Technological advancements made in the last decade offer unique opportunities to explore the role of IR as a widespread phenomenon that contributes to the transcriptional diversity of many cancers. Numerous studies in cancer have shed light on dysregulation of cellular mechanisms that lead to aberrant and pathologic IR. IR is not merely a mechanism of gene regulation, but rather it can mediate cancer pathogenesis and therapeutic resistance in various human diseases. The burden of IR in cancer is governed by perturbations to mechanisms known to regulate this phenomenon and include epigenetic variation, mutations within the gene body, and splicing factor dysregulation. This review summarizes possible causes for aberrant IR and discusses the role of IR in therapy or as a consequence of disease treatment. As neoepitopes originating from retained introns can be presented on the cancer cell surface, the development of personalized cancer vaccines based on IR-derived neoepitopes should be considered. Ultimately, a deeper comprehension about the origins and consequences of aberrant IR may aid in the development of such personalized cancer vaccines.
Collapse
Affiliation(s)
- Geoffray Monteuuis
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Sydney, Australia
| | - Ulf Schmitz
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Sydney, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Veronika Petrova
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Sydney, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Sydney, Australia
| | - Padraic S Kearney
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Sydney, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Sydney, Australia. .,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| |
Collapse
|
18
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Zheng JT, Lin CX, Fang ZY, Li HD. Intron Retention as a Mode for RNA-Seq Data Analysis. Front Genet 2020; 11:586. [PMID: 32733531 PMCID: PMC7358572 DOI: 10.3389/fgene.2020.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Intron retention (IR) is an alternative splicing mode whereby introns, rather than being spliced out as usual, are retained in mature mRNAs. It was previously considered a consequence of mis-splicing and received very limited attention. Only recently has IR become of interest for transcriptomic data analysis owing to its recognized roles in gene expression regulation and associations with complex diseases. In this article, we first review the function of IR in regulating gene expression in a number of biological processes, such as neuron differentiation and activation of CD4+ T cells. Next, we briefly review its association with diseases, such as Alzheimer's disease and cancers. Then, we describe state-of-the-art methods for IR detection, including RNA-seq analysis tools IRFinder and iREAD, highlighting their underlying principles and discussing their advantages and limitations. Finally, we discuss the challenges for IR detection and potential ways in which IR detection methods could be improved.
Collapse
Affiliation(s)
- Jian-Tao Zheng
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Cui-Xiang Lin
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhao-Yu Fang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Hong-Dong Li
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
20
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
21
|
Fischer S, Di Liddo A, Taylor K, Gerhardus JS, Sobczak K, Zarnack K, Weigand JE. Muscleblind-like 2 controls the hypoxia response of cancer cells. RNA (NEW YORK, N.Y.) 2020; 26:648-663. [PMID: 32127384 PMCID: PMC7161353 DOI: 10.1261/rna.073353.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 05/03/2023]
Abstract
Hypoxia is a hallmark of solid cancers, supporting proliferation, angiogenesis, and escape from apoptosis. There is still limited understanding of how cancer cells adapt to hypoxic conditions and survive. We analyzed transcriptome changes of human lung and breast cancer cells under chronic hypoxia. Hypoxia induced highly concordant changes in transcript abundance, but divergent splicing responses, underlining the cell type-specificity of alternative splicing programs. While RNA-binding proteins were predominantly reduced, hypoxia specifically induced muscleblind-like protein 2 (MBNL2). Strikingly, MBNL2 induction was critical for hypoxia adaptation by controlling the transcript abundance of hypoxia response genes, such as vascular endothelial growth factor A (VEGFA) MBNL2 depletion reduced the proliferation and migration of cancer cells, demonstrating an important role of MBNL2 as cancer driver. Hypoxia control is specific for MBNL2 and not shared by its paralog MBNL1. Thus, our study revealed MBNL2 as central mediator of cancer cell responses to hypoxia, regulating the expression and alternative splicing of hypoxia-induced genes.
Collapse
Affiliation(s)
- Sandra Fischer
- Department of Biology, Technical University of Darmstadt, Darmstadt, 64287, Germany
| | - Antonella Di Liddo
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Jamina S Gerhardus
- Department of Biology, Technical University of Darmstadt, Darmstadt, 64287, Germany
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt, 64287, Germany
| |
Collapse
|
22
|
Gallop Racing Shifts Mature mRNA towards Introns: Does Exercise-Induced Stress Enhance Genome Plasticity? Genes (Basel) 2020; 11:genes11040410. [PMID: 32283859 PMCID: PMC7230505 DOI: 10.3390/genes11040410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Physical exercise is universally recognized as stressful. Among the "sport species", the horse is probably the most appropriate model for investigating the genomic response to stress due to the homogeneity of its genetic background. The aim of this work is to dissect the whole transcription modulation in Peripheral Blood Mononuclear Cells (PBMCs) after exercise with a time course framework focusing on unexplored regions related to introns and intergenic portions. PBMCs NGS from five 3 year old Sardinian Anglo-Arab racehorses collected at rest and after a 2000 m race was performed. Apart from differential gene expression ascertainment between the two time points the complexity of transcription for alternative transcripts was identified. Interestingly, we noted a transcription shift from the coding to the non-coding regions. We further investigated the possible causes of this phenomenon focusing on genomic repeats, using a differential expression approach and finding a strong general up-regulation of repetitive elements such as LINE. Since their modulation is also associated with the "exonization", the recruitment of repeats that act with regulatory functions, suggesting that there might be an active regulation of this transcriptional shift. Thanks to an innovative bioinformatic approach, our study could represent a model for the transcriptomic investigation of stress.
Collapse
|
23
|
Xiong X, Ke X, Wang L, Yao Z, Guo Y, Zhang X, Chen Y, Pang CP, Schally AV, Zhang H. Splice variant of growth hormone-releasing hormone receptor drives esophageal squamous cell carcinoma conferring a therapeutic target. Proc Natl Acad Sci U S A 2020; 117:6726-6732. [PMID: 32156725 PMCID: PMC7104313 DOI: 10.1073/pnas.1913433117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extrahypothalamic growth hormone-releasing hormone (GHRH) and its cognate receptors (GHRH-Rs) and splice variants are expressed in a variety of cancers. It has been shown that the pituitary type of GHRH-R (pGHRH-R) mediates the inhibition of tumor growth induced by GHRH-R antagonists. However, GHRH-R antagonists can also suppress some cancers that do not express pGHRH-R, yet the underlying mechanisms have not been determined. Here, using human esophageal squamous cell carcinoma (ESCC) as a model, we were able to reveal that SV1, a known splice variant of GHRH-R, is responsible for the inhibition induced by GHRH-R antagonist MIA-602. We demonstrated that GHRH-R splice variant 1 (SV1) is a hypoxia-driven promoter of tumor progression. Hypoxia-elevated SV1 activates a key glycolytic enzyme, muscle-type phosphofructokinase (PFKM), through the nuclear factor kappa B (NF-κB) pathway, which enhances glycolytic metabolism and promotes progression of ESCC. The malignant actions induced by the SV1-NF-κB-PFKM pathway could be reversed by MIA-602. Altogether, our studies demonstrate a mechanism by which GHRH-R antagonists target SV1. Our findings suggest that SV1 is a hypoxia-induced oncogenic promoter which can be an alternative target of GHRH-R antagonists.
Collapse
Affiliation(s)
- Xiao Xiong
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, GZ 9713 Groningen, The Netherlands
| | - Lu Wang
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
| | - Zhimeng Yao
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Yi Guo
- Endoscopy Center, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33136
- South Florida Veterans Affairs Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33136
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, 999077 Hong Kong, China
- Joint Shantou International Eye Center, Shantou University/Chinese University of Hong Kong, 515041 Shantou, China
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33136;
- South Florida Veterans Affairs Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33136
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Medical Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hao Zhang
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China;
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| |
Collapse
|
24
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
25
|
Brumwell A, Fell L, Obress L, Uniacke J. Hypoxia influences polysome distribution of human ribosomal protein S12 and alternative splicing of ribosomal protein mRNAs. RNA (NEW YORK, N.Y.) 2020; 26:361-371. [PMID: 31911497 PMCID: PMC7025504 DOI: 10.1261/rna.070318.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ribosomes were once considered static in their composition because of their essential role in protein synthesis and kingdom-wide conservation. The existence of tolerated mutations in select ribosomal proteins (RPs), such as in Diamond-Blackfan anemia, is evidence that not all ribosome components are essential. Heterogeneity in the protein composition of eukaryotic ribosomes is an emerging concept with evidence that different pools of ribosomes exist with transcript-specificity. Here, we show that the polysome association of ribosomal proteins is altered by low oxygen (hypoxia), a feature of the tumor microenvironment, in human cells. We quantified ribosomal protein abundance in actively translating polysomes of normoxic and hypoxic HEK293 cells by tandem mass tags mass spectrometry. Our data suggest that RPS12 (eS12) is enriched in hypoxic monosomes, which increases the heavy polysome association of structured transcripts APAF-1 and XIAP. Furthermore, hypoxia induced five alternative splicing events within a subset of RP mRNAs in cell lines. One of these events in RPS24 (eS24 protein) alters the coding sequence to produce two protein isoforms that can incorporate into ribosomes. This splicing event is greatly induced in spheroids and correlates with tumor hypoxia in human prostate cancer. Our data suggest that hypoxia may influence the composition of the human ribosome through changes in RP incorporation and the production of hypoxia-specific RP isoforms.
Collapse
Affiliation(s)
- Andrea Brumwell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Leslie Fell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lindsay Obress
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
26
|
Hou L, Jiao Y, Li Y, Luo Z, Zhang X, Pan G, Zhao Y, Yang Z, He M. Low EIF2B5 expression predicts poor prognosis in ovarian cancer. Medicine (Baltimore) 2020; 99:e18666. [PMID: 32000373 PMCID: PMC7004721 DOI: 10.1097/md.0000000000018666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ovarian cancer has the highest mortality among gynecological cancers. Although ovarian cancer usually responds well to chemotherapy, most patients still have a poor prognosis. EIF2B5 is a crucial molecule in posttranscriptional modifications involved in tumor progression, and here we investigated the prognostic role of EIF2B5 in ovarian cancer. We examined the differential expression of EIF2B5 mRNA in ovarian cancer by exploring The Cancer Genome Atlas (TCGA) database. The chi square test was used to identify a clinical correlation. Survival analysis and Cox regression model were performed to determine the association between EIF2B5 expression and overall survival (OS) in ovarian cancer patients. As a result, Low EIF2B5 expression was found in ovarian cancer tissues and correlated with survival status. Survival analysis showed that ovarian cancer patients with low EIF2B5 expression had a short OS. Moreover, Cox regression analysis indicated that low EIF2B5 expression was an independent risk factor for a poor prognosis in ovarian cancer. Additionally, according to gene set enrichment analysis, mesenchymal transition, angiogenesis, coagulation, and bile acid metabolism were differentially enriched in ovarian cancer with high EIF2B5 expression. In conclusion, Low EIF2B5 expression is an independent risk factor for a poor prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University
| | - Zhangping Luo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University
| | - Xueying Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University
| | - Guoqiang Pan
- Department of Gastrointestinal Surgery, First Hospital of Jilin University
| | - Yuechen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
27
|
Di Liddo A, de Oliveira Freitas Machado C, Fischer S, Ebersberger S, Heumüller AW, Weigand JE, Müller-McNicoll M, Zarnack K. A combined computational pipeline to detect circular RNAs in human cancer cells under hypoxic stress. J Mol Cell Biol 2019; 11:829-844. [PMID: 31560396 PMCID: PMC6884703 DOI: 10.1093/jmcb/mjz094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is associated with several diseases, including cancer. Cells that are deprived of adequate oxygen supply trigger transcriptional and post-transcriptional responses, which control cellular pathways such as angiogenesis, proliferation, and metabolic adaptation. Circular RNAs (circRNAs) are a novel class of mainly non-coding RNAs, which have been implicated in multiple cancers and attract increasing attention as potential biomarkers. Here, we characterize the circRNA signatures of three different cancer cell lines from cervical (HeLa), breast (MCF-7), and lung (A549) cancer under hypoxia. In order to reliably detect circRNAs, we integrate available tools with custom approaches for quantification and statistical analysis. Using this consolidated computational pipeline, we identify ~12000 circRNAs in the three cancer cell lines. Their molecular characteristics point to an involvement of complementary RNA sequences as well as trans-acting factors in circRNA biogenesis, such as the RNA-binding protein HNRNPC. Notably, we detect a number of circRNAs that are more abundant than their linear counterparts. In addition, 64 circRNAs significantly change in abundance upon hypoxia, in most cases in a cell type-specific manner. In summary, we present a comparative circRNA profiling in human cancer cell lines, which promises novel insights into the biogenesis and function of circRNAs under hypoxic stress.
Collapse
Affiliation(s)
- Antonella Di Liddo
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Camila de Oliveira Freitas Machado
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Fischer
- Department of Biology, Technical University Darmstadt, Germany
| | | | - Andreas W Heumüller
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, Germany
| | - Michaela Müller-McNicoll
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Adusumalli S, Ngian Z, Lin W, Benoukraf T, Ong C. Increased intron retention is a post-transcriptional signature associated with progressive aging and Alzheimer's disease. Aging Cell 2019; 18:e12928. [PMID: 30868713 PMCID: PMC6516162 DOI: 10.1111/acel.12928] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022] Open
Abstract
Intron retention (IR) by alternative splicing is a conserved regulatory mechanism that can affect gene expression and protein function during adult development and age-onset diseases. However, it remains unclear whether IR undergoes spatial or temporal changes during different stages of aging or neurodegeneration like Alzheimer's disease (AD). By profiling the transcriptome of Drosophila head cells at different ages, we observed a significant increase in IR events for many genes during aging. Differential IR affects distinct biological functions at different ages and occurs at several AD-associated genes in older adults. The increased nucleosome occupancy at the differentially retained introns in young animals suggests that it may regulate the level of IR during aging. Notably, an increase in the number of IR events was also observed in healthy older mouse and human brain tissues, as well as in the cerebellum and frontal cortex from independent AD cohorts. Genes with differential IR shared many common features, including shorter intron length, no perturbation in their mRNA level, and enrichment for biological functions that are associated with mRNA processing and proteostasis. The differentially retained introns identified in AD frontal cortex have higher GC content, with many of their mRNA transcripts showing an altered level of protein expression compared to control samples. Taken together, our results suggest that an increased IR is an conserved signature that is associated with aging. By affecting pathways involved in mRNA and protein homeostasis, changes of IR pattern during aging may regulate the transition from healthy to pathological state in late-onset sporadic AD.
Collapse
Affiliation(s)
- Swarnaseetha Adusumalli
- Temasek Life Sciences Laboratory National University of Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhen‐Kai Ngian
- Temasek Life Sciences Laboratory National University of Singapore Singapore
| | - Wei‐Qi Lin
- Temasek Life Sciences Laboratory National University of Singapore Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore National University of Singapore Singapore
- Discipline of Genetics, Faculty of Medicine Memorial University of Newfoundland St. John’s Newfoundland and Labrador Canada
| | - Chin‐Tong Ong
- Temasek Life Sciences Laboratory National University of Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
29
|
Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin Transl Oncol 2019; 21:1142-1151. [PMID: 30690667 DOI: 10.1007/s12094-019-02035-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Hypoxia is an indispensable factor in the progression of metastasis. Hypoxia inducible factor-1α (HIF-1α), the core element in generating the hypoxia response, induces invasion and metastasis by promoting epithelial-mesenchymal transition (EMT). This study explored the underlying mechanism of hypoxia associated with the invasion and metastasis of gastric cancer (GC). METHODS Six methods were employed to assess the function of the long noncoding RNA (lncRNA) prostate cancer gene expression marker 1 (PCGEM1) including gene silencing, RT-PCR, the separation of nuclear and cytoplasmic fractions, scrape motility assay, transwell migration assay, and Western-blot. RESULTS LncRNA PCGEM1 was overexpressed in GC cells and tissues, and was induced by hypoxia in GC cells. Additional experiments confirmed that the knockdown of PCGEM1 significantly repressed the invasion and metastasis of GC cells. SNAI1, a key transcription factor of EMT, was regulated by PCGEM1. Overexpression of SNAI1 rescued the inhibition of PCGEM1-knockdown during the invasion and metastasis of GC cells. In addition, PCGEM1 and SNAI1 jointly affected the biomarkers of EMT. CONCLUSION Our findings indicated that PCGEM1 is a hypoxia-responsive lncRNA, and contributes to the invasion and metastasis of GC. The potential mechanism is attributed to the regulation of EMT by PCGEM1 and its influence on the expression of SNAI1.
Collapse
|
30
|
Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2018; 26:1181-1194. [PMID: 30464224 PMCID: PMC6748147 DOI: 10.1038/s41418-018-0231-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is a fundamental process that plays a considerable role in generating protein diversity. Pre-mRNA splicing is also the key to the pathology of numerous diseases, especially cancers. In this review, we discuss how aberrant splicing isoforms precisely regulate three basic functional aspects in cancer: proliferation, metastasis and apoptosis. Importantly, clinical function of aberrant splicing isoforms is also discussed, in particular concerning drug resistance and radiosensitivity. Furthermore, this review discusses emerging strategies how to modulate pathologic aberrant splicing isoforms, which are attractive, novel therapeutic agents in cancer. Last we outline current and future directions of isoforms diagnostic methodologies reported so far in cancer. Thus, it is highlighting significance of aberrant splicing isoforms as markers for cancer and as targets for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Syafrizayanti
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, Indonesia
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Gallo S, Arcidiacono MV, Tisato V, Piva R, Penolazzi L, Bosi C, Feo CV, Gafà R, Secchiero P. Upregulation of the alternative splicing factor NOVA2 in colorectal cancer vasculature. Onco Targets Ther 2018; 11:6049-6056. [PMID: 30275709 PMCID: PMC6157992 DOI: 10.2147/ott.s171678] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Tumor-specific isoforms generated by alternative splicing (AS) are demonstrated to contribute to tumor progression and can represent potential biomarkers. NOVA2 is an AS factor that in physiological conditions regulates endothelial cells' (ECs) polarity and vessel lumen maturation, likely by mediating AS of apical-basal polarity regulators. However, NOVA2 expression in tumor ECs and its regulation have never been investigated. Methods To elucidate this, 40 colorectal cancer patients were enrolled and NOVA2 expression was investigated by immunohistochemistry in samples bearing both the normal mucosa and the tumor tissue. Results NOVA2 was found expressed in ECs of tumor vasculature and, importantly, it was upregulated in tumor ECs with respect to normal mucosa ECs in all cases (P<0.001). The same samples analyzed by immunohistochemistry for the expression HIF1α, a marker of hypoxia, showed a positive and significant association with NOVA2 levels (P=0.045). Of note, NOVA2 was upregulated by hypoxia also in an in vitro ECs model. Conclusion Our results provide, for the first time, evidence of NOVA2 expression and upregulation in tumor ECs and highlight hypoxia as a potential regulatory factor. These findings open a completely new perspective to study tumor vasculature and to uncover NOVA2 as a potential source of biomarkers and therapeutic targets based on AS isoforms.
Collapse
Affiliation(s)
- Stefania Gallo
- Department of Morphology, Surgery, Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy,
| | | | - Veronica Tisato
- Department of Morphology, Surgery, Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy,
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Cristina Bosi
- Department of Morphology, Surgery, Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy,
| | - Carlo V Feo
- Department of Morphology, Surgery, Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy,
| | - Roberta Gafà
- Department of Morphology, Surgery, Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy,
| | - Paola Secchiero
- Department of Morphology, Surgery, Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy,
| |
Collapse
|
32
|
Harnessing Oxidative Stress as an Innovative Target for Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6135739. [PMID: 29977457 PMCID: PMC5994291 DOI: 10.1155/2018/6135739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
33
|
Fu S, Guo J, Li R, Qiu Y, Ye C, Liu Y, Wu Z, Guo L, Hou Y, Hu CAA. Transcriptional Profiling of Host Cell Responses to Virulent Haemophilus parasuis: New Insights into Pathogenesis. Int J Mol Sci 2018; 19:ijms19051320. [PMID: 29710817 PMCID: PMC5983834 DOI: 10.3390/ijms19051320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Haemophilus parasuis is the causative agent of Glässer’s disease in pigs. H. parasuis can cause vascular damage, although the mechanism remains unclear. In this study, we investigated the host cell responses involved in the molecular pathway interactions in porcine aortic vascular endothelial cells (PAVECs) induced by H. parasuis using RNA-Seq. The transcriptome results showed that when PAVECs were infected with H. parasuis for 24 h, 281 differentially expressed genes (DEGs) were identified; of which, 236 were upregulated and 45 downregulated. The 281 DEGs were involved in 136 KEGG signaling pathways that were organismal systems, environmental information processing, metabolism, cellular processes, and genetic information processing. The main pathways were the Rap1, FoxO, and PI3K/Akt signaling pathways, and the overexpressed genes were determined and verified by quantitative reverse transcription polymerase chain reaction. In addition, 252 genes were clustered into biological processes, molecular processes, and cellular components. Our study provides new insights for understanding the interaction between bacterial and host cells, and analyzed, in detail, the possible mechanisms that lead to vascular damage induced by H. parasuis. This may lead to development of novel therapeutic targets to control H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Jing Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ruizhi Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
34
|
Rekosh D, Hammarskjold ML. Intron retention in viruses and cellular genes: Detention, border controls and passports. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1470. [PMID: 29508942 DOI: 10.1002/wrna.1470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- David Rekosh
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Marie-Louise Hammarskjold
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
35
|
Wegener M, Müller-McNicoll M. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin Cell Dev Biol 2017; 79:131-142. [PMID: 29102717 DOI: 10.1016/j.semcdb.2017.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.
Collapse
Affiliation(s)
- Marius Wegener
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|