1
|
Bandara T, Martcheva M, Ngonghala CN. Mathematical model on HIV and nutrition. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2287087. [PMID: 38015715 DOI: 10.1080/17513758.2023.2287087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
HIV continues to be a major global health issue, having claimed millions of lives in the last few decades. While several empirical studies support the fact that proper nutrition is useful in the fight against HIV, very few studies have focused on developing and using mathematical modelling approaches to assess the association between HIV, human immune response to the disease, and nutrition. We develop a within-host model for HIV that captures the dynamic interactions between HIV, the immune system and nutrition. We find that increased viral activity leads to increased serum protein levels. We also show that the viral production rate is positively correlated with HIV viral loads, as is the enhancement rate of protein by virus. Although our numerical simulations indicate a direct correlation between dietary protein intake and serum protein levels in HIV-infected individuals, further modelling and clinical studies are necessary to gain comprehensive understanding of the relationship.
Collapse
Affiliation(s)
- Tharusha Bandara
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Maia Martcheva
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
2
|
Rouzine IM, Rozhnova G. Evolutionary implications of SARS-CoV-2 vaccination for the future design of vaccination strategies. COMMUNICATIONS MEDICINE 2023; 3:86. [PMID: 37336956 PMCID: PMC10279745 DOI: 10.1038/s43856-023-00320-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Once the first SARS-CoV-2 vaccine became available, mass vaccination was the main pillar of the public health response to the COVID-19 pandemic. It was very effective in reducing hospitalizations and deaths. Here, we discuss the possibility that mass vaccination might accelerate SARS-CoV-2 evolution in antibody-binding regions compared to natural infection at the population level. Using the evidence of strong genetic variation in antibody-binding regions and taking advantage of the similarity between the envelope proteins of SARS-CoV-2 and influenza, we assume that immune selection pressure acting on these regions of the two viruses is similar. We discuss the consequences of this assumption for SARS-CoV-2 evolution in light of mathematical models developed previously for influenza. We further outline the implications of this phenomenon, if our assumptions are confirmed, for the future design of SARS-CoV-2 vaccination strategies.
Collapse
Affiliation(s)
- Igor M Rouzine
- Immunogenetics, Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Saint-Petersburg, Russia.
| | - Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
- Center for Complex Systems Studies (CCSS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Browne CJ, Yahia F. Virus-immune dynamics determined by prey-predator interaction network and epistasis in viral fitness landscape. J Math Biol 2022; 86:9. [PMID: 36469118 DOI: 10.1007/s00285-022-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/10/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Population dynamics and evolutionary genetics underly the structure of ecosystems, changing on the same timescale for interacting species with rapid turnover, such as virus (e.g. HIV) and immune response. Thus, an important problem in mathematical modeling is to connect ecology, evolution and genetics, which often have been treated separately. Here, extending analysis of multiple virus and immune response populations in a resource-prey (consumer)-predator model from Browne and Smith (2018), we show that long term dynamics of viral mutants evolving resistance at distinct epitopes (viral proteins targeted by immune responses) are governed by epistasis in the virus fitness landscape. In particular, the stability of persistent equilibrium virus-immune (prey-predator) network structures, such as nested and one-to-one, and bifurcations are determined by a collection of circuits defined by combinations of viral fitnesses that are minimally additive within a hypercube of binary sequences representing all possible viral epitope sequences ordered according to immunodominance hierarchy. Numerical solutions of our ordinary differential equation system, along with an extended stochastic version including random mutation, demonstrate how pairwise or multiplicative epistatic interactions shape viral evolution against concurrent immune responses and convergence to the multi-variant steady state predicted by theoretical results. Furthermore, simulations illustrate how periodic infusions of subdominant immune responses can induce a bifurcation in the persistent viral strains, offering superior host outcome over an alternative strategy of immunotherapy with strongest immune response.
Collapse
Affiliation(s)
- Cameron J Browne
- Mathematics Department, University of Louisiana at Lafayette, Lafayette, LA, USA.
| | - Fadoua Yahia
- Mathematics Department, University of Louisiana at Lafayette, Lafayette, LA, USA
| |
Collapse
|
4
|
A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection. PLoS Pathog 2020; 16:e1008171. [PMID: 32492061 PMCID: PMC7295245 DOI: 10.1371/journal.ppat.1008171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/15/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
In the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host environment, of which the immune system is an important aspect. During the earliest stages of infection, this process of evolution is very rapid, driven by a small number of CTL escape mutations. As the infection progresses, immune escape variants evolve under reduced magnitudes of selection, while competition between an increasing number of polymorphic alleles (i.e., clonal interference) makes it difficult to quantify the magnitude of selection acting upon specific variant alleles. To tackle this complex problem, we developed a novel multi-locus inference method to evaluate the role of selection during the chronic stage of within-host infection. We applied this method to targeted sequence data from the p24 and gp41 regions of HIV-1 collected from 34 patients with long-term untreated HIV-1 infection. We identify a broad distribution of beneficial fitness effects during infection, with a small number of variants evolving under strong selection and very many variants evolving under weaker selection. The uniquely large number of infections analysed granted a previously unparalleled statistical power to identify loci at which selection could be inferred to act with statistical confidence. Our model makes no prior assumptions about the nature of alleles under selection, such that any synonymous or non-synonymous variant may be inferred to evolve under selection. However, the majority of variants inferred with confidence to be under selection were non-synonymous in nature, and in most cases were have previously been associated with either CTL escape in p24 or neutralising antibody escape in gp41. We also identified a putative new CTL escape site (residue 286 in gag), and a region of gp41 (including residues 644, 648, 655 in env) likely to be associated with immune escape. Sites inferred to be under selection in multiple hosts have high within-host and between-host diversity although not all sites with high between-host diversity were inferred to be under selection at the within-host level. Our identification of selection at sites associated with resistance to broadly neutralising antibodies (bNAbs) highlights the need to fully understand the role of selection in untreated individuals when designing bNAb based therapies.
Collapse
|
5
|
Immonen TT, Camus C, Reid C, Fennessey CM, Del Prete GQ, Davenport MP, Lifson JD, Keele BF. Genetically barcoded SIV reveals the emergence of escape mutations in multiple viral lineages during immune escape. Proc Natl Acad Sci U S A 2020; 117:494-502. [PMID: 31843933 PMCID: PMC6955354 DOI: 10.1073/pnas.1914967117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rapidity of replication coupled with a high mutation rate enables HIV to evade selective pressures imposed by host immune responses. Investigating the ability of HIV to escape different selection forces has generally relied on population-level measures, such as the time to detectable escape mutations in plasma and the rate these mutations subsequently take over the virus population. Here we employed a barcoded synthetic swarm of simian immunodeficiency virus (SIV) in rhesus macaques to investigate the generation and selection of escape mutations within individual viral lineages at the Mamu-A*01-restricted Tat-SL8 epitope. We observed the persistence of more than 1,000 different barcode lineages following selection after acquiring escape mutations. Furthermore, the increased resolution into the virus population afforded by barcode analysis revealed changes in the population structure of the viral quasispecies as it adapted to immune pressure. The high frequency of emergence of escape mutations in parallel viral lineages at the Tat-SL8 epitope highlights the challenge posed by viral escape for the development of T cell-based vaccines. Importantly, the level of viral replication required for generating escape mutations in individual lineages can be directly estimated using the barcoded virus, thereby identifying the level of efficacy required for a successful vaccine to limit escape. Overall, assessing the survival of barcoded viral lineages during selection provides a direct and quantitative measure of the stringency of the underlying genetic bottleneck, making it possible to predict the ability of the virus to escape selective forces induced by host immune responses as well as during therapeutic interventions.
Collapse
Affiliation(s)
- Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Celine Camus
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | | | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769;
| |
Collapse
|
6
|
Yang Y, Ganusov VV. Defining Kinetic Properties of HIV-Specific CD8⁺ T-Cell Responses in Acute Infection. Microorganisms 2019; 7:E69. [PMID: 30836625 PMCID: PMC6462943 DOI: 10.3390/microorganisms7030069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple lines of evidence indicate that CD8 + T cells are important in the control of HIV-1 (HIV) replication. However, CD8 + T cells induced by natural infection cannot eliminate the virus or reduce viral loads to acceptably low levels in most infected individuals. Understanding the basic quantitative features of CD8 + T-cell responses induced during HIV infection may therefore inform us about the limits that HIV vaccines, which aim to induce protective CD8 + T-cell responses, must exceed. Using previously published experimental data from a cohort of HIV-infected individuals with sampling times from acute to chronic infection we defined the quantitative properties of CD8 + T-cell responses to the whole HIV proteome. In contrast with a commonly held view, we found that the relative number of HIV-specific CD8 + T-cell responses (response breadth) changed little over the course of infection (first 400 days post-infection), with moderate but statistically significant changes occurring only during the first 35 symptomatic days. This challenges the idea that a change in the T-cell response breadth over time is responsible for the slow speed of viral escape from CD8 + T cells in the chronic infection. The breadth of HIV-specific CD8 + T-cell responses was not correlated with the average viral load for our small cohort of patients. Metrics of relative immunodominance of HIV-specific CD8 + T-cell responses such as Shannon entropy or the Evenness index were also not significantly correlated with the average viral load. Our mathematical-model-driven analysis suggested extremely slow expansion kinetics for the majority of HIV-specific CD8 + T-cell responses and the presence of intra- and interclonal competition between multiple CD8 + T-cell responses; such competition may limit the magnitude of CD8 + T-cell responses, specific to different epitopes, and the overall number of T-cell responses induced by vaccination. Further understanding of mechanisms underlying interactions between the virus and virus-specific CD8 + T-cell response will be instrumental in determining which T-cell-based vaccines will induce T-cell responses providing durable protection against HIV infection.
Collapse
Affiliation(s)
- Yiding Yang
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
7
|
Abstract
The interplay between immune response and HIV is intensely studied via mathematical modeling, with significant insights but few direct answers. In this short review, we highlight advances and knowledge gaps across different aspects of immunity. In particular, we identify the innate immune response and its role in priming the adaptive response as ripe for modeling. The latter have been the focus of most modeling studies, but we also synthesize key outstanding questions regarding effector mechanisms of cellular immunity and development of broadly neutralizing antibodies. Thus far, most modeling studies aimed to infer general immune mechanisms; we foresee that significant progress will be made next by detailed quantitative fitting of models to data, and prediction of immune responses.
Collapse
Affiliation(s)
- Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park PA 16802, USA
| | - Ruy M Ribeiro
- Laboratorio de Biomatematica, Faculdade de Medicina da Universidade de Lisboa, Portugal and Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
8
|
Ganusov VV. Time Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates. Viruses 2018; 10:v10030099. [PMID: 29495443 PMCID: PMC5869492 DOI: 10.3390/v10030099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
9
|
Dynamics of virus and immune response in multi-epitope network. J Math Biol 2018; 77:1833-1870. [PMID: 29476197 DOI: 10.1007/s00285-018-1224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 02/08/2018] [Indexed: 12/12/2022]
Abstract
The host immune response can often efficiently suppress a virus infection, which may lead to selection for immune-resistant viral variants within the host. For example, during HIV infection, an array of CTL immune response populations recognize specific epitopes (viral proteins) presented on the surface of infected cells to effectively mediate their killing. However HIV can rapidly evolve resistance to CTL attack at different epitopes, inducing a dynamic network of interacting viral and immune response variants. We consider models for the network of virus and immune response populations, consisting of Lotka-Volterra-like systems of ordinary differential equations. Stability of feasible equilibria and corresponding uniform persistence of distinct variants are characterized via a Lyapunov function. We specialize the model to a "binary sequence" setting, where for n epitopes there can be [Formula: see text] distinct viral variants mapped on a hypercube graph. The dynamics in several cases are analyzed and sharp polychotomies are derived characterizing persistent variants. In particular, we prove that if the viral fitness costs for gaining resistance to each epitope are equal, then the system of [Formula: see text] virus strains converges to a "perfectly nested network" with less than or equal to [Formula: see text] persistent virus strains. Overall, our results suggest that immunodominance, i.e. relative strength of immune response to an epitope, is the most important factor determining the persistent network structure.
Collapse
|
10
|
Yang Y, Ganusov VV. Kinetics of HIV-Specific CTL Responses Plays a Minimal Role in Determining HIV Escape Dynamics. Front Immunol 2018; 9:140. [PMID: 29472921 PMCID: PMC5810297 DOI: 10.3389/fimmu.2018.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) have been suggested to play an important role in controlling human immunodeficiency virus (HIV-1 or simply HIV) infection. HIV, due to its high mutation rate, can evade recognition of T cell responses by generating escape variants that cannot be recognized by HIV-specific CTLs. Although HIV escape from CTL responses has been well documented, factors contributing to the timing and the rate of viral escape from T cells have not been fully elucidated. Fitness costs associated with escape and magnitude of the epitope-specific T cell response are generally considered to be the key in determining timing of HIV escape. Several previous analyses generally ignored the kinetics of T cell responses in predicting viral escape by either considering constant or maximal T cell response; several studies also considered escape from different T cell responses to be independent. Here, we focus our analysis on data from two patients from a recent study with relatively frequent measurements of both virus sequences and HIV-specific T cell response to determine impact of CTL kinetics on viral escape. In contrast with our expectation, we found that including temporal dynamics of epitope-specific T cell response did not improve the quality of fit of different models to escape data. We also found that for well-sampled escape data, the estimates of the model parameters including T cell killing efficacy did not strongly depend on the underlying model for escapes: models assuming independent, sequential, or concurrent escapes from multiple CTL responses gave similar estimates for CTL killing efficacy. Interestingly, the model assuming sequential escapes (i.e., escapes occurring along a defined pathway) was unable to accurately describe data on escapes occurring rapidly within a short-time window, suggesting that some of model assumptions must be violated for such escapes. Our results thus suggest that the current sparse measurements of temporal CTL dynamics in blood bear little quantitative information to improve predictions of HIV escape kinetics. More frequent measurements using more sensitive techniques and sampling in secondary lymphoid tissues may allow to better understand whether and how CTL kinetics impacts viral escape.
Collapse
Affiliation(s)
- Yiding Yang
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, United States
- Department of Mathematics, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
11
|
Kijak GH, Sanders-Buell E, Chenine AL, Eller MA, Goonetilleke N, Thomas R, Leviyang S, Harbolick EA, Bose M, Pham P, Oropeza C, Poltavee K, O’Sullivan AM, Billings E, Merbah M, Costanzo MC, Warren JA, Slike B, Li H, Peachman KK, Fischer W, Gao F, Cicala C, Arthos J, Eller LA, O’Connell RJ, Sinei S, Maganga L, Kibuuka H, Nitayaphan S, Rao M, Marovich MA, Krebs SJ, Rolland M, Korber BT, Shaw GM, Michael NL, Robb ML, Tovanabutra S, Kim JH. Rare HIV-1 transmitted/founder lineages identified by deep viral sequencing contribute to rapid shifts in dominant quasispecies during acute and early infection. PLoS Pathog 2017; 13:e1006510. [PMID: 28759651 PMCID: PMC5552316 DOI: 10.1371/journal.ppat.1006510] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023] Open
Abstract
In order to inform the rational design of HIV-1 preventive and cure interventions it is critical to understand the events occurring during acute HIV-1 infection (AHI). Using viral deep sequencing on six participants from the early capture acute infection RV217 cohort, we have studied HIV-1 evolution in plasma collected twice weekly during the first weeks following the advent of viremia. The analysis of infections established by multiple transmitted/founder (T/F) viruses revealed novel viral profiles that included: a) the low-level persistence of minor T/F variants, b) the rapid replacement of the major T/F by a minor T/F, and c) an initial expansion of the minor T/F followed by a quick collapse of the same minor T/F to low frequency. In most participants, cytotoxic T-lymphocyte (CTL) escape was first detected at the end of peak viremia downslope, proceeded at higher rates than previously measured in HIV-1 infection, and usually occurred through the exploration of multiple mutational pathways within an epitope. The rapid emergence of CTL escape variants suggests a strong and early CTL response. Minor T/F viral strains can contribute to rapid and varied profiles of HIV-1 quasispecies evolution during AHI. Overall, our results demonstrate that early, deep, and frequent sampling is needed to investigate viral/host interaction during AHI, which could help identify prerequisites for prevention and cure of HIV-1 infection.
Collapse
Affiliation(s)
- Gustavo H. Kijak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- * E-mail:
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Agnes-Laurence Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Nilu Goonetilleke
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Sivan Leviyang
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States of America
| | - Elizabeth A. Harbolick
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Phuc Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Celina Oropeza
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Kultida Poltavee
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Erik Billings
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Melanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Margaret C. Costanzo
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Joanna A. Warren
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Bonnie Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kristina K. Peachman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Will Fischer
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - James Arthos
- Laboratory of Immunoregulation National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Leigh A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | | | | | | | - Hannah Kibuuka
- Makerere University-Walter Reed Project, Kampala, Uganda
| | | | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Mary A. Marovich
- Vaccine Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Bette T. Korber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Jerome H. Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| |
Collapse
|
12
|
Garcia V, Feldman MW. Within-Epitope Interactions Can Bias CTL Escape Estimation in Early HIV Infection. Front Immunol 2017; 8:423. [PMID: 28507544 PMCID: PMC5410659 DOI: 10.3389/fimmu.2017.00423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/27/2017] [Indexed: 01/03/2023] Open
Abstract
As human immunodeficiency virus (HIV) begins to replicate within hosts, immune responses are elicited against it. Escape mutations in viral epitopes—immunogenic peptide parts presented on the surface of infected cells—allow HIV to partially evade these responses, and thus rapidly go to fixation. The faster they go to fixation, i.e., the higher their escape rate, the larger the selective pressure exerted by the immune system is assumed to be. This relation underpins the rationale for using escapes to assess the strength of immune responses. However, escape rate estimates are often obtained by employing an aggregation procedure, where several mutations that affect the same epitope are aggregated into a single, composite epitope mutation. The aggregation procedure thus rests upon the assumption that all within-epitope mutations have indistinguishable effects on immune recognition. In this study, we investigate how violation of this assumption affects escape rate estimates. To this end, we extend a previously developed simulation model of HIV that accounts for mutation, selection, and recombination to include different distributions of fitness effects (DFEs) and inter-mutational genomic distances. We use this discrete time Wright–Fisher based model to simulate early within-host evolution of HIV for DFEs and apply standard estimation methods to infer the escape rates. We then compare true with estimated escape rate values. We also compare escape rate values obtained by applying the aggregation procedure with values estimated without use of that procedure. We find that across the DFEs analyzed, the aggregation procedure alters the detectability of escape mutations: large-effect mutations are overrepresented while small-effect mutations are concealed. The effect of the aggregation procedure is similar to extracting the largest-effect mutation appearing within an epitope. Furthermore, the more pronounced the over-exponential decay of the DFEs, the more severely true escape rates are underestimated. We conclude that the aggregation procedure has two main consequences. On the one hand, it leads to a misrepresentation of the DFE of fixed mutations. On the other hand, it conceals within-epitope interactions that may generate irregularities in mutation frequency trajectories that are thus left unexplained.
Collapse
Affiliation(s)
- Victor Garcia
- Department of Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
13
|
Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells. J Virol 2016; 90:7066-7083. [PMID: 27226367 PMCID: PMC4984658 DOI: 10.1128/jvi.00306-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Several experiments suggest that in the chronic phase of human immunodeficiency virus type 1 (HIV-1) infection, CD8+ cytotoxic T lymphocytes (CTL) contribute very little to the death of productively infected cells. First, the expected life span of productively infected cells is fairly long, i.e., about 1 day. Second, this life span is hardly affected by the depletion of CD8+ T cells. Third, the rate at which mutants escaping a CTL response take over the viral population tends to be slow. Our main result is that all these observations are perfectly compatible with killing rates that are much faster than one per day once we invoke the fact that infected cells proceed through an eclipse phase of about 1 day before they start producing virus. Assuming that the major protective effect of CTL is cytolytic, we demonstrate that mathematical models with an eclipse phase account for the data when the killing is fast and when it varies over the life cycle of infected cells. Considering the steady state corresponding to the chronic phase of the infection, we find that the rate of immune escape and the rate at which the viral load increases following CD8+ T cell depletion should reflect the viral replication rate, ρ. A meta-analysis of previous data shows that viral replication rates during chronic infection vary between 0.5 ≤ ρ ≤ 1 day−1. Balancing such fast viral replication requires killing rates that are several times larger than ρ, implying that most productively infected cells would die by cytolytic effects. IMPORTANCE Most current data suggest that cytotoxic T cells (CTL) mediate their control of human immunodeficiency virus type 1 (HIV-1) infection by nonlytic mechanisms; i.e., the data suggest that CTL hardly kill. This interpretation of these data has been based upon the general mathematical model for HIV infection. Because this model ignores the eclipse phase between the infection of a target cell and the start of viral production by that cell, we reanalyze the same data sets with novel models that do account for the eclipse phase. We find that the data are perfectly consistent with lytic control by CTL and predict that most productively infected cells are killed by CTL. Because the killing rate should balance the viral replication rate, we estimate both parameters from a large set of published experiments in which CD8+ T cells were depleted in simian immunodeficiency virus (SIV)-infected monkeys. This confirms that the killing rate can be much faster than is currently appreciated.
Collapse
|
14
|
Abstract
Models of viral population dynamics have contributed enormously to our understanding of the pathogenesis and transmission of several infectious diseases, the coevolutionary dynamics of viruses and their hosts, the mechanisms of action of drugs, and the effectiveness of interventions. In this chapter, we review major advances in the modeling of the population dynamics of the human immunodeficiency virus (HIV) and briefly discuss adaptations to other viruses.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
15
|
Nagaraja P, Alexander HK, Bonhoeffer S, Dixit NM. Influence of recombination on acquisition and reversion of immune escape and compensatory mutations in HIV-1. Epidemics 2016; 14:11-25. [DOI: 10.1016/j.epidem.2015.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022] Open
|
16
|
Leviyang S, Ganusov VV. Broad CTL Response in Early HIV Infection Drives Multiple Concurrent CTL Escapes. PLoS Comput Biol 2015; 11:e1004492. [PMID: 26506433 PMCID: PMC4624722 DOI: 10.1371/journal.pcbi.1004492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 08/06/2015] [Indexed: 12/15/2022] Open
Abstract
Recent studies have highlighted the ability of HIV to escape from cytotoxic T lymphocyte (CTL) responses that concurrently target multiple viral epitopes. Yet, the viral dynamics involved in such escape are incompletely understood. Previous analyses have made several strong assumptions regarding HIV escape from CTL responses such as independent or non-concurrent escape from individual CTL responses. Using experimental data from evolution of HIV half genomes in four patients we observe concurrent viral escape from multiple CTL responses during early infection (first 100 days of infection), providing confirmation of a recent result found in a study of one HIV-infected patient. We show that current methods of estimating CTL escape rates, based on the assumption of independent escapes, are biased and perform poorly when CTL escape proceeds concurrently at multiple epitopes. We propose a new method for analyzing longitudinal sequence data to estimate the rate of CTL escape across multiple epitopes; this method involves few parameters and performs well in simulation studies. By applying our novel method to experimental data, we find that concurrent multiple escapes occur at rates between 0.03 and 0.4 day−1, a relatively broad range that reflects uncertainty due to sparse sampling and wide ranges of parameter values. However, we show that concurrent escape at rates 0.1–0.2 day−1 across multiple epitopes is consistent with our patient datasets. Since the early 1990s, cytotoxic T lymphocytes (CTLs) have been known to play an important role in HIV infection with CTLs targeting HIV epitopes and, in turn, HIV escapes arising through mutations in the targeted epitopes. Over the past decade, studies have shown that CTL responses concurrently target multiple HIV epitopes, yet the effect of concurrent responses on HIV dynamics and evolution is not well understood. Through an analysis of patient datasets and a novel statistical method, we show that during early HIV infection concurrent CTL responses drive concurrent HIV escapes at multiple epitopes with significant pressure, suggesting a complex picture in which HIV simultaneously explores multiple mutational pathways to escape from broad and potent CTL response.
Collapse
Affiliation(s)
- Sivan Leviyang
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States of America
- * E-mail:
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
17
|
Gadhamsetty S, Beltman JB, de Boer RJ. What do mathematical models tell us about killing rates during HIV-1 infection? Immunol Lett 2015; 168:1-6. [PMID: 26279491 DOI: 10.1016/j.imlet.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Over the past few decades the extent to which cytotoxic T lymphocytes (CTLs) control human immunodeficiency virus (HIV) replication has been studied extensively, yet their role and mode of action remain controversial. In some studies, CTLs were found to kill a large fraction of the productively infected cells relative to the viral cytopathicity, whereas in others CTLs were suggested to kill only a small fraction of infected cells. In this review, we compile published estimates of CTL-mediated death rates, and examine whether these studies permit determining the rate at which CTLs kill HIV-1 infected cells. We highlight potential misinterpretations of the CTL-killing rates from the escape rates of mutants, and from perturbations of the steady state viral load during chronic infection. Our major conclusion is that CTL-mediated killing rates remain unknown. But contrary to current consensus, we argue that killing rates higher than one per day are perfectly consistent with the experimental data, which would imply that the majority of the productively infected cells could still die from CTL-mediated killing rather than from viral cytopathicity.
Collapse
Affiliation(s)
- Saikrishna Gadhamsetty
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Joost B Beltman
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
18
|
Antibody escape kinetics of equine infectious anemia virus infection of horses. J Virol 2015; 89:6945-51. [PMID: 25878104 DOI: 10.1128/jvi.00137-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022] Open
Abstract
Lentivirus escape from neutralizing antibodies (NAbs) is not well understood. In this work, we quantified antibody escape of a lentivirus, using antibody escape data from horses infected with equine infectious anemia virus. We calculated antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. These quantitative kinetic estimates of antibody escape are important for understanding lentiviral control by antibody neutralization and in developing NAb-eliciting vaccine strategies.
Collapse
|
19
|
Johnson S, Bergthaler A, Graw F, Flatz L, Bonilla WV, Siegrist CA, Lambert PH, Regoes RR, Pinschewer DD. Protective efficacy of individual CD8+ T cell specificities in chronic viral infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:1755-62. [PMID: 25567678 DOI: 10.4049/jimmunol.1401771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific CD8(+) T cells (CTLs) play an important role in resolving protracted infection with hepatitis B and C virus in humans and lymphocytic choriomeningitis virus (LCMV) in mice. The contribution of individual CTL specificities to chronic virus control, as well as epitope-specific patterns in timing and persistence of antiviral selection pressure, remain, however, incompletely defined. To monitor and characterize the antiviral efficacy of individual CTL specificities throughout the course of chronic infection, we coinoculated mice with a mixture of wild-type LCMV and genetically engineered CTL epitope-deficient mutant virus. A quantitative longitudinal assessment of viral competition revealed that mice continuously exerted CTL selection pressure on the persisting virus population. The timing of selection pressure characterized individual epitope specificities, and its magnitude varied considerably between individual mice. This longitudinal assessment of "antiviral efficacy" provides a novel parameter to characterize CTL responses in chronic viral infection. It demonstrates remarkable perseverance of all antiviral CTL specificities studied, thus raising hope for therapeutic vaccination in the treatment of persistent viral diseases.
Collapse
Affiliation(s)
- Susan Johnson
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Andreas Bergthaler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Frederik Graw
- Center for Modeling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, 69120 Heidelberg, Germany; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87544; Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lukas Flatz
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; Department of Dermatology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; and
| | - Weldy V Bonilla
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland; Division of Experimental Virology, Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Claire-Anne Siegrist
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Paul-Henri Lambert
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel D Pinschewer
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland; Division of Experimental Virology, Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| |
Collapse
|
20
|
The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations. PLoS Comput Biol 2014; 10:e1003878. [PMID: 25356981 PMCID: PMC4214571 DOI: 10.1371/journal.pcbi.1003878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, , as well as cost to viral replication, . The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of from published experimental studies to be in the range (0.01–0.86) and show that the assumption of complete recognition loss () leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be targeted by vaccines. Like many viruses, HIV has evolved mechanisms to evade the host immune response. As early as a few weeks after infection is initiated, mutations appear in the viral genome that reduce the ability of cytotoxic T lymphocytes (CTL) to control virus replication. However, of the many mutations in the viral genome that could potentially mediate viral escape from the CTL response, a specific subset are typically observed. This suggests that some mutations either entail too high a fitness cost for the virus, or are relatively inefficient escape mutations. A successful vaccine would target the CTL response to these regions in such a way that escape would not be possible. We use a computational model of HIV infection in order to study the factors that determine whether a given escape mutation will occur, how long it will be maintained in the population, and how these changes in the viral genome will affect the CTL response. Our analysis highlights the important role of partial recognition loss conferred by a mutation in producing the complex dynamics of escape that are observed during the course of infection.
Collapse
|
21
|
Showa SP, Nyabadza F, Hove-Musekwa SD, Magombedze G. A comparison of elasticities of viral levels to specific immune response mechanisms in human immunodeficiency virus infection. BMC Res Notes 2014; 7:737. [PMID: 25331717 PMCID: PMC4221687 DOI: 10.1186/1756-0500-7-737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of an asymptomatic phase in an HIV infection indicates that the immune system can partially control the infection. Determining the immune mechanisms that contribute significantly to the partial control of the infection enhance the HIV infection intervention strategies and is important in vaccine development. Towards this goal, a discrete time HIV model, which incorporates the life cycle aspects of the virus, the antibody (humoral) response and the cell-mediated immune response is formulated to determine immune system components that are most efficient in controlling viral levels. Ecological relationships are used to model the interplay between the immune system components and the HIV pathogen. Model simulations and transient elasticity analysis of the viral levels to immune response parameters are used to compare the different immune mechanisms. RESULTS It is shown that cell-mediated immune response is more effective in controlling the viral levels than the antibody response. Killing of infected cells is shown to be crucial in controlling the viral levels. Our results show a negative correlation between the antibody response and the viral levels in the early stages of the infection, but we predicted this immune mechanism to be positively correlated with the viral levels in the late stage of the infection. A result that suggests lack of relevance of antibody response with infection progression. On the contrary, we predicted the cell-mediated immune response to be always negatively correlated with viral levels. CONCLUSION Neutralizing antibodies can only control the viral levels in the early days of the HIV infection whereas cell-mediated immune response is beneficial during all the stages of the infection. This study predicts that vaccine design efforts should also focus on stimulating killer T cells that target infected cells.
Collapse
Affiliation(s)
- Sarudzai P Showa
- Department of Applied Mathematics, National University of Science and Technology, P,O, Box AC 939 Ascot, Bulawayo, Zimbabwe.
| | | | | | | |
Collapse
|
22
|
Pandit A, de Boer RJ. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants. Retrovirology 2014; 11:56. [PMID: 24996694 PMCID: PMC4227095 DOI: 10.1186/1742-4690-11-56] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/24/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Following transmission, HIV-1 evolves into a diverse population, and next generation sequencing enables us to detect variants occurring at low frequencies. Studying viral evolution at the level of whole genomes was hitherto not possible because next generation sequencing delivers relatively short reads. RESULTS We here provide a proof of principle that whole HIV-1 genomes can be reliably reconstructed from short reads, and use this to study the selection of immune escape mutations at the level of whole genome haplotypes. Using realistically simulated HIV-1 populations, we demonstrate that reconstruction of complete genome haplotypes is feasible with high fidelity. We do not reconstruct all genetically distinct genomes, but each reconstructed haplotype represents one or more of the quasispecies in the HIV-1 population. We then reconstruct 30 whole genome haplotypes from published short sequence reads sampled longitudinally from a single HIV-1 infected patient. We confirm the reliability of the reconstruction by validating our predicted haplotype genes with single genome amplification sequences, and by comparing haplotype frequencies with observed epitope escape frequencies. CONCLUSIONS Phylogenetic analysis shows that the HIV-1 population undergoes selection driven evolution, with successive replacement of the viral population by novel dominant strains. We demonstrate that immune escape mutants evolve in a dependent manner with various mutations hitchhiking along with others. As a consequence of this clonal interference, selection coefficients have to be estimated for complete haplotypes and not for individual immune escapes.
Collapse
Affiliation(s)
- Aridaman Pandit
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
23
|
Abstract
This review outlines how mathematical models have been helpful, and continue to be so, for obtaining insights into the in vivo dynamics of HIV infection. The review starts with a discussion of a basic mathematical model that has been frequently used to study HIV dynamics. Some crucial results are described, including the estimation of key parameters that characterize the infection, and the generation of influential theories which argued that in vivo virus evolution is a key player in HIV pathogenesis. Subsequently, more recent concepts are reviewed that have relevance for disease progression, including the multiple infection of cells and the direct cell-to-cell transmission of the virus through the formation of virological synapses. These are important mechanisms that can influence the rate at which HIV spreads through its target cell population, which is tightly linked to the rate at which the disease progresses towards AIDS.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 926967, USA,
| |
Collapse
|
24
|
Kessinger TA, Perelson AS, Neher RA. Inferring HIV Escape Rates from Multi-Locus Genotype Data. Front Immunol 2013; 4:252. [PMID: 24027569 PMCID: PMC3760075 DOI: 10.3389/fimmu.2013.00252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major histocompatibility complex molecules on the surface of virally infected cells and generate an anti-viral response that can kill the infected cells. Virus variants whose protein fragments are not efficiently presented on infected cells or whose fragments are presented but not recognized by CTLs therefore have a competitive advantage and spread rapidly through the population. We present a method that allows a more robust estimation of these escape rates from serially sampled sequence data. The proposed method accounts for competition between multiple escapes by explicitly modeling the accumulation of escape mutations and the stochastic effects of rare multiple mutants. Applying our method to serially sampled HIV sequence data, we estimate rates of HIV escape that are substantially larger than those previously reported. The method can be extended to complex escapes that require compensatory mutations. We expect our method to be applicable in other contexts such as cancer evolution where time series data is also available.
Collapse
Affiliation(s)
- Taylor A Kessinger
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology , Tübingen , Germany
| | | | | |
Collapse
|
25
|
Perelson AS, Ribeiro RM. Modeling the within-host dynamics of HIV infection. BMC Biol 2013; 11:96. [PMID: 24020860 PMCID: PMC3765939 DOI: 10.1186/1741-7007-11-96] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023] Open
Abstract
The new field of viral dynamics, based on within-host modeling of viral infections, began with models of human immunodeficiency virus (HIV), but now includes many viral infections. Here we review developments in HIV modeling, emphasizing quantitative findings about HIV biology uncovered by studying acute infection, the response to drug therapy and the rate of generation of HIV variants that escape immune responses. We show how modeling has revealed many dynamical features of HIV infection and how it may provide insight into the ultimate cure for this infection.
Collapse
Affiliation(s)
- Alan S Perelson
- MS K710, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
26
|
Abstract
During the first weeks of human immunodeficiency virus-1 (HIV-1) infection, cytotoxic T-lymphocytes (CTLs) select for multiple escape mutations in the infecting HIV population. In recent years, methods that use escape mutation data to estimate rates of HIV escape have been developed, thereby providing a quantitative framework for exploring HIV escape from CTL response. Current methods for escape-rate inference focus on a specific HIV mutant selected by a single CTL response. However, recent studies have shown that during the first weeks of infection, CTL responses occur at one to three epitopes and HIV escape occurs through complex mutation pathways. Consequently, HIV escape from CTL response forms a complex, selective sweep that is difficult to analyze. In this work, we develop a model of initial infection, based on the well-known standard model, that allows for a description of multi-epitope response and the complex mutation pathways of HIV escape. Under this model, we develop Bayesian and hypothesis-test inference methods that allow us to analyze and estimate HIV escape rates. The methods are applied to two HIV patient data sets, concretely demonstrating the utility of our approach.
Collapse
|
27
|
Ganusov VV, Neher RA, Perelson AS. Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses. JOURNAL OF STATISTICAL MECHANICS (ONLINE) 2013; 2013:P01010. [PMID: 24660019 PMCID: PMC3961578 DOI: 10.1088/1742-5468/2013/01/p01010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the absence of treatment leads to AIDS and death in almost all infected individuals. HIV infection elicits a vigorous immune response starting about 2-3 weeks post infection that can lower the amount of virus in the body, but which cannot eradicate the virus. How HIV establishes a chronic infection in the face of a strong immune response remains poorly understood. It has been shown that HIV is able to rapidly change its proteins via mutation to evade recognition by virus-specific cytotoxic T lymphocytes (CTLs). Typically, an HIV-infected patient will generate 4-12 CTL responses specific for parts of viral proteins called epitopes. Such CTL responses lead to strong selective pressure to change the viral sequences encoding these epitopes so as to avoid CTL recognition. Indeed, the viral population "escapes" from about half of the CTL responses by mutation in the first year. Here we review experimental data on HIV evolution in response to CTL pressure, mathematical models developed to explain this evolution, and highlight problems associated with the data and previous modeling efforts. We show that estimates of the strength of the epitope-specific CTL response depend on the method used to fit models to experimental data and on the assumptions made regarding how mutants are generated during infection. We illustrate that allowing CTL responses to decay over time may improve the fit to experimental data and provides higher estimates of the killing efficacy of HIV-specific CTLs. We also propose a novel method for simultaneously estimating the killing efficacy of multiple CTL populations specific for different epitopes of HIV using stochastic simulations. Lastly, we show that current estimates of the efficacy at which HIV-specific CTLs clear virus-infected cells can be improved by more frequent sampling of viral sequences and by combining data on sequence evolution with experimentally measured CTL dynamics.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard A Neher
- Max-Planck-Institute for Developmental Biology, 72070 Tübingen, Germany
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, MS K710 Los Alamos, 87545 NM, USA
| |
Collapse
|
28
|
Komarova NL, Urwin E, Wodarz D. Accelerated crossing of fitness valleys through division of labor and cheating in asexual populations. Sci Rep 2012; 2:917. [PMID: 23209877 PMCID: PMC3512085 DOI: 10.1038/srep00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/31/2012] [Indexed: 11/09/2022] Open
Abstract
Complex traits can require the accumulation of multiple mutations that are individually deleterious. Their evolution requires a fitness valley to be crossed, which can take relatively long time spans. A new evolutionary mechanism is described that accelerates the emergence of complex phenotypes, based on a “division of labor” game and the occurrence of cheaters. If each intermediate mutation leads to a product that can be shared with others, the complex type can arise relatively quickly as an emergent property among cooperating individuals, without any given individual having to accumulate all mutations. Moreover, the emergence of cheaters that destroy cooperative interactions can lead to the emergence of individuals that have accumulated all necessary mutations on a time scale that is significantly faster than observed in the absence of cooperation and cheating. Application of this mechanism to somatic and microbial evolution is discussed, including evolutionary processes in tumors, biofilms, and viral infections.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, Rowland Hall, University of California , Irvine, CA 92697, USA.
| | | | | |
Collapse
|
29
|
Althaus CL, De Boer RJ. Impaired immune evasion in HIV through intracellular delays and multiple infection of cells. Proc Biol Sci 2012; 279:3003-10. [PMID: 22492063 DOI: 10.1098/rspb.2012.0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle.
Collapse
Affiliation(s)
- Christian L Althaus
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
30
|
Yates AJ, Van Baalen M, Antia R. Virus replication strategies and the critical CTL numbers required for the control of infection. PLoS Comput Biol 2011; 7:e1002274. [PMID: 22125483 PMCID: PMC3219614 DOI: 10.1371/journal.pcbi.1002274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 09/30/2011] [Indexed: 11/18/2022] Open
Abstract
Vaccines that elicit protective cytotoxic T lymphocytes (CTL) may improve on or augment those designed primarily to elicit antibody responses. However, we have little basis for estimating the numbers of CTL required for sterilising immunity at an infection site. To address this we begin with a theoretical estimate obtained from measurements of CTL surveillance rates and the growth rate of a virus. We show how this estimate needs to be modified to account for (i) the dynamics of CTL-infected cell conjugates, and (ii) features of the virus lifecycle in infected cells. We show that provided the inoculum size of the virus is low, the dynamics of CTL-infected cell conjugates can be ignored, but knowledge of virus life-histories is required for estimating critical thresholds of CTL densities. We show that accounting for virus replication strategies increases estimates of the minimum density of CTL required for immunity over those obtained with the canonical model of virus dynamics, and demonstrate that this modeling framework allows us to predict and compare the ability of CTL to control viruses with different life history strategies. As an example we predict that lytic viruses are more difficult to control than budding viruses when net reproduction rates and infected cell lifetimes are controlled for. Further, we use data from acute SIV infection in rhesus macaques to calculate a lower bound on the density of CTL that a vaccine must generate to control infection at the entry site. We propose that critical CTL densities can be better estimated either using quantitative models incorporating virus life histories or with in vivo assays using virus-infected cells rather than peptide-pulsed targets. In the search for vaccines that provide reliable protection against major diseases such as HIV-AIDS, TB and Malaria, there is now a focus on generating populations of antigen-specific cytotoxic T lymphocytes (CTL), immune cells that recognise and kill infected cells. However, we have little idea of the number or density of CTL a vaccine would need to elicit to provide sterilizing immunity to an infection in a given tissue. In this study we use mathematical models to understand how a virus's replication strategy influences the minimum density of CTL needed to provide immunity at an infection site. We show that traditional models that neglect the viral lifecycle within infected cells will underestimate this density. To illustrate, we use our modelling framework to estimate the CTL density needed to control the spread of virus at the very earliest stages of primary SIV infection in rhesus macaques.
Collapse
Affiliation(s)
- Andrew J Yates
- Department of Systems and Computational Biology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | |
Collapse
|
31
|
Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol 2011; 85:10518-28. [PMID: 21835793 DOI: 10.1128/jvi.00655-11] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.
Collapse
|
32
|
Tomescu C, Abdulhaqq S, Montaner LJ. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol 2011; 164:158-69. [PMID: 21413945 DOI: 10.1111/j.1365-2249.2011.04379.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The description of highly exposed individuals who remain seronegative (HESN) despite repeated exposure to human immunodeficiency virus (HIV)-1 has heightened interest in identifying potential mechanisms of HIV-1 resistance. HIV-specific humoral and T cell-mediated responses have been identified routinely in HESN subjects, although it remains unknown if these responses are a definitive cause of protection or merely a marker for exposure. Approximately half of HESN lack any detectible HIV-specific adaptive immune responses, suggesting that other mechanisms of protection from HIV-1 infection also probably exist. In support of the innate immune response as a mechanism of resistance, increased natural killer (NK) cell activity has been correlated with protection from infection in several high-risk cohorts of HESN subjects, including intravenous drug users, HIV-1 discordant couples and perinatally exposed infants. Inheritance of protective NK KIR3DL1(high) and KIR3DS1 receptor alleles have also been observed to be over-represented in a high-risk cohort of HESN intravenous drug users and HESN partners of HIV-1-infected subjects. Other intrinsic mechanisms of innate immune protection correlated with resistance in HESN subjects include heightened dendritic cell responses and increased secretion of anti-viral factors such as β-chemokines, small anti-viral factors and defensins. This review will highlight the most current evidence in HESN subjects supporting the role of epithelial microenvironment and the innate immune system in sustaining resistance against HIV-1 infection. We will argue that as a front-line defence the innate immune response determines the threshold of infectivity that HIV-1 must overcome to establish a productive infection.
Collapse
Affiliation(s)
- C Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | | |
Collapse
|
33
|
Ferrari G, Korber B, Goonetilleke N, Liu MKP, Turnbull EL, Salazar-Gonzalez JF, Hawkins N, Self S, Watson S, Betts MR, Gay C, McGhee K, Pellegrino P, Williams I, Tomaras GD, Haynes BF, Gray CM, Borrow P, Roederer M, McMichael AJ, Weinhold KJ. Relationship between functional profile of HIV-1 specific CD8 T cells and epitope variability with the selection of escape mutants in acute HIV-1 infection. PLoS Pathog 2011; 7:e1001273. [PMID: 21347345 PMCID: PMC3037354 DOI: 10.1371/journal.ppat.1001273] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/06/2011] [Indexed: 01/09/2023] Open
Abstract
In the present study, we analyzed the functional profile of CD8+ T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naïve subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8+ T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1β-producing CD8+ T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants. An important role for the polyfunctional T-cell fraction of anti-HIV CD8 responses during chronic HIV infection has previously been suggested. This study characterized the role of polyfunctional T-cells directed against the transmitted/founder virus in the selection of viral escape mutants during acute HIV-1 infection within a unique cohort of individuals recruited within 3 weeks from the onset of symptoms at the time when the virus load was still declining. For the first time, the sequences of the transmitted/founder virus isolated from each patient were used. Interestingly, polyfunctionality was not found to be a pre-requisite for selection of escape mutations. A novel significant correlation is found between the order of appearance of escape mutations in different epitope sequences and both the magnitude of the CD8+ T-cell responses and the degree of entropy of the individual epitopes. A high proportion of the T-cells participating in the total response produced MIP-1β, suggesting that mechanisms not limited to the killing of infected cells might play a relevant role in early infection. This highlights the importance of measuring the quality of the CD8+ lymphocyte response and the sequence of the transmitted virus isolates to better understand the mechanisms of control of HIV replication during acute infection.
Collapse
Affiliation(s)
- Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
An integrated modelling approach for R5–X4 mutation and HAART therapy assessment. SWARM INTELLIGENCE 2010. [DOI: 10.1007/s11721-010-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Balamurali M, Petravic J, Loh L, Alcantara S, Kent SJ, Davenport MP. Does cytolysis by CD8+ T cells drive immune escape in HIV infection? THE JOURNAL OF IMMUNOLOGY 2010; 185:5093-101. [PMID: 20881189 DOI: 10.4049/jimmunol.1002204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) "cytotoxic" T cells are important for the immune control of HIV and the closely related simian models SIV and chimeric simian-human immunodeficiency virus (SHIV), although the mechanisms of this control are unclear. One effect of CD8(+) T cell-mediated recognition of virus-infected cells is the rapid selection of escape mutant (EM) virus that is not recognized. To investigate the mechanisms of virus-specific CD8(+) T cell control during immune escape in vivo, we used a real-time PCR assay to study the dynamics of immune escape in early SHIV infection of pigtail macaques. For immune escape mediated by cytolysis, we would expect that the death rate of wild type (WT) infected cells should be faster than that of EM-infected cells. In addition, escape should be fastest during periods when the total viral load is declining. However, we find that there is no significant difference in the rate of decay of WT virus compared with EM virus. Further, immune escape is often fastest during periods of viral growth, rather than viral decline. These dynamics are consistent with an epitope-specific, MHC class I-restricted, noncytolytic mechanism of CD8(+) T cell control of SHIV that specifically inhibits the growth of WT virus in vivo.
Collapse
Affiliation(s)
- Mehala Balamurali
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Fischer W, Ganusov VV, Giorgi EE, Hraber PT, Keele BF, Leitner T, Han CS, Gleasner CD, Green L, Lo CC, Nag A, Wallstrom TC, Wang S, McMichael AJ, Haynes BF, Hahn BH, Perelson AS, Borrow P, Shaw GM, Bhattacharya T, Korber BT. Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing. PLoS One 2010; 5:e12303. [PMID: 20808830 PMCID: PMC2924888 DOI: 10.1371/journal.pone.0012303] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/10/2010] [Indexed: 01/10/2023] Open
Abstract
We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3–6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses – using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2–7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.
Collapse
Affiliation(s)
- Will Fischer
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Vitaly V. Ganusov
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Elena E. Giorgi
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Peter T. Hraber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brandon F. Keele
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Thomas Leitner
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cliff S. Han
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cheryl D. Gleasner
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lance Green
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Chien-Chi Lo
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ambarish Nag
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Timothy C. Wallstrom
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Shuyi Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew J. McMichael
- Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Barton F. Haynes
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Beatrice H. Hahn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alan S. Perelson
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - George M. Shaw
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Bette T. Korber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ganusov VV, Lukacher AE, Byers AM. Persistence of viral infection despite similar killing efficacy of antiviral CD8(+) T cells during acute and chronic phases of infection. Virology 2010; 405:193-200. [PMID: 20580390 DOI: 10.1016/j.virol.2010.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/24/2010] [Accepted: 05/24/2010] [Indexed: 01/21/2023]
Abstract
Why some viruses establish chronic infections while others do not is poorly understood. One possibility is that the host's immune response is impaired during chronic infections and is unable to clear the virus from the host. In this report, we use a recently proposed framework to estimate the per capita killing efficacy of CD8(+) T cells, specific for the polyoma virus (PyV), which establishes a chronic infection in mice. Surprisingly, the estimated per cell killing efficacy of PyV-specific effector CD8(+) T cells during the acute phase of the infection was very similar to the efficacy of effector CD8(+) T cells specific to lymphocytic choriomeningitis virus (LCMV-Armstrong), which is cleared from the host. Our results suggest that persistence of PyV does not result from the generation of an inefficient PyV-specific CD8(+) T cell response, and that other host or viral factors are responsible for the ability of PyV to establish chronic infection.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
38
|
Abstract
Immune control of HIV often fails due to viral escape from cellular and humoral host immune responses. Vaccine development is a daunting task because of the ability of HIV to adapt rapidly to different selection pressures and quickly restore viral fitness when transmitted to new hosts. In addition, the global viral diversity poses significant difficulties for accurate and standardized testing of immune responses in the infected host, slowing the generation of data that are crucial to defining relevant immune correlates of controlled HIV infection. Many recent studies have shed light on some of the potentially important factors of protective immune responses and have provided further insight into the viral kinetics determining immune control, viral adaptation, and immune escape. This knowledge will likely further guide the design of broadly applicable HIV vaccine candidates.
Collapse
Affiliation(s)
- Nicole Frahm
- Partners AIDS Research Center, 5th Floor MGH East, #5239, 149 13th Street, Charlestown, MA 02129-2000, USA
| | | |
Collapse
|
39
|
Mathematical modeling of ultradeep sequencing data reveals that acute CD8+ T-lymphocyte responses exert strong selective pressure in simian immunodeficiency virus-infected macaques but still fail to clear founder epitope sequences. J Virol 2010; 84:5802-14. [PMID: 20335256 DOI: 10.1128/jvi.00117-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.
Collapse
|
40
|
López A, van der Lubbe N, Sánchez-Palomino S, Arnedo M, Nomdedeu M, Castro P, Guilà M, Maleno MJ, García F, Gallart T, Gatell JM, Plana M. Phenotypic and functional characteristics of HIV-specific CD8 T cells and gag sequence variability after autologous dendritic cells based therapeutic vaccine. Vaccine 2009; 27:6166-78. [PMID: 19712765 DOI: 10.1016/j.vaccine.2009.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 12/19/2022]
Abstract
A decrease in HIV-1 specific CD8 T-cell responses associated with a partial control of viral replication occurred in 12 HIV-1-infected patients during autologous dendritic cells vaccination. HIV CD8 T cells were detected in 6/10 patients during immunizations, increasing after HAART discontinuation in 3 of them. Tet+ CD8 cells mainly had an effector phenotype (CD45RA-/+ CCR7- and CD28- and Perf+/-) and maintained IFN-gamma release throughout follow-up. By contrast, patients with CD45RA-/+ CCR7+ Perf+ HIV-specific cells showed a decrease in peptide-specific IFN-gamma production during vaccinations while levels were recovered when off HAART. No major mutations in either Gag p24 and p17 immunodominant epitopes were observed that might have explained the impaired CD8+ T-cell responses. Taken together, heterogeneity in the maturation status of HIV-specific CD8 T cells may be partially involved in the drop of peptide-specific IFN-gamma production during immunizations.
Collapse
Affiliation(s)
- Anna López
- Retrovirology and Viral Immunopathology Laboratory, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Graw F, Regoes RR. Investigating CTL mediated killing with a 3D cellular automaton. PLoS Comput Biol 2009; 5:e1000466. [PMID: 19696876 PMCID: PMC2715871 DOI: 10.1371/journal.pcbi.1000466] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 07/13/2009] [Indexed: 11/25/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are important immune effectors against intra-cellular pathogens. These cells search for infected cells and kill them. Recently developed experimental methods in combination with mathematical models allow for the quantification of the efficacy of CTL killing in vivo and, hence, for the estimation of parameters that characterize the effect of CTL killing on the target cell populations. It is not known how these population-level parameters relate to single-cell properties. To address this question, we developed a three-dimensional cellular automaton model of the region of the spleen where CTL killing takes place. The cellular automaton model describes the movement of different cell populations and their interactions. Cell movement patterns in our cellular automaton model agree with observations from two-photon microscopy. We find that, despite the strong spatial nature of the kinetics in our cellular automaton model, the killing of target cells by CTLs can be described by a term which is linear in the target cell frequency and saturates with respect to the CTL levels. Further, we find that the parameters describing CTL killing on the population level are most strongly impacted by the time a CTL needs to kill a target cell. This suggests that the killing of target cells, rather than their localization, is the limiting step in CTL killing dynamics given reasonable frequencies of CTL. Our analysis identifies additional experimental directions which are of particular importance to interpret estimates of killing rates and could advance our quantitative understanding of CTL killing. The immune response mediated by cytotoxic T lymphocytes (CTLs), which kill infected cells, is thought to be essential to control viral infections. Experiments offer data which allow one to address the efficacy of this cell population in vivo and to estimate characterizing parameters. However, it is unclear which mathematical description reflects the experimental situation best and leads to reliable parameter estimates that quantify CTL efficacy. We simulate the spatial interaction of CTLs and infected cells in a 3-dimensional computer model to examine different mathematical descriptions of the experimental situation, independently of experimental data. Thereby we find an appropriate mathematical term to describe the killing process. Estimates obtained so far describe CTL efficacy on a population level. By varying the individual properties of simulated CTLs, such as the velocity, we find that the time a CTL needs to kill an infected cell is probably the key factor limiting CTL killing efficacy. Our analysis identifies additional experimental directions which could advance our quantitative understanding of CTL killing for different diseases.
Collapse
Affiliation(s)
- Frederik Graw
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
42
|
Goonetilleke N, Liu MKP, Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV, Keele BF, Learn GH, Turnbull EL, Salazar MG, Weinhold KJ, Moore S, Letvin N, Haynes BF, Cohen MS, Hraber P, Bhattacharya T, Borrow P, Perelson AS, Hahn BH, Shaw GM, Korber BT, McMichael AJ. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. ACTA ACUST UNITED AC 2009; 206:1253-72. [PMID: 19487423 PMCID: PMC2715063 DOI: 10.1084/jem.20090365] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of the transmitted/founder virus makes possible, for the first time, a genome-wide analysis of host immune responses against the infecting HIV-1 proteome. A complete dissection was made of the primary HIV-1–specific T cell response induced in three acutely infected patients. Cellular assays, together with new algorithms which identify sites of positive selection in the virus genome, showed that primary HIV-1–specific T cells rapidly select escape mutations concurrent with falling virus load in acute infection. Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection. After virus escape, these first T cell responses often rapidly waned, leaving or being succeeded by T cell responses to epitopes which escaped more slowly or were invariant. These latter responses are likely to be important in maintaining the already established virus set point. In addition to mutations selected by T cells, there were other selected regions that accrued mutations more gradually but were not associated with a T cell response. These included clusters of mutations in envelope that were targeted by NAbs, a few isolated sites that reverted to the consensus sequence, and bystander mutations in linkage with T cell–driven escape.
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Christie NM, Willer DO, Lobritz MA, Chan JK, Arts EJ, Ostrowski MA, Cochrane A, Luscher MA, MacDonald KS. Viral fitness implications of variation within an immunodominant CD8+ T-cell epitope of HIV-1. Virology 2009; 388:137-46. [PMID: 19368950 DOI: 10.1016/j.virol.2009.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/28/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022]
Abstract
Cytotoxic T-lymphocyte (CTL) epitopes within the HIV genome are subject to negative and positive selective pressures, the balance of which influences CTL escape at a given epitope. We investigated whether viral fitness requirements dictate conservation of the HLA-A2 restricted immunodominant epitope SLYNTVATL (SL9). Viral clones incorporating changes throughout the SL9 epitope region were compared to consensus SL9 virus in terms of replication kinetics and relative viral fitness. Constructs recapitulating in vivo SL9-CTL escape variants showed markedly little effect on replication and fitness, as did non-natural conservative mutations targeting immunologically relevant positions of the epitope. Although certain residues of the epitope were constrained by viral requirements, our research reveals that there are multiple SL9 variants that are well tolerated virologically but fail to arise in vivo. In light of this data, assumptions regarding the balance of immune and viral selective pressures on this immunodominant epitope sequence need to be reassessed.
Collapse
Affiliation(s)
- N M Christie
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Asquith B. The evolutionary selective advantage of HIV-1 escape variants and the contribution of escape to the HLA-associated risk of AIDS progression. PLoS One 2008; 3:e3486. [PMID: 18941529 PMCID: PMC2567026 DOI: 10.1371/journal.pone.0003486] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 10/01/2008] [Indexed: 11/19/2022] Open
Abstract
HIV-1 escape from surveillance by cytotoxic T lymphocytes (CTL) is thought to cause at least transient weakening of immune control. However, the CTL response is highly adaptable and the long-term consequences of viral escape are not fully understood. The objective of this study was to address the question “to what extent does HIV-1 escape from CTL contribute to HLA-associated AIDS progression?” We combined an analysis of 21 escape events in longitudinally-studied HIV-1 infected people with a population-level analysis of the functional CTL response in 150 subjects (by IFNg ELISpot) and an analysis of the HIV-1 sequence database to quantify the contribution of escape to the HLA-associated rate of AIDS progression. We found that CTL responses restricted by protective HLA class I alleles, which are associated with slow progression to AIDS, recognised epitopes where escape variants had a weak evolutionary selective advantage (P = 0.008) and occurred infrequently (P = 0.017). Epitopes presented by protective HLA class I alleles were more likely to elicit a CTL response (P = 0.001) and less likely to contain sequence variation (P = 0.006). A third of between-individual variation in HLA-associated disease risk was predicted by the selective advantage of escape variants: a doubling in the evolutionary selective advantage was associated with a decrease in the AIDS-free period of 1.2 yrs. These results contribute to our understanding of what makes a CTL response protective and why some individuals progress to AIDS more rapidly than others.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Imperial College London, London, United Kingdom.
| |
Collapse
|
45
|
Althaus CL, De Boer RJ. Dynamics of immune escape during HIV/SIV infection. PLoS Comput Biol 2008; 4:e1000103. [PMID: 18636096 PMCID: PMC2423483 DOI: 10.1371/journal.pcbi.1000103] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/28/2008] [Indexed: 01/10/2023] Open
Abstract
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus. As a result of their high mutation rate, HIV and its counterpart SIV in non-human primates can evade recognition by the host immune response through the generation of viral variants, the so-called escape mutants. This avoidance of cytotoxic T lymphocyte (CTL) mediated killing seems to be one of the major reasons why virus replication is not controlled effectively. However, it remains difficult to investigate the critical properties of the dynamics of immune escape. To this end, we developed a new computational model of HIV/SIV infection consisting of several CTL clones that can recognize specific parts of viral proteins, i.e., epitopes. The simulations allow us to follow the dynamics of immune escape in detail and help to interpret longitudinal data of HIV/SIV infections. Interestingly, changing the relative sizes of the CTL clones leads to a different evolution of the virus. Instead of reducing the number of infected cells, an alternative strategy of vaccine design could be to reduce the replicative capacity of the virus that might have implications for disease progression.
Collapse
|
46
|
CD4+ target cell availability determines the dynamics of immune escape and reversion in vivo. J Virol 2008; 82:4091-101. [PMID: 18272587 DOI: 10.1128/jvi.02552-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infections with human immunodeficiency virus (HIV) and the closely related monkey viruses simian-human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) are characterized by progressive waves of immune responses, followed by viral mutation and "immune escape." However, escape mutation usually leads to lower replicative fitness, and in the absence of immune pressure, an escape mutant (EM) virus "reverts" to the wild-type phenotype. Analysis of the dynamics of immune escape and reversion has suggested it is a mechanism for identifying the immunogens best capable of controlling viremia. We have analyzed and modeled data of the dynamics of wild-type (WT) and EM viruses during SHIV infection of macaques. Modeling suggests that the dynamics of reversion and immune escape should be determined by the availability of target cells for infection. Consistent with this suggestion, we find that the rate of reversion of cytotoxic T-lymphocyte (CTL) EM virus strongly correlates with the number of CD4(+) T cells available for infection. This phenomenon also affects the rate of immune escape, since this rate is determined by the balance of CTL killing and the WT fitness advantage. This analysis predicts that the optimal timing for the selection of immune escape variants will be immediately after the peak of viremia and that the development of escape variants at later times will lead to slower selection. This has important implications for comparative studies of immune escape and reversion in different infections and for identifying epitopes with high fitness cost for use as vaccine targets.
Collapse
|
47
|
Loh L, Petravic J, Batten CJ, Davenport MP, Kent SJ. Vaccination and timing influence SIV immune escape viral dynamics in vivo. PLoS Pathog 2008; 4:e12. [PMID: 18225952 PMCID: PMC2323283 DOI: 10.1371/journal.ppat.0040012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/10/2007] [Indexed: 11/30/2022] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTL) can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods for following CTL escape and reversion are, however, insensitive to minor viral quasispecies. We developed sensitive quantitative real-time PCR assays to track the viral load of SIV Gag164–172 KP9 wild-type (WT) and escape mutant (EM) variants in pigtail macaques. Rapid outgrowth of EM virus occurs during the first few weeks of infection. However, the rate of escape plateaued soon after, revealing a prolonged persistence of WT viremia not detectable by standard cloning and sequencing methods. The rate of escape of KP9 correlated with levels of vaccine-primed KP9-specific CD8+ T cells present at that time. Similarly, when non-KP9 responder (lacking the restricting Mane-A*10 allele) macaques were infected with SHIVmn229 stock containing a mixture of EM and WT virus, rapid reversion to WT was observed over the first 2 weeks following infection. However, the rate of reversion to WT slowed dramatically over the first month of infection. The serial quantitation of escape mutant viruses evolving during SIV infection shows that rapid dynamics of immune escape and reversion can be observed in early infection, particularly when CD8 T cells are primed by vaccination. However, these early rapid rates of escape and reversion are transient and followed by a significant slowing in these rates later during infection, highlighting that the rate of escape is significantly influenced by the timing of its occurrence. Immune escape from AIDS virus–specific cellular immunity is common. The driving forces behind how quickly cellular immunity forces escape are poorly understood. We developed a novel assay for a common immune escape variant of SIV in macaques. This allowed us to sensitively track the rates of immune escape even when levels of escape mutant or wild-type virus were low. We found that prior immunization of macaques resulted in very rapid immune escape during acute infection. However, when escape starts to occur later, during chronic infection, the rate of immune escape is much more gradual. Thus, both prior vaccination and timing influence the rates of immune escape and provide a fuller picture of the effectiveness of T cell immunity to HIV.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - C. Jane Batten
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Miles P Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Mandl JN, Regoes RR, Garber DA, Feinberg MB. Estimating the effectiveness of simian immunodeficiency virus-specific CD8+ T cells from the dynamics of viral immune escape. J Virol 2007; 81:11982-91. [PMID: 17699572 PMCID: PMC2168796 DOI: 10.1128/jvi.00946-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.
Collapse
Affiliation(s)
- Judith N Mandl
- Graduate Program in population Biology, Ecology, and Evolution, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
49
|
Asquith B, McLean AR. In vivo CD8+ T cell control of immunodeficiency virus infection in humans and macaques. Proc Natl Acad Sci U S A 2007; 104:6365-70. [PMID: 17404226 PMCID: PMC1851058 DOI: 10.1073/pnas.0700666104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Forty million people are estimated to be infected with HIV-1, and only a small fraction of those have access to life-prolonging antiretroviral treatment. As the epidemic grows there is an urgent need for effective therapeutic and prophylactic vaccines. Nonhuman primate models of immunodeficiency virus infection are essential for the preclinical evaluation of candidate vaccines. To interpret the results of these trials, comparative studies of the human and macaque immune responses are needed. Despite the widespread use of macaques to evaluate vaccines designed to elicit a CD8(+) cytotoxic T lymphocyte (CTL) response, the efficiency with which CTL control immunodeficiency virus infections has not been compared between humans and macaques, largely because of difficulties in assaying the functional CTL response. We recently developed a method for estimating the rate at which CTLs kill cells productively infected with HIV-1 in humans in vivo. Here, using the same technique, we quantify the rate at which CTLs kill infected cells in macaque models of HIV infection. We show that CTLs kill productively infected cells significantly faster (P = 0.004) and that escape variants have significantly higher fitness costs (P = 0.003) in macaques compared with humans. These results suggest that it may be easier to elicit a protective CTL response in macaques than in humans and that vaccine studies conducted in macaques need to be interpreted accordingly.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Imperial College London, London W2 1PG, UK.
| | | |
Collapse
|
50
|
De Boer RJ. Understanding the failure of CD8+ T-cell vaccination against simian/human immunodeficiency virus. J Virol 2007; 81:2838-48. [PMID: 17202215 PMCID: PMC1865966 DOI: 10.1128/jvi.01914-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines.
Collapse
Affiliation(s)
- Rob J De Boer
- Theoretical Biology UU, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|