1
|
Zhang R, Dai F, Deng S, Zeng Y, Wang J, Liu G. Reprogramming of Glucose Metabolism for Revisiting Hepatocellular Carcinoma Resistance to Transcatheter Hepatic Arterial Chemoembolization. Chembiochem 2024:e202400719. [PMID: 39501124 DOI: 10.1002/cbic.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is recognized globally as one of the most lethal tumors, presenting a significant menace to patients' lives owing to its exceptional aggressiveness and tendency to recur. Transcatheter hepatic arterial chemoembolization (TACE) therapy, as a first-line treatment option for patients with advanced HCC, has been proven effective. However, it is disheartening that nearly 40 % of patients exhibit resistance to this therapy. Consequently, this review delves into the metabolic aspects of glucose metabolism to explore the underlying mechanisms behind TACE treatment resistance and to propose potentially fruitful therapeutic strategies. The ultimate objective is to present novel insights for the development of personalized treatment methods targeting HCC.
Collapse
Affiliation(s)
- Ruijie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Songhan Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jinyang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Xia Y, An Y, Jin R, Huang W, Jin GZ, Xu J. Expression and Clinical Significance of Nuclear Phosphoglucomutase-1 in Hepatocellular Carcinoma. Appl Immunohistochem Mol Morphol 2024; 32:476-483. [PMID: 39351772 DOI: 10.1097/pai.0000000000001225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
This study aimed to evaluate the predictive values of phosphoglucomutase-1 (PGM1) expression for prognosis in patients with hepatocellular carcinoma (HCC). PGM1 expression was assessed by immunohistochemistry in tissue microarrays. The relationship of PGM1 expression level with pathologic parameters and prognosis values was respectively analyzed by χ 2 test and Cox regression. The accuracy of independent risk factors in predicting prognosis was calculated by receiver operating characteristic curve. HCC patient-derived xenograft models were performed to evaluate the nuclear PGM1 antitumor effect. The results showed that PGM1 expression was low in HCC tissues. Nuclear PGM1 was an independent prognostic factor for overall survival and time to recurrence. Cox regression showed that nuclear PGM1, serum α-fetoprotein, liver cirrhosis, and TNM staging stage were independent risk predictors for HCC. Receiver operating characteristic curve demonstrated that combination of independent predictors had better prognostic value than TNM staging alone. Moreover, patient-derived xenograft models showed antitumor effect of nuclear PGM1. We found that low expression of nuclear PGM1 was detected in HCC tissues and associated with poor prognostic. Nuclear PGM1 was an independent prognostic factor in patients with HCC. Furthermore, nuclear PGM1 combining other independent risk factors showed a better prognostic value. Nuclear PGM1 was a useful prognostic biomarker for patients with HCC.
Collapse
Affiliation(s)
- Yechen Xia
- Hongqiao International Institute of Medicine, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Yan An
- Hongqiao International Institute of Medicine, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Riming Jin
- Department of First Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University
| | - Wentao Huang
- Department of Pathology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Guang-Zhi Jin
- Department of Pathology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Jing Xu
- Department of Laboratory Medicine, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| |
Collapse
|
3
|
Zheng Q, Xie Y, Xu L, Chen D, Wu J, Liu S, Wu L, Fang P, Xie F. LDHA as a predictive biomarker and its association with the infiltration of immune cells in pancreatic adenocarcinoma. J Gastrointest Oncol 2024; 15:1746-1759. [PMID: 39279982 PMCID: PMC11399852 DOI: 10.21037/jgo-24-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Lactate dehydrogenase A (LDHA) plays a crucial role in the final step of anaerobic glycolysis, converting L-lactate and NAD+ to pyruvate and nicotinamide adenine dinucleotide (NADH). Its high expression has been linked to tumorigenesis and patient survival in various human cancers. However, the full implications of LDHA's role and its correlation with clinicopathological features in pancreatic adenocarcinoma (PAAD) remain to be fully understood. This study was thus conducted to elucidate the specific functions of LDHA in PAAD, with the aim of providing more robust evidence for clinical diagnosis and treatment. Methods In an extensive systems analysis, we searched through numerous databases, including The Cancer Genome Atlas (TCGA) and Oncomine. Our objective was to clarify the clinical implications and functional role of LDHA in PAAD. Bioinformatics was used to identify the biological function of LDHA expression and its correlation with tumor immune status. Results Our analysis revealed that the LDHA gene is overexpressed in PAAD and that this upregulation was associated with a worse patient prognosis. Through gene set enrichment analysis, we found that LDHA's influence on PAAD is linked to signaling pathways involving Kirsten rat sarcoma viral oncogene homolog (K-Ras), transforming growth factor-β (TGF-β), and hypoxia inducible factor-1 (HIF-1). Mutation of K-Ras could upregulate its own expression and was positively correlated with LDHA expression. Moreover, our data demonstrated that LDHA expression was linked to immune infiltration and poor prognosis in PAAD, indicating its role in disease pathogenesis. Overexpression of LDHA may suppress tumor immunity, suggesting it as a potential target for the diagnosis and treatment of PAAD, thus providing new insights into managing this aggressive cancer. Conclusions Overall, our results showed that LDHA as a prognostic biomarker could serve as a novel target for future PAAD immunotherapy.
Collapse
Affiliation(s)
- Qiuqing Zheng
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luyin Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Delian Chen
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Jianfeng Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuxun Liu
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Lili Wu
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Peiwei Fang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fajun Xie
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
4
|
Liu X, Chen Y, Li Y, Bai J, Zeng Z, Wang M, Dong Y, Zhou Y. STAU1-mediated CNBP mRNA degradation by LINC00665 alters stem cell characteristics in ovarian cancer. Biol Direct 2024; 19:59. [PMID: 39080743 PMCID: PMC11288052 DOI: 10.1186/s13062-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND To investigate the role of lncRNA LINC00665 in modulating ovarian cancer stemness and its influence on treatment resistance and cancer development. METHODS We isolated ovarian cancer stem cells (OCSCs) from the COC1 cell line using a combination of chemotherapeutic agents and growth factors, and verified their stemness through western blotting and immunofluorescence for stem cell markers. Employing bioinformatics, we identified lncRNAs associated with ovarian cancer, with a focus on LINC00665 and its interaction with the CNBP mRNA. In situ hybridization, immunohistochemistry, and qPCR were utilized to examine their expression and localization, alongside functional assays to determine the effects of LINC00665 on CNBP. RESULTS LINC00665 employs its Alu elements to interact with the 3'-UTR of CNBP mRNA, targeting it for degradation. This molecular crosstalk enhances stemness by promoting the STAU1-mediated decay of CNBP mRNA, thereby modulating the Wnt and Notch signaling cascades that are pivotal for maintaining CSC characteristics and driving tumor progression. These mechanistic insights were corroborated by a series of in vitro assays and validated in vivo using tumor xenograft models. Furthermore, we established a positive correlation between elevated CNBP levels and increased disease-free survival in patients with ovarian cancer, underscoring the prognostic value of CNBP in this context. CONCLUSIONS lncRNA LINC00665 enhances stemness in ovarian cancer by mediating the degradation of CNBP mRNA, thereby identifying LINC00665 as a potential therapeutic target to counteract drug resistance and tumor recurrence associated with CSCs.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jinling Bai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
5
|
Zhang Y, Yao L, Chung CR, Huang Y, Li S, Zhang W, Pang Y, Lee TY. KinPred-RNA-kinase activity inference and cancer type classification using machine learning on RNA-seq data. iScience 2024; 27:109333. [PMID: 38523792 PMCID: PMC10959666 DOI: 10.1016/j.isci.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Kinases as important enzymes can transfer phosphate groups from high-energy and phosphate-donating molecules to specific substrates and play essential roles in various cellular processes. Existing algorithms for kinase activity from phosphorylated proteomics data are often costly, requiring valuable samples. Moreover, methods to extract kinase activities from bulk RNA sequencing data remain undeveloped. In this study, we propose a computational framework KinPred-RNA to derive kinase activities from bulk RNA-sequencing data in cancer samples. KinPred-RNA framework, using the extreme gradient boosting (XGBoost) regression model, outperforms random forest regression, multiple linear regression, and support vector machine regression models in predicting kinase activities from cancer-related RNA sequencing data. Efficient gene signatures from the LINCS-L1000 dataset were used as inputs for KinPred-RNA. The results highlight its potential to be related to biological function. In conclusion, KinPred RNA constitutes a significant advance in cancer research by potentially facilitating the identification of cancer.
Collapse
Affiliation(s)
- Yuntian Zhang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320953, Taiwan
| | - Yixian Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenyang Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
Wang J, Xia YC, Tian BX, Li JT, Li HY, Dong H, Li XG, Yu H, Zhu YY, Ma J, Jiang YJ, Jin GZ. Novel quantitative immunohistochemistry method using histone H3, family 3B as the internal reference standard for measuring human epidermal growth factor receptor 2 expression in breast cancer. Cancer 2024; 130:1424-1434. [PMID: 38217532 DOI: 10.1002/cncr.35176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an essential technique in surgical and clinical pathology for detecting diagnostic, prognostic, and predictive biomarkers for personalized cancer therapy. However, the lack of standardization and reference controls results in poor reproducibility, and a reliable tool for IHC quantification is urgently required. The objective of this study was to describe a novel approach in which H3F3B (histone H3, family 3B) can be used as an internal reference standard to quantify protein expression levels using IHC. METHODS The authors enrolled 89 patients who had human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). They used a novel IHC-based assay to measure protein expression using H3F3B as the internal reference standard. H3F3B was uniformly expressed at the protein level in all tumor regions in cancer tissues. HER2 expression levels were measured with the H-score using HALO software. RESULTS Kaplan-Meier analysis indicated that, among patients who had HER2-positive BC in The Cancer Genome Atlas data set and the authors' data set, the subgroup with low HER2 expression had a significantly better prognosis than the subgroup with high HER2 expression. Furthermore, the authors observed that HER2 expression levels were precisely evaluated using the proposed method, which can classify patients who are at higher risk of HER2-positive BC to receive trastuzumab-based adjuvant therapy. Dual-color IHC with H3F3B is an excellent tool for internal and external quality control of HER2 expression assays. CONCLUSIONS The proposed IHC-based quantification method accurately assesses HER2 expression levels and provides insights for predicting clinical prognosis in patients with HER2-positive BC who receive trastuzumab-based adjuvant therapy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye-Chen Xia
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao-Xing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju-Tang Li
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng-Yu Li
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Guang Li
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Hua Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu-Yao Zhu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Jie Jiang
- Department of Pathology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Guang-Zhi Jin
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Du C, Zhao S, Shan T, Han X, Jiang Q, Chen J, Gu L, Wei T, Yang T, Wang S, Wang H, Guo X, Wang L. Cellular nucleic acid binding protein facilitates cardiac repair after myocardial infarction by activating β-catenin signaling. J Mol Cell Cardiol 2024; 189:66-82. [PMID: 38432502 DOI: 10.1016/j.yjmcc.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of β-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the β-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.
Collapse
Affiliation(s)
- Chong Du
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Shan Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tiankai Shan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xudong Han
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qiqi Jiang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jiawen Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Lingfeng Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Tianwen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Tongtong Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Sibo Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
8
|
Yanar S, Sarihan M, Kasap M, Akpinar G, Teke K, Yaprak Bayrak B. GFP Transfection Alters Protein Expression Patterns in Prostate Cancer Cells: A Proteomic Study. J Fluoresc 2024:10.1007/s10895-023-03498-4. [PMID: 38502405 DOI: 10.1007/s10895-023-03498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 03/21/2024]
Abstract
PURPOSE Green Fluorescent Protein is widely used as a cellular marker tool, but its potential influence on cells has been questioned. Although the potential off-target effects of GFP on tumor cells have been studied to some extent, the findings at the molecular level are insufficient to explain the effect of GFP expression on the tumorigenic capacity of cancer cells. Here, we aimed to investigate the effect of GFP expression on the tumorigenicity of PC3 prostate cancer cells. METHODS Using GFP-expressing and wild-type PC-3 cells, xenograft models were generated in athymic BALB/C mice. To identify differentially expressed proteins, the change in cells proteome was investigated by label-free quantification with nano-high performance liquid chromatography to tandem mass spectrometry (nHPLC-MS/MS). Proteins that showed significantly altered expression levels were evaluated using the bioinformatics tools. RESULTS Unlike the wild-type PC-3 cells, GFP-expressing cells failed to develop tumor. Comparative proteome analysis of GFP-expressing cells with WT PC-3 cells revealed a total of 216 differentially regulated proteins, of which 98 were upregulated and 117 were downregulated. CONCLUSION Upon GFP expression, differential changes in several pathways including the immune system, translational machinery, energy metabolism, elements of cytoskeletal and VEGF signaling pathway were observed. Therefore, care should be taken into account to prevent reporting deceitful mechanisms generated from studies utilizing GFP.
Collapse
Affiliation(s)
- Sevinc Yanar
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey.
- Faculty of Medicine, Department of Histology and Embryology, Sakarya University, Korucuk, Sakarya, Turkey.
| | - Mehmet Sarihan
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Murat Kasap
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Kerem Teke
- Faculty of Medicine, Department of Urology, Kocaeli University, Kocaeli, Turkey
| | - Busra Yaprak Bayrak
- Faculty of Medicine, Department of Pathology, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
9
|
Wang B, Pu R. Association between glycolysis markers and prognosis of liver cancer: a systematic review and meta-analysis. World J Surg Oncol 2023; 21:390. [PMID: 38114977 PMCID: PMC10731852 DOI: 10.1186/s12957-023-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND In recent years, the capacity of tumor cells to maintain high levels of glycolysis, even in the presence of oxygen, has emerged as one of the main metabolic traits and garnered considerable attention. The purpose of this meta-analysis is to investigate the prognostic value of glycolysis markers in liver cancer. METHODS PubMed, Embase, and Cochrane Library databases were searched for articles on glycolytic marker expression levels associated with the prognosis of liver cancer until April 2023. Stata SE14.0 was used to calculate the aggregate hazard ratios and 95% confidence intervals. RESULTS Thirty-five studies were included. The worse overall survival (OS) (P < 0.001), disease-free survival (DFS) (P = 0.001), recurrence-free survival (RFS) (P = 0.004), and time to recurrence (TTR) (P < 0.001) were significantly associated with elevated expression of glycolysis markers. Higher expression of PKM2 (P < 0.001), STMN1 (P = 0.002), MCT4 (P < 0.001), GLUT1 (P = 0.025), HK-2 (P < 0.001), and CA9 (P < 0.001) were significantly related to shorter OS. Increased levels of PKM2 (P < 0.001), CA9 (P = 0.005), and MCT4 (P < 0.001) were associated with worse DFS. Elevated PKM2 expression (P = 0.002) was also associated with poorer RFS in hepatocellular carcinoma patients. GLUT2 expression was not correlated with the prognosis of liver cancer (P = 0.134). CONCLUSIONS Elevated expression of glycolysis markers was associated with worse OS, DFS, RFS, and TTR in patients with liver cancer. Therefore, these glycolysis markers could serve as potential prognostic markers and therapeutic targets in liver cancer. TRIAL REGISTRATION PROSPERO registration: CRD42023469645.
Collapse
Affiliation(s)
- Boqin Wang
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan, Guangdong, China.
| |
Collapse
|
10
|
Zhao W, Cai Z, Wei C, Ma X, Yu B, Fu X, Zhang T, Gu Y, Zhang J. Functional identification of PGM1 in the regulating development and depositing of inosine monophosphate specific for myoblasts. Front Vet Sci 2023; 10:1276582. [PMID: 38164393 PMCID: PMC10758172 DOI: 10.3389/fvets.2023.1276582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background Inosine monophosphate (IMP) is naturally present in poultry muscle and plays a key role in improving meat flavour. However, IMP deposition is regulated by numerous genes and complex molecular networks. In order to excavate key candidate genes that may regulate IMP synthesis, we performed proteome and metabolome analyses on the leg muscle, compared to the breast muscle control of 180-day-old Jingyuan chickens (hens), which had different IMP content. The key candidate genes identified by a differential analysis were verified to be associated with regulation of IMP-specific deposition. Results The results showed that the differentially expressed (DE) proteins and metabolites jointly involve 14 metabolic pathways, among which the purine metabolic pathway closely related to IMP synthesis and metabolism is enriched with four DE proteins downregulated (with higher expression in breast muscles than in leg muscles), including adenylate kinase 1 (AK1), adenosine monophosphate deaminase 1 (AMPD1), pyruvate kinase muscle isoenzyme 2 (PKM2) and phosphoglucomutase 1 (PGM1), six DE metabolites, Hypoxanthine, Guanosine, L-Glutamine, AICAR, AMP and Adenylsuccinic acid. Analysis of PGM1 gene showed that the high expression of PGM1 promoted the proliferation and differentiation of myoblasts and inhibited the apoptosis of myoblasts. ELISA tests have shown that PGM1 reduced adenosine triphosphate (ATP) and IMP and uric acid (UA), while enhancing the biosynthesis of hypoxanthine (HX). In addition, up-regulation of PGM1 inhibited the expression of purine metabolism pathway related genes, and promoted the IMP de novo and salvage synthesis pathways. Conclusion This study preliminarily explored the mechanism of action of PGM1 in regulating the growth and development of myoblasts and specific IMP deposition in Jingyuan chickens, which provided certain theoretical basis for the development and utilization of excellent traits in Jingyuan chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
11
|
Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1377-1388. [PMID: 36309104 DOI: 10.1016/j.ajpath.2022.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 85% to 90% of all liver cancer cases. It is a hepatocyte-derived primary tumor, causing 550,000 deaths per year, ranking it as one of the most common cancers worldwide. The liver is a highly metabolic organ with multiple functions, including digestion, detoxification, breakdown of fats, and production of bile and cholesterol, in addition to storage of vitamins, glycogen, and minerals, and synthesizing plasma proteins and clotting factors. Due to these fundamental and diverse functions, the malignant transformation of hepatic cells can have a severe impact on the liver's metabolism. Furthermore, tumorigenesis is often accompanied by activation of the endoplasmic reticulum (ER) stress pathways, which are known to be highly intertwined with several metabolic pathways. Because HCC is characterized by changes in the metabolome and by an aberrant activation of the ER stress pathways, the aim of this review was to summarize the current knowledge that links ER stress and metabolism in HCC, thereby focusing on potential therapeutic targets.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Ubink
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Zhang B, Zhang W, He Y, Ma X, Li M, Jiang Q, Loor JJ, Lv X, Yang W, Xu C. Store-operated Ca 2+ entry-sensitive glycolysis regulates neutrophil adhesion and phagocytosis in dairy cows with subclinical hypocalcemia. J Dairy Sci 2023; 106:7131-7146. [PMID: 37164848 DOI: 10.3168/jds.2022-22709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Hypocalcemia in dairy cows is associated with a decrease of neutrophil adhesion and phagocytosis, an effect driven partly by changes in the expression of store-operated Ca2+ entry (SOCE)-related molecules. It is well established in nonruminants that neutrophils obtain the energy required for immune function through glycolysis. Whether glycolysis plays a role in the acquisition of energy by neutrophils during hypocalcemia in dairy cows is unknown. To address this relationship, we performed a cohort study and then a clinical trial. Neutrophils were isolated at 2 d postcalving from lactating Holstein dairy cows (average 2.83 ± 0.42 lactations, n = 6) diagnosed as clinically healthy (CON) or with plasma concentrations of Ca2+ <2.0 mmol/L as a criterion for diagnosing subclinical hypocalcemia (HYP, average 2.83 ± 0.42 lactations, n = 6). In the first experiment, neutrophils were isolated from blood of CON and HYP cows and used to analyze aspects of adhesion and phagocytosis function through quantitative reverse-transcription PCR along with confocal laser scanning microscopy, mRNA expression of the glycolysis-related gene hexokinase 2 (HKII), and components of the SOCE moiety ORAI calcium release-activated calcium modulator 1 (ORAI1, ORAI2, ORAI3, stromal interaction molecule 1 [STIM1], and STIM2). Results showed that adhesion and phagocytosis function were reduced in HYP cows. The mRNA expression of adhesion-related syndecan-4 (SDC4), integrin β9 (ITGA9), and integrin β3 (ITGB3) and phagocytosis-related molecules complement component 1 R subcomponent (C1R), CD36, tubulinß1 (TUBB1) were significantly decreased in the HYP group. In the second experiment, to address how glycolysis affects neutrophil adhesion and phagocytosis, neutrophils isolated from CON and HYP cows were treated with 2 μM HKII inhibitor benserazide-d3 or 1 μM fructose-bisphosphatase 1 (FBP1) inhibitor MB05032 for 1 h. Results revealed that the HKII inhibitor benserazide-d3 reduced phagocytosis and the mRNA abundance of ITGA9, and CD36 in the HYP group. The FBP1 inhibitor MB05032 increased adhesion and phagocytosis and increased mRNA abundance of HKII, ITGA9, and CD36 in the HYP group. Finally, to investigate the mechanism whereby SOCE-sensitive glycolysis affects neutrophil adhesion and phagocytosis, isolated neutrophils were treated with 1 μM SOCE activator thapsigargin or 50 μM inhibitor 2-APB for 1 h. Results showed that thapsigargin increased mRNA abundance of HKII, ITGA9, and CD36, and increased adhesion and phagocytosis in the HYP group. In contrast, 2-APB decreased mRNA abundance of HKII and both adhesion and phagocytosis of neutrophils in the CON group. Overall, the data indicated that SOCE-sensitive intracellular Ca2+ levels affect glycolysis and help regulate adhesion and phagocytosis of neutrophils during hypocalcemia in dairy cows.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuxin He
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
13
|
Moon DO. A comprehensive review of the effects of resveratrol on glucose metabolism: unveiling the molecular pathways and therapeutic potential in diabetes management. Mol Biol Rep 2023; 50:8743-8755. [PMID: 37642760 DOI: 10.1007/s11033-023-08746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Resveratrol, a naturally occurring polyphenolic compound predominantly found in red wine and grapes, has garnered attention for its potential role in regulating carbohydrate digestion, glucose absorption, and metabolism. This review aims to deliver a comprehensive analysis of the molecular mechanisms and therapeutic potential of resveratrol in influencing vital processes in glucose homeostasis. These processes include carbohydrate digestion, glucose absorption, glycogen storage, insulin secretion, glucose metabolism in muscle cells, and triglyceride synthesis in adipocytes.The goal of this review is to offer an in-depth understanding of the multifaceted effects of resveratrol on glucose metabolism. By doing so, it presents valuable insights into its potential applications for preventing and treating metabolic disorders. This comprehensive examination of resveratrol's impact on glucose management will contribute to the growing body of knowledge on this promising natural compound, which may benefit researchers, healthcare professionals, and individuals interested in metabolic disorder prevention and treatment.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si, 38453, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
14
|
Hao X, Zhu X, Tian H, Lai G, Zhang W, Zhou H, Liu S. Pharmacological effect and mechanism of orlistat in anti-tumor therapy: A review. Medicine (Baltimore) 2023; 102:e34671. [PMID: 37682175 PMCID: PMC10489489 DOI: 10.1097/md.0000000000034671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023] Open
Abstract
Research has demonstrated that obesity is an important risk factor for cancer progression. Orlistat is a lipase inhibitor with promising therapeutic effects on obesity. In addition to being regarded as a slimming drug, a growing number of studies in recent years have suggested that orlistat has anti-tumor activities, while the underlying mechanism is still not well elucidated. This paper reviewed recent pharmacological effects and mechanisms of orlistat against tumors and found that orlistat can target cancer cells through activation or suppression of multiple signaling pathways. It can induce tumor cells apoptosis or death, interfere with tumor cells' cycles controlling, suppress fatty acid synthase activity, increase ferroptosis, inhibit tumor angiogenesis, and improve tumor cells glycolytic. Thus, this review may shed new light on anti-tumor mechanism and drug repurposing of orlistat, and anti-tumor drug development.
Collapse
Affiliation(s)
- Xiaoqing Hao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- School of Pharmacy & Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaodi Zhu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Huiqun Tian
- The Second People’s Hospital of China Three Gorges University, Yichang, People’s Republic of China
| | - Guanxi Lai
- School of Pharmacy & Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wei Zhang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Honghao Zhou
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Song Liu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- School of Pharmacy & Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Zhang Y, Sun Y, Hu Y, Zheng S, Shao H, Lin L, Pan Y, Li C. Porphyromonas gingivalis msRNA P.G_45033 induces amyloid-β production by enhancing glycolysis and histone lactylation in macrophages. Int Immunopharmacol 2023; 121:110468. [PMID: 37320870 DOI: 10.1016/j.intimp.2023.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND High expression of amyloid-β (Aβ) in periodontal tissue could contribute to exacerbating the development of both periodontitis and Alzheimer's disease (AD). Porphyromonas gingivalis (P. gingivalis) as a periodontal pathogen expresses msRNAs, which can regulate gene transcription in host cells. OBJECTIVE The aim of this study is to reveal the mechanism of msRNA P.G_45033, a high copy msRNA in P. gingivalis, inducing Aβ expression in macrophages, and provide a new insight to explain the development of periodontitis, and also to explain the role of periodontal infection on AD. METHODS The levels of glucose consumption, pyruvate and lactate productions in macrophages after transfection with msRNA P.G_45033 were detected. Miranda, TargetScan, and RNAhybrid databases were used to predict the target gene of msRNA P.G_45033, and GO analysis was conducted to describe the functions of the overlapping ones. RT2 glucose-metabolism PCR Array was used to verify the relationship between msRNA P.G_45033 and the expression of genes related to glucose metabolism. The levels of histone Kla were detected using western blotting. The levels of Aβ in the macrophages and the culture medium were detected by immunofluorescence and ELISA, respectively. RESULTS The levels of glucose consumption, pyruvate and lactate productions were increased after transfection of msRNA P.G_45033 in macrophages. GO analysis revealed that target genes were enriched in the metabolic process. RT2 glucose-metabolism PCR Array showed the expression of genes associated with glycolysis. The results of western blotting showed that the level of histone Kla was increased in macrophages. The results of immunofluorescence and ELISA showed that Aβ levels in macrophages and culture medium were increased after transfection. CONCLUSION The present study revealed that msRNA P.G_45033 can induce Aβ production by enhancing glycolysis and histone Kla in macrophages.
Collapse
Affiliation(s)
- Yonghuan Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Yangyang Sun
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Ying Hu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Shaowen Zheng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Haigang Shao
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| |
Collapse
|
16
|
Warrier S, Srinivasan S, Chedere A, Rangarajan A. Inhibition of protein translation under matrix-deprivation stress in breast cancer cells. Front Med (Lausanne) 2023; 10:1124514. [PMID: 37425300 PMCID: PMC10324034 DOI: 10.3389/fmed.2023.1124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Matrix-deprivation stress leads to cell-death by anoikis, whereas overcoming anoikis is critical for cancer metastasis. Work from our lab and others has identified a crucial role for the cellular energy sensor AMPK in anoikis-resistance, highlighting a key role for metabolic reprogramming in stress survival. Protein synthesis is a major energy-consuming process that is tightly regulated under stress. Although an increase in protein synthesis in AMPK-depleted experimentally-transformed MEFs has been associated with anoikis, the status and regulation of protein translation in epithelial-origin cancer cells facing matrix-detachment remains largely unknown. Our study shows that protein translation is mechanistically abrogated at both initiation and elongation stages by the activation of the unfolded protein response (UPR) pathway and inactivation of elongation factor eEF2, respectively. Additionally, we show inhibition of the mTORC1 pathway known for regulation of canonical protein synthesis. We further functionally assay this inhibition using SUnSET assay, which demonstrates repression of global protein synthesis in MDA-MB-231 and MCF7 breast cancer cells when subjected to matrix-deprivation. In order to gauge the translational status of matrix-deprived cancer cells, we undertook polysome profiling. Our data revealed reduced but continuous mRNA translation under matrix-deprivation stress. An integrated analysis of transcriptomic and proteomic data further identifies novel targets that may aid cellular adaptations to matrix-deprivation stress and can be explored for therapeutic intervention.
Collapse
|
17
|
Lagal DJ, López-Grueso MJ, Pedrajas JR, Leto TL, Bárcena JA, Requejo-Aguilar R, Padilla CA. Loss of PRDX6 Aborts Proliferative and Migratory Signaling in Hepatocarcinoma Cell Lines. Antioxidants (Basel) 2023; 12:1153. [PMID: 37371884 DOI: 10.3390/antiox12061153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxin family, has peroxidase, phospholipase A2 (PLA2), and lysophosphatidylcholine (LPC) acyltransferase (LPCAT) activities. It has been associated with tumor progression and cancer metastasis, but the mechanisms involved are not clear. We constructed an SNU475 hepatocarcinoma cell line knockout for PRDX6 to study the processes of migration and invasiveness in these mesenchymal cells. They showed lipid peroxidation but inhibition of the NRF2 transcriptional regulator, mitochondrial dysfunction, metabolic reprogramming, an altered cytoskeleton, down-regulation of PCNA, and a diminished growth rate. LPC regulatory action was inhibited, indicating that loss of both the peroxidase and PLA2 activities of PRDX6 are involved. Upstream regulators MYC, ATF4, HNF4A, and HNF4G were activated. Despite AKT activation and GSK3β inhibition, the prosurvival pathway and the SNAI1-induced EMT program were aborted in the absence of PRDX6, as indicated by diminished migration and invasiveness, down-regulation of bottom-line markers of the EMT program, MMP2, cytoskeletal proteins, and triggering of the "cadherin switch". These changes point to a role for PRDX6 in tumor development and metastasis, so it can be considered a candidate for antitumoral therapies.
Collapse
Affiliation(s)
- Daniel J Lagal
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - María J López-Grueso
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - José R Pedrajas
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Institute of Research in Olive Groves and Olive Oils, University of Jaén, 23071 Jaén, Spain
| | - Thomas L Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - J Antonio Bárcena
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - C Alicia Padilla
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| |
Collapse
|
18
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
19
|
Choi DJ, Armstrong G, Lozzi B, Vijayaraghavan P, Plon SE, Wong TC, Boerwinkle E, Muzny DM, Chen HC, Gibbs RA, Ostrom QT, Melin B, Deneen B, Bondy ML, Bainbridge MN. The genomic landscape of familial glioma. SCIENCE ADVANCES 2023; 9:eade2675. [PMID: 37115922 PMCID: PMC10146888 DOI: 10.1126/sciadv.ade2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
Collapse
Affiliation(s)
- Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Georgina Armstrong
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Terence C. Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric Boerwinkle
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Quinn T. Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Melissa L. Bondy
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - The Gliogene Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Genomics England Research Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
20
|
Liu S, Deng Y, Yu Y, Xia X. Knock-down of PGM1 inhibits cell viability, glycolysis, and oxidative phosphorylation in glioma under low glucose condition via the Myc signaling pathway. Biochem Biophys Res Commun 2023; 656:38-45. [PMID: 36947965 DOI: 10.1016/j.bbrc.2023.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
PGM1 is an essential enzyme for glucose metabolism and is involved in cell viability, proliferation, and metabolism. However, the regulatory role of PGMI in glioma progression and the relation between gliomas and PGM1 expression are still unclear. This study aimed to explore the role of PGM1 in glycolysis and oxidative phosphorylation in glioma. Correlation and enrichment analyses of PGM1 in glioma cells were explored in TCGA database and two hospital cohorts. The cell viability, glycolysis, and oxidative phosphorylation were investigated in PGM1 knock-down and overexpression situations. Higher PGM1 expression in glioma patients was associated with a poor survival rate. However, knock-down of PGM1 reduced glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition. Moreover, it suppressed tumor growth in vivo. On the other hand, PGM1 overexpression promoted glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition by a Myc positive feedback loop. Glioma patients with higher PGM1 expression were associated with poor survival rates. Additionally, PGM1 could promote glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition via a myc-positive feedback loop, suggesting PGM1 could be a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Shenghua Liu
- Department of Neurosurgery, Santai Affiliated Hospital of North Sichuan Medical College, Mianyang, 621100, China
| | - Yuanyin Deng
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, 310015, China
| | - Yunhu Yu
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
21
|
Miao X, Liu L, Liu L, Hu G, Wu G, Wang Y, Zhao Y, Yang J, Li X. Regulation of mRNA and miRNA in the response to Salmonella enterica serovar Enteritidis infection in chicken cecum. BMC Vet Res 2022; 18:437. [PMID: 36514049 PMCID: PMC9749161 DOI: 10.1186/s12917-022-03522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica, serovar Enteritidis (SE) is a food-borne pathogen, which can cause great threat to human health through consumption of the contaminated poultry products. Chicken is the main host of SE. The mRNA and microRNA (miRNA) expression profiles were analyzed on cecum of Shouguang chicken via next-generation sequencing and bioinformatics approaches. The treated group was inoculated SE, and the control group was inoculated with phosphate buffer saline (PBS). RESULTS There were 1760 differentially expressed mRNAs in the SE-infected group, of which 1046 were up-regulated mRNA, and 714 were down-regulated mRNA. In addition, a total of 821 miRNAs were identified, and 174 miRNAs were differentially expressed, of which 100 were up-regulated and 74 were down-regulated. Functional enrichment of differentially expressed mRNAs was similar to miRNA target genes. The functional analysis results of differentially expressed mRNAs and miRNAs were performed. Immune-related processes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were enriched by up-regulated mRNA. The down-regulated mRNAs were enriched in tissue development and metabolic-related KEGG pathways. The functional analysis of up-regulated miRNA target genes was similar to the down-regulated mRNAs. The down-regulated miRNA target genes were enriched in metabolic-related GO (Gene Ontology) -BP (Biological process) terms and KEGG pathways. The overlap of the up-regulated mRNA and the up-regulated miRNA target genes (class I) was 325, and the overlap of the down-regulated miRNA target genes (class II) was 169. The class I enriched in the immune-related GO-BP terms and KEGG pathways. The class II mainly enriched in metabolic-related GO-BP terms and KEGG pathways. Then we detected the expression of mRNA and miRNA through qRT-PCR. The results shown that the expression of HHIP, PGM1, HTR2B, ITGB5, RELN, SFRP1, TCF7L2, SCNN1A, NEK7, miR-20b-5p, miR-1662, miR-15a, miR-16-1-3p was significantly different between two groups. Dual-luciferase reporter assay was used to detect the relationship between miR-20b-5p and SCNN1A. The result indicated that miR-20b-5p regulate immune or metabolic responses after SE infection in Shouguang chickens by directly targeting SCNN1A. CONCLUSIONS The findings here contribute to the further analysis of the mechanism of mRNA and miRNA defense against SE infection, and provide a theoretical foundation for the molecular disease-resistant breeding of chickens.
Collapse
Affiliation(s)
- Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Lewen Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Guixian Wu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan, 250010, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
22
|
Zhang W, Lyu P, Andreev D, Jia Y, Zhang F, Bozec A. Hypoxia-immune-related microenvironment prognostic signature for osteosarcoma. Front Cell Dev Biol 2022; 10:974851. [PMID: 36578780 PMCID: PMC9791087 DOI: 10.3389/fcell.2022.974851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Increasing evidences have shown that hypoxia and the immune microenvironment play vital roles in the development of osteosarcoma. However, reliable gene signatures based on the combination of hypoxia and the immune status for prognostic prediction of osteosarcoma have so far not been identified. Methods: The individual hypoxia and immune status of osteosarcoma patients were identified with transcriptomic profiles of a training cohort from the TARGET database using ssGSEA and ESTIMATE algorithms, respectively. Lasso regression and stepwise Cox regression were performed to develop a hypoxia-immune-based gene signature. An independent cohort from the GEO database was used for external validation. Finally, a nomogram was constructed based on the gene signature and clinical features to improve the risk stratification and to quantify the risk assessment for individual patients. Results: Hypoxia and the immune status were significantly associated with the prognosis of osteosarcoma patients. Seven hypoxia- and immune-related genes (BNIP3, SLC38A5, SLC5A3, CKMT2, S100A3, CXCL11 and PGM1) were identified to be involved in our prognostic signature. In the training cohort, the prognostic signature discriminated high-risk patients with osteosarcoma. The hypoxia-immune-based gene signature proved to be a stable and predictive method as determined in different datasets and subgroups of patients. Furthermore, a nomogram based on the prognostic signature was generated to optimize the risk stratification and to quantify the risk assessment. Similar results were validated in an independent GEO cohort, confirming the stability and reliability of the prognostic signature. Conclusion: The hypoxia-immune-based prognostic signature might contribute to the optimization of risk stratification for survival and personalized management of osteosarcoma patients.
Collapse
|
23
|
Zheng Z, Bai J, Shen S, Zhu C, Zhou Y, Zhang X. Meta-analysis of the effect of PGM on survival prognosis of tumor patients. Front Oncol 2022; 12:1060372. [PMID: 36544711 PMCID: PMC9760796 DOI: 10.3389/fonc.2022.1060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
Objective A systematic evaluation of the impact of phosphoglucose translocase PGM on the survival prognosis of tumor patients was conducted to understand its impact on tumors so as to improve the quality of survival and to find effective therapeutic targets for tumor patients. Methods The following were searched in the databases China National Knowledge Infrastructure (CNKI), Wanfang, Wipu, PubMed, EMBASE, ScienceDirect, Web of Science, and Cochrane Library: "PGM1", "PGM2", "PGM3", "PGM4", and "PGM5" as Chinese keywords and "PGM1", "PGM2", "PGM3", "PGM4", "PGM5", "PGM1 cancer", "PGM2 cancer", "PGM3 cancer", "PGM4 cancer", "PGM5 cancer", and "phosphoglucomutase". Relevant studies published from the database establishment to April 2022 were collected. Studies that met the inclusion criteria were extracted and evaluated for quality with reference to the Cochrane 5.1.0 systematic evaluation method, and quality assessment was performed using RevMan 5.3 software. Results The final results of nine articles and 10 studies with a total of 3,806 patients were included, including 272 patients in the PGM1 group, 541 patients in the PGM2 group, 1,775 patients in the PGM3 group, and 1,585 patients in the PGM5 group. Results of the meta-analysis: after determining the results of the nine articles, it was found that the difference was statistically significant with a p-value <0.05 (hazard ratio (HR) = 0.89, 95% CI 0.69-1.09, p = 0.000). To find the sources of heterogeneity, the remaining eight papers were tested after removing the highly sensitive literature, and the results showed I2 = 26.5%, p < 0.001, a statistically significant difference. The HR for high expression of PGM1 and PGM2 and PGM5 was <1, while the HR for high expression of PGM3 was >1. Conclusion Although PGM1, PGM2, PGM3, and PGM5 are enzymes of the same family, their effects on tumors are different. High expression of PGM1, PGM2, and PGM5 can effectively prolong the overall survival of patients. In contrast, high expression of PGM3 reduced the overall survival of patients. This study of PGM family enzymes can assist in subsequent tumor diagnosis, treatment, and prognostic assessment.
Collapse
Affiliation(s)
- Zhewen Zheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jian Bai
- Department of General, Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | | | - Chunmei Zhu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Xue Zhang, ; Yunfeng Zhou,
| | - Xue Zhang
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Xue Zhang, ; Yunfeng Zhou,
| |
Collapse
|
24
|
Vafaee R, Hamzeloo-Moghadam M, Razzaghi Z, Nikzamir M, Rostami Nejad M, Mansouri V. Introducing Protein Homeostasis and Glycogen Synthesis as Two Targets of Blue Light Radiation in Lentinula edodes. J Lasers Med Sci 2022; 13:e47. [PMID: 36743131 PMCID: PMC9841390 DOI: 10.34172/jlms.2022.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023]
Abstract
Introduction: There are documents about the biological effects of blue light radiation on different organisms. An understanding of the molecular mechanism of radiation effects on biological samples is an important event which has attracted researchers' attention. Determining the critical dysregulated proteins of Lentinula edodes following blue light radiation is the aim of this study. Methods: 22 differentially expressed proteins of L. edodes in response to 300 lux of blue light were extracted from the related literature. Experimental, text mining and co-expression connections between the queried proteins were assessed via the STRING database. The maps were compared and the critical proteins were identified. Results: Among the 21 queried proteins, six individuals including heat shock HSP70 protein, 20S proteasome subunit, 26S proteasome subunit P45, Aspartate aminotransferase, phosphopyruvate hydratase, and phosphoglucomutase were highlighted as the critical proteins in response to blue light radiation. Conclusion: The finding indicates that protein homeostasis and glycogen synthesis are affected by blue light radiation. Due to the critical roles of proteins as enzymes and structural elements in life maintenance and involvement of glycogen synthesis in energy consumption, blue light radiation can be considered as a life promotional agent in future investigations.
Collapse
Affiliation(s)
- Reza Vafaee
- Critical Care Quality Improvement Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahfam Nikzamir
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami Nejad
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to Vahid Mansouri,
| |
Collapse
|
25
|
CircFMN2 Boosts Sorafenib Resistance in Hepatocellular Carcinoma Cells via Upregulating CNBP by Restraining Ubiquitination. JOURNAL OF ONCOLOGY 2022; 2022:2674163. [PMID: 35909906 PMCID: PMC9334069 DOI: 10.1155/2022/2674163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
Abstract
Purpose Noncoding RNAs exert critical biological effects in hepatocellular carcinoma (HCC). The role of circFMN2, a newly discovered functional RNA in prostate cancer and colorectal cancer, was investigated for the first time in sorafenib-resistance HCC cells. Methods The level of circFMN2 was assessed via quantitative real-time PCR (qRT-PCR). Cell proliferation was detected via CCK-8 and colony formation assay. Cell apoptosis was measured via the TUNEL assay and flow cytometry analysis. A Western blot assay was conducted to detect the CCHC-type zinc finger nucleic acid binding protein (CNBP) level and ubiquitination. RNA pull-down assay and RNA immunoprecipitation were carried out to explore the interaction between circFMN2 and CNBP. Results CircFMN2 was highly expressed in multidrug-resistant (MDR) cells. CircFMN2 overexpression exerted pro-proliferation effects in sorafenib-treated HCC cells, while depletion of circFMN2 displayed negative effect on sorafenib-treated MDR cells. Moreover, CNBP was verified as the binding protein of circFMN2. CNBP was upregulated in MDR cells, which was achieved by inhibition of ubiquitination by circFMN2. Besides, CNBP overexpression was found to boost sorafenib resistance in HCC cells. Conclusions CircFMN2 is aberrantly expressed in sorafenib-resistant HCC cells and contributes to sorafenib resistance in HCC cells via upregulation of CNBP by restraining ubiquitination.
Collapse
|
26
|
Xu HH, Wang HL, Xing TJ, Wang XQ. A Novel Prognostic Risk Model for Cervical Cancer Based on Immune Checkpoint HLA-G-Driven Differentially Expressed Genes. Front Immunol 2022; 13:851622. [PMID: 35924232 PMCID: PMC9341272 DOI: 10.3389/fimmu.2022.851622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) is a potential checkpoint molecule that plays a key role in cervical carcinogenesis. The purpose of this study was to construct and validate a prognostic risk model to predict the overall survival (OS) of cervical cancer patients, providing a reference for individualized clinical treatment that may lead to better clinical outcomes. HLA-G-driven differentially expressed genes (DEGs) were obtained from two cervical carcinoma cell lines, namely, SiHa and HeLa, with stable overexpression of HLA-G by RNA sequencing (RNA-seq). The biological functions of these HLA-G-driven DEGs were analysed by GO enrichment and KEGG pathway using the “clusterProfiler” package. The protein-protein interactions (PPIs) were assessed using the STRING database. The prognostic relevance of each DEG was evaluated by univariate Cox regression using the TCGA-CESC dataset. After the TCGA-CESC cohort was randomly divided into training set and testing set, and a prognostic risk model was constructed by LASSO and stepwise multivariate Cox regression analysis in training set and validated in testing set or in different types of cervical cancer set. The predictive ability of the prognostic risk model or nomogram was evaluated by a series of bioinformatics methods. A total of 1108 candidate HLA-G-driven DEGs, including 391 upregulated and 717 downregulated genes, were obtained and were enriched mostly in the ErbB pathway, steroid biosynthesis, and MAPK pathway. Then, an HLA-G-driven DEG signature consisting of the eight most important prognostic genes CD46, LGALS9, PGM1, SPRY4, CACNB3, PLIN2, MSMO1, and DAGLB was identified as a key predictor of cervical cancer. Multivariate Cox regression analysis showed that this signature is an independent risk factor for the overall survival of CESC patients. Kaplan-Meier survival analysis showed that the 5-year overall survival rate is 23.0% and 84.6% for the high-risk and low-risk patients, respectively (P<0.001). The receiver operating characteristic (ROC) curve of this prognostic model with an area under the curve (AUC) was 0.896 for 5 years, which was better than that of other clinical traits. This prognostic risk model was also successfully validated in different subtypes of cervical cancer, including the keratinizing squamous cell carcinoma, non-keratinizing squamous cell carcinoma, squamous cell neoplasms, non-squamous cell neoplasms set. Single-sample gene set enrichment (ssGSEA) algorithm and Tumor Immune Dysfunction and Exclusion (TIDE) analysis confirmed that this signature influence tumour microenvironment and immune checkpoint blockade. A nomogram that integrated risk score, age, clinical stage, histological grade, and pathological type was then built to predict the overall survival of CESC patients and evaluated by calibration curves, AUC, concordance index (C-index) and decision curve analysis (DCA). To summarize, we developed and validated a novel prognostic risk model for cervical cancer based on HLA-G-driven DEGs, and the prognostic signature showed great ability in predicting the overall survival of patients with cervical cancer.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
- *Correspondence: Hui-Hui Xu, ; Xue-Quan Wang,
| | - Hui-Li Wang
- Department of Burn, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Tong-Jin Xing
- Department of Infectious Disease, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Xue-Quan Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
- *Correspondence: Hui-Hui Xu, ; Xue-Quan Wang,
| |
Collapse
|
27
|
Zhu Y, Zhang Y, Li Y, Guo C, Fan Z, Li Y, Yang M, Zhou X, Sun Z, Wang J. Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128820. [PMID: 35427968 DOI: 10.1016/j.jhazmat.2022.128820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Silica nanoparticles (SiNPs) are derived from manufactured materials and the natural environment, and they cause detrimental effects on human health via various exposure routes. The liver is proven to be a key target organ for SiNP toxicity; however, the mechanisms causing toxicity remain largely uncertain. Here, we investigated the effects of SiNPs on the metabolic spectrum in hepatocytes via integrative analyses of proteomics and metabolomics. First, a proteomic analysis was used to screen for critical proteins (including RPL3, HSP90AA1, SOD, PGK1, GOT1, and PNP), indicating that abnormal protein synthesis, protein misfolding, oxidative stress, and metabolic dysfunction may contribute to SiNP-induced hepatotoxicity. Next, metabolomic data demonstrated that SiNPs caused metabolic dysfunction by altering vital metabolites (including glucose, alanine, GSH, CTP, and ATP). Finally, a systematic bioinformatic analysis of protein-metabolite interactions showed that SiNPs disturbed glucose metabolism (glycolysis and pentose phosphate pathways, amino acid metabolism (alanine, aspartate, and glutamate), and ribonucleotide metabolism (purine and pyrimidine). These metabolic dysfunctions could exacerbate oxidative stress and lead to liver injury. Moreover, SOD, TKT, PGM1, GOT1, PNP, and NME2 may be key proteins for SiNP-induced hepatotoxicity. This study revealed the metabolic mechanisms underlying SiNP-induced hepatotoxicity and illustrated that integrative omics analyses can be a powerful approach for toxicity evaluations and risk assessments of nanoparticles.
Collapse
Affiliation(s)
- Ye Zhu
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yukang Zhang
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanbo Li
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Caixia Guo
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhuying Fan
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Man Yang
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Xianqing Zhou
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ji Wang
- aDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; bBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
28
|
Zheng Z, Zhang X, Bai J, Long L, Liu D, Zhou Y. PGM1 suppresses colorectal cancer cell migration and invasion by regulating the PI3K/AKT pathway. Cancer Cell Int 2022; 22:201. [PMID: 35614441 PMCID: PMC9134613 DOI: 10.1186/s12935-022-02545-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphoglucomutase 1 (PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) has remained unknown. Here, we studied the functions and mechanisms of PGM1 in CRC. METHODS We verified PGM-1 as a differentially expressed gene (DEG) by employing a comprehensive strategy of TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissues were determined by qRT-PCR, western blotting (WB), and immunohistochemical (IHC) staining in a tissue microarray. PGM1 functions were analyzed by CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated by studying tumor formation in vivo. RESULTS The levels of PGM1 mRNA and protein were both reduced in CRC tissues, and the reductions were related to CRC pathology and overall survival. PGM1 knockdown stimulated both cell proliferation and colony formation, and inhibited cell cycle arrest and apoptosis, while overexpression of PGM1 produced the opposite effects in CRC cells both in vivo and in vitro. Furthermore, the effects of PGM1 were related to the PI3K/ AKT pathway. CONCLUSION We verified that PGM1 suppresses CRC progression via the PI3K/AKT pathway. These results suggest the potential for targeting PGM1 in treatment of CRC.
Collapse
Affiliation(s)
- Zhewen Zheng
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Xue Zhang
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jian Bai
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Long Long
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Di Liu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
29
|
Aragoneses-Cazorla G, Buendia-Nacarino MP, Mena ML, Luque-Garcia JL. A Multi-Omics Approach to Evaluate the Toxicity Mechanisms Associated with Silver Nanoparticles Exposure. NANOMATERIALS 2022; 12:nano12101762. [PMID: 35630985 PMCID: PMC9146515 DOI: 10.3390/nano12101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) are currently used in many different industrial, commercial and health fields, mainly due to their antibacterial properties. Due to this widespread use, humans and the environment are increasingly exposed to these types of nanoparticles, which is the reason why the evaluation of the potential toxicity associated with AgNPs is of great importance. Although some of the toxic effects induced by AgNPs have already been shown, the elucidation of more complete mechanisms is yet to be achieved. In this sense, and since the integration of metabolomics and transcriptomics approaches constitutes a very useful strategy, in the present study targeted and untargeted metabolomics and DNA microarrays assays have been combined to evaluate the molecular mechanisms involved in the toxicity induced by 10 nm AgNPs. The results have shown that AgNPs induce the synthesis of glutathione as a cellular defense mechanism to face the oxidative environment, while inducing the depletion of relevant molecules implicated in the synthesis of important antioxidants. In addition, it has been observed that AgNPs completely impair the intracellular energetic metabolism, especially affecting the production of adenosine triphosphate (ATP) and disrupting the tricarboxylic acids cycle. It has been demonstrated that AgNPs exposure also affects the glycolysis pathway. The effect on such pathway differs depending on the step of the cycle, which a significant increase in the levels of glucose as way to counterbalance the depleted levels of ATP.
Collapse
|
30
|
Doello S, Neumann N, Forchhammer K. Regulatory phosphorylation event of phosphoglucomutase 1 tunes its activity to regulate glycogen metabolism. FEBS J 2022; 289:6005-6020. [PMID: 35509259 DOI: 10.1111/febs.16471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Regulation of glycogen metabolism is of vital importance in organisms of all three kingdoms of life. Although the pathways involved in glycogen synthesis and degradation are well known, many regulatory aspects around the metabolism of this polysaccharide remain undeciphered. Here, we used the unicellular cyanobacterium Synechocystis as a model to investigate how glycogen metabolism is regulated in nitrogen-starved dormant cells, which entirely rely on glycogen catabolism to resume growth upon nitrogen repletion. We identified phosphoglucomutase 1 (PGM1) as a key regulatory point in glycogen metabolism, and post-translational modification as an essential mechanism for controlling its activity. We could show that PGM1 is phosphorylated ata residue in the regulatory latch domain (Ser 47) during nitrogen starvation, which inhibits its activity. Inactivation of PGM1 by phosphorylation at Ser 47 prevents premature degradation of the glycogen stores and appears to be essential for survival of Synechocystis in the dormant state. Remarkably, this regulatory mechanism seems to be evolutionary conserved in PGM1 enzymes, from bacteria to humans.
Collapse
Affiliation(s)
- Sofía Doello
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| |
Collapse
|
31
|
PGM1 and ENO1 Promote the Malignant Progression of Bladder Cancer via Comprehensive Analysis of the m6A Signature and Tumor Immune Infiltration. JOURNAL OF ONCOLOGY 2022; 2022:8581805. [PMID: 35251177 PMCID: PMC8894041 DOI: 10.1155/2022/8581805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
Abstract
Background While N6-methyladenosine (m6A) modification of RNA and the tumor immune microenvironment both influence the progression of cancer, little attention has been paid to interactions between these two factors. Thus, we systematically explored potential biomarkers in the malignant progression of bladder urothelial carcinoma (BLCA) via combining expression of m6A methylation regulators with tumor immune infiltration. Methods We extracted m6A regulators from published literature, downloaded BLCA RNA-seq and clinical information from the Cancer Genome Atlas database, and integrated three main bioinformatic methods and qPCR to explore the biological variations in the malignant progression of BLCA. Results FTO, IGF2BP3, and YTHDC1 have a significant difference in bladder cancer and prognosis. Two subgroups (clusters 1 and 2) were identified according to three key m6A regulators; cluster 1 was preferentially associated with poor prognosis and immune infiltration relative to cluster 2 significantly. We further identified PGM1 and ENO1 as potential prognostic biomarkers, as they were correlated with FTO and IGF2BP3 positively but with YTHDC1, negatively. M2 macrophage and TFH cells were highly infiltrated in BLCA and were associated with BLCA prognosis. Finally, PGM1 and ENO1 were correlated with M2 macrophage and TFH cells and their surface markers CD163and CXCR5. Conclusions PGM1 and ENO1 are highly correlated with the malignant progression of BLCA, and the expression of these genes may be new indicators for the diagnosis and prognosis of BLCA.
Collapse
|
32
|
Fang Y, Pei S, Huang K, Xu F, Xiang G, Lan L, Zheng X. Single-Cell Transcriptome Reveals the Metabolic and Clinical Features of a Highly Malignant Cell Subpopulation in Pancreatic Ductal Adenocarcinoma. Front Cell Dev Biol 2022; 10:798165. [PMID: 35252177 PMCID: PMC8894596 DOI: 10.3389/fcell.2022.798165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a high mortality rate. PDAC exhibits significant heterogeneity as well as alterations in metabolic pathways that are associated with its malignant progression. In this study, we explored the metabolic and clinical features of a highly malignant subgroup of PDAC based on single-cell transcriptome technology.Methods: A highly malignant cell subpopulation was identified at single-cell resolution based on the expression of malignant genes. The metabolic landscape of different cell types was analyzed based on metabolic pathway gene sets. In vitro experiments to verify the biological functions of the marker genes were performed. PDAC patient subgroups with highly malignant cell subpopulations were distinguished according to five glycolytic marker genes. Five glycolytic highly malignant-related gene signatures were used to construct the glycolytic highly malignant-related genes signature (GHS) scores.Results: This study identified a highly malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. The analysis of the metabolic pathway revealed that highly malignant cells had an abnormally active metabolism, and enhanced glycolysis was a major metabolic feature. Five glycolytic marker genes that accounted for the highly malignant cell subpopulations were identified, namely, EN O 1, LDHA, PKM, PGK1, and PGM1. An in vitro cell experiment showed that proliferation rates of PANC-1 and CFPAC-1 cell lines decreased after knockdown of these five genes. Patients with metabolic profiles of highly malignant cell subpopulations exhibit clinical features of higher mortality, higher mutational burden, and immune deserts. The GHS score evaluated using the five marker genes was an independent prognostic factor for patients with PDAC.Conclusion: We revealed a subpopulation of highly malignant cells in PDAC with enhanced glycolysis as the main metabolic feature. We obtained five glycolytic marker gene signatures, which could be used to identify PDAC patient subgroups with highly malignant cell subpopulations, and proposed a GHS prognostic score.
Collapse
Affiliation(s)
- Yangyang Fang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shunjie Pei
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Kaizhao Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Xu
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Guangxin Xiang
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Linhua Lan, ; Xiaoqun Zheng,
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Linhua Lan, ; Xiaoqun Zheng,
| |
Collapse
|
33
|
Chen B, Zheng S, Jiang F. miR-1293 acts as a tumor promotor in lung adenocarcinoma via targeting phosphoglucomutase 5. PeerJ 2021; 9:e12140. [PMID: 34616611 PMCID: PMC8450003 DOI: 10.7717/peerj.12140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Studies have found that miR-1293 is related to the survival of LUAD patients. Unfortunately, its role in LUAD remains not fully clarified. Methods miR-1293 expression and its association with LUAD patients’ clinical characteristics were analyzed in TCGA database. Also, miR-1293 expression was detected in LUAD cell lines. Cell viability, migration, invasion and expression of MMP2 and MMP9 were measured in LUAD cells following transfection with miR-1293 mimic or antagomir. Phosphoglucomutase (PGM) 5 was identified to be negatively related to miR-1293 in LUAD patients in TCGA database, and their association was predicated by Targetscan software. Hence, we further verified the relationship between miR-1293 and PGM5. Additionally, the effect and mechanism of miR-1293 were validated in a xenograft mouse model. Results We found miR-1293 expression was elevated, but PGM5 was decreased, in LUAD patients and cell lines. Higher miR-1293 expression was positively related to LUAD patients’ pathologic stage and poor overall survival. miR-1293 mimic significantly promoted, whereas miR-1293 antagomir suppressed the viability, migration, invasion, and expression of MMP2 and MMP9 in LUAD cells. PGM5 was a target of miR-1293. Overexpression of PGM5 abrogated the effects of miR-1293 on the malignant phenotypes of LUAD cells. Administration of miR-1293 antagomir reduced tumor volume and staining of Ki-67 and MMP9, but elevated PGM5 expression in vivo. Conclusions miR-1293 promoted the proliferation, migration and invasion of LUAD cells via targeting PGM5, which indicated that miR-1293 might serve as a potential therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Bing Chen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
34
|
Cao B, Deng H, Cui H, Zhao R, Li H, Wei B, Chen L. Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation. Cancer Cell Int 2021; 21:481. [PMID: 34507580 PMCID: PMC8434706 DOI: 10.1186/s12935-021-02193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Background Phosphoglucomutase 1 (PGM1) acts as an important regulator in glucose metabolism. However, the role of PGM1 in gastric cancer (GC) remains unclear. This study aims to investigate the role of PGM1 and develop novel regimens based on metabolic reprogramming in GC. Methods Correlation and enrichment analyses of PGM1 were conducted based on The Cancer Genome Atlas database. Data derived from the Kaplan–Meier Plotter database were analyzed to evaluate correlations between PGM1 expression and survival time of GC patients. Cell counting kit-8, 5-Ethynyl-2-deoxyuridine, flow cytometry assays, generation of subcutaneous tumor and lung metastasis mouse models were used to determine growth and metastasis in vitro and in vivo. Cell glycolysis was detected by a battery of glycolytic indicators, including lactate, pyruvic acid, ATP production and glucose uptake. Fatty Acid Synthase (FASN) activity and expression levels of lipid enzymes were determined to reflect on lipid metabolism. Results Correlation and enrichment analyses suggested that PGM1 was closely associated with cell viability, proliferation and metabolism. PGM1 was overexpressed in GC tissues and cell lines. High PGM1 expression served as an indicator of shorter survival for specific subpopulation of GC patients. It was also correlated with pathological tumor stage and pathological tumor node metastasis stage of GC. Under the glucose deprivation condition, knockdown of PGM1 significantly suppressed cell viability, proliferation and glycolysis, whereas lipid metabolism was enhanced. Orlistat, as a drug that was designed to inhibit FASN activity, effectively induced apoptosis and suppressed lipid metabolism in GC. However, orlistat conversely increased glycolytic levels. Orlistat exhibited more significant inhibitive effects on GC progression after knockdown of PGM1 under glucose deprivation due to combination of glycolysis and lipid metabolism both in vitro and in vivo. Conclusions Downregulation of PGM1 expression under glucose deprivation enhanced anti-cancer effects of orlistat. This combination application may serve as a novel strategy for GC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02193-3.
Collapse
Affiliation(s)
- Bo Cao
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Huan Deng
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruiyang Zhao
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hanghang Li
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Wei
- Medical School of Chinese PLA, Beijing, 100853, China. .,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Chen
- Medical School of Chinese PLA, Beijing, 100853, China. .,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
35
|
Armas P, Coux G, Weiner AMJ, Calcaterra NB. What's new about CNBP? Divergent functions and activities for a conserved nucleic acid binding protein. Biochim Biophys Acta Gen Subj 2021; 1865:129996. [PMID: 34474118 DOI: 10.1016/j.bbagen.2021.129996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cellular nucleic acid binding protein (CNBP) is a conserved single-stranded nucleic acid binding protein present in most eukaryotes, but not in plants. Expansions in the CNBP gene cause myotonic dystrophy type 2. Initially reported as a transcriptional regulator, CNBP was then also identified acting as a translational regulator. SCOPE OF REVIEW The focus of this review was to link the CNBP structural features and newly reported biochemical activities with the recently described biological functions, in the context of its pathological significance. MAJOR CONCLUSIONS Several post-translational modifications affect CNBP subcellular localization and activity. CNBP participates in the transcriptional and translational regulation of a wide range of genes by remodeling single-stranded nucleic acid secondary structures and/or by modulating the activity of trans-acting factors. CNBP is required for proper neural crest and heart development, and plays a role in cell proliferation control. Besides, CNBP has been linked with neurodegenerative, inflammatory, and congenital diseases, as well as with tumor processes. GENERAL SIGNIFICANCE This review provides an insight into the growing functions of CNBP in cell biology. A unique and robust mechanistic or biochemical connection among these roles has yet not been elucidated. However, the ability of CNBP to dynamically integrate signaling pathways and to act as nucleic acid chaperone may explain most of the roles and functions identified so far.
Collapse
Affiliation(s)
- Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Gabriela Coux
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
36
|
Pan B, Yang M, Wei X, Li W, Wang K, Yang M, Lu D, Wang R, Cen B, Xu X. Interleukin-2 inducible T-cell kinase: a potential prognostic biomarker and tumor microenvironment remodeling indicator for hepatocellular carcinoma. Aging (Albany NY) 2021; 13:18620-18644. [PMID: 34282055 PMCID: PMC8351695 DOI: 10.18632/aging.203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
Background: The heterogeneous tumor microenvironment (TME) contributes to poor prognosis of hepatocellular carcinoma (HCC). However, determining the modulation of TME during HCC progression remains a challenge. Methods: Herein, the stromal score and immune score of HCC samples from The Cancer Genome Atlas database were calculated using the ESTIMATE algorithm and differentially expressed genes (DEGs) were obtained. Key DEGs were identified based on a protein-protein interaction network and survival analysis. Immunohistochemistry was carried out using primary samples to evaluate key DEGs expression. The CIBERSORT algorithm was applied to evaluate immune components. Gene Set Enrichment Analysis (GSEA) and correlation analysis were carried out to determine the relationship between key DEGs and tumor-infiltrating immune cells (TICs). Results: The stromal score, immune score and estimate score correlated significantly with 1-year recurrence-free survival of patients with HCC. Interleukin-2 inducible T-cell kinase (ITK) was identified as the most prognostic DEG for patients with HCC. GSEA revealed that genes in the high ITK subgroup were enriched in inflammatory-immunological terms. CIBERSORT analysis identified nine TIC subsets that correlated with ITK expression. Conclusion: We identified ITK as a novel indicator for early post-surgery tumor recurrence and microenvironment remodeling in HCC, providing a potential therapeutic target to treat HCC.
Collapse
Affiliation(s)
- Binhua Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Wangyao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Kun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Mengfan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Rui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Zhejiang University Cancer Center, Hangzhou 310058, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
37
|
Li Q, Jin L, Jin M. Novel Hypoxia-Related Gene Signature for Risk Stratification and Prognosis in Hepatocellular Carcinoma. Front Genet 2021; 12:613890. [PMID: 34194464 PMCID: PMC8236897 DOI: 10.3389/fgene.2021.613890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer with limited therapeutic options and low survival rate. The hypoxic microenvironment plays a vital role in progression, metabolism, and prognosis of malignancies. Therefore, this study aims to develop and validate a hypoxia gene signature for risk stratification and prognosis prediction of HCC patients. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases were used as a training cohort, and one Gene Expression Omnibus database (GSE14520) was served as an external validation cohort. Our results showed that eight hypoxia-related genes (HRGs) were identified by the least absolute shrinkage and selection operator analysis to develop the hypoxia gene signature and demarcated HCC patients into the high- and low-risk groups. In TCGA, ICGC, and GSE14520 datasets, patients in the high-risk group had worse overall survival outcomes than those in the low-risk group (all log-rank P < 0.001). Besides, the risk score derived from the hypoxia gene signature could serve as an independent prognostic factor for HCC patients in the three independent datasets. Finally, a nomogram including the gene signature and tumor-node-metastasis stage was constructed to serve clinical practice. In the present study, a novel hypoxia signature risk model could reflect individual risk classification and provide therapeutic targets for patients with HCC. The prognostic nomogram may help predict individualized survival.
Collapse
Affiliation(s)
- Quanxiao Li
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Limin Jin
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Meng Jin
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
miR-1224-3p Promotes Breast Cancer Cell Proliferation and Migration through PGM5-Mediated Aerobic Glycolysis. JOURNAL OF ONCOLOGY 2021; 2021:5529770. [PMID: 33986801 PMCID: PMC8079189 DOI: 10.1155/2021/5529770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming of aerobic glycolysis is a hallmark of cancer cells. Regulators of aerobic glycolysis have become targets for cancer diagnosis and therapy. However, the regulators of aerobic glycolysis in breast cancer development have not been well elucidated. Here, we show that the phosphoglucomutase (PGM) family member PGM5 promotes conversion of glucose-1-phosphate (G1P) into glucose-6-phosphate (G6P) and inhibits breast cancer cell proliferation and migration through regulating aerobic glycolysis. In breast cancer patients, PGM5 is significantly downregulated, and its low expression is a predictor of poor prognosis. MicroRNA-1224-3p (miR-1224-3p) inhibits the PGM5 level through directly targeting its 3'-untranslated region and suppresses PGM5-mediated breast cancer cell proliferation, migration, and glycolytic function. Moreover, the miR-1224-3p/PGM5 axis regulates the expression of cell cycle- and apoptosis-related genes and the markers of epithelial-mesenchymal transition (EMT), a process involved in migration and metastasis of cancer cells. Taken together, our results indicate that miR-1224-3p/PGM5 axis plays important roles in breast cancer cell proliferation, migration, and aerobic glycolysis and may be a potential target for breast cancer therapy.
Collapse
|
39
|
Zamanian-Azodi M, Khatoon Hajisayah S, Razzaghi M, Rezaei-Tavirani M. Introducing physical exercise as a potential strategy in liver cancer prevention and development. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:317-322. [PMID: 34659659 PMCID: PMC8514208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
AIM This study aimed to investigate the anticancer properties of physical activity by network analysis in trained rats. BACKGROUND Much evidence supports the benefits of physical activity, most of which are related to metabolism regulation and body health. Deeper investigation deals with other features of physical activity, such as its anticancer properties. METHODS Protein-protein interaction network analysis was applied to investigate the proteome profile of livers of rats subjected to physical activity through bioinformatics. Twelve differentially expressed proteins were searched and analyzed by Cytoscape 3.7.2 and its plug-ins. The network was analyzed to identify hub-bottleneck nodes. An action map was constructed for the central proteins. RESULTS Among the queried proteins, Eno1 and Pgm1 were only assigned as hubs by Network Analzyer. Gpi, Pkm, Aldoa, and Aldoart2 were identified as central nodes among the first neighbors of network elements. Furthermore, the glycolytic, carbohydrate catabolic, and glucose metabolic processes are key elements that could be imperative in the mechanism of exercise in liver function. The anticancer properties of the central nodes were highlighted. CONCLUSION The network findings indicate the anticancer properties of physical activity, which has also been supported by previous investigations.
Collapse
Affiliation(s)
- Mona Zamanian-Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Khatoon Hajisayah
- Department of Basic Sciences, School of Rehabilitation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohhamadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Gao ST, Girma DD, Bionaz M, Ma L, Bu DP. Hepatic transcriptomic adaptation from prepartum to postpartum in dairy cows. J Dairy Sci 2020; 104:1053-1072. [PMID: 33189277 DOI: 10.3168/jds.2020-19101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022]
Abstract
The transition from pregnancy to lactation is the most challenging period for high-producing dairy cows. The liver plays a key role in biological adaptation during the peripartum. Prior works have demonstrated that hepatic glucose synthesis, cholesterol metabolism, lipogenesis, and inflammatory response are increased or activated during the peripartum in dairy cows; however, those works were limited by a low number of animals used or by the use of microarray technology, or both. To overcome such limitations, an RNA sequencing analysis was performed on liver biopsies from 20 Holstein cows at 7 ± 5d before (Pre-P) and 16 ± 2d after calving (Post-P). We found 1,475 upregulated and 1,199 downregulated differently expressed genes (DEG) with a false discovery rate adjusted P-value < 0.01 between Pre-P and Post-P. Bioinformatic analysis revealed an activation of the metabolism, especially lipid, glucose, and amino acid metabolism, with increased importance of the mitochondria and a key role of several signaling pathways, chiefly peroxisome proliferators-activated receptor (PPAR) and adipocytokines signaling. Fatty acid oxidation and gluconeogenesis, with a likely increase in amino acid utilization to produce glucose, were among the most important functions revealed by the transcriptomic adaptation to lactation in the liver. Although gluconeogenesis was induced, data indicated decrease in expression of glucose transporters. The analysis also revealed high activation of cell proliferation but inhibition of xenobiotic metabolism, likely due to the liver response to inflammatory-like conditions. Co-expression network analysis disclosed a tight connection and coordination among genes driving biological processes associated with protein synthesis, energy and lipid metabolism, and cell proliferation. Our data confirmed the importance of metabolic adaptation to lipid and glucose metabolism in the liver of early Post-P cows, with a pivotal role of PPAR and adipocytokines.
Collapse
Affiliation(s)
- S T Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - D D Girma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - L Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
41
|
Development and validation of a novel metabolic signature for predicting prognosis in patients with laryngeal cancer. Eur Arch Otorhinolaryngol 2020; 278:1129-1138. [PMID: 33108563 DOI: 10.1007/s00405-020-06444-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Despite advances in the development of treatments for laryngeal cancer (LC), including surgical treatments and radio-chemotherapy, the survival rate of LC remains low. Therefore, novel metabolic signatures are urgently needed to evaluate the prognosis of LC patients. METHODS Differentially expressed metabolic genes were extracted via bioinformatics analysis from the raw data of The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and LASSO analyses were performed to identify metabolic genes that were significantly correlated with overall survival (OS). Using the Kaplan-Meier analysis and receiver operating characteristics, the prognostic power of candidate signatures was evaluated in the two databases. Gene Set Enrichment Analysis (GSEA) was performed to explore significant signaling pathways and underlying mechanisms in the high- and low-risk groups. RESULTS Thirteen metabolism genes showed superior ability to predict OS for LC when compared to clinical variables, and patients in the high-risk group showed significantly poorer OS than those in the low-risk group. The area under the curve of receiver operating curves for 5- and 3-year OS was 0.929 and 0.899, respectively, which were better than the OS obtained with clinicopathological variables. Similar results obtained in the GEO cohort indicated that this gene signature could differentiate between LC patients with and without recurrence. CONCLUSION To our knowledge, this study is the first to report that the 13 metabolic genes could serve as an independent biomarker for LC, which could provide vital prognostic information and prediction for personalized treatment of LC.
Collapse
|
42
|
Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X, Chen J. FOXK1 Participates in DNA Damage Response by Controlling 53BP1 Function. Cell Rep 2020; 32:108018. [PMID: 32783940 PMCID: PMC7458625 DOI: 10.1016/j.celrep.2020.108018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/28/2023] Open
Abstract
53BP1 plays a central role in dictating DNA repair choice between non-homologous end joining (NHEJ) and homologous recombination (HR), which is important for the sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPis) of BRCA1-deficient cancers. In this study, we show that FOXK1 associates with 53BP1 and regulates 53BP1-dependent functions. FOXK1-53BP1 interaction is significantly enhanced upon DNA damage during the S phase in an ATM/CHK2-dependent manner, which reduces the association of 53BP1 with its downstream factors RIF1 and PTIP. Depletion of FOXK1 impairs DNA repair and induces compromised cell survival upon DNA damage. Overexpression of FOXK1 diminishes 53BP1 foci formation, which leads to resistance to PARPis and elevation of HR in BRCA1-deficient cells and decreased telomere fusion in TRF2-depleted cells. Collectively, our findings demonstrate that FOXK1 negatively regulates 53BP1 function by inhibiting 53BP1 localization to sites of DNA damage, which alters the DSB-induced protein complexes centering on 53BP1 and thus influences DNA repair choice.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Metastasis of Uveal Melanoma with Monosomy-3 Is Associated with a Less Glycogenetic Gene Expression Profile and the Dysregulation of Glycogen Storage. Cancers (Basel) 2020; 12:cancers12082101. [PMID: 32751097 PMCID: PMC7463985 DOI: 10.3390/cancers12082101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
Collapse
|
44
|
Chen W, Wang Z, Xu W, Tian R, Zeng J. Dibutyl phthalate contamination accelerates the uptake and metabolism of sugars by microbes in black soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114332. [PMID: 32182534 DOI: 10.1016/j.envpol.2020.114332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Dibutyl phthalate (DBP) is widely used as plasticizer and has been detected in the environment, posing a threat to animal health. However, the effects of DBP on agricultural microbiomes are not known. In this study, DBP levels in black soil were evaluated, and the impact of DBP contamination on the uptake and metabolism of sugars in microbes was assessed by glucose absorption tests, metaproteomics, metabolomics, enzyme activity assays and computational simulation analysis. The results indicated that DBP contamination accelerated glucose consumption and upregulated the expression of porins and periplasmic monosaccharide ATP-binding cassette (ABC) transporter solute-binding proteins (SBPs). DBP and its metabolic intermediates (carboxymuconate and butanol) may form a stable complex with sugar transporters and enhance the rigidity and stability of these proteins. Sugar metabolism resulting in the generation of ATP and reducing agent (NADPH), as well as the expression of some key enzymes (dehydrogenases) were also upregulated by DBP treatment. Moreover, a diverse bacterial community appears to utilize sugar, suggesting that there are widespread effects of DBP contamination on soil microbial ecosystems. The results of this study provide a theoretical basis for investigating the toxicological effects of DBP on microbes in black soil.
Collapse
Affiliation(s)
- Wenjing Chen
- Center for Ecological Research, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China; College of Life Sciences, Agriculture and Forestry, Qiqihar University, Heilongjiang Province, Qiqihar, 161006, China.
| | - Zhigang Wang
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China; College of Life Sciences, Agriculture and Forestry, Qiqihar University, Heilongjiang Province, Qiqihar, 161006, China.
| | - Weihui Xu
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China; College of Life Sciences, Agriculture and Forestry, Qiqihar University, Heilongjiang Province, Qiqihar, 161006, China.
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, 60501, USA.
| | - Jin Zeng
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
45
|
Huang H, Cao S, Zhang Z, Li L, Chen F, Wu Q. Multiple omics analysis of the protective effects of SFN on estrogen-dependent breast cancer cells. Mol Biol Rep 2020; 47:3331-3346. [DOI: 10.1007/s11033-020-05403-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
|
46
|
RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis. Int Immunopharmacol 2020; 83:106432. [PMID: 32248017 DOI: 10.1016/j.intimp.2020.106432] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
M1/M2 macrophages polarization play important roles in regulating tissue homeostasis. Recently, RNA-binding motif 4 (RBM4) has been reported to modulate the proliferation and expression of inflammatory factors in HeLa cells. However, whether RBM4 is involved in regulating macrophage polarization and inflammatory factor expression are still unknown. In this study, RAW264.7, a mouse macrophage cell line, were stimulated with interferon γ (IFN-γ) or interleukin-4 (IL-4) to induce M1/M2 macrophages polarization. We found that IFN-γ, but not IL-4, stimulation decreased RBM4 expression in macrophages, and RBM4 overexpression inhibits IFN-γ-induced M1 macrophage polarization. Furthermore, RNA-Sequencing, protein immunoprecipitation accompanied with mass spectrometry, and extracellular acidification rate analysis showed that RBM4 suppresses IFN-γ-induced M1 macrophage polarization though inhibiting glycolysis. Moreover, RBM4 knockdown promoted IFN-γ-induced signal transducer and activator of transcription 1 (STAT1) activation via increasing STAT1 mRNA stability, leading to the increase of glycolysis-related gene transcripts regulated by STAT1. Finally, we find that RBM4 interacts with YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) to degrade m6A modified STAT1 mRNA, thereby regulating glycolysis and M1 macrophage polarization. Collectively, the current study firstly reports that RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis and shows that RBM4 is a possible candidate for regulating macrophage M1 polarization and inflammatory responses.
Collapse
|
47
|
Li Y, Liang R, Sun M, Li Z, Sheng H, Wang J, Xu P, Liu S, Yang W, Lu B, Zhang S, Shan C. AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Lett 2020; 478:82-92. [PMID: 32171858 DOI: 10.1016/j.canlet.2020.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Cancer cells undergo metabolic reprogramming to sustain their own survival under an environment of increased energy demand; however, the mechanism by which cancer cells ensure survival under glucose deprivation stressed conditions remains elusive. Here, we show that deprivation of glucose, dramatically activated the glycogen pathway, accompanied by elevated phosphoglucomutase 1 (PGM1) expression. We further identified that AMP-activated protein kinase (AMPK) stimulated PGM1 expression by inducing histone deacetylase 8 (HDAC8) phosphorylation. Moreover, we demonstrated that glucose deprivation-induced AMPK activation stimulated the translocation of HDAC8 from the nucleus to the cytoplasm, consequently disrupting the binding between HDAC8 and histone 3. PGM1 expression was also found to be critical for lung cancer glycolysis, the oxidative pentose phosphate pathway, and oxidative phosphorylation under glucose deprivation conditions, and further led to the aberrant expression of metabolic enzymes involved in glucose metabolism mediated by ERK1/2. Finally, PGM1 was found to be highly expressed in lung cancer tissues from patients, which correlated with a poor prognosis. Taken together, these results revealed that AMPK activation by glucose deprivation leads to enhanced PGM1 expression, an essential component of the metabolic switch, to facilitate cancer progression, suggesting PGM1 as promising anti-cancer treatment targets.
Collapse
Affiliation(s)
- Yanping Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China; Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Ronghui Liang
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Zhen Li
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hao Sheng
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Pengjuan Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangping Liu
- Department of Pathology, Medical School, Dalian University, Dalian, Liaoning, 116622, China
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Bin Lu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
48
|
Pan BY, Liu YK, Wu HK, Pang XQ, Wang SG, Tang B, Xu CD. Role of phosphoglucomutase in regulating trehalose metabolism in Nilaparvata lugens. 3 Biotech 2020; 10:61. [PMID: 32030330 PMCID: PMC6977789 DOI: 10.1007/s13205-020-2053-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 11/30/2022] Open
Abstract
Phosphoglucomutase (PGM) is a key enzyme in glycolysis and gluconeogenesis, regulating both glycogen and trehalose metabolism in insects. In this study, we explored the potential function of phosphoglucomutase (PGM) using RNA interference technology in Nilaparvata lugens, the brown planthopper. PGM1 and PGM2 were found highly expressed in the midgut of brown planthoppers, with different expression levels in different instar nymphs. The glycogen, glucose, and trehalose levels were also significantly increased after brown planthoppers were injected with dsRNA targeting PGM1 (dsPGM1) or PGM2 (dsPGM2). In addition, injection of dsPGM1 or dsPGM2 resulted in increased membrane-bound trehalase activity but not soluble trehalase activity. Furthermore, the expression of genes related to trehalose and glycogen metabolism decreased significantly after injection with dsPGM1 and dsPGM2. The expression levels of genes involved in chitin metabolism in the brown planthopper were also significantly decreased and the insects showed wing deformities and difficulty molting following RNAi. We suggest that silencing of PGM1 and PGM2 expression directly inhibits trehalose metabolism, leading to impaired chitin synthesis.
Collapse
Affiliation(s)
- Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Yong-Kang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Hong-Kai Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Xiao-Qing Pang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Cai-Di Xu
- College of Education, Hangzhou
Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| |
Collapse
|
49
|
Dai S, Peng Y, Zhu Y, Xu D, Zhu F, Xu W, Chen Q, Zhu X, Liu T, Hou C, Wu J, Miao Y. Glycolysis promotes the progression of pancreatic cancer and reduces cancer cell sensitivity to gemcitabine. Biomed Pharmacother 2019; 121:109521. [PMID: 31689601 DOI: 10.1016/j.biopha.2019.109521] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 01/24/2023] Open
Abstract
Previous studies have reported that increased glycolytic activity enhances chemotherapy resistance in some types of malignancies. However, whether glycolysis influences the curative effect of gemcitabine (GEM) on pancreatic cancer (PC) cells remains unclear. The aim of this study was to investigate the status of glycolysis in PC and its association with tolerance to GEM. Data from The Cancer Genome Atlas (TCGA) were used to analyze the correlation between glycolysis-related gene (GRG) expression and PC progression and prognosis. 2-Deoxy-D-glucose (2-DG) was applied to assess the effect of glycolysis inhibition on PC cell death and GEM tolerance. Expression of some GRGs, such as HK1, GAPDH, PKM2, and LDHA, was significantly associated with the prognosis of PC. Furthermore, HK1, PKLR, and LDHA expression correlated positively with PC progression. Further analysis revealed that cancer cell death was markedly enhanced following glycolysis inhibition and that the sensitivity of cancer cells to GEM was notably increased in the presence of 2-DG. Our findings indicate that abnormally increased glycolytic activity promotes the development of PC and enhances drug tolerance to GEM. 2-DG combined with GEM is a potential therapy for PC.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yunpeng Peng
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yi Zhu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Dalai Xu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Feng Zhu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Wenbin Xu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Qiuyang Chen
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Xiaole Zhu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Tongtai Liu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Chaoqun Hou
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Junli Wu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
50
|
Zhang XC, Gu AP, Zheng CY, Li YB, Liang HF, Wang HJ, Tang XL, Bai XX, Cai J. YY1/LncRNA GAS5 complex aggravates cerebral ischemia/reperfusion injury through enhancing neuronal glycolysis. Neuropharmacology 2019; 158:107682. [DOI: 10.1016/j.neuropharm.2019.107682] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/29/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
|