1
|
Ghorbani M, Dehghan G, Allahverdi A. Insight into the effect of ibuprofen on the permeability of the membrane: a molecular dynamic simulation study. J Biomol Struct Dyn 2025; 43:560-570. [PMID: 37982256 DOI: 10.1080/07391102.2023.2283151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Studying interactions between drugs and cell membranes is of great interest to designing novel drugs, optimizing drug delivery, and discerning drug mechanism action. In this study, we investigated the physical properties of the bilayer membrane model of POPC upon interaction with ibuprofen (IBU) using molecular dynamics simulations. The area per lipid (APL) was calculated to describe the effect of ibuprofen on the packing properties of the lipid bilayer. The APL was 0.58 nm2 and 0.63 nm2 for the membrane in low and high IBU respectively, and 0.57 nm2 for the membrane without IBU. Our finding showed that the mean square deviation (MSD) increased with increased ibuprofen content. In addition, the order parameter for the hydrocarbon chain of lipids increased with increased ibuprofen content. There was an increment in the transfer free energy after the head group region while it was maximum in the hydrophobic core for hydrogen peroxide (H2O2) (∼6.2 kcal.mol-1) and H2O (∼3.4 kcal.mol-1) which then decreased to respective values of (∼4.6 kcal.mol-1), and (∼2.3 kcal.mol-1) at the center of the bilayer in the presence of IBU. It seems that in the presence of ibuprofen, the free energy profile of the permeability of water and H2O2 significantly decreased. These findings show that ibuprofen significantly influences the physical properties of the bilayer by decreasing the packing and intermolecular interaction in the hydrocarbon chain region and increasing the water permeability of the bilayer. These results may provide insights into the local cytotoxic side effects of ibuprofen and its underlying molecular mechanisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Han SB, Teuffel J, Mukherjee G, Wade RC. Multiresolution molecular dynamics simulations reveal the interplay between conformational variability and functional interactions in membrane-bound cytochrome P450 2B4. Protein Sci 2024; 33:e5165. [PMID: 39291728 PMCID: PMC11409197 DOI: 10.1002/pro.5165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Cytochrome P450 2B4 (CYP 2B4) is one of the best-characterized CYPs and serves as a key model system for understanding the mechanisms of microsomal class II CYPs, which metabolize most known drugs. The highly flexible nature of CYP 2B4 is apparent from crystal structures that show the active site with either a wide open or a closed heme binding cavity. Here, we investigated the conformational ensemble of the full-length CYP 2B4 in a phospholipid bilayer, using multiresolution molecular dynamics (MD) simulations. Coarse-grained MD simulations revealed two predominant orientations of CYP 2B4's globular domain with respect to the bilayer. Their refinement by atomistic resolution MD showed adaptation of the enzyme's interaction with the lipid bilayer, leading to open configurations that facilitate ligand access to the heme binding cavity. CAVER analysis of enzyme tunnels, AquaDuct analysis of water routes, and Random Acceleration Molecular Dynamics simulations of ligand dissociation support the conformation-dependent passage of molecules between the active site and the protein surroundings. Furthermore, simulation of the re-entry of the inhibitor bifonazole into the open conformation of CYP 2B4 resulted in binding at a transient hydrophobic pocket within the active site cavity that may play a role in substrate binding or allosteric regulation. Together, these results show how the open conformation of CYP 2B4 facilitates the binding of substrates from and release of products to the membrane, whereas the closed conformation prolongs the residence time of substrates or inhibitors and selectively allows the passage of smaller reactants via the solvent and water channels.
Collapse
Affiliation(s)
- Sungho Bosco Han
- Molecular and Cellular Modeling GroupHeidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Jonathan Teuffel
- Molecular and Cellular Modeling GroupHeidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
- Faculty of Engineering SciencesHeidelberg UniversityHeidelbergGermany
- Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp)Heidelberg UniversityHeidelbergGermany
| | - Goutam Mukherjee
- Molecular and Cellular Modeling GroupHeidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ‐ZMBH AllianceHeidelberg UniversityHeidelbergGermany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling GroupHeidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Faculty of Engineering SciencesHeidelberg UniversityHeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ‐ZMBH AllianceHeidelberg UniversityHeidelbergGermany
- Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
3
|
Guvench O. Effect of Lipid Bilayer Anchoring on the Conformational Properties of the Cytochrome P450 2D6 Binding Site. J Phys Chem B 2024; 128:7188-7198. [PMID: 39016537 DOI: 10.1021/acs.jpcb.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Human cytochrome P450 (CYP) proteins metabolize 75% of small-molecule pharmaceuticals, which makes structure-based modeling of CYP metabolism and inhibition, bolstered by the current availability of X-ray crystal structures of CYP globular catalytic domains, an attractive prospect. Accounting for this broad metabolic capacity is a combination of the existence of multiple different CYP proteins and the capacity of a single CYP protein to metabolize multiple different small molecules. It is thought that structural plasticity and flexibility contribute to this latter property; therefore, incorporating diverse conformational states of a particular CYP is likely an important consideration in structure-based CYP metabolism and inhibition modeling. While all-atom explicit-solvent molecular dynamics simulations can be used to generate conformational ensembles under biologically relevant conditions, existing CYP crystal structures are of the globular domain only, whereas human CYPs contain N-terminal transmembrane and linker peptides that anchor the globular catalytic domain to the endoplasmic reticulum. To determine whether this can cause significant differences in the sampled binding site conformations, microsecond scale all-atom explicit-solvent molecular dynamics simulations of the CYP2D6 globular domain in an aqueous environment were compared with those of the full-length protein anchored in a POPC lipid bilayer. While bilayer-anchoring damped some structural fluctuations in the globular domain relative to the aqueous simulations, none of the affected residues included binding site pocket residues. Furthermore, clustering of molecular dynamics snapshots based on either pairwise binding site pocket RMSD or volume differences demonstrated a lack of separation of snapshots from the two simulation conditions into different clusters. These results suggest the substantially simpler and computationally cheaper aqueous simulation approach can be used to generate a relevant conformational ensemble of the CYP2D6 binding site for structure-based metabolism and inhibition modeling.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, Maine 04103, United States
| |
Collapse
|
4
|
Amisaki T. Multilevel superposition for deciphering the conformational variability of protein ensembles. Brief Bioinform 2024; 25:bbae137. [PMID: 38557679 PMCID: PMC10983786 DOI: 10.1093/bib/bbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
The dynamics and variability of protein conformations are directly linked to their functions. Many comparative studies of X-ray protein structures have been conducted to elucidate the relevant conformational changes, dynamics and heterogeneity. The rapid increase in the number of experimentally determined structures has made comparison an effective tool for investigating protein structures. For example, it is now possible to compare structural ensembles formed by enzyme species, variants or the type of ligands bound to them. In this study, the author developed a multilevel model for estimating two covariance matrices that represent inter- and intra-ensemble variability in the Cartesian coordinate space. Principal component analysis using the two estimated covariance matrices identified the inter-/intra-enzyme variabilities, which seemed to be important for the enzyme functions, with the illustrative examples of cytochrome P450 family 2 enzymes and class A $\beta$-lactamases. In P450, in which each enzyme has its own active site of a distinct size, an active-site motion shared universally between the enzymes was captured as the first principal mode of the intra-enzyme covariance matrix. In this case, the method was useful for understanding the conformational variability after adjusting for the differences between enzyme sizes. The developed method is advantageous in small ensemble-size problems and hence promising for use in comparative studies on experimentally determined structures where ensemble sizes are smaller than those generated, for example, by molecular dynamics simulations.
Collapse
Affiliation(s)
- Takashi Amisaki
- Department of Biological Regulation, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
5
|
Ackad EM, Biggers L, Meister M, Kontoyianni M. Equilibrium landscape of ingress/egress channels and gating residues of the Cytochrome P450 3A4. PLoS One 2024; 19:e0298424. [PMID: 38498575 PMCID: PMC10947690 DOI: 10.1371/journal.pone.0298424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
The Cytochrome P450 (CYP) enzymes metabolize a variety of drugs, which may potentially lead to toxicity or reduced efficacy when drugs are co-administered. These drug-drug interactions are often manifested by CYP3A4, the most prevalent of all CYP isozymes. We carried out multiple MD simulations employing CAVER to quantify the channels, and Hidden Markov Models (HMM) to characterize the behavior of the gating residues. We discuss channel properties, bottleneck residues with respect to their likelihood to deem the respective channel ingress or egress, gating residues regarding their open or closed states, and channel location relative to the membrane. Channels do not display coordinated motion and randomly transition between different conformations. Gateway residues also behave in a random fashion. Our findings shed light on the equilibrium behavior of the gating residues and channels in the apo state.
Collapse
Affiliation(s)
- Edward Michael Ackad
- Department of Physics, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Laurence Biggers
- Department of Internal Medicine at UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Mary Meister
- University of Illinois College of Medicine, Chicago, IL, United States of America
| | - Maria Kontoyianni
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| |
Collapse
|
6
|
Sahoo BR, Ramamoorthy A. Direct interaction between the transmembrane helices stabilize cytochrome P450 2B4 and cytochrome b5 redox complex. Biophys Chem 2023; 301:107092. [PMID: 37586236 PMCID: PMC10838600 DOI: 10.1016/j.bpc.2023.107092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The catalytic activity of cytochrome P450 2B4 (CYP2B4) is moderated by its cognate redox partner cytochrome b5 (Cyt-b5). The endoplasmic reticulum (ER) membrane and intermolecular transmembrane (TM) interaction between CYP2B4 and Cyt-b5 regulate the substrate catalysis and the reaction rate. This emphasizes the significance of elucidating the molecular basis of CYP2B4 and Cyt-b5 complexation in a membrane environment to better understand the enzymatic activity of CYP2B4. Our previous solid-state NMR studies revealed the membrane topology of the transmembrane domains of these proteins in the free and complex forms. Here, we show the cross-angle complex formation by the single-pass TM domains of CYP2B4 and Cyt-b5, which is mainly driven by several salt-bridges (E2-R128, R21-D104 and K25-D104), using a multi-microsecond molecular dynamic simulation. Additionally, the leucine-zipper residues (L8, L12, L15, L18 and L19 from CYP2B4) and π-stacking between H23 and F20 residues of CYP2B4 and W110 of Cyt-b5 are identified to stabilize the TM-TM complex in the ER membrane. The simulated tilts of the helices in the free and in the complex are in excellent agreement with solid-state NMR results. The TM-TM packing influences a higher order structural stability when compared to the complex formed by the truncated soluble domains of these two proteins. MM/PBSA based binding free energy estimates nearly 100-fold higher binding affinity (ΔG = -2810.68 ± 696.44 kJ/mol) between the soluble domains of the full-length CYP2B4 and Cyt-b5 when embedded in lipid membrane as compared to the TM-domain-truncated soluble domains (ΔG = -27.406 ± 10.32 kJ/mol). The high-resolution full-length CYP2B4-Cyt-b5 complex structure and its dynamics in a native ER membrane environment reported here could aid in the development of approaches to effectively modulate the drug-metabolism activity of CYP2B4.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
7
|
Zhang J, Liu F, Suo Y, Tong D, Hu J, Lyu H, Liao J, Wang J, Wang J, Xu C. The "outsized" role of the I-helix kink in human Cytochrome P450s. Clin Transl Med 2023; 13:e1378. [PMID: 37712170 PMCID: PMC10502461 DOI: 10.1002/ctm2.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Jingjing Zhang
- Department of NephrologyShenzhen Key Laboratory of Kidney DiseasesShenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenP. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhouP. R. China
| | - Fengting Liu
- Department of NephrologyShenzhen Key Laboratory of Kidney DiseasesShenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenP. R. China
| | - Yaran Suo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Dudu Tong
- Department of NephrologyShenzhen Key Laboratory of Kidney DiseasesShenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenP. R. China
| | - Jinyu Hu
- Department of NephrologyShenzhen Key Laboratory of Kidney DiseasesShenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenP. R. China
| | - Hai‐Ning Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenP. R. China
| | - Jigang Wang
- Department of NephrologyShenzhen Key Laboratory of Kidney DiseasesShenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenP. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Chengchao Xu
- Department of NephrologyShenzhen Key Laboratory of Kidney DiseasesShenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenP. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- College of Integrative MedicineLaboratory of PathophysiologyKey Laboratory of Integrative Medicine on Chronic DiseasesFujian University of Traditional Chinese MedicineFuzhouP. R. China
| |
Collapse
|
8
|
Hu K, Tu H, Xie J, Yang Z, Li Z, Chen Y, Liu Y. Phenylalanine Residues in the Active Site of CYP2E1 Participate in Determining the Binding Orientation and Metabolism-Dependent Genotoxicity of Aromatic Compounds. TOXICS 2023; 11:495. [PMID: 37368596 DOI: 10.3390/toxics11060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The composition of amino acids forming the active site of a CYP enzyme is impactful in its substrate selectivity. For CYP2E1, the role of PHE residues in the formation of effective binding orientations for its aromatic substrates remains unclear. In this study, molecular docking and molecular dynamics analysis were performed to reflect the interactions between PHEs in the active site of human CYP2E1 and various aromatic compounds known as its substrates. The results indicated that the orientation of 1-methylpyrene (1-MP) in the active site was highly determined by the presence of PHEs, PHE478 contributing to the binding free energy most significantly. Moreover, by building a random forest model the relationship between each of 19 molecular descriptors of polychlorinated biphenyl (PCB) compounds (from molecular docking, quantum mechanics, and physicochemical properties) and their human CYP2E1-dependent mutagenicityas established mostly in our lab, was investigated. The presence of PHEs did not appear to significantly modify the electronic or structural feature of each bound ligand (PCB), instead, the flexibility of the conformation of PHEs contributed substantially to the effective binding energy and orientation. It is supposed that PHE residues adjust their own conformation to permit a suitablly shaped cavity for holding the ligand and forming its orientation as favorable for a biochemical reaction. This study has provided some insights into the role of PHEs in guiding the interactive adaptation of the active site of human CYP2E1 for the binding and metabolism of aromatic substrates.
Collapse
Affiliation(s)
- Keqi Hu
- Department of Science and Education, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou 510317, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou 511430, China
| | - Jiayi Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zongying Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zihuan Li
- Department of Science and Education, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou 510317, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yijing Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yungang Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
10
|
Nouri K, Pietrancosta N, Le Corre L, Dansette PM, Mansuy D, Boucher JL. Human Orphan Cytochrome P450 2U1 Catalyzes the ω-Hydroxylation of Leukotriene B 4. Int J Mol Sci 2022; 23:ijms232314615. [PMID: 36498943 PMCID: PMC9739833 DOI: 10.3390/ijms232314615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cytochrome P450 2U1 (CYP2U1) identified from the human genome remains poorly known since few data are presently available on its physiological function(s) and substrate(s) specificity. CYP2U1 mutations are associated with complicated forms of hereditary spastic paraplegia, alterations of mitochondrial architecture and bioenergetics. In order to better know the biological roles of CYP2U1, we used a bioinformatics approach. The analysis of the data invited us to focus on leukotriene B4 (LTB4), an important inflammatory mediator. Here, we show that CYP2U1 efficiently catalyzes the hydroxylation of LTB4 predominantly on its ω-position. We also report docking experiments of LTB4 in a 3D model of truncated CYP2U1 that are in agreement with this hydroxylation regioselectivity. The involvement of CYP2U1 in the metabolism of LTB4 could have strong physiological consequences in cerebral pathologies including ischemic stroke because CYP2U1 is predominantly expressed in the brain.
Collapse
Affiliation(s)
- Khawla Nouri
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire Neuroscience Paris Seine, CNRS UMR 8246/INSERM UMCR 18, Laboratoire des Biomolécules, CNRS UMR7203, Faculté des Sciences, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Le Corre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Patrick M. Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
- Correspondence:
| |
Collapse
|
11
|
Kano S, Takahashi H. Cholesterol's inhibition effect on entering of chlorzoxazone into phosphatidylethanolamine bilayer: Relevance to cytochrome P450 drug metabolism at endoplasmic reticulum membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183954. [PMID: 35523303 DOI: 10.1016/j.bbamem.2022.183954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Many drugs are metabolized by cytochrome P450 (CYP) in the endoplasmic reticulum (ER) membrane. Recent studies have shown that CYP-substrate drugs reach the CYP active site after entering the lipid hydrophobic part of the ER membrane. To clarify the role of cholesterol (Chol) in the CYP-related drug metabolic process, we investigated the lipid bilayer entry of CYP-substrate drugs using a model membrane system as follows. The model membrane system comprised palmitoyl-oleoyl-phosphatidylethanolamine (POPE) and Chol. Phosphatidylethanolamine is the second major phospholipid component of ER membranes. Chlorzoxazone (CZX) was used as the CYP-substrate drug. Calorimetric measurements showed that the addition of CZX to POPE bilayers decreased the gel-liquid crystal phase transition temperature; X-ray diffraction indicated that CZX distributes into the liquid crystal phase bilayers but not practically the gel phase POPE bilayers. In the presence of Chol, dialysis and X-ray structural analyses showed that Chol inhibited CZX entry into the bilayer with an increase in Chol concentration. The Chol concentration in the ER membrane (5-10 mol%) is much lower than that in the plasma membrane (approximately 30 mol%). This fact may allow CYP-substrate drugs to enter the hydrophobic portion of the ER membrane more easily than other organelle membranes, yielding efficient drug metabolism.
Collapse
Affiliation(s)
- Shosei Kano
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Maebashi, Gunma 371-8510, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Maebashi, Gunma 371-8510, Japan.
| |
Collapse
|
12
|
Davydov DR, Dangi B, Yue G, Ahire DS, Prasad B, Zgoda VG. Exploring the Interactome of Cytochrome P450 2E1 in Human Liver Microsomes with Chemical Crosslinking Mass Spectrometry. Biomolecules 2022; 12:biom12020185. [PMID: 35204686 PMCID: PMC8869672 DOI: 10.3390/biom12020185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Aiming to elucidate the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) on drug metabolism, we explored the array of its protein-protein interactions (interactome) in human liver microsomes (HLM) with chemical crosslinking mass spectrometry (CXMS). Our strategy employs membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide and 4-(N-succinimidylcarboxy)benzophenone. Exposure of bait-incorporated HLM samples to light was followed by isolating the His-tagged bait protein and its crosslinked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the crosslinked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively crosslinked partners of CYP2E1 are the cytochromes P450 2A6, 2C8, 3A4, 4A11, and 4F2, UDP-glucuronosyltransferases (UGTs) 1A and 2B, fatty aldehyde dehydrogenase (ALDH3A2), epoxide hydrolase 1 (EPHX1), disulfide oxidase 1α (ERO1L), and ribophorin II (RPN2). These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes.
Collapse
Affiliation(s)
- Dmitri R. Davydov
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
- Correspondence:
| | - Bikash Dangi
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Guihua Yue
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Deepak S. Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Victor G. Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia;
| |
Collapse
|
13
|
Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE. Role of P34S, G169R, R296C, and S486T Substitutions in Ligand Access and Catalysis for Cytochrome P450 2D6 Allelic Variants CYP2D6*14A and CYP2D6*14B. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:51-63. [PMID: 35049443 DOI: 10.2174/1872312815666220113125232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population. METHODS CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants. RESULTS Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies. CONCLUSION In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.
Collapse
Affiliation(s)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham, Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Beow Chin Yiap
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
15
|
Huff HC, Vasan A, Roy P, Kaul A, Tajkhorshid E, Das A. Differential Interactions of Selected Phytocannabinoids with Human CYP2D6 Polymorphisms. Biochemistry 2021; 60:2749-2760. [PMID: 34491040 DOI: 10.1021/acs.biochem.1c00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 2D6 (CYP2D6) is primarily expressed in the liver and in the central nervous system. It is known to be highly polymorphic in nature. It metabolizes several endogenous substrates such as anandamide (AEA). Concomitantly, it is involved in phase 1 metabolism of several antidepressants, antipsychotics, and other drugs. Research in the field of phytocannabinoids (pCBs) has recently accelerated owing to their legalization and increasing medicinal use for pain and inflammation. The primary component of cannabis is THC, which is well-known for its psychotropic effects. Since CYP2D6 is an important brain and liver P450 and is known to be inhibited by CBD, we investigated the interactions of four important highly prevalent CYP2D6 polymorphisms with selected phytocannabinoids (CBD, THC, CBDV, THCV, CBN, CBG, CBC, β-carophyllene) that are rapidly gaining popularity. We show that there is differential binding of CYP2D6*17 to pCBs as compared to WT CYP2D6. We also perform a more detailed comparison of WT and *17 CYP2D6, which reveals the possible regulation of AEA metabolism by CBD. Furthermore, we use molecular dynamics to delineate the mechanism of this binding, inhibition, and regulation. Taken together, we have found that the interactions of CYP2D6 with pCBs vary by polymorphism and by specific pCB class.
Collapse
|
16
|
Garrigós-Martínez J, Weninger A, Montesinos-Seguí JL, Schmid C, Valero F, Rinnofner C, Glieder A, Garcia-Ortega X. Scalable production and application of Pichia pastoris whole cell catalysts expressing human cytochrome P450 2C9. Microb Cell Fact 2021; 20:90. [PMID: 33902608 PMCID: PMC8074423 DOI: 10.1186/s12934-021-01577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/07/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Currently, the numerous and versatile applications in pharmaceutical and chemical industry make the recombinant production of cytochrome P450 enzymes (CYPs) of great biotechnological interest. Accelerating the drug development process by simple, quick and scalable access of human drug metabolites is key for efficient and targeted drug development in response to new and sometimes unexpected medical challenges and needs. However, due its biochemical complexity, scalable human CYP (hCYP) production and their application in preparative biotransformations was still in its infancy. RESULTS A scalable bioprocess for fine-tuned co-expression of hCYP2C9 and its essential complementary human cytochrome P450 reductase (hCPR) in the yeast Pichia pastoris (Komagataella phaffii) is presented. High-throughput screening (HTS) of a transformant library employing a set of diverse bidirectional expression systems with different regulation patterns and a fluorimetric assay was used in order to fine-tune hCYP2C9 and hCPR co-expression, and to identify best expressing clonal variants. The bioprocess development for scalable and reliable whole cell biocatalyst production in bioreactors was carried out based on rational optimization criteria. Among the different alternatives studied, a glycerol carbon-limiting strategy at high µ showed highest production rates, while methanol co-addition together with a decrease of µ provided the best results in terms of product to biomass yield and whole cell activity. By implementing the mentioned strategies, up to threefold increases in terms of production rates and/or yield could be achieved in comparison with initial tests. Finally, the performance of the whole cell catalysts was demonstrated successfully in biotransformation using ibuprofen as substrate, demonstrating the expected high selectivity of the human enzyme catalyst for 3'hydroxyibuprofen. CONCLUSIONS For the first time a scalable bioprocess for the production of hCYP2C9 whole cell catalysts was successfully designed and implemented in bioreactor cultures, and as well, further tested in a preparative-scale biotransformation of interest. The catalyst engineering procedure demonstrated the efficiency of the employment of a set of differently regulated bidirectional promoters to identify transformants with most effective membrane-bound hCYP/hCPR co-expression ratios and implies to become a model case for the generation of other P. pastoris based catalysts relying on co-expressed enzymes such as other P450 catalysts or enzymes relying on co-expressed enzymes for co-factor regeneration.
Collapse
Affiliation(s)
- Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Christian Schmid
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Claudia Rinnofner
- Bisy GmbH, Wuenschendorf 292, 8200, Hofstaetten/Raab, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010, Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
- Bisy GmbH, Wuenschendorf 292, 8200, Hofstaetten/Raab, Austria.
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
17
|
Parihar A, Shrivastava R, Dube A. Interaction of Cp6-his and Cp6 with bovine serum albumin and liver microsomes: Spectroscopic and molecular docking studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2020.100013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
18
|
An electron transfer competent structural ensemble of membrane-bound cytochrome P450 1A1 and cytochrome P450 oxidoreductase. Commun Biol 2021; 4:55. [PMID: 33420418 PMCID: PMC7794467 DOI: 10.1038/s42003-020-01568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023] Open
Abstract
Cytochrome P450 (CYP) heme monooxygenases require two electrons for their catalytic cycle. For mammalian microsomal CYPs, key enzymes for xenobiotic metabolism and steroidogenesis and important drug targets and biocatalysts, the electrons are transferred by NADPH-cytochrome P450 oxidoreductase (CPR). No structure of a mammalian CYP-CPR complex has been solved experimentally, hindering understanding of the determinants of electron transfer (ET), which is often rate-limiting for CYP reactions. Here, we investigated the interactions between membrane-bound CYP 1A1, an antitumor drug target, and CPR by a multiresolution computational approach. We find that upon binding to CPR, the CYP 1A1 catalytic domain becomes less embedded in the membrane and reorients, indicating that CPR may affect ligand passage to the CYP active site. Despite the constraints imposed by membrane binding, we identify several arrangements of CPR around CYP 1A1 that are compatible with ET. In the complexes, the interactions of the CPR FMN domain with the proximal side of CYP 1A1 are supplemented by more transient interactions of the CPR NADP domain with the distal side of CYP 1A1. Computed ET rates and pathways agree well with available experimental data and suggest why the CYP-CPR ET rates are low compared to those of soluble bacterial CYPs.
Collapse
|
19
|
Estrada DF, Kumar A, Campomizzi CS, Jay N. Crystal Structures of Drug-Metabolizing CYPs. Methods Mol Biol 2021; 2342:171-192. [PMID: 34272695 PMCID: PMC10813703 DOI: 10.1007/978-1-0716-1554-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex enzyme kinetics displayed by drug-metabolizing cytochrome P450 enzymes (CYPs) (see Chapter 9 ) can, in part, be explained by an examination of their crystallographic protein structures. Fortunately, despite low sequence similarity between different families of drug-metabolizing CYPs, there exists a high degree of structural homology within the superfamily. This similarity in the protein fold allows for a direct comparison of the structural features of CYPs that contribute toward differences in substrate binding, heterotropic and homotropic cooperativity, and genetic variability in drug metabolism. In this chapter, we first provide an overview of the nomenclature and the role of structural features that are common in all CYPs. We then apply these definitions to understand the different substrate specificities and functions in the CYP3A, CYP2C, and CYP2D families of enzymes.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | | | - Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
20
|
Abstract
Molecular dynamics simulations of membrane proteins have grown dramatically in the last 20 years. Running these simulations first requires embedding the protein's three-dimensional structure in a lipid bilayer of a suitable composition, one that resembles its native environment. This step is far from trivial, especially for modeling heterogeneous mixtures of lipids. CHARMM-GUI, a webserver for simulation system preparation greatly simplifies this step, allowing for the construction of complex heterogeneous and/or asymmetric membranes. Here, we demonstrate how to use CHARMM-GUI to build the membrane for the outer-membrane protein BamA.
Collapse
|
21
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
22
|
Chen CC, Min J, Zhang L, Yang Y, Yu X, Guo RT. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. Chembiochem 2020; 22:1317-1328. [PMID: 33232569 DOI: 10.1002/cbic.202000705] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
23
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Li J, Zhou Y, Tang Y, Li W, Tu Y. Dissecting the Structural Plasticity and Dynamics of Cytochrome P450 2B4 by Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:5026-5035. [PMID: 32808774 DOI: 10.1021/acs.jcim.0c00482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plasticity of cytochromes P450 (P450s) is known to contribute significantly to their catalytic capacity of metabolizing various substrates. Although numerous studies have been performed, factors governing the plasticity and dynamics of P450s are still not fully understood. In this study, taking CYP2B4 as an example, we dissect the protein plasticity and dynamics in different environments. CYP2B4 is featured by a high degree of plasticity, which exhibits open, closed, and intermediate states. By analyzing the CYP2B4 crystal structures, we identified the structural features for the closed, open, and intermediate states. Interestingly, formation of the dimer structure was found in the open and intermediate states. The subsequent molecular dynamics (MD) simulations of the open structure in water confirmed the importance of the dimer form in stabilizing the open conformations. MD simulations of the closed and open structures in the membrane environment and the free energies for opening the F-G cassette obtained from the umbrella sampling calculations indicate that the membrane environment is important for stabilizing the F-G cassette. The dynamical network analysis indicates that Asp105 on the B-C loop plays an important role in transiting the structure from the open to the intermediate state. Our results thus unveil the mechanisms of dimer formation and open-to-intermediate transition for CYP2B4 in the water and membrane environments.
Collapse
Affiliation(s)
- Junhao Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Yang Zhou
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Sharma S, Durairaj P, Bureik M. Rapid and convenient biotransformation procedure for human drug metabolizing enzymes using permeabilized fission yeast cells. Anal Biochem 2020; 607:113704. [PMID: 32697953 DOI: 10.1016/j.ab.2020.113704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
The development of convenient assays for the in vitro study of drug metabolizing enzymes (DMEs) such as cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) greatly facilitates metabolism studies of candidate drug compounds and other xenobiotics. We have developed and optimized an experimental approach that combines the advantages of recombinant expression in yeast with a microsomal-like biotransformation and thus allows for rapid and convenient enzymatic assays. Recombinant strains of the fission yeast Schizosaccharomyces pombe have previously been demonstrated to functionally express human CYPs and UGTs. Permeabilization of such cells with Triton X-100 results in the formation of enzyme bags, which can be used as biocatalysts. This protocol describes the preparation of such enzyme bags (3 h) and their application in enzyme activity assays (4 h) utilizing either pro-luminescent substrates and luminescence measurements or non-luminescent substrates and liquid chromatography coupled to mass spectrometry (LC-MS). Both applications provide practical tools for investigating CYP and UGT reactions in vitro without the need for additional sophisticated instrumentation or expertise.
Collapse
Affiliation(s)
- Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
26
|
Hu K, Cai L, Li Z, Glatt H, Shi M, Liu Y. Human CYP2E1-dependent mutagenicity of benzene and its hydroxylated metabolites in V79-derived cells: Suppression and enhancement by ethanol pretreatment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:622-634. [PMID: 32285472 DOI: 10.1002/em.22375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Benzene is a human carcinogen that requires metabolic activation. We previously observed that benzene and its hydroxylated metabolites induce micronuclei in mammalian cells expressing human CYP2E1. This study was initially aimed to study another endpoint, the induction of gene mutations by those compounds in the same cell models. A V79-derived cell line expressing human CYP2E1 and sulfotransferase (SULT) 1A1 (V79-hCYP2E1-hSULT1A1) pretreated with ethanol (a CYP2E1 stabilizer) was used in the hprt gene mutagenicity assay. Phenol, hydroquinone, catechol, and 1,2,4-trihydroxybenzene all induced gene mutations, while they were inactive, or only weakly positive (hydroquinone), in parental V79-Mz cells. Unexpectedly, benzene was non-mutagenic in both cell lines, but it became positive in V79-hCYP2E1-hSULT1A1 cells using regimes of short exposure/long recovery without ethanol pretreatment, for both gene mutations and micronuclei formation. In silico molecular simulation showed binding energies and positions favorable for each compound to be oxidized by human CYP2E1, benzene demonstrating the highest affinity. By tunnel analysis, ethanol binding did not limit benzene to pass tunnel S, which was specifically active for benzene. However, its end product, acetic acid, decreased the occurrence of tunnel S from 5.4 to 2.2% and extended the length of its bottleneck from 5.5 to 9.0 Å. With residual ethanol molecules still being present in CYP2E1 for a period of time after benzene exposure, the acetic acid formed could limit the entrance of benzene, thus inhibit its metabolic activation. In summary, ethanol may interfere with the activation of benzene to mutagenic metabolites, at least in cultured cells.
Collapse
Affiliation(s)
- Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Cai
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ming Shi
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Mustafa G, Nandekar PP, Mukherjee G, Bruce NJ, Wade RC. The Effect of Force-Field Parameters on Cytochrome P450-Membrane Interactions: Structure and Dynamics. Sci Rep 2020; 10:7284. [PMID: 32350331 PMCID: PMC7190701 DOI: 10.1038/s41598-020-64129-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/13/2020] [Indexed: 11/24/2022] Open
Abstract
The simulation of membrane proteins requires compatible protein and lipid force fields that reproduce the properties of both the protein and the lipid bilayer. Cytochrome P450 enzymes are bitopic membrane proteins with a transmembrane helical anchor and a large cytosolic globular domain that dips into the membrane. As such, they are representative and challenging examples of membrane proteins for simulations, displaying features of both peripheral and integral membrane proteins. We performed molecular dynamics simulations of three cytochrome P450 isoforms (2C9, 2C19 and 1A1) in a 2-oleoyl-1-palmitoyl-sn-glycerol-3-phosphocholine bilayer using two AMBER force field combinations: GAFF-LIPID with ff99SB for the protein, and LIPID14 with ff14SB for the protein. Comparison of the structural and dynamic properties of the proteins, the lipids and the protein-membrane interactions shows differing sensitivity of the cytochrome P450 isoforms to the choice of force field, with generally better agreement with experiment for the LIPID14 + ff14SB combination.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany.,B-Zell-Immunologie (D130), German Cancer Research Center, Deutsches Krebsforschungszentrum (DKF), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Prajwal P Nandekar
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, INF 282, 69120, Heidelberg, Germany.,Schrodinger Inc. #147, 3rd Floor, Jawaharlal Nehru main road, Above State Bank of India, Channasandra, 5th Stage, RR Nagar, Bengaluru, 560098, India
| | - Goutam Mukherjee
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, INF 282, 69120, Heidelberg, Germany
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany. .,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, INF 282, 69120, Heidelberg, Germany. .,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, INF 368, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Cytochrome P450 2C9 polymorphism: Effect of amino acid substitutions on protein flexibility in the presence of tamoxifen. Comput Biol Chem 2020; 84:107166. [DOI: 10.1016/j.compbiolchem.2019.107166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/29/2019] [Accepted: 11/14/2019] [Indexed: 01/21/2023]
|
29
|
Huang L, Yu L, Li Z, Li Y, Yoon KS, Hu Q, Yuan L, Han D. Microalgal plastidial lysophosphatidic acid acyltransferase interacts with upstream glycerol-3-phosphate acyltransferase and defines its substrate selectivity via the two transmembrane domains. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Ying B, Zhong Y, Wang J. Impact of peripheral mutations on the access channels of human cytochrome P450 1A2. J Biomol Struct Dyn 2019; 38:4906-4913. [PMID: 31658882 DOI: 10.1080/07391102.2019.1686425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Beili Ying
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Yang Zhong
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingfang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Mustafa G, Nandekar PP, Bruce NJ, Wade RC. Differing Membrane Interactions of Two Highly Similar Drug-Metabolizing Cytochrome P450 Isoforms: CYP 2C9 and CYP 2C19. Int J Mol Sci 2019; 20:ijms20184328. [PMID: 31487853 PMCID: PMC6770661 DOI: 10.3390/ijms20184328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
The human cytochrome P450 (CYP) 2C9 and 2C19 enzymes are two highly similar isoforms with key roles in drug metabolism. They are anchored to the endoplasmic reticulum membrane by their N-terminal transmembrane helix and interactions of their cytoplasmic globular domain with the membrane. However, their crystal structures were determined after N-terminal truncation and mutating residues in the globular domain that contact the membrane. Therefore, the CYP-membrane interactions are not structurally well-characterized and their dynamics and the influence of membrane interactions on CYP function are not well understood. We describe herein the modeling and simulation of CYP 2C9 and CYP 2C19 in a phospholipid bilayer. The simulations revealed that, despite high sequence conservation, the small sequence and structural differences between the two isoforms altered the interactions and orientations of the CYPs in the membrane bilayer. We identified residues (including K72, P73, and I99 in CYP 2C9 and E72, R73, and H99 in CYP 2C19) at the protein-membrane interface that contribute not only to the differing orientations adopted by the two isoforms in the membrane, but also to their differing substrate specificities by affecting the substrate access tunnels. Our findings provide a mechanistic interpretation of experimentally observed effects of mutagenesis on substrate selectivity.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Prajwal P Nandekar
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany.
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Crystal structure of bacterial CYP116B5 heme domain: New insights on class VII P450s structural flexibility and peroxygenase activity. Int J Biol Macromol 2019; 140:577-587. [PMID: 31430491 DOI: 10.1016/j.ijbiomac.2019.08.141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
Abstract
Class VII cytochromes P450 are self-sufficient enzymes carrying a phthalate family oxygenase-like reductase domain and a P450 domain fused in a single polypeptide chain. The biocatalytic applications of CYP116B members are limited by the need of the NADPH cofactor and the lack of crystal structures as a starting point for protein engineering. Nevertheless, we demonstrated that the heme domain of CYP116B5 can use hydrogen peroxide as electron donor bypassing the need of NADPH. Here, we report the crystal structure of CYP116B5 heme domain in complex with histidine at 2.6 Å of resolution. The structure reveals the typical P450 fold and a closed conformation with an active site cavity of 284 Å3 in volume, accommodating a histidine molecule forming a hydrogen bond with the water molecule present as 6th heme iron ligand. MD simulations in the absence of any ligand revealed the opening of a tunnel connecting the active site to the protein surface through the movement of F-, G- and H-helices. A structural alignment with bacterial cytochromes P450 allowed the identification of amino acids in the proximal heme site potentially involved in peroxygenase activity. The availability of the crystal structure provides the bases for the structure-guided design of new biocatalysts.
Collapse
|
33
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery? Future Med Chem 2019; 11:771-791. [DOI: 10.4155/fmc-2018-0495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metallo-enzymes are a large class of biomolecules promoting specialized chemical reactions. Quantum-classical quantum mechanics/molecular mechanics molecular dynamics, describing the metal site at quantum mechanics level, while accounting for the rest of system at molecular mechanics level, has an accessible time-scale limited by its computational cost. Hence, it must be integrated with classical molecular dynamics and enhanced sampling simulations to disentangle the functions of metallo-enzymes. In this review, we provide an overview of these computational methods and their capabilities. In particular, we will focus on some systems such as CYP19A1 a Fe-dependent enzyme involved in estrogen biosynthesis, and on Mg2+-dependent DNA/RNA processing enzymes/ribozymes and the spliceosome, a protein-directed ribozyme. This information may guide the discovery of drug-like molecules and genetic manipulation tools.
Collapse
|
35
|
Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. Int J Mol Sci 2019; 20:ijms20040987. [PMID: 30823507 PMCID: PMC6412807 DOI: 10.3390/ijms20040987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
We computed the network of channels of the 3A4 isoform of the cytochrome P450 (CYP) on the basis of 16 crystal structures extracted from the Protein Data Bank (PDB). The calculations were performed with version 2 of the CCCPP software that we developed for this research project. We identified the minimal cost paths (MCPs) output by CCCPP as probable ways to access to the buried active site. The algorithm of calculation of the MCPs is presented in this paper, with its original method of visualization of the channels. We found that these MCPs constitute four major channels in CYP3A4. Among the many channels proposed by Cojocaru et al. in 2007, we found that only four of them open in 3A4. We provide a refined description of these channels together with associated quantitative data.
Collapse
|
36
|
Mustafa G, Nandekar PP, Camp TJ, Bruce NJ, Gregory MC, Sligar SG, Wade RC. Influence of Transmembrane Helix Mutations on Cytochrome P450-Membrane Interactions and Function. Biophys J 2019; 116:419-432. [PMID: 30658838 PMCID: PMC6369400 DOI: 10.1016/j.bpj.2018.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 (CYP) enzymes play an important role in the metabolism of drugs, steroids, fatty acids, and xenobiotics. Microsomal CYPs are anchored in the endoplasmic reticulum membrane by an N-terminal transmembrane (TM) helix that is connected to the globular catalytic domain by a flexible linker sequence. However, the structural and functional importance of the TM-helix is unclear because it has been shown that CYPs can still associate with the membrane and have enzymatic activity in reconstituted systems after truncation or modification of the N-terminal sequence. Here, we investigated the effect of mutations in the N-terminal TM-helix residues of two human steroidogenic enzymes, CYP 17A1 and CYP 19A1, that are major drug targets for cancer therapy. These mutations were originally introduced to increase the expression of the proteins in Escherichia coli. To investigate the effect of the mutations on protein-membrane interactions and function, we carried out coarse-grained and all-atom molecular dynamics simulations of the CYPs in a phospholipid bilayer. We confirmed the orientations of the globular domain in the membrane observed in the simulations by linear dichroism measurements in a Nanodisc. Whereas the behavior of CYP 19A1 was rather insensitive to truncation of the TM-helix, mutations in the TM-helix of CYP 17A1, especially W2A and E3L, led to a gradual drifting of the TM-helix out of the hydrophobic core of the membrane. This instability of the TM-helix could affect interactions with the allosteric redox partner, cytochrome b5, required for CYP 17A1's lyase activity. Furthermore, the simulations showed that the mutant TM-helix influenced the membrane interactions of the CYP 17A1 globular domain. In some simulations, the mutated TM-helix obstructed the substrate access tunnel from the membrane to the CYP active site, indicating a possible effect on enzyme function.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Prajwal P Nandekar
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tyler J Camp
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Michael C Gregory
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois, Urbana, Illinois
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
37
|
The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation. Catalysts 2019. [DOI: 10.3390/catal9010081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytochromes P450 (CYP450s) promote the biosynthesis of steroid hormones with major impact on the onset of diseases such as breast and prostate cancers. By merging distinct functions into the same catalytic scaffold, steroidogenic CYP450s enhance complex chemical transformations with extreme efficiency and selectivity. Mammalian CYP450s and their redox partners are membrane-anchored proteins, dynamically associating to form functional machineries. Mounting evidence signifies that environmental factors are strictly intertwined with CYP450s catalysis. Atomic-level simulations have the potential to provide insights into the catalytic mechanism of steroidogenic CYP450s and on its regulation by environmental factors, furnishing information often inaccessible to experimental means. In this review, after an introduction of computational methods commonly employed to tackle these systems, we report the current knowledge on three steroidogenic CYP450s—CYP11A1, CYP17A1, and CYP19A1—endowed with multiple catalytic functions and critically involved in cancer onset. In particular, besides discussing their catalytic mechanisms, we highlight how the membrane environment contributes to (i) regulate ligand channeling through these enzymes, (ii) modulate their interactions with specific protein partners, (iii) mediate post-transcriptional regulation induced by phosphorylation. The results presented set the basis for developing novel therapeutic strategies aimed at fighting diseases originating from steroid metabolism dysfunction.
Collapse
|
38
|
Allen KN, Entova S, Ray LC, Imperiali B. Monotopic Membrane Proteins Join the Fold. Trends Biochem Sci 2019; 44:7-20. [PMID: 30337134 PMCID: PMC6309722 DOI: 10.1016/j.tibs.2018.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sonya Entova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Fischer A, Don CG, Smieško M. Molecular Dynamics Simulations Reveal Structural Differences among Allelic Variants of Membrane-Anchored Cytochrome P450 2D6. J Chem Inf Model 2018; 58:1962-1975. [PMID: 30126275 DOI: 10.1021/acs.jcim.8b00080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is an enzyme that is involved in the metabolism of roughly 25% of all marketed drugs and therefore belongs to the most important enzymes in drug metabolism. CYP2D6 features a high degree of genetic polymorphism that can significantly affect the metabolic activity of an individual. In extreme cases, structural changes at the level of single amino acids can either increase its enzymatic activity abolishing the drug therapeutic effect or completely disable the enzyme and elevate drug plasma level potentially leading to adverse effects. In this study, starting from the crystal structure, we built a full-length membrane-anchored all-atom model of the wild-type CYP2D6 as well as five of its variants differing in the enzymatic activity. We validated our models with available experimental data and compared their structural properties with molecular dynamics simulations. The main focus of this study was to identify differences that could mechanistically explain the altered activity of the variants and improve our understanding of their functioning. We observed differences in the opening frequencies and minimal diameters of tunnels that connect the buried active site to the surrounding solvent environment. The variants CYP2D6*4 and CYP2D6*10 associated with missing or decreased activity showed less frequent opening of the tunnels compared to the wild-type. Both CYP2D6*10 and CYP2D6*17 showed a deprivation of an important ligand tunnel suggesting a feasible reason for their altered substrate specificity. Next, the altered fold at the N-terminal anchor region and the decreased active site volume caused by the amino acid mutations of the CYP2D6*4 variant offer an explanation for the absence of its metabolic activity. The mutations in CYP2D6*53 contributed to a significant enlargement of an important ligand tunnel and an extension of the active site cavity. This could explain the altered metabolic profile as well as the enhanced metabolic rates of this particular variant supporting its designation as a possible cause for the ultrarapid metabolizer phenotype. We believe these novel structural insights could advance the fields of personalized medicine and enzyme engineering. Furthermore, they could aid in guiding laboratory as well as computational experiments in the future.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Charleen G Don
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
40
|
Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem 2018; 183:117-136. [DOI: 10.1016/j.jinorgbio.2018.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
|
41
|
Ligand Access Channels in Cytochrome P450 Enzymes: A Review. Int J Mol Sci 2018; 19:ijms19061617. [PMID: 29848998 PMCID: PMC6032366 DOI: 10.3390/ijms19061617] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.
Collapse
|
42
|
Louet M, Labbé CM, Fagnen C, Aono CM, Homem-de-Mello P, Villoutreix BO, Miteva MA. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30. PLoS One 2018; 13:e0197249. [PMID: 29746595 PMCID: PMC5944999 DOI: 10.1371/journal.pone.0197249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) metabolizes about 15% of clinically administrated drugs. The allelic variant CYP2C9*30 (A477T) is associated to diminished response to the antihypertensive effects of the prodrug losartan and affected metabolism of other drugs. Here, we investigated molecular mechanisms involved in the functional consequences of this amino-acid substitution. Molecular dynamics (MD) simulations performed for the active species of the enzyme (heme in the Compound I state), in the apo or substrate-bound state, and binding energy analyses gave insights into altered protein structure and dynamics involved in the defective drug metabolism of human CYP2C9.30. Our data revealed an increased rigidity of the key Substrate Recognition Sites SRS1 and SRS5 and shifting of the β turn 4 of SRS6 toward the helix F in CYP2C9.30. Channel and binding substrate dynamics analyses showed altered substrate channel access and active site accommodation. These conformational and dynamic changes are believed to be involved in the governing mechanism of the reduced catalytic activity. An ensemble of representative conformations of the WT and A477T mutant properly accommodating drug substrates were identified, those structures can be used for prediction of new CYP2C9 and CYP2C9.30 substrates and drug-drug interactions.
Collapse
Affiliation(s)
- Maxime Louet
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
| | - Céline M. Labbé
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
| | - Charline Fagnen
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
- Université Pierre et Marie Curie, Sorbonne Universités, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Cassiano M. Aono
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André, Brazil
| | - Paula Homem-de-Mello
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André, Brazil
| | - Bruno O. Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
| | - Maria A. Miteva
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
- * E-mail:
| |
Collapse
|
43
|
Jeřábek P, Florián J, Martínek V. Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2. Phys Chem Chem Phys 2018; 18:30344-30356. [PMID: 27722524 DOI: 10.1039/c6cp03692a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 1A2 (P450 1A2, CYP1A2) is a membrane-bound enzyme that oxidizes a broad range of hydrophobic substrates. The structure and dynamics of both the catalytic and trans-membrane (TM) domains of this enzyme in the membrane/water environment were investigated using a multiscale computational approach, including coarse-grained and all-atom molecular dynamics. Starting from the spontaneous self-assembly of the system containing the TM or soluble domain immersed in randomized dilauroyl phosphatidylcholine (DLPC)/water mixture into their respective membrane-bound forms, we reconstituted the membrane-bound structure of the full-length P450 1A2. This structure includes a TM helix that spans the membrane, while being connected to the catalytic domain by a short flexible loop. Furthermore, in this model, the upper part of the TM helix interacts directly with a conserved and highly hydrophobic N-terminal proline-rich segment of the catalytic domain; this segment and the FG loop are immersed in the membrane, whereas the remaining portion of the catalytic domain remains exposed to aqueous solution. The shallow membrane immersion of the catalytic domain induces a depression in the opposite intact layer of the phospholipids. This structural effect may help in stabilizing the position of the TM helix directly beneath the catalytic domain. The partial immersion of the catalytic domain also allows for the enzyme substrates to enter the active site from either aqueous solution or phospholipid environment via several solvent- and membrane-facing tunnels in the full-length P450 1A2. The calculated tunnel dynamics indicated that the opening probability of the membrane-facing tunnels is significantly enhanced when a DLPC molecule spontaneously penetrates into the membrane-facing tunnel 2d. The energetics of the lipid penetration process were assessed by the linear interaction energy (LIE) approximation, and found to be thermodynamically feasible.
Collapse
Affiliation(s)
- Petr Jeřábek
- Department of Biochemistry, Charles University, Faculty of Science, Albertov 2030, 128 43 Prague 2, Czech Republic
| | - Jan Florián
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660, USA
| | - Václav Martínek
- Department of Biochemistry, Charles University, Faculty of Science, Albertov 2030, 128 43 Prague 2, Czech Republic and Department of Teaching and Didactics of Chemistry, Charles University, Faculty of Science, Albertov 3, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
44
|
Toward a systems approach to the human cytochrome P450 ensemble: interactions between CYP2D6 and CYP2E1 and their functional consequences. Biochem J 2017; 474:3523-3542. [PMID: 28904078 DOI: 10.1042/bcj20170543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase. The potential of CYP2D6 to form oligomers in the microsomal membrane is among the highest observed with human cytochrome P450 studied up to date. We also observed the formation of heteromeric complexes of CYP2D6 with CYP2E1 and CYP3A4, and found a significant modulation of these interactions by 3,4-methylenedioxymethylamphetamine, a widespread drug of abuse metabolized by CYP2D6. Our results demonstrate an ample alteration of the catalytic properties of CYP2D6 and CYP2E1 caused by their association. In particular, we demonstrated that preincubation of microsomes containing co-incorporated CYP2D6 and CYP2E1 with CYP2D6-specific substrates resulted in considerable time-dependent activation of CYP2D6, which presumably occurs via a slow substrate-induced reorganization of CYP2E1-CYP2D6 hetero-oligomers. Furthermore, we demonstrated that the formation of heteromeric complexes between CYP2E1 and CYP2D6 affects the stoichiometry of futile cycling and substrate oxidation by CYP2D6 by means of decreasing the electron leakage through the peroxide-generating pathways. Our results further emphasize the role of P450-P450 interactions in regulatory cross-talk in human drug-metabolizing ensemble and suggest a role of interactions of CYP2E1 with CYP2D6 in pharmacologically important instances of alcohol-drug interactions.
Collapse
|
45
|
Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking. Biochimie 2017; 140:166-175. [DOI: 10.1016/j.biochi.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
|
46
|
Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations. Sci Rep 2017; 7:7736. [PMID: 28798338 PMCID: PMC5552751 DOI: 10.1038/s41598-017-07993-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 01/12/2023] Open
Abstract
Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.
Collapse
|
47
|
Barnaba C, Gentry K, Sumangala N, Ramamoorthy A. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature. F1000Res 2017; 6:662. [PMID: 28529725 PMCID: PMC5428493 DOI: 10.12688/f1000research.11015.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome
b
5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s) played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Katherine Gentry
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nirupama Sumangala
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Khattab A, Haider S, Kumar A, Dhawan S, Alam D, Romero R, Burns J, Li D, Estatico J, Rahi S, Fatima S, Alzahrani A, Hafez M, Musa N, Razzghy Azar M, Khaloul N, Gribaa M, Saad A, Charfeddine IB, Bilharinho de Mendonça B, Belgorosky A, Dumic K, Dumic M, Aisenberg J, Kandemir N, Alikasifoglu A, Ozon A, Gonc N, Cheng T, Kuhnle-Krahl U, Cappa M, Holterhus PM, Nour MA, Pacaud D, Holtzman A, Li S, Zaidi M, Yuen T, New MI. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Proc Natl Acad Sci U S A 2017; 114:E1933-E1940. [PMID: 28228528 PMCID: PMC5347606 DOI: 10.1073/pnas.1621082114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1, a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.
Collapse
Affiliation(s)
- Ahmed Khattab
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Ameet Kumar
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samarth Dhawan
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dauood Alam
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Raquel Romero
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - James Burns
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Di Li
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Jessica Estatico
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Simran Rahi
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Saleel Fatima
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ali Alzahrani
- King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| | - Mona Hafez
- Diabetes, Endocrine, and Metabolism Pediatrics Unit, Department of Pediatrics, Cairo University, 11617 Cairo, Egypt
| | - Noha Musa
- Diabetes, Endocrine, and Metabolism Pediatrics Unit, Department of Pediatrics, Cairo University, 11617 Cairo, Egypt
| | - Maryam Razzghy Azar
- Ali Asghar Children's Hospital, Iran University of Medical Sciences, 10000 Tehran, Iran
| | - Najoua Khaloul
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Moez Gribaa
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ilhem Ben Charfeddine
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Berenice Bilharinho de Mendonça
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory, University of São Paulo, Sao Paulo 05508, Brazil
| | | | - Katja Dumic
- University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Dumic
- University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Javier Aisenberg
- Pediatric Endocrinology and Diabetes Medicine, Hackensack University Medical Center, Hackensack, NJ 07601
| | - Nurgun Kandemir
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | | | - Alev Ozon
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Nazli Gonc
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Tina Cheng
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Paul-Martin Holterhus
- Department of Pediatrics, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Munier A Nour
- Department of Pediatrics, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada S7N 0W8
| | - Daniele Pacaud
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada T3B 6A8
| | - Assaf Holtzman
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sun Li
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mone Zaidi
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tony Yuen
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maria I New
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
49
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
50
|
Reed JR, Backes WL. Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Front Pharmacol 2017; 8:28. [PMID: 28194112 PMCID: PMC5276844 DOI: 10.3389/fphar.2017.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 enzymes, which catalyze oxygenation reactions of both exogenous and endogenous chemicals, are membrane bound proteins that require interaction with their redox partners in order to function. Those responsible for drug and foreign compound metabolism are localized primarily in the endoplasmic reticulum of liver, lung, intestine, and other tissues. More recently, the potential for P450 enzymes to exist as supramolecular complexes has been shown by the demonstration of both homomeric and heteromeric complexes. The P450 units in these complexes are heterogeneous with respect to their distribution and function, and the interaction of different P450s can influence P450-specific metabolism. The goal of this review is to examine the evidence supporting the existence of physical complexes among P450 enzymes. Additionally, the review examines the crystal lattices of different P450 enzymes derived from X-ray diffraction data to make assumptions regarding possible quaternary structures in membranes and in turn, to predict how the quaternary structures could influence metabolism and explain the functional effects of specific P450-P450 interactions.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans LA, USA
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans LA, USA
| |
Collapse
|