1
|
Cohen JL, De Bie F, Viaene AN, O'Grady N, Rentas S, Coons B, Moon JK, Monson EE, Myers RA, Kalish JM, Flake AW. Extrauterine support of pre-term lambs achieves similar transcriptomic profiling to late pre-term lamb brains. Sci Rep 2024; 14:28840. [PMID: 39572605 PMCID: PMC11582712 DOI: 10.1038/s41598-024-79095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
Our group has developed an extra-uterine environment for newborn development (EXTEND) using an ovine model, that aims to mimic the womb to improve short and long-term health outcomes associated with prematurity. This study's objective was to determine the histologic and transcriptomic consequences of EXTEND on the brain. Histology and RNA-sequencing was conducted on brain tissue from three cohorts of lambs: control pre-term (106-107 days), control late pre-term (127 days), and EXTEND lambs who were born pre-term and supported on EXTEND until late pre-term age (125-128 days). Bioinformatic analysis determined differential gene expression among the three cohorts and across four different brain tissue sections: basal ganglia, cerebellum, hippocampus, and motor cortex. There were no clinically relevant histological differences between the control late pre-term and EXTEND ovine brain tissues. RNA-sequencing demonstrated that there was greater differential gene expression between the control pre-term lambs and EXTEND lambs than between the control late pre-term lambs and EXTEND lambs (Supplemental Figs. 1 and 2). Our study demonstrates that the use of EXTEND to support pre-term lambs until they reach late pre-term gestational age results in brain tissue gene expression that more closely resembles that of the lambs who reached late pre-term gestation within their maternal sheep's womb than that of the lambs who were born prematurely.
Collapse
Affiliation(s)
- Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, 905 S. Lasalle Street, Durham, NC, 27710, USA.
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Departments of Pediatrics and Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Felix De Bie
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Stefan Rentas
- Department of Pathology, Duke University, Durham, NC, USA
| | - Barbara Coons
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James K Moon
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric E Monson
- Center for Data and Visualization Sciences, Duke University Libraries, Durham, NC, USA
| | - Rachel A Myers
- Department of Medicine, Duke University, Durham, NC, USA
| | - Jennifer M Kalish
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Departments of Pediatrics and Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alan W Flake
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ball G, Oldham S, Kyriakopoulou V, Williams LZJ, Karolis V, Price A, Hutter J, Seal ML, Alexander-Bloch A, Hajnal JV, Edwards AD, Robinson EC, Seidlitz J. Molecular signatures of cortical expansion in the human foetal brain. Nat Commun 2024; 15:9685. [PMID: 39516464 PMCID: PMC11549424 DOI: 10.1038/s41467-024-54034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The third trimester of human gestation is characterised by rapid increases in brain volume and cortical surface area. Recent studies have revealed a remarkable molecular diversity across the prenatal cortex but little is known about how this diversity translates into the differential rates of cortical expansion observed during gestation. We present a digital resource, μBrain, to facilitate knowledge translation between molecular and anatomical descriptions of the prenatal brain. Using μBrain, we evaluate the molecular signatures of preferentially-expanded cortical regions, quantified in utero using magnetic resonance imaging. Our findings demonstrate a spatial coupling between areal differences in the timing of neurogenesis and rates of neocortical expansion during gestation. We identify genes, upregulated from mid-gestation, that are highly expressed in rapidly expanding neocortex and implicated in genetic disorders with cognitive sequelae. The μBrain atlas provides a tool to comprehensively map early brain development across domains, model systems and resolution scales.
Collapse
Affiliation(s)
- G Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - S Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - V Kyriakopoulou
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - L Z J Williams
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - V Karolis
- Centre for the Developing Brain, King's College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Price
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - J Hutter
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - M L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - A Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - J V Hajnal
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - A D Edwards
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - E C Robinson
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - J Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Zhao Z, Shuai Y, Wu Y, Xu X, Li M, Wu D. Age-dependent functional development pattern in neonatal brain: An fMRI-based brain entropy study. Neuroimage 2024; 297:120669. [PMID: 38852805 DOI: 10.1016/j.neuroimage.2024.120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
The relationship between brain entropy (BEN) and early brain development has been established through animal studies. However, it remains unclear whether the BEN can be used to identify age-dependent functional changes in human neonatal brains and the genetic underpinning of the new neuroimaging marker remains to be elucidated. In this study, we analyzed resting-state fMRI data from the Developing Human Connectome Project, including 280 infants who were scanned at 37.5-43.5 weeks postmenstrual age. The BEN maps were calculated for each subject, and a voxel-wise analysis was conducted using a general linear model to examine the effects of age, sex, and preterm birth on BEN. Additionally, we evaluated the correlation between regional BEN and gene expression levels. Our results demonstrated that the BEN in the sensorimotor-auditory and association cortices, along the 'S-A' axis, was significantly positively correlated with postnatal age (PNA), and negatively correlated with gestational age (GA), respectively. Meanwhile, the BEN in the right rolandic operculum correlated significantly with both GA and PNA. Preterm-born infants exhibited increased BEN values in widespread cortical areas, particularly in the visual-motor cortex, when compared to term-born infants. Moreover, we identified five BEN-related genes (DNAJC12, FIG4, STX12, CETN2, and IRF2BP2), which were involved in protein folding, synaptic vesicle transportation and cell division. These findings suggest that the fMRI-based BEN can serve as an indicator of age-dependent brain functional development in human neonates, which may be influenced by specific genes.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yifan Shuai
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yihan Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Genc S, Ball G, Chamberland M, Raven EP, Tax CM, Ward I, Yang JYM, Palombo M, Jones DK. MRI signatures of cortical microstructure in human development align with oligodendrocyte cell-type expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605934. [PMID: 39131383 PMCID: PMC11312524 DOI: 10.1101/2024.07.30.605934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial processes, increased with age (mean R2 fneurite=.53, p<3.3e-11, 11.91% increase over age), while apparent soma radius decreased (mean R2 Rsoma=.48, p<4.4e-10, 1% decrease over age) across domain-specific networks. To complement these findings, developmental patterns of cortical gene expression in two independent post-mortem databases were analysed. This revealed increased expression of genes expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (pFDR<.001) and prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that ongoing cortical myelination processes contribute to adolescent cortical development. These findings highlight the role of intra-cortical myelination in cortical maturation during adolescence and into adulthood.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gareth Ball
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, The Netherlands
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Chantal Mw Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isobel Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Data and Analysis for Social Care and Health, Office for National Statistics, Newport, United Kingdom
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Vogel JW, Alexander-Bloch AF, Wagstyl K, Bertolero MA, Markello RD, Pines A, Sydnor VJ, Diaz-Papkovich A, Hansen JY, Evans AC, Bernhardt B, Misic B, Satterthwaite TD, Seidlitz J. Deciphering the functional specialization of whole-brain spatiomolecular gradients in the adult brain. Proc Natl Acad Sci U S A 2024; 121:e2219137121. [PMID: 38861593 PMCID: PMC11194492 DOI: 10.1073/pnas.2219137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.
Collapse
Affiliation(s)
- Jacob W. Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden202 13
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, LondonWC1N 3AR, United Kingdom
| | - Maxwell A. Bertolero
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Ross D. Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Adam Pines
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Diaz-Papkovich
- Quantitative Life Sciences, McGill University, Montreal, QCH3A 1E3, Canada
- McGill Genome Centre, McGill University, Montreal, QCH3A 0G1, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
6
|
Mao W, Chen Y, He Z, Wang Z, Xiao Z, Sun Y, He L, Zhou J, Guo W, Ma C, Zhao L, Kendrick KM, Zhou B, Becker B, Liu T, Zhang T, Jiang X. Brain Structural Connectivity Guided Vision Transformers for Identification of Functional Connectivity Characteristics in Preterm Neonates. IEEE J Biomed Health Inform 2024; 28:2223-2234. [PMID: 38285570 DOI: 10.1109/jbhi.2024.3355020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Preterm birth is the leading cause of death in children under five years old, and is associated with a wide sequence of complications in both short and long term. In view of rapid neurodevelopment during the neonatal period, preterm neonates may exhibit considerable functional alterations compared to term ones. However, the identified functional alterations in previous studies merely achieve moderate classification performance, while more accurate functional characteristics with satisfying discrimination ability for better diagnosis and therapeutic treatment is underexplored. To address this problem, we propose a novel brain structural connectivity (SC) guided Vision Transformer (SCG-ViT) to identify functional connectivity (FC) differences among three neonatal groups: preterm, preterm with early postnatal experience, and term. Particularly, inspired by the neuroscience-derived information, a novel patch token of SC/FC matrix is defined, and the SC matrix is then adopted as an effective mask into the ViT model to screen out input FC patch embeddings with weaker SC, and to focus on stronger ones for better classification and identification of FC differences among the three groups. The experimental results on multi-modal MRI data of 437 neonatal brains from publicly released Developing Human Connectome Project (dHCP) demonstrate that SCG-ViT achieves superior classification ability compared to baseline models, and successfully identifies holistically different FC patterns among the three groups. Moreover, these different FCs are significantly correlated with the differential gene expressions of the three groups. In summary, SCG-ViT provides a powerfully brain-guided pipeline of adopting large-scale and data-intensive deep learning models for medical imaging-based diagnosis.
Collapse
|
7
|
Galdi P, Cabez MB, Farrugia C, Vaher K, Williams LZJ, Sullivan G, Stoye DQ, Quigley AJ, Makropoulos A, Thrippleton MJ, Bastin ME, Richardson H, Whalley H, Edwards AD, Bajada CJ, Robinson EC, Boardman JP. Feature similarity gradients detect alterations in the neonatal cortex associated with preterm birth. Hum Brain Mapp 2024; 45:e26660. [PMID: 38488444 PMCID: PMC10941526 DOI: 10.1002/hbm.26660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- School of InformaticsUniversity of EdinburghEdinburghUK
| | | | - Christine Farrugia
- Faculty of EngineeringUniversity of MaltaVallettaMalta
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
| | - Kadi Vaher
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Logan Z. J. Williams
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - Gemma Sullivan
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - David Q. Stoye
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | | | | | | | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Hilary Richardson
- School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Heather Whalley
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
| | - A. David Edwards
- Centre for the Developing BrainKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Claude J. Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
- Department of Physiology and Biochemistry, Faculty of Medicine and SurgeryUniversity of MaltaVallettaMalta
| | - Emma C. Robinson
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - James P. Boardman
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Khodosevich K, Dragicevic K, Howes O. Drug targeting in psychiatric disorders - how to overcome the loss in translation? Nat Rev Drug Discov 2024; 23:218-231. [PMID: 38114612 DOI: 10.1038/s41573-023-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
In spite of major efforts and investment in development of psychiatric drugs, many clinical trials have failed in recent decades, and clinicians still prescribe drugs that were discovered many years ago. Although multiple reasons have been discussed for the drug development deadlock, we focus here on one of the major possible biological reasons: differences between the characteristics of drug targets in preclinical models and the corresponding targets in patients. Importantly, based on technological advances in single-cell analysis, we propose here a framework for the use of available and newly emerging knowledge from single-cell and spatial omics studies to evaluate and potentially improve the translational predictivity of preclinical models before commencing preclinical and, in particular, clinical studies. We believe that these recommendations will improve preclinical models and the ability to assess drugs in clinical trials, reducing failure rates in expensive late-stage trials and ultimately benefitting psychiatric drug discovery and development.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
| | - Katarina Dragicevic
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
9
|
Lynch KM, Cabeen RP, Toga AW. Spatiotemporal patterns of cortical microstructural maturation in children and adolescents with diffusion MRI. Hum Brain Mapp 2024; 45:e26528. [PMID: 37994234 PMCID: PMC10789199 DOI: 10.1002/hbm.26528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Neocortical maturation is a dynamic process that proceeds in a hierarchical manner; however, the spatiotemporal organization of cortical microstructure with diffusion MRI has yet to be fully defined. This study characterized cortical microstructural maturation using diffusion MRI (fwe-diffusion tensor imaging [DTI] and neurite orientation dispersion and density imaging [NODDI] multicompartment modeling) in a cohort of 637 children and adolescents between 8 and 21 years of age. We found spatially heterogeneous developmental patterns broadly demarcated into functional domains where NODDI metrics increased, and fwe-DTI metrics decreased with age. By applying nonlinear growth models in a vertex-wise analysis, we observed a general posterior-to-anterior pattern of maturation, where the fwe-DTI measures mean diffusivity and radial diffusivity reached peak maturation earlier than the NODDI metrics neurite density index. Using non-negative matrix factorization, we found occipito-parietal cortical regions that correspond to lower order sensory domains mature earlier than fronto-temporal higher order association domains. Our findings corroborate previous histological and neuroimaging studies that show spatially varying patterns of cortical maturation that may reflect unique developmental processes of cytoarchitectonically determined regional patterns of change.
Collapse
Affiliation(s)
- Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI)USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of MedicineLos AngelesCaliforniaUSA
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging (LONI)USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of MedicineLos AngelesCaliforniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI)USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of MedicineLos AngelesCaliforniaUSA
| |
Collapse
|
10
|
Oldham S, Ball G. A phylogenetically-conserved axis of thalamocortical connectivity in the human brain. Nat Commun 2023; 14:6032. [PMID: 37758726 PMCID: PMC10533558 DOI: 10.1038/s41467-023-41722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The thalamus enables key sensory, motor, emotive, and cognitive processes via connections to the cortex. These projection patterns are traditionally considered to originate from discrete thalamic nuclei, however recent work showing gradients of molecular and connectivity features in the thalamus suggests the organisation of thalamocortical connections occurs along a continuous dimension. By performing a joint decomposition of densely sampled gene expression and non-invasive diffusion tractography in the adult human thalamus, we define a principal axis of genetic and connectomic variation along a medial-lateral thalamic gradient. Projections along this axis correspond to an anterior-posterior cortical pattern and are aligned with electrophysiological properties of the cortex. The medial-lateral axis demonstrates phylogenetic conservation, reflects transitions in neuronal subtypes, and shows associations with neurodevelopment and common brain disorders. This study provides evidence for a supra-nuclear axis of thalamocortical organisation characterised by a graded transition in molecular properties and anatomical connectivity.
Collapse
Affiliation(s)
- Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Lynch KM, Cabeen RP, Toga AW. Spatiotemporal patterns of cortical microstructural maturation in children and adolescents with diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.534636. [PMID: 37034810 PMCID: PMC10081273 DOI: 10.1101/2023.03.31.534636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neocortical maturation is a dynamic process that proceeds in a hierarchical manner; however, the spatiotemporal organization of cortical microstructure with diffusion MRI has yet to be fully defined. This study characterized cortical microstructural maturation using diffusion MRI (fwe-DTI and NODDI multi-compartment modeling) in a cohort of 637 children and adolescents between 8 and 21 years of age. We found spatially heterogeneous developmental patterns broadly demarcated into functional domains where NODDI metrics increased and fwe-DTI metrics decreased with age. Using non-negative matrix factorization, we found cortical regions that correspond to lower-order sensory regions mature earlier than higher-order association regions. Our findings corroborate previous histological and neuroimaging studies that show spatially-varying patterns of cortical maturation that may reflect unique developmental processes of cytoarchitectonically-determined regional patterns of change.
Collapse
Affiliation(s)
- Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
13
|
Wang W, Yu Q, Liang W, Xu F, Li Z, Tang Y, Liu S. Altered cortical microstructure in preterm infants at term-equivalent age relative to term-born neonates. Cereb Cortex 2023; 33:651-662. [PMID: 35259759 DOI: 10.1093/cercor/bhac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Preterm (PT) birth is a potential factor for abnormal brain development. Although various alterations of cortical structure and functional connectivity in preterm infants have been reported, the underlying microstructural foundation is still undetected thoroughly in PT infants relative to full-term (FT) neonates. To detect the very early cortical microstructural alteration noninvasively with advanced neurite orientation dispersion and density imaging (NODDI) on a whole-brain basis, we used multi-shell diffusion MRI of healthy newborns selected from the Developing Human Connectome Project. 73 PT infants and 69 FT neonates scanned at term-equivalent age were included in this study. By extracting the core voxels of gray matter (GM) using GM-based spatial statistics (GBSS), we found that comparing to FT neonates, infants born preterm showed extensive lower neurite density in both primary and higher-order association cortices (FWE corrected, P < 0.025). Higher orientation dispersion was only found in very preterm subgroup in the orbitofrontal cortex, fronto-insular cortex, entorhinal cortex, a portion of posterior cingular gyrus, and medial parieto-occipital cortex. This study provided new insights into exploring structural MR for functional and behavioral variations in preterm population, and these findings may have marked clinical importance, particularly in the guidance of ameliorating the development of premature brain.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuoran Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
14
|
Ganesh S, Vemula A, Bhattacharjee S, Mathew K, Ithal D, Navin K, Nadella RK, Viswanath B, Sullivan PF, Jain S, Purushottam M. Whole exome sequencing in dense families suggests genetic pleiotropy amongst Mendelian and complex neuropsychiatric syndromes. Sci Rep 2022; 12:21128. [PMID: 36476812 PMCID: PMC9729597 DOI: 10.1038/s41598-022-25664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Whole Exome Sequencing (WES) studies provide important insights into the genetic architecture of serious mental illness (SMI). Genes that are central to the shared biology of SMIs may be identified by WES in families with multiple affected individuals with diverse SMI (F-SMI). We performed WES in 220 individuals from 75 F-SMI families and 60 unrelated controls. Within pedigree prioritization employed criteria of rarity, functional consequence, and sharing by ≥ 3 affected members. Across the sample, gene and gene-set-wide case-control association analysis was performed with Sequence Kernel Association Test (SKAT). In 14/16 families with ≥ 3 sequenced affected individuals, we identified a total of 78 rare predicted deleterious variants in 78 unique genes shared by ≥ 3 members with SMI. Twenty (25%) genes were implicated in monogenic CNS syndromes in OMIM (OMIM-CNS), a fraction that is a significant overrepresentation (Fisher's Exact test OR = 2.47, p = 0.001). In gene-set SKAT, statistically significant association was noted for OMIM-CNS gene-set (SKAT-p = 0.005) but not the synaptic gene-set (SKAT-p = 0.17). In this WES study in F-SMI, we identify private, rare, protein altering variants in genes previously implicated in Mendelian neuropsychiatric syndromes; suggesting pleiotropic influences in neurodevelopment between complex and Mendelian syndromes.
Collapse
Affiliation(s)
- Suhas Ganesh
- Central Institute of Psychiatry, Kanke, Ranchi, India
- Schizophrenia Neuropharmacology Research Group, Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Alekhya Vemula
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | | - Kezia Mathew
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Dhruva Ithal
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Karthick Navin
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Ravi Kumar Nadella
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Department of Psychiatry, Varma Hospital, Bhimavaram, India
| | - Biju Viswanath
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Patrick F Sullivan
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics at Karolinska Institutet, Stockholm, Sweden
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.
| |
Collapse
|
15
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
16
|
Associations between brain imaging and polygenic scores of mental health and educational attainment in children aged 9-11. Neuroimage 2022; 263:119611. [PMID: 36070838 DOI: 10.1016/j.neuroimage.2022.119611] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Psychiatric disorders are highly heritable and polygenic, and many have their peak onset in late childhood and adolescence, a period of tremendous changes. Although the neurodevelopmental antecedents of mental illness are widely acknowledged, research in youth population cohorts is still scarce, preventing our progress towards the early characterization of these disorders. We included 7,124 children (9-11 years old) from the Adolescent Brain and Cognitive Development Study to map the associations of structural and diffusion brain imaging with common genetic variants and polygenic scores for psychiatric disorders and educational attainment. We used principal component analysis to derive imaging components, and calculated their heritability. We then assessed the relationship of imaging components with genetic and clinical psychiatric risk with univariate models and Canonical correlation analysis (CCA). Most imaging components had moderate heritability. Univariate models showed limited evidence and small associations of polygenic scores with brain structure at this age. CCA revealed two significant modes of covariation. The first mode linked higher polygenic scores for educational attainment with less externalizing problems and larger surface area. The second mode related higher polygenic scores for schizophrenia, bipolar disorder, and autism spectrum disorder to higher global cortical thickness, smaller white matter volumes of the fornix and cingulum, larger medial occipital surface area and smaller surface area of lateral and medial temporal regions. While cross-validation suggested limited generalizability, our results highlight the potential of multivariate models to better understand the transdiagnostic and distributed relationships between mental health and brain structure in late childhood.
Collapse
|
17
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
18
|
Wei L, Ding M, Zhang Y, Wang H. Decoding transcriptional signatures of the association between free water and macroscale organizations in healthy adolescents. Neuroimage 2022; 261:119514. [PMID: 35901916 DOI: 10.1016/j.neuroimage.2022.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
We leveraged a novel index of diffusion MRI to investigate the relationships among cortical free water, macro-organizations and gene expression in healthy adults. Few research has been conducted to investigate the role of free water in the healthy adults due to it can easily be affected also by aging diseases. High quality data of 350 subjects from Human Connectome Project were used in our study. Cortical free water was estimated by using a bi-tensor model. The free water was high in the limbic, insular and somatosensory cortex, while being lower in motor and association cortex. The negative correlation between the free water and cortical thickness has been consistently identified in almost all the cortical regions. Negative correlation between the cortical free water and structural covariance (rho=-0.38, pspin=0.005) revealed the free water was sensitive to cortical heterogeneity. Using human gene expression dataset, we found the gene expression pattern of the relationship between the free water and cortical thickness spatially coupled with primary gradient of structural covariance network (rho=0.40, pspin=0.004). Our findings indicated the free water was sensitive to the cortical cellular status. The relationship between free water and macroscale organization also reflected hierarchal structures of cerebral cortex.
Collapse
Affiliation(s)
- Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Ming Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China; Human Phenome Institute, Fudan University, Shanghai, PR China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
19
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
20
|
Altered Cerebral Curvature in Preterm Infants Is Associated with the Common Genetic Variation Related to Autism Spectrum Disorder and Lipid Metabolism. J Clin Med 2022; 11:jcm11113135. [PMID: 35683524 PMCID: PMC9181724 DOI: 10.3390/jcm11113135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm births are often associated with neurodevelopmental impairment. In the critical developmental period of the fetal brain, preterm birth disrupts cortical maturation. Notably, preterm birth leads to alterations in the fronto-striatal and temporal lobes and the limbic region. Recent advances in MRI acquisition and analysis methods have revealed an integrated approach to the genetic influence on brain structure. Based on imaging studies, we hypothesized that the altered cortical structure observed after preterm birth is associated with common genetic variations. We found that the presence of the minor allele at rs1042778 in OXTR was associated with reduced curvature in the right medial orbitofrontal gyrus (p < 0.001). The presence of the minor allele at rs174576 in FADS2 (p < 0.001) or rs740603 in COMT (p < 0.001) was related to reduced curvature in the left posterior cingulate gyrus. This study provides biological insight into altered cortical curvature at term-equivalent age, suggesting that the common genetic variations related to autism spectrum disorder (ASD) and lipid metabolism may mediate vulnerability to early cortical dysmaturation in preterm infants.
Collapse
|
21
|
Edwards AD, Rueckert D, Smith SM, Abo Seada S, Alansary A, Almalbis J, Allsop J, Andersson J, Arichi T, Arulkumaran S, Bastiani M, Batalle D, Baxter L, Bozek J, Braithwaite E, Brandon J, Carney O, Chew A, Christiaens D, Chung R, Colford K, Cordero-Grande L, Counsell SJ, Cullen H, Cupitt J, Curtis C, Davidson A, Deprez M, Dillon L, Dimitrakopoulou K, Dimitrova R, Duff E, Falconer S, Farahibozorg SR, Fitzgibbon SP, Gao J, Gaspar A, Harper N, Harrison SJ, Hughes EJ, Hutter J, Jenkinson M, Jbabdi S, Jones E, Karolis V, Kyriakopoulou V, Lenz G, Makropoulos A, Malik S, Mason L, Mortari F, Nosarti C, Nunes RG, O’Keeffe C, O’Muircheartaigh J, Patel H, Passerat-Palmbach J, Pietsch M, Price AN, Robinson EC, Rutherford MA, Schuh A, Sotiropoulos S, Steinweg J, Teixeira RPAG, Tenev T, Tournier JD, Tusor N, Uus A, Vecchiato K, Williams LZJ, Wright R, Wurie J, Hajnal JV. The Developing Human Connectome Project Neonatal Data Release. Front Neurosci 2022; 16:886772. [PMID: 35677357 PMCID: PMC9169090 DOI: 10.3389/fnins.2022.886772] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.
Collapse
Affiliation(s)
- A. David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
- Institute for AI and Informatics in Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephen M. Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Samy Abo Seada
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Amir Alansary
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Jennifer Almalbis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Joanna Allsop
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Luke Baxter
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jelena Bozek
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Eleanor Braithwaite
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Jacqueline Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Olivia Carney
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Raymond Chung
- BioResource Centre, NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Harriet Cullen
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - John Cupitt
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Charles Curtis
- BioResource Centre, NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Alice Davidson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Louise Dillon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Konstantina Dimitrakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Translational Bioinformatics Platform, NIHR Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sean P. Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jianliang Gao
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Andreia Gaspar
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nicholas Harper
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Sam J. Harrison
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Emer J. Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Emily Jones
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Vyacheslav Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Gregor Lenz
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Antonios Makropoulos
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Shaihan Malik
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Luke Mason
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Filippo Mortari
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Rita G. Nunes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Camilla O’Keeffe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Hamel Patel
- BioResource Centre, NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Jonathan Passerat-Palmbach
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Maximillian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Anthony N. Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Mary A. Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Stamatios Sotiropoulos
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Johannes Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Rui Pedro Azeredo Gomes Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Tencho Tenev
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Logan Z. J. Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Robert Wright
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Julia Wurie
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Joseph V. Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
22
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Fenchel D, Dimitrova R, Robinson EC, Batalle D, Chew A, Falconer S, Kyriakopoulou V, Nosarti C, Hutter J, Christiaens D, Pietsch M, Brandon J, Hughes EJ, Allsop J, O'Keeffe C, Price AN, Cordero-Grande L, Schuh A, Makropoulos A, Passerat-Palmbach J, Bozek J, Rueckert D, Hajnal JV, McAlonan G, Edwards AD, O'Muircheartaigh J. Neonatal multi-modal cortical profiles predict 18-month developmental outcomes. Dev Cogn Neurosci 2022; 54:101103. [PMID: 35364447 PMCID: PMC8971851 DOI: 10.1016/j.dcn.2022.101103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for the individual and community. By examining the developing brain and its relation to developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix derived from morphological and microstructural features was computed for each subject (morphometric similarity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance. Predictive edges were distributed between and within known functional cortical divisions with a specific important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical profiles showing coordinated maturation are related to developmental outcomes and that network organization at birth provides an early infrastructure for future functional skills.
Collapse
Affiliation(s)
- Daphna Fenchel
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Emma C Robinson
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, UK
| | - Dafnis Batalle
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Jakki Brandon
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Emer J Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Joanna Allsop
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Anthony N Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | | | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK; Institute für Artificial Intelligence and Informatics in Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Grainne McAlonan
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - A David Edwards
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Jonathan O'Muircheartaigh
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK.
| |
Collapse
|
24
|
Molloy MF, Saygin ZM. Individual variability in functional organization of the neonatal brain. Neuroimage 2022; 253:119101. [PMID: 35304265 DOI: 10.1016/j.neuroimage.2022.119101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
The adult brain is organized into distinct functional networks, forming the basis of information processing and determining individual differences in behavior. Is this network organization genetically determined and present at birth? And what is the individual variability in this organization in neonates? Here, we use unsupervised learning to uncover intrinsic functional brain organization using resting-state connectivity from a large cohort of neonates (Developing Human Connectome Project). We identified a set of symmetric, hierarchical, and replicable networks: sensorimotor, visual, default mode, ventral attention, and high-level vision. We quantified individual variability across neonates, and found the most individual variability in the ventral attention networks. Crucially, the variability of these networks was not driven by SNR differences or differences from adult networks (Yeo et al., 2011). Finally, differential gene expression provided a potential explanation for the emergence of these distinct networks and identified potential genes of interest for future developmental and individual variability research. Overall, we found neonatal connectomes (even at the voxel-level) can reveal broad individual-specific information processing units. The presence of individual differences in neonates and the framework for personalized parcellations demonstrated here has the potential to improve prediction of behavior and future outcomes from neonatal and infant brain data.
Collapse
Affiliation(s)
- M Fiona Molloy
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, United States
| | - Zeynep M Saygin
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
25
|
Trnski S, Nikolić B, Ilic K, Drlje M, Bobic-Rasonja M, Darmopil S, Petanjek Z, Hranilovic D, Jovanov-Milosevic N. The Signature of Moderate Perinatal Hypoxia on Cortical Organization and Behavior: Altered PNN-Parvalbumin Interneuron Connectivity of the Cingulate Circuitries. Front Cell Dev Biol 2022; 10:810980. [PMID: 35295859 PMCID: PMC8919082 DOI: 10.3389/fcell.2022.810980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed in a rat model to determine the hallmarks of possible permanent behavioral and structural brain alterations after a single moderate hypoxic insult. Eighty-two Wistar Han (RccHan: WIST) rats were randomly subjected to hypoxia (pO2 73 mmHg/2 h) or normoxia at the first postnatal day. The substantially increased blood lactate, a significantly decreased cytochrome-C-oxygenase expression in the brain, and depleted subventricular zone suggested a high vulnerability of subset of cell populations to oxidative stress and consequent tissue response even after a single, moderate, hypoxic event. The results of behavioral tests (open-field, hole-board, social-choice, and T-maze) applied at the 30–45th and 70–85th postnatal days revealed significant hyperactivity and a slower pace of learning in rats subjected to perinatal hypoxia. At 3.5 months after hypoxic insult, the histochemical examination demonstrated a significantly increased number of specific extracellular matrix—perineuronal nets and increased parvalbumin expression in a subpopulation of interneurons in the medial and retrosplenial cingulate cortex of these animals. Conclusively, moderate perinatal hypoxia in rats causes a long-lasting reorganization of the connectivity in the cingulate cortex and consequent alterations of related behavioral and cognitive abilities. This non-invasive hypoxia model in the rat successfully and complementarily models the moderate perinatal hypoxic injury in fetuses and prematurely born human babies and may enhance future research into new diagnostic and therapeutic strategies for perinatal medicine.
Collapse
Affiliation(s)
- Sara Trnski
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Barbara Nikolić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroimaging, BRAIN Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Matea Drlje
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mihaela Bobic-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Darmopil
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zdravko Petanjek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Natasa Jovanov-Milosevic,
| |
Collapse
|
26
|
Sacchi C, O'Muircheartaigh J, Batalle D, Counsell SJ, Simonelli A, Cesano M, Falconer S, Chew A, Kennea N, Nongena P, Rutherford MA, Edwards AD, Nosarti C. Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth. J Pediatr 2021; 238:135-144.e10. [PMID: 34245768 DOI: 10.1016/j.jpeds.2021.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate whether intrauterine growth restriction (IUGR) adds further neurodevelopmental risk to that posed by very preterm birth alone in terms of alterations in brain growth and poorer toddlerhood outcomes. STUDY DESIGN Participants were 314 infants of very preterm birth enrolled in the Evaluation of Preterm Imaging Study (e-Prime) who were subsequently followed up in toddlerhood. IUGR was identified postnatally from discharge records (n = 49) and defined according to prenatal evaluation of growth restriction confirmed by birth weight <10th percentile for gestational age and/or alterations in fetal Doppler. Appropriate for gestational age (AGA; n = 265) was defined as birth weight >10th percentile for gestational age at delivery. Infants underwent magnetic resonance imaging at term-equivalent age (median = 42 weeks); T2-weighted images were obtained for voxelwise gray matter volumes. Follow-up assessments were conducted at corrected median age of 22 months using the Bayley Scales of Infant and Toddler Development III and the Modified-Checklist for Autism in Toddlers. RESULTS Infants of very preterm birth with IUGR displayed a relative volumetric decrease in gray matter in limbic regions and a relative increase in frontoinsular, temporal-parietal, and frontal areas compared with peers of very preterm birth who were AGA. At follow-up, toddlers born very preterm with IUGR had significantly lower cognitive (effect size = 0.42) and motor (effect size = 0.41) scores and were more likely to have a positive Modified-Checklist for Autism in Toddlers screening for autism (OR = 2.12) compared with peers of very preterm birth who were AGA. CONCLUSIONS IUGR might confer a neurodevelopmental risk that is greater than that posed by very preterm alone, in terms of both alterations in brain growth and poorer toddlerhood outcomes.
Collapse
Affiliation(s)
- Chiara Sacchi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Serena Jane Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Alessandra Simonelli
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Michela Cesano
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nigel Kennea
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Phumza Nongena
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary Ann Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
27
|
Dimitrova R, Pietsch M, Ciarrusta J, Fitzgibbon SP, Williams LZJ, Christiaens D, Cordero-Grande L, Batalle D, Makropoulos A, Schuh A, Price AN, Hutter J, Teixeira RP, Hughes E, Chew A, Falconer S, Carney O, Egloff A, Tournier JD, McAlonan G, Rutherford MA, Counsell SJ, Robinson EC, Hajnal JV, Rueckert D, Edwards AD, O'Muircheartaigh J. Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. Neuroimage 2021; 243:118488. [PMID: 34419595 PMCID: PMC8526870 DOI: 10.1016/j.neuroimage.2021.118488] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Collapse
Affiliation(s)
- Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sean P Fitzgibbon
- Centre for Functional MRI of the Brain (FMRIB), Welcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pag Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Olivia Carney
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Faculty of Informatics and Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
28
|
Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, Mackey AP, Milham MP, Pines A, Roalf DR, Seidlitz J, Xu T, Raznahan A, Satterthwaite TD. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 2021; 109:2820-2846. [PMID: 34270921 PMCID: PMC8448958 DOI: 10.1016/j.neuron.2021.06.016] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
The human brain undergoes a prolonged period of cortical development that spans multiple decades. During childhood and adolescence, cortical development progresses from lower-order, primary and unimodal cortices with sensory and motor functions to higher-order, transmodal association cortices subserving executive, socioemotional, and mentalizing functions. The spatiotemporal patterning of cortical maturation thus proceeds in a hierarchical manner, conforming to an evolutionarily rooted, sensorimotor-to-association axis of cortical organization. This developmental program has been characterized by data derived from multimodal human neuroimaging and is linked to the hierarchical unfolding of plasticity-related neurobiological events. Critically, this developmental program serves to enhance feature variation between lower-order and higher-order regions, thus endowing the brain's association cortices with unique functional properties. However, accumulating evidence suggests that protracted plasticity within late-maturing association cortices, which represents a defining feature of the human developmental program, also confers risk for diverse developmental psychopathologies.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, NIMH Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Vanes LD, Hadaya L, Kanel D, Falconer S, Ball G, Batalle D, Counsell SJ, Edwards AD, Nosarti C. Associations Between Neonatal Brain Structure, the Home Environment, and Childhood Outcomes Following Very Preterm Birth. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:146-155. [PMID: 34471914 PMCID: PMC8367847 DOI: 10.1016/j.bpsgos.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background Very preterm birth is associated with an increased risk of childhood psychopathology and cognitive deficits. However, the extent to which these developmental problems associated with preterm birth are amenable to environmental factors or determined by neurobiology at birth remains unclear. Methods We derived neonatal brain structural covariance networks using non-negative matrix factorization in 384 very preterm infants (median gestational age [range], 30.29 [23.57–32.86] weeks) who underwent magnetic resonance imaging at term-equivalent age (median postmenstrual age, 42.57 [37.86–44.86] weeks). Principal component analysis was performed on 32 behavioral and cognitive measures assessed at preschool age (n = 206; median age, 4.65 [4.19–7.17] years) to identify components of childhood psychopathology and cognition. The Cognitively Stimulating Parenting Scale assessed the level of cognitively stimulating experiences available to the child at home. Results Cognitively stimulating parenting was associated with reduced expression of a component reflecting developmental psychopathology and executive dysfunction consistent with the preterm phenotype (inattention-hyperactivity, autism spectrum behaviors, and lower executive function scores). In contrast, a component reflecting better general cognitive abilities was associated with larger neonatal gray matter volume in regions centered on key nodes of the salience network, but not with cognitively stimulating parenting. Conclusions Our results suggest that while neonatal brain structure likely influences cognitive abilities in very preterm children, the severity of behavioral symptoms that are typically observed in these children is sensitive to a cognitively stimulating home environment. Very preterm children may derive meaningful mental health benefits from access to cognitively stimulating experiences during childhood.
Collapse
Affiliation(s)
- Lucy D. Vanes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Address correspondence to Lucy D. Vanes, Ph.D.
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Gareth Ball
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - A. David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
30
|
Vasung L, Zhao C, Barkovich M, Rollins CK, Zhang J, Lepage C, Corcoran T, Velasco-Annis C, Yun HJ, Im K, Warfield SK, Evans AC, Huang H, Gholipour A, Grant PE. Association between Quantitative MR Markers of Cortical Evolving Organization and Gene Expression during Human Prenatal Brain Development. Cereb Cortex 2021; 31:3610-3621. [PMID: 33836056 PMCID: PMC8258434 DOI: 10.1093/cercor/bhab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between structural changes of the cerebral cortex revealed by Magnetic Resonance Imaging (MRI) and gene expression in the human fetal brain has not been explored. In this study, we aimed to test the hypothesis that relative regional thickness (a measure of cortical evolving organization) of fetal cortical compartments (cortical plate [CP] and subplate [SP]) is associated with expression levels of genes with known cortical phenotype. Mean regional SP/CP thickness ratios across age measured on in utero MRI of 25 healthy fetuses (20-33 gestational weeks [GWs]) were correlated with publicly available regional gene expression levels (23-24 GW fetuses). Larger SP/CP thickness ratios (more pronounced cortical evolving organization) was found in perisylvian regions. Furthermore, we found a significant association between SP/CP thickness ratio and expression levels of the FLNA gene (mutated in periventricular heterotopia, congenital heart disease, and vascular malformations). Further work is needed to identify early MRI biomarkers of gene expression that lead to abnormal cortical development.
Collapse
Affiliation(s)
- Lana Vasung
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chenying Zhao
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Barkovich
- Department of Radiology, UCSF Benioff Children's Hospital, San Francisco, CA 94158, USA.,Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA 94115, USA
| | - Caitlin K Rollins
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennings Zhang
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Claude Lepage
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Teddy Corcoran
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clemente Velasco-Annis
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiho Im
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Keith Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Alan Charles Evans
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Gholipour
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Ellen Grant
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, Bullmore ET, Bernhardt BC. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. eLife 2021; 10:e64694. [PMID: 33787489 PMCID: PMC8087442 DOI: 10.7554/elife.64694] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
| | - Richard AI Bethlehem
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Raul Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|