1
|
Dean WF, Mattheyses AL. Illuminating cellular architecture and dynamics with fluorescence polarization microscopy. J Cell Sci 2024; 137:jcs261947. [PMID: 39404619 PMCID: PMC11529880 DOI: 10.1242/jcs.261947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Ever since Robert Hooke's 17th century discovery of the cell using a humble compound microscope, light-matter interactions have continuously redefined our understanding of cell biology. Fluorescence microscopy has been particularly transformative and remains an indispensable tool for many cell biologists. The subcellular localization of biomolecules is now routinely visualized simply by manipulating the wavelength of light. Fluorescence polarization microscopy (FPM) extends these capabilities by exploiting another optical property - polarization - allowing researchers to measure not only the location of molecules, but also their organization or alignment within larger cellular structures. With only minor modifications to an existing fluorescence microscope, FPM can reveal the nanoscale architecture, orientational dynamics, conformational changes and interactions of fluorescently labeled molecules in their native cellular environments. Importantly, FPM excels at imaging systems that are challenging to study through traditional structural approaches, such as membranes, membrane proteins, cytoskeletal networks and large macromolecular complexes. In this Review, we discuss key discoveries enabled by FPM, compare and contrast the most common optical setups for FPM, and provide a theoretical and practical framework for researchers to apply this technique to their own research questions.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
3
|
Adekeye TE, Teets EM, Tomak EA, Waterman SL, Sprague KA, White A, Coffin ML, Varga SM, Easterbrooks TE, Shepherd SJ, Austin JD, Krivorotko D, Hupper TE, Kelley JB, Amacher SL, Talbot JC. Fast-twitch myofibrils grow in proportion to Mylpf dosage in the zebrafish embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613721. [PMID: 39345555 PMCID: PMC11429778 DOI: 10.1101/2024.09.18.613721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Muscle cells become stronger by expanding myofibrils, the chains of sarcomeres that produce contraction. Here we investigate how Mylpf (Myosin Light Chain Phosphorylatable Fast) abundance impacts myofibril assembly in fast-twitch muscle. The two zebrafish Mylpf genes (mylpfa and mylpfb) are exclusively expressed in fast-twitch muscle. We show that these cells initially produce six times more mylpfa mRNA and protein than mylpfb. The combined Mylpf protein dosage is necessary for and proportionate to fast-twitch myofibril growth in the embryo. Fast-twitch myofibrils are severely reduced in the mylpfa -/- mutant, leading to loss of high-speed movement; however, by persistent slow movement this mutant swims as far through time as its wild-type sibling. Although the mylpfb -/- mutant has normal myofibrils, myofibril formation fails entirely in the mylpfa -/- ;mylpfb -/- double mutant, indicating that the two genes are collectively essential to myofibril formation. Fast-twitch myofibril width is restored in the mylpfa -/- mutant by transgenic expression of mylpfa-GFP, mylpfb-GFP, and by human MYLPF-GFP to a degree corresponding linearly with GFP brightness. This correlate is inverted by expression of MYLPF alleles that cause Distal Arthrogryposis, which reduce myofibril size in proportion to protein abundance. These effects indicate that Mylpf dosage controls myofibril growth, impacting embryonic development and lifelong health.
Collapse
Affiliation(s)
- Tayo E Adekeye
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Emily M Teets
- Molecular Genetics, The Ohio State University, 43210, USA
| | - Emily A Tomak
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Sadie L Waterman
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Kailee A Sprague
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Angelina White
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | - Sabrina M Varga
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | | | - Jared D Austin
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | - Troy E Hupper
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Joshua B Kelley
- Molecular and Biomedical Sciences, the University of Maine, 04469, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, 43210, USA
| | - Jared C Talbot
- School of Biology and Ecology, the University of Maine, 04469, USA
| |
Collapse
|
4
|
Dean WF, Nawara TJ, Albert RM, Mattheyses AL. OOPS: Object-Oriented Polarization Software for analysis of fluorescence polarization microscopy images. PLoS Comput Biol 2024; 20:e1011723. [PMID: 39133751 PMCID: PMC11341096 DOI: 10.1371/journal.pcbi.1011723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/22/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Most essential cellular functions are performed by proteins assembled into larger complexes. Fluorescence Polarization Microscopy (FPM) is a powerful technique that goes beyond traditional imaging methods by allowing researchers to measure not only the localization of proteins within cells, but also their orientation or alignment within complexes or cellular structures. FPM can be easily integrated into standard widefield microscopes with the addition of a polarization modulator. However, the extensive image processing and analysis required to interpret the data have limited its widespread adoption. To overcome these challenges and enhance accessibility, we introduce OOPS (Object-Oriented Polarization Software), a MATLAB package for object-based analysis of FPM data. By combining flexible image segmentation and novel object-based analyses with a high-throughput FPM processing pipeline, OOPS empowers researchers to simultaneously study molecular order and orientation in individual biological structures; conduct population assessments based on morphological features, intensity statistics, and FPM measurements; and create publication-quality visualizations, all within a user-friendly graphical interface. Here, we demonstrate the power and versatility of our approach by applying OOPS to punctate and filamentous structures.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tomasz J. Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rose M. Albert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
5
|
Baheux Blin M, Loreau V, Schnorrer F, Mangeol P. PatternJ: an ImageJ toolset for the automated and quantitative analysis of regular spatial patterns found in sarcomeres, axons, somites, and more. Biol Open 2024; 13:bio060548. [PMID: 38887972 PMCID: PMC11212633 DOI: 10.1242/bio.060548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Regular spatial patterns are ubiquitous forms of organization in nature. In animals, regular patterns can be found from the cellular scale to the tissue scale, and from early stages of development to adulthood. To understand the formation of these patterns, how they assemble and mature, and how they are affected by perturbations, a precise quantitative description of the patterns is essential. However, accessible tools that offer in-depth analysis without the need for computational skills are lacking for biologists. Here, we present PatternJ, a novel toolset to analyze regular one-dimensional patterns precisely and automatically. This toolset, to be used with the popular imaging processing program ImageJ/Fiji, facilitates the extraction of key geometric features within and between pattern repeats in static images and time-lapse series. We validate PatternJ with simulated data and test it on images of sarcomeres from insect muscles and contracting cardiomyocytes, actin rings in neurons, and somites from zebrafish embryos obtained using confocal fluorescence microscopy, STORM, electron microscopy, and brightfield imaging. We show that the toolset delivers subpixel feature extraction reliably even with images of low signal-to-noise ratio. PatternJ's straightforward use and functionalities make it valuable for various scientific fields requiring quantitative one-dimensional pattern analysis, including the sarcomere biology of muscles or the patterning of mammalian axons, speeding up discoveries with the bonus of high reproducibility.
Collapse
Affiliation(s)
- Mélina Baheux Blin
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM-UMR7288, Marseille 13009, France
| | - Vincent Loreau
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM-UMR7288, Marseille 13009, France
| | - Frank Schnorrer
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM-UMR7288, Marseille 13009, France
| | - Pierre Mangeol
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM-UMR7288, Marseille 13009, France
| |
Collapse
|
6
|
Chen X, Li Y, Xu J, Cui Y, Wu Q, Yin H, Li Y, Gao C, Jiang L, Wang H, Wen Z, Yao Z, Wu Z. Styxl2 regulates de novo sarcomere assembly by binding to non-muscle myosin IIs and promoting their degradation. eLife 2024; 12:RP87434. [PMID: 38829202 PMCID: PMC11147509 DOI: 10.7554/elife.87434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Styxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles. To further reveal the functions of Styxl2 in adult muscles, we generated two inducible knockout mouse models: one with Styxl2 being deleted in mature myofibers to assess its role in sarcomere maintenance, and the other in adult muscle satellite cells (MuSCs) to assess its role in de novo sarcomere assembly. We find that Styxl2 is not required for sarcomere maintenance but functions in de novo sarcomere assembly during injury-induced muscle regeneration. Mechanistically, Styxl2 interacts with non-muscle myosin IIs, enhances their ubiquitination, and targets them for autophagy-dependent degradation. Without Styxl2, the degradation of non-muscle myosin IIs is delayed, which leads to defective sarcomere assembly and force generation. Thus, Styxl2 promotes de novo sarcomere assembly by interacting with non-muscle myosin IIs and facilitating their autophagic degradation.
Collapse
Affiliation(s)
- Xianwei Chen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yanfeng Li
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Jin Xu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yong Cui
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Qian Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Haidi Yin
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Yuying Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Chuan Gao
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Liwen Jiang
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Zilong Wen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Zhongping Yao
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| |
Collapse
|
7
|
Nikonova E, DeCata J, Canela M, Barz C, Esser A, Bouterwek J, Roy A, Gensler H, Heß M, Straub T, Forne I, Spletter ML. Bruno 1/CELF regulates splicing and cytoskeleton dynamics to ensure correct sarcomere assembly in Drosophila flight muscles. PLoS Biol 2024; 22:e3002575. [PMID: 38683844 PMCID: PMC11081514 DOI: 10.1371/journal.pbio.3002575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/09/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jenna DeCata
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| | - Marc Canela
- Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, München, Germany
| | - Alexandra Esser
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jessica Bouterwek
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Akanksha Roy
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Heidemarie Gensler
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Heß
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| |
Collapse
|
8
|
Grudtsyna V, Packirisamy S, Bidone TC, Swaminathan V. Extracellular matrix sensing via modulation of orientational order of integrins and F-actin in focal adhesions. Life Sci Alliance 2023; 6:e202301898. [PMID: 37463754 PMCID: PMC10355215 DOI: 10.26508/lsa.202301898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Specificity of cellular responses to distinct cues from the ECM requires precise and sensitive decoding of physical information. However, how known mechanisms of mechanosensing like force-dependent catch bonds and conformational changes in FA proteins can confer that this sensitivity is not known. Using polarization microscopy and computational modeling, we identify dynamic changes in an orientational order of FA proteins as a molecular organizational mechanism that can fine-tune cell sensitivity to the ECM. We find that αV integrins and F-actin show precise changes in the orientational order in an ECM-mediated integrin activation-dependent manner. These changes are sensitive to ECM density and are regulated independent of myosin-II activity though contractility can enhance this sensitivity. A molecular-clutch model demonstrates that the orientational order of integrin-ECM binding coupled to directional catch bonds can capture cellular responses to changes in ECM density. This mechanism also captures decoupling of ECM density sensing from stiffness sensing thus elucidating specificity. Taken together, our results suggest relative geometric organization of FA molecules as an important molecular architectural feature and regulator of mechanotransduction.
Collapse
Affiliation(s)
- Valeriia Grudtsyna
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Swathi Packirisamy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tamara C Bidone
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
González Morales N, Marescal O, Szikora S, Katzemich A, Correia-Mesquita T, Bíró P, Erdelyi M, Mihály J, Schöck F. The oxoglutarate dehydrogenase complex is involved in myofibril growth and Z-disc assembly in Drosophila. J Cell Sci 2023; 136:jcs260717. [PMID: 37272588 PMCID: PMC10323237 DOI: 10.1242/jcs.260717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.
Collapse
Affiliation(s)
- Nicanor González Morales
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
- Department of Biology, Dalhousie University, Nova Scotia B3H 4R2, Canada
| | - Océane Marescal
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Anja Katzemich
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | | | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - Miklos Erdelyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Frieder Schöck
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| |
Collapse
|
10
|
Schueder F, Mangeol P, Chan EH, Rees R, Schünemann J, Jungmann R, Görlich D, Schnorrer F. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles. eLife 2023; 12:e79344. [PMID: 36645127 PMCID: PMC9886278 DOI: 10.7554/elife.79344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023] Open
Abstract
Sarcomeres are the force-producing units of all striated muscles. Their nanoarchitecture critically depends on the large titin protein, which in vertebrates spans from the sarcomeric Z-disc to the M-band and hence links actin and myosin filaments stably together. This ensures sarcomeric integrity and determines the length of vertebrate sarcomeres. However, the instructive role of titins for sarcomeric architecture outside of vertebrates is not as well understood. Here, we used a series of nanobodies, the Drosophila titin nanobody toolbox, recognising specific domains of the two Drosophila titin homologs Sallimus and Projectin to determine their precise location in intact flight muscles. By combining nanobodies with DNA-PAINT super-resolution microscopy, we found that, similar to vertebrate titin, Sallimus bridges across the flight muscle I-band, whereas Projectin is located at the beginning of the A-band. Interestingly, the ends of both proteins overlap at the I-band/A-band border, revealing a staggered organisation of the two Drosophila titin homologs. This architecture may help to stably anchor Sallimus at the myosin filament and hence ensure efficient force transduction during flight.
Collapse
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Eunice HoYee Chan
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Renate Rees
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| |
Collapse
|
11
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
12
|
Mao Q, Acharya A, Rodríguez-delaRosa A, Marchiano F, Dehapiot B, Al Tanoury Z, Rao J, Díaz-Cuadros M, Mansur A, Wagner E, Chardes C, Gupta V, Lenne PF, Habermann BH, Theodoly O, Pourquié O, Schnorrer F. Tension-driven multi-scale self-organisation in human iPSC-derived muscle fibers. eLife 2022; 11:76649. [PMID: 35920628 PMCID: PMC9377800 DOI: 10.7554/elife.76649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. More efficient myofiber bundling accelerates the speed of sarcomerogenesis suggesting that tension generated by bundling promotes sarcomerogenesis. We tested this hypothesis by directly probing tension and found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.
Collapse
Affiliation(s)
- Qiyan Mao
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Achyuth Acharya
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | | | - Fabio Marchiano
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Benoit Dehapiot
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Ziad Al Tanoury
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | | | - Arian Mansur
- Harvard Stem Cell Institute, Boston, United States
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Claire Chardes
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Vandana Gupta
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
| | - Pierre-François Lenne
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Bianca H Habermann
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Olivier Theodoly
- Turing Centre for Living Systems, Aix Marseille University, CNRS, LAI, Marseille, France
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Frank Schnorrer
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| |
Collapse
|
13
|
Kronert WA, Hsu KH, Madan A, Sarsoza F, Cammarato A, Bernstein SI. Myosin Transducer Inter-Strand Communication Is Critical for Normal ATPase Activity and Myofibril Structure. BIOLOGY 2022; 11:biology11081137. [PMID: 36009764 PMCID: PMC9404822 DOI: 10.3390/biology11081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
The R249Q mutation in human β-cardiac myosin results in hypertrophic cardiomyopathy. We previously showed that inserting this mutation into Drosophila melanogaster indirect flight muscle myosin yields mechanical and locomotory defects. Here, we use transgenic Drosophila mutants to demonstrate that residue R249 serves as a critical communication link within myosin that controls both ATPase activity and myofibril integrity. R249 is located on a β-strand of the central transducer of myosin, and our molecular modeling shows that it interacts via a salt bridge with D262 on the adjacent β-strand. We find that disrupting this interaction via R249Q, R249D or D262R mutations reduces basal and actin-activated ATPase activity, actin in vitro motility and flight muscle function. Further, the R249D mutation dramatically affects myofibril assembly, yielding abnormalities in sarcomere lengths, increased Z-line thickness and split myofibrils. These defects are exacerbated during aging. Re-establishing the β-strand interaction via a R249D/D262R double mutation restores both basal ATPase activity and myofibril assembly, indicating that these properties are dependent upon transducer inter-strand communication. Thus, the transducer plays an important role in myosin function and myofibril architecture.
Collapse
Affiliation(s)
- William A. Kronert
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
| | - Karen H. Hsu
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA; (A.M.); (A.C.)
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA; (A.M.); (A.C.)
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
- Correspondence:
| |
Collapse
|
14
|
Seleit A, Aulehla A, Paix A. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach. eLife 2021; 10:75050. [PMID: 34870593 PMCID: PMC8691840 DOI: 10.7554/elife.75050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
The CRISPR/Cas9 system has been used to generate fluorescently labelled fusion proteins by homology-directed repair in a variety of species. Despite its revolutionary success, there remains an urgent need for increased simplicity and efficiency of genome editing in research organisms. Here, we establish a simplified, highly efficient, and precise strategy for CRISPR/Cas9-mediated endogenous protein tagging in medaka (Oryzias latipes). We use a cloning-free approach that relies on PCR-amplified donor fragments containing the fluorescent reporter sequences flanked by short homology arms (30–40 bp), a synthetic single-guide RNA and Cas9 mRNA. We generate eight novel knock-in lines with high efficiency of F0 targeting and germline transmission. Whole genome sequencing results reveal single-copy integration events only at the targeted loci. We provide an initial characterization of these fusion protein lines, significantly expanding the repertoire of genetic tools available in medaka. In particular, we show that the mScarlet-pcna line has the potential to serve as an organismal-wide label for proliferative zones and an endogenous cell cycle reporter.
Collapse
Affiliation(s)
- Ali Seleit
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexandre Paix
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
15
|
Mechanobiology of muscle and myofibril morphogenesis. Cells Dev 2021; 168:203760. [PMID: 34863916 DOI: 10.1016/j.cdev.2021.203760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023]
Abstract
Muscles generate forces for animal locomotion. The contractile apparatus of muscles is the sarcomere, a highly regular array of large actin and myosin filaments linked by gigantic titin springs. During muscle development many sarcomeres assemble in series into long periodic myofibrils that mechanically connect the attached skeleton elements. Thus, ATP-driven myosin forces can power movement of the skeleton. Here we review muscle and myofibril morphogenesis, with a particular focus on their mechanobiology. We describe recent progress on the molecular structure of sarcomeres and their mechanical connections to the skeleton. We discuss current models predicting how tension coordinates the assembly of key sarcomeric components to periodic myofibrils that then further mature during development. This requires transcriptional feedback mechanisms that may help to coordinate myofibril assembly and maturation states with the transcriptional program. To fuel the varying energy demands of muscles we also discuss the close mechanical interactions of myofibrils with mitochondria and nuclei to optimally support powerful or enduring muscle fibers.
Collapse
|
16
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
17
|
Minner-Meinen R, Weber JN, Albrecht A, Matis R, Behnecke M, Tietge C, Frank S, Schulze J, Buschmann H, Walla PJ, Mendel RR, Hänsch R, Kaufholdt D. Split-HaloTag imaging assay for sophisticated microscopy of protein-protein interactions in planta. PLANT COMMUNICATIONS 2021; 2:100212. [PMID: 34746759 PMCID: PMC8555439 DOI: 10.1016/j.xplc.2021.100212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
An ever-increasing number of intracellular multi-protein networks have been identified in plant cells. Split-GFP-based protein-protein interaction assays combine the advantages of in vivo interaction studies in a native environment with additional visualization of protein complex localization. Because of their simple protocols, they have become some of the most frequently used methods. However, standard fluorescent proteins present several drawbacks for sophisticated microscopy. With the HaloTag system, these drawbacks can be overcome, as this reporter forms covalent irreversible bonds with synthetic photostable fluorescent ligands. Dyes can be used in adjustable concentrations and are suitable for advanced microscopy methods. Therefore, we have established the Split-HaloTag imaging assay in plants, which is based on the reconstitution of a functional HaloTag protein upon protein-protein interaction and the subsequent covalent binding of an added fluorescent ligand. Its suitability and robustness were demonstrated using a well-characterized interaction as an example of protein-protein interaction at cellular structures: the anchoring of the molybdenum cofactor biosynthesis complex to filamentous actin. In addition, a specific interaction was visualized in a more distinctive manner with subdiffractional polarization microscopy, Airyscan, and structured illumination microscopy to provide examples of sophisticated imaging. Split-GFP and Split-HaloTag can complement one another, as Split-HaloTag represents an alternative option and an addition to the large toolbox of in vivo methods. Therefore, this promising new Split-HaloTag imaging assay provides a unique and sensitive approach for more detailed characterization of protein-protein interactions using specific microscopy techniques, such as 3D imaging, single-molecule tracking, and super-resolution microscopy.
Collapse
Affiliation(s)
- Rieke Minner-Meinen
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Jan-Niklas Weber
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Andreas Albrecht
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Rainer Matis
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Maria Behnecke
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Cindy Tietge
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Stefan Frank
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Jutta Schulze
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Henrik Buschmann
- Botany Department, Universität Osnabrück, Barbara Strasse 11, 49076 Osnabrück, Germany
| | - Peter Jomo Walla
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Ralf-R. Mendel
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Tiansheng Road No. 2, Beibei District, 400715 Chongqing, P.R. China
- Corresponding author
| | - David Kaufholdt
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Development of the indirect flight muscles of Aedes aegypti, a main arbovirus vector. BMC DEVELOPMENTAL BIOLOGY 2021; 21:11. [PMID: 34445959 PMCID: PMC8394598 DOI: 10.1186/s12861-021-00242-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Background Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available.
Methods A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. Results At L3–L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal–ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. Conclusions A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00242-8.
Collapse
|
19
|
Differential Polarization Imaging of Plant Cells. Mapping the Anisotropy of Cell Walls and Chloroplasts. Int J Mol Sci 2021; 22:ijms22147661. [PMID: 34299279 PMCID: PMC8306740 DOI: 10.3390/ijms22147661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Modern light microscopy imaging techniques have substantially advanced our knowledge about the ultrastructure of plant cells and their organelles. Laser-scanning microscopy and digital light microscopy imaging techniques, in general—in addition to their high sensitivity, fast data acquisition, and great versatility of 2D–4D image analyses—also opened the technical possibilities to combine microscopy imaging with spectroscopic measurements. In this review, we focus our attention on differential polarization (DP) imaging techniques and on their applications on plant cell walls and chloroplasts, and show how these techniques provided unique and quantitative information on the anisotropic molecular organization of plant cell constituents: (i) We briefly describe how laser-scanning microscopes (LSMs) and the enhanced-resolution Re-scan Confocal Microscope (RCM of Confocal.nl Ltd. Amsterdam, Netherlands) can be equipped with DP attachments—making them capable of measuring different polarization spectroscopy parameters, parallel with the ‘conventional’ intensity imaging. (ii) We show examples of different faces of the strong anisotropic molecular organization of chloroplast thylakoid membranes. (iii) We illustrate the use of DP imaging of cell walls from a variety of wood samples and demonstrate the use of quantitative analysis. (iv) Finally, we outline the perspectives of further technical developments of micro-spectropolarimetry imaging and its use in plant cell studies.
Collapse
|
20
|
Latham SL, Weiß N, Schwanke K, Thiel C, Croucher DR, Zweigerdt R, Manstein DJ, Taft MH. Myosin-18B Regulates Higher-Order Organization of the Cardiac Sarcomere through Thin Filament Cross-Linking and Thick Filament Dynamics. Cell Rep 2021; 32:108090. [PMID: 32877672 DOI: 10.1016/j.celrep.2020.108090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
MYO18B loss-of-function mutations and depletion significantly compromise the structural integrity of striated muscle sarcomeres. The molecular function of the encoded protein, myosin-18B (M18B), within the developing muscle is unknown. Here, we demonstrate that recombinant M18B lacks motor ATPase activity and harbors previously uncharacterized N-terminal actin-binding domains, properties that make M18B an efficient actin cross-linker and molecular brake capable of regulating muscle myosin-2 contractile forces. Spatiotemporal analysis of M18B throughout cardiomyogenesis and myofibrillogenesis reveals that this structural myosin undergoes nuclear-cytoplasmic redistribution during myogenic differentiation, where its incorporation within muscle stress fibers coincides with actin striation onset. Furthermore, this analysis shows that M18B is directly integrated within the muscle myosin thick filament during myofibril maturation. Altogether, our data suggest that M18B has evolved specific biochemical properties that allow it to define and maintain sarcomeric organization from within the thick filament via its dual actin cross-linking and motor modulating capabilities.
Collapse
Affiliation(s)
- Sharissa L Latham
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Nadine Weiß
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
21
|
Avellaneda J, Rodier C, Daian F, Brouilly N, Rival T, Luis NM, Schnorrer F. Myofibril and mitochondria morphogenesis are coordinated by a mechanical feedback mechanism in muscle. Nat Commun 2021; 12:2091. [PMID: 33828099 PMCID: PMC8027795 DOI: 10.1038/s41467-021-22058-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
Complex animals build specialised muscles to match specific biomechanical and energetic needs. Hence, composition and architecture of sarcomeres and mitochondria are muscle type specific. However, mechanisms coordinating mitochondria with sarcomere morphogenesis are elusive. Here we use Drosophila muscles to demonstrate that myofibril and mitochondria morphogenesis are intimately linked. In flight muscles, the muscle selector spalt instructs mitochondria to intercalate between myofibrils, which in turn mechanically constrain mitochondria into elongated shapes. Conversely in cross-striated leg muscles, mitochondria networks surround myofibril bundles, contacting myofibrils only with thin extensions. To investigate the mechanism causing these differences, we manipulated mitochondrial dynamics and found that increased mitochondrial fusion during myofibril assembly prevents mitochondrial intercalation in flight muscles. Strikingly, this causes the expression of cross-striated muscle specific sarcomeric proteins. Consequently, flight muscle myofibrils convert towards a partially cross-striated architecture. Together, these data suggest a biomechanical feedback mechanism downstream of spalt synchronizing mitochondria with myofibril morphogenesis.
Collapse
Affiliation(s)
- Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Clement Rodier
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Fabrice Daian
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Nicolas Brouilly
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Thomas Rival
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
22
|
Kaya-Çopur A, Marchiano F, Hein MY, Alpern D, Russeil J, Luis NM, Mann M, Deplancke B, Habermann BH, Schnorrer F. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife 2021; 10:e63726. [PMID: 33404503 PMCID: PMC7815313 DOI: 10.7554/elife.63726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development, the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.
Collapse
Affiliation(s)
- Aynur Kaya-Çopur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Fabio Marchiano
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Marco Y Hein
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Matthias Mann
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
23
|
Dhanyasi N, VijayRaghavan K, Shilo BZ, Schejter ED. Microtubules provide guidance cues for myofibril and sarcomere assembly and growth. Dev Dyn 2020; 250:60-73. [PMID: 32725855 DOI: 10.1002/dvdy.227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Muscle myofibrils and sarcomeres present exceptional examples of highly ordered cytoskeletal filament arrays, whose distinct spatial organization is an essential aspect of muscle cell functionality. We utilized ultra-structural analysis to investigate the assembly of myofibrils and sarcomeres within developing myotubes of the indirect flight musculature of Drosophila. RESULTS A temporal sequence composed of three major processes was identified: subdivision of the unorganized cytoplasm of nascent, multi-nucleated myotubes into distinct organelle-rich and filament-rich domains; initial organization of the filament-rich domains into myofibrils harboring nascent sarcomeric units; and finally, maturation of the highly-ordered pattern of sarcomeric thick (myosin-based) and thin (microfilament-based) filament arrays in parallel to myofibril radial growth. Significantly, organized microtubule arrays were present throughout these stages and exhibited dynamic changes in their spatial patterns consistent with instructive roles. Genetic manipulations confirm these notions, and imply specific and critical guidance activities of the microtubule-based cytoskeleton, as well as structural interdependence between the myosin- and actin-based filament arrays. CONCLUSIONS Our observations highlight a surprisingly significant, behind-the-scenes role for microtubules in establishment of myofibril and sarcomere spatial patterns and size, and provide a detailed account of the interplay between major cytoskeletal elements in generating these essential contractile myogenic units.
Collapse
Affiliation(s)
- Nagaraju Dhanyasi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,National Centre for Biological Sciences, TIFR, Bangalore, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Taneja N, Neininger AC, Burnette DT. Coupling to substrate adhesions drives the maturation of muscle stress fibers into myofibrils within cardiomyocytes. Mol Biol Cell 2020; 31:1273-1288. [PMID: 32267210 PMCID: PMC7353145 DOI: 10.1091/mbc.e19-11-0652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Forces generated by heart muscle contraction must be balanced by adhesion to the extracellular matrix (ECM) and to other cells for proper heart function. Decades of data have suggested that cell-ECM adhesions are important for sarcomere assembly. However, the relationship between cell-ECM adhesions and sarcomeres assembling de novo remains untested. Sarcomeres arise from muscle stress fibers (MSFs) that are translocating on the top (dorsal) surface of cultured cardiomyocytes. Using an array of tools to modulate cell-ECM adhesion, we established a strong positive correlation between the extent of cell-ECM adhesion and sarcomere assembly. On the other hand, we found a strong negative correlation between the extent of cell-ECM adhesion and the rate of MSF translocation, a phenomenon also observed in nonmuscle cells. We further find a conserved network architecture that also exists in nonmuscle cells. Taken together, our results show that cell-ECM adhesions mediate coupling between the substrate and MSFs, allowing their maturation into sarcomere-containing myofibrils.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
25
|
González-Morales N, Xiao YS, Schilling MA, Marescal O, Liao KA, Schöck F. Myofibril diameter is set by a finely tuned mechanism of protein oligomerization in Drosophila. eLife 2019; 8:50496. [PMID: 31746737 PMCID: PMC6910826 DOI: 10.7554/elife.50496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Myofibrils are huge cytoskeletal assemblies embedded in the cytosol of muscle cells. They consist of arrays of sarcomeres, the smallest contractile unit of muscles. Within a muscle type, myofibril diameter is highly invariant and contributes to its physiological properties, yet little is known about the underlying mechanisms setting myofibril diameter. Here we show that the PDZ and LIM domain protein Zasp, a structural component of Z-discs, mediates Z-disc and thereby myofibril growth through protein oligomerization. Oligomerization is induced by an interaction of its ZM domain with LIM domains. Oligomerization is terminated upon upregulation of shorter Zasp isoforms which lack LIM domains at later developmental stages. The balance between these two isoforms, which we call growing and blocking isoforms sets the stereotyped diameter of myofibrils. If blocking isoforms dominate, myofibrils become smaller. If growing isoforms dominate, myofibrils and Z-discs enlarge, eventually resulting in large pathological aggregates that disrupt muscle function.
Collapse
Affiliation(s)
| | - Yu Shu Xiao
- Department of Biology, McGill University, Montreal, Canada
| | | | | | - Kuo An Liao
- Department of Biology, McGill University, Montreal, Canada
| | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|
26
|
Osório DS, Chan FY, Saramago J, Leite J, Silva AM, Sobral AF, Gassmann R, Carvalho AX. Crosslinking activity of non-muscle myosin II is not sufficient for embryonic cytokinesis in C. elegans. Development 2019; 146:dev.179150. [PMID: 31582415 PMCID: PMC6857588 DOI: 10.1242/dev.179150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
Cytokinesis in animal cells requires the assembly and constriction of a contractile actomyosin ring. Non-muscle myosin II is essential for cytokinesis, but the role of its motor activity remains unclear. Here, we examine cytokinesis in C. elegans embryos expressing non-muscle myosin motor mutants generated by genome editing. Two non-muscle motor-dead myosins capable of binding F-actin do not support cytokinesis in the one-cell embryo, and two partially motor-impaired myosins delay cytokinesis and render rings more sensitive to reduced myosin levels. Further analysis of myosin mutants suggests that it is myosin motor activity, and not the ability of myosin to crosslink F-actin, that drives the alignment and compaction of F-actin bundles during contractile ring assembly, and that myosin motor activity sets the pace of contractile ring constriction. We conclude that myosin motor activity is required at all stages of cytokinesis. Finally, characterization of the corresponding motor mutations in C. elegans major muscle myosin shows that motor activity is required for muscle contraction but is dispensable for F-actin organization in adult muscles. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: The motor activity of non-muscle myosin II is essential for cytokinesis and contributes to all stages of the process in C. elegans embryos.
Collapse
Affiliation(s)
- Daniel S Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fung-Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Saramago
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Leite
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F Sobral
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
27
|
Juanes MA, Isnardon D, Badache A, Brasselet S, Mavrakis M, Goode BL. The role of APC-mediated actin assembly in microtubule capture and focal adhesion turnover. J Cell Biol 2019; 218:3415-3435. [PMID: 31471457 PMCID: PMC6781439 DOI: 10.1083/jcb.201904165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Actin assembly by APC maintains proper organization and dynamics of F-actin at focal adhesions. This, in turn, impacts the organization of other molecular components and the responsiveness of focal adhesions to microtubule capture and autophagosome-induced disassembly. Focal adhesion (FA) turnover depends on microtubules and actin. Microtubule ends are captured at FAs, where they induce rapid FA disassembly. However, actin’s roles are less clear. Here, we use polarization-resolved microscopy, FRAP, live cell imaging, and a mutant of Adenomatous polyposis coli (APC-m4) defective in actin nucleation to investigate the role of actin assembly in FA turnover. We show that APC-mediated actin assembly is critical for maintaining normal F-actin levels, organization, and dynamics at FAs, along with organization of FA components. In WT cells, microtubules are captured repeatedly at FAs as they mature, but once a FA reaches peak maturity, the next microtubule capture event leads to delivery of an autophagosome, triggering FA disassembly. In APC-m4 cells, microtubule capture frequency and duration are altered, and there are long delays between autophagosome delivery and FA disassembly. Thus, APC-mediated actin assembly is required for normal feedback between microtubules and FAs, and maintaining FAs in a state “primed” for microtubule-induced turnover.
Collapse
Affiliation(s)
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Manos Mavrakis
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
28
|
Chaturvedi D, Prabhakar S, Aggarwal A, Atreya KB, VijayRaghavan K. Adult Drosophila muscle morphometry through microCT reveals dynamics during ageing. Open Biol 2019; 9:190087. [PMID: 31238820 PMCID: PMC6597753 DOI: 10.1098/rsob.190087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Indirect flight muscles (IFMs) in adult Drosophila provide the key power stroke for wing beating. They also serve as a valuable model for studying muscle development. An age-dependent decline in Drosophila free flight has been documented, but its relation to gross muscle structure has not yet been explored satisfactorily. Such analyses are impeded by conventional histological preparations and imaging techniques that limit exact morphometry of flight muscles. In this study, we employ microCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. Focusing on a subset of IFMs called the dorsal longitudinal muscles (DLMs), we find that DLM volumes increase with age, partially due to the increased separation between myofibrillar fascicles, in a sex-dependent manner. We have uncovered and quantified asymmetry in the size of these muscles on either side of the longitudinal midline. Measurements of this resolution and scale make substantive studies that test the connection between form and function possible. We also demonstrate the application of this method to other insect species making it a valuable tool for histological analysis of insect biodiversity.
Collapse
Affiliation(s)
- Dhananjay Chaturvedi
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Sunil Prabhakar
- 2 microCT and EM Facility, National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Aman Aggarwal
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India.,3 Manipal Academy of Higher Education , Manipal, Karnataka 576104 , India
| | - Krishan B Atreya
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - K VijayRaghavan
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| |
Collapse
|
29
|
Fluorescence-detected linear dichroism imaging in a re-scan confocal microscope equipped with differential polarization attachment. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:457-463. [PMID: 30982120 PMCID: PMC6647120 DOI: 10.1007/s00249-019-01365-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 11/21/2022]
Abstract
Confocal laser scanning microscopy is probably the most widely used and one of the most powerful techniques in basic biology, medicine and material sciences that is employed to elucidate the architecture of complex cellular structures and molecular macro-assemblies. It has recently been shown that the information content, signal-to-noise ratio and resolution of such microscopes (LSMs) can be improved significantly by adding different attachments or modifying their design, while retaining their user-friendly features and relatively moderate costs. Differential polarization (DP) attachments, using high-frequency modulation/demodulation circuits, have made LSMs capable of high-precision 2D and 3D mapping of the anisotropy of microscopic samples—without interfering with their ‘conventional’ fluorescence or transmission imaging (Steinbach et al. in Methods Appl Fluoresc 2:015005, 2014). The resolution and the quality of fluorescence imaging have been enhanced in the recently constructed Re-scan confocal microscopy (RCM) (De Luca et al. in Biomed Opt Express 4:2644–2656, 2013). In this work, we developed the RCM technique further, by adding a DP-attachment modulating the exciting laser beam via a liquid crystal (LC) retarder synchronized with the data acquisition system; by this means, and with the aid of a software, fluorescence-detected linear dichroism (FDLD), characteristic of the anisotropic molecular organization of the sample, could be recorded in parallel with the confocal fluorescence imaging. For demonstration, we show FDLD images of a plant cell wall (Ginkgo biloba) stained with Etzold’s staining solution.
Collapse
|
30
|
Lemke SB, Weidemann T, Cost AL, Grashoff C, Schnorrer F. A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biol 2019; 17:e3000057. [PMID: 30917109 PMCID: PMC6453563 DOI: 10.1371/journal.pbio.3000057] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/08/2019] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
Cells in developing organisms are subjected to particular mechanical forces that shape tissues and instruct cell fate decisions. How these forces are sensed and transmitted at the molecular level is therefore an important question, one that has mainly been investigated in cultured cells in vitro. Here, we elucidate how mechanical forces are transmitted in an intact organism. We studied Drosophila muscle attachment sites, which experience high mechanical forces during development and require integrin-mediated adhesion for stable attachment to tendons. Therefore, we quantified molecular forces across the essential integrin-binding protein Talin, which links integrin to the actin cytoskeleton. Generating flies expressing 3 Förster resonance energy transfer (FRET)-based Talin tension sensors reporting different force levels between 1 and 11 piconewton (pN) enabled us to quantify physiologically relevant molecular forces. By measuring primary Drosophila muscle cells, we demonstrate that Drosophila Talin experiences mechanical forces in cell culture that are similar to those previously reported for Talin in mammalian cell lines. However, in vivo force measurements at developing flight muscle attachment sites revealed that average forces across Talin are comparatively low and decrease even further while attachments mature and tissue-level tension remains high. Concomitantly, the Talin concentration at attachment sites increases 5-fold as quantified by fluorescence correlation spectroscopy (FCS), suggesting that only a small proportion of Talin molecules are mechanically engaged at any given time. Reducing Talin levels at late stages of muscle development results in muscle–tendon rupture in the adult fly, likely as a result of active muscle contractions. We therefore propose that a large pool of adhesion molecules is required to share high tissue forces. As a result, less than 15% of the molecules experience detectable forces at developing muscle attachment sites at the same time. Our findings define an important new concept of how cells can adapt to changes in tissue mechanics to prevent mechanical failure in vivo. The protein Talin links the transmembrane cell adhesion molecule integrin to the actin cytoskeleton. Quantitative FRET-based force measurements across Talin in vivo reveal that only few Talin molecules are under force during the development of muscle attachment sites. Cells in our body are constantly exposed to mechanical forces, which they need to sense and react to. In previous studies, fluorescent force sensors were developed to demonstrate that individual proteins in adhesion structures of a cell experience forces in the piconewton (pN) range. However, these cells were analyzed in isolation in an artificial plastic or glass environment. Here, we explored forces on adhesion proteins in their natural environment within a developing animal and used the muscle–tendon tissue in the fruit fly Drosophila as a model system. We made genetically modified fly lines with force sensors or controls inserted into the gene that produces the essential adhesion protein Talin. Using these force sensor flies, we found that only a small proportion of all the Talin proteins (<15%) present at developing muscle–tendon attachments experience detectable forces at the same time. Nevertheless, a large amount of Talin is accumulated at these attachments during fly development. We found that this large Talin pool is important to prevent rupture of the muscle–tendon connection in adult flies that produce high muscle forces during flight. In conclusion, we demonstrated that a large pool of Talin proteins is required for stable muscle–tendon attachment, likely with the individual Talin molecules dynamically sharing the mechanical load.
Collapse
Affiliation(s)
- Sandra B. Lemke
- Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail: (FS); (CG); (SBL)
| | | | - Anna-Lena Cost
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
| | - Carsten Grashoff
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
- * E-mail: (FS); (CG); (SBL)
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
- * E-mail: (FS); (CG); (SBL)
| |
Collapse
|
31
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|