1
|
Jerlström-Hultqvist J, Gallot-Lavallée L, Salas-Leiva DE, Curtis BA, Záhonová K, Čepička I, Stairs CW, Pipaliya S, Dacks JB, Archibald JM, Roger AJ. A unique symbiosome in an anaerobic single-celled eukaryote. Nat Commun 2024; 15:9726. [PMID: 39521804 PMCID: PMC11550330 DOI: 10.1038/s41467-024-54102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Symbiotic relationships between eukaryotes and prokaryotes played pivotal roles in the evolution of life and drove the emergence of specialized symbiotic structures in animals, plants and fungi. The host-evolved symbiotic structures of microbial eukaryotes - the vast majority of such hosts in nature - remain largely unstudied. Here we describe highly structured symbiosomes within three free-living anaerobic protists (Anaeramoeba spp.). We dissect this symbiosis using complete genome sequencing and transcriptomics of host and symbiont cells coupled with fluorescence in situ hybridization, and 3D reconstruction using focused-ion-beam scanning electron microscopy. The emergence of the symbiosome is underpinned by expansion of gene families encoding regulators of membrane trafficking and phagosomal maturation and extensive bacteria-to-eukaryote lateral transfer. The symbionts reside deep within a symbiosomal membrane network that enables metabolic syntrophy by precisely positioning sulfate-reducing bacteria alongside host hydrogenosomes. Importantly, the symbionts maintain connections to the Anaeramoeba plasma membrane, blurring traditional boundaries between ecto- and endosymbiosis.
Collapse
Affiliation(s)
- Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Uppsala Universitet, Uppsala, Sweden.
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| | - Lucie Gallot-Lavallée
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Dayana E Salas-Leiva
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bruce A Curtis
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Shweta Pipaliya
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution, & Environment, University College, London, UK
| | - John M Archibald
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
2
|
Richards TA, Eme L, Archibald JM, Leonard G, Coelho SM, de Mendoza A, Dessimoz C, Dolezal P, Fritz-Laylin LK, Gabaldón T, Hampl V, Kops GJPL, Leger MM, Lopez-Garcia P, McInerney JO, Moreira D, Muñoz-Gómez SA, Richter DJ, Ruiz-Trillo I, Santoro AE, Sebé-Pedrós A, Snel B, Stairs CW, Tromer EC, van Hooff JJE, Wickstead B, Williams TA, Roger AJ, Dacks JB, Wideman JG. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol 2024; 22:e3002917. [PMID: 39585925 PMCID: PMC11627563 DOI: 10.1371/journal.pbio.3002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2024] [Indexed: 11/27/2024] Open
Abstract
Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA's gene content.
Collapse
Affiliation(s)
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Guy Leonard
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United States of America
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pavel Dolezal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Lillian K. Fritz-Laylin
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Geert J. P. L. Kops
- Hubrecht Institute-KNAW, Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Michelle M. Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Purificacion Lopez-Garcia
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - James O. McInerney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Sergio A. Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Arnau Sebé-Pedrós
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
3
|
Wang F, Ma W, Fan D, Hu J, An X, Wang Z. The biochemistry of melanogenesis: an insight into the function and mechanism of melanogenesis-related proteins. Front Mol Biosci 2024; 11:1440187. [PMID: 39228912 PMCID: PMC11368874 DOI: 10.3389/fmolb.2024.1440187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Melanin is an amino acid derivative produced by melanocyte through a series of enzymatic reactions using tyrosinase as substrate. Human skin and hair color is also closely related to melanin, so understanding the mechanisms and proteins that produce melanin is very important. There are many proteins involved in the process of melanin expression, For example, proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1), TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their content to control the production rate of melanin. Others, such as OA1 (ocular albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin), have been found to control the transfer rate of melanosomes from melanocytes to keratinocytes, and regulate the amount of human epidermal melanin to control the depth of human skin color. In addition to the above proteins, there are other protein families also involved in the process of melanin expression, such as BLOC, Rab and Rho. This article reviews the origin of melanocytes, the related proteins affecting melanin and the basic causes of related gene mutations. In addition, we also summarized the active ingredients of 5 popular whitening cosmetics and their mechanisms of action.
Collapse
Affiliation(s)
- Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Wenjing Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Dongjie Fan
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Hu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zuding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
| |
Collapse
|
4
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Wang Y, Xiao T, Zhao C, Li G. The Regulation of Exosome Generation and Function in Physiological and Pathological Processes. Int J Mol Sci 2023; 25:255. [PMID: 38203424 PMCID: PMC10779122 DOI: 10.3390/ijms25010255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes, a type of extracellular vesicle with a diameter of approximately 100 nm that is secreted by all cells, regulate the phenotype and function of recipient cells by carrying molecules such as proteins, nucleic acids, and lipids and are important mediators of intercellular communication. Exosomes are involved in various physiological and pathological processes such as immunomodulation, angiogenesis, tumorigenesis, metastasis, and chemoresistance. Due to their excellent properties, exosomes have shown their potential application in the clinical diagnosis and treatment of disease. The functions of exosomes depend on their biogenesis, uptake, and composition. Thus, a deeper understanding of these processes and regulatory mechanisms can help to find new targets for disease diagnosis and therapy. Therefore, this review summarizes and integrates the recent advances in the regulatory mechanisms of the entire biological process of exosomes, starting from the formation of early-sorting endosomes (ESCs) by plasma membrane invagination to the release of exosomes by fusion of multivesicular bodies (MVBs) with the plasma membrane, as well as the regulatory process of the interactions between exosomes and recipient cells. We also describe and discuss the regulatory mechanisms of exosome production in tumor cells and the potential of exosomes used in cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (T.X.); (C.Z.)
| |
Collapse
|
6
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
7
|
Tanimoto A, Yamaguchi Y, Kadowaki T, Sakai E, Oyakawa S, Ono Y, Yoshida N, Tsukuba T. Rab44 negatively regulates myoblast differentiation by controlling fusogenic protein transport and mTORC1 signaling. J Cell Biochem 2023; 124:1486-1502. [PMID: 37566644 DOI: 10.1002/jcb.30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Skeletal muscle is composed of multinucleated myotubes formed by the fusion of mononucleated myoblasts. Skeletal muscle differentiation, termed as myogenesis, have been investigated using the mouse skeletal myoblast cell line C2C12. It has been reported that several "small" Rab proteins, major membrane-trafficking regulators, possibly regulate membrane protein transport in C2C12 cells; however, the role of Rab proteins in myogenesis remains unexplored. Rab44, a member of "large" Rab GTPases, has recently been identified as a negative regulator of osteoclast differentiation. In this study, using C2C12 cells, we found that Rab44 expression was upregulated during myoblast differentiation into myotubes. Knockdown of Rab44 enhanced myoblast differentiation and myotube formation. Consistent with these results, Rab44 knockdown in myoblasts increased expression levels of several myogenic marker genes. Rab44 knockdown increased the surface accumulation of myomaker and myomixer, two fusogenic proteins required for multinucleation, implying enhanced cell fusion. Conversely, Rab44 overexpression inhibited myoblast differentiation and tube formation, accompanied by decreased expression of some myogenic markers. Furthermore, Rab44 was found to be predominantly localized in lysosomes, and Rab44 overexpression altered the number and size of lysosomes. Considering the underlying molecular mechanism, Rab44 overexpression impaired the signaling pathway of the mechanistic target of rapamycin complex1 (mTORC1) in C2C12 cells. Namely, phosphorylation levels of mTORC1 and downstream mTORC1 substrates, such as S6 and P70-S6K, were notably lower in Rab44 overexpressing cells than those in control cells. These results indicate that Rab44 negatively regulates myoblast differentiation into myotubes by controlling fusogenic protein transport and mTORC1 signaling.
Collapse
Affiliation(s)
- Ayuko Tanimoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shun Oyakawa
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Kumamoto University, Kumamoto, Japan
| | - Noriaki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Zhuo J, Han J, Zhao Y, Hao R, Shen C, Li H, Dai L, Sheng A, Yao H, Yang X, Liu W. RAB10 promotes breast cancer proliferation migration and invasion predicting a poor prognosis for breast cancer. Sci Rep 2023; 13:15252. [PMID: 37709911 PMCID: PMC10502149 DOI: 10.1038/s41598-023-42434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
RAB10, a member of the small GTPase family, has complex biological functions, but its role in breast cancer (BC) remains unclear. The aim of this study was to investigate the relationship between RAB10's role in BC, its biological functions, and BC prognosis. An online database was used to analyze the correlation between differential expression of RAB10 in BC and prognosis. The results of immunohistochemical assays in clinical cohorts were combined with the database analysis. The chi-square test and COX regression were employed to analyze the correlation between RAB10 and pathological features of BC. MTT, Transwell, and wound healing assays were conducted to detect BC cell proliferation, invasion, and metastatic ability. Bioinformatics techniques were employed to explore the correlation between RAB10 and BC tumor immune cell infiltration, and to speculate the biological function of RAB10 in BC and related signaling pathways. Our findings suggest that RAB10 expression is elevated in BC and is associated with HER2 status, indicating a poor prognosis for BC patients. RAB10 can promote the proliferation, migration, and invasion ability of BC cells in vitro. RAB10 is also associated with BC immune cell infiltration and interacts with multiple signaling pathways. RAB10 is a potential biomarker or molecular target for BC.
Collapse
Affiliation(s)
- Jian Zhuo
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanchun Zhao
- Department of Outpatient, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Ruiying Hao
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Chong Shen
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - He Li
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Luxian Dai
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Ankang Sheng
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Hanyu Yao
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Xiaohong Yang
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
9
|
Bunner W, Wang J, Cohen S, Bashtovyy D, Perry R, Shookster D, Landry T, Harris EM, Stackman R, Tran TD, Yasuda R, Szatmari EM. Behavioral and Transcriptome Profiling of Heterozygous Rab10 Knock-Out Mice. eNeuro 2023; 10:ENEURO.0459-22.2023. [PMID: 37156612 PMCID: PMC10208283 DOI: 10.1523/eneuro.0459-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
A central question in the field of aging research is to identify the cellular and molecular basis of neuroresilience. One potential candidate is the small GTPase, Rab10. Here, we used Rab10+/- mice to investigate the molecular mechanisms underlying Rab10-mediated neuroresilience. Brain expression analysis of 880 genes involved in neurodegeneration showed that Rab10+/- mice have increased activation of pathways associated with neuronal metabolism, structural integrity, neurotransmission, and neuroplasticity compared with their Rab10+/+ littermates. Lower activation was observed for pathways involved in neuroinflammation and aging. We identified and validated several differentially expressed genes (DEGs), including Stx2, Stx1b, Vegfa, and Lrrc25 (downregulated) and Prkaa2, Syt4, and Grin2d (upregulated). Behavioral testing showed that Rab10+/- mice perform better in a hippocampal-dependent spatial task (object in place test), while their performance in a classical conditioning task (trace eyeblink classical conditioning, TECC) was significantly impaired. Therefore, our findings indicate that Rab10 differentially controls the brain circuitry of hippocampal-dependent spatial memory and higher-order behavior that requires intact cortex-hippocampal circuitry. Transcriptome and biochemical characterization of these mice suggest that glutamate ionotropic receptor NMDA type subunit 2D (GRIN2D or GluN2D) is affected by Rab10 signaling. Further work is needed to evaluate whether GRIN2D mediates the behavioral phenotypes of the Rab10+/- mice. We conclude that Rab10+/- mice described here can be a valuable tool to study the mechanisms of resilience in Alzheimer's disease (AD) model mice and to identify novel therapeutical targets to prevent cognitive decline associated with normal and pathologic aging.
Collapse
Affiliation(s)
- Wyatt Bunner
- Department of Physical Therapy, East Carolina University, Greenville, NC 27834
| | - Jie Wang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458
| | - Sarah Cohen
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458
| | - Denys Bashtovyy
- Department of Physical Therapy, East Carolina University, Greenville, NC 27834
| | - Rachel Perry
- Department of Physical Therapy, East Carolina University, Greenville, NC 27834
| | | | - Taylor Landry
- Department of Kinesiology, East Carolina University, NC 27858
| | - Elizabeth M Harris
- Department of Psychology, East Carolina University, Greenville, NC 27858
| | - Robert Stackman
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458
| | - Tuan D Tran
- Department of Psychology, East Carolina University, Greenville, NC 27858
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458
| | - Erzsebet M Szatmari
- Department of Physical Therapy, East Carolina University, Greenville, NC 27834
| |
Collapse
|
10
|
Nakashima S, Matsui T, Fukuda M. Vps9d1 regulates tubular endosome formation through specific activation of Rab22A. J Cell Sci 2023; 136:286994. [PMID: 36762583 DOI: 10.1242/jcs.260522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The small GTPase Rab22A is an important regulator of the formation of tubular endosomes, which are one of the types of recycling endosome compartments of the clathrin-independent endocytosis pathway. In order to regulate tubular endosome formation, Rab22A must be activated by a specific guanine-nucleotide-exchange factor (GEF); however, all of the GEFs that have been reported to exhibit Rab22A-GEF activity in vitro also activate Rab5A, an essential regulator of the clathrin-mediated endocytosis pathway, and no Rab22A-specific GEF has ever been identified. Here, we identified Vps9d1, a previously uncharacterized vacuolar protein sorting 9 (VPS9) domain-containing protein, as a novel Rab22A-GEF. The formation of tubular endosome structures was found to be severely impaired in Vps9d1-depleted HeLa cells, but Rab5A localization was unaffected. Expression of a constitutively active Rab22A mutant in Vps9d1-depleted HeLa cells restored tubular endosomes, but expression of a GEF-activity-deficient Vps9d1 mutant did not. Moreover, Vps9d1 depletion altered the distribution of clathrin-independent endocytosed cargos and impaired their recycling. Our findings indicate that Vps9d1 promotes tubular endosome formation by specifically activating Rab22A.
Collapse
Affiliation(s)
- Shumpei Nakashima
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
11
|
Hu Y, Chen Y, Zhao Y, Geng Q, Guan C, Xu J, Xie B, Song X. Tranexamic acid may promote melanocores clustering in keratinocytes through upregulation of Rab5b. Exp Dermatol 2023. [PMID: 36779692 DOI: 10.1111/exd.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Tranexamic acid (TXA) is a promising therapeutic agent in melasma that can act on multiple pathophysiologic mechanisms of melasma. However, it is unclear whether TXA affects melanin in keratinocytes. To explore the effect of TXA on melanocores in keratinocytes. The melanocore-incorporated keratinocytes were constructed by co-incubating normal human epidermal keratinocytes (NHEK) with melanocores. After being treated with TXA, autophagy- and melanin-related protein expressions were detected. Then, transcriptome sequencing was used to compare the genetic changes in melanocore-incorporated keratinocytes before and after TXA treatment and further verified the differentially expressed genes. At the same time, the distribution of melanocores in human keratinocytes was observed by transmission electron microscopy. We found that TXA does not promote melanin degradation in primary keratinocytes by inducing autophagy. Protein transport and intracellular protein transport-related genes were enriched after TXA treatment, and Rab5b was significantly upregulated. Transmission electron microscopy showed that the percentage of melanocores distributed in clusters increased after treatment with TXA, which was reduced after Rab5b silencing. In addition, results suggested that melanocores could colocalize with Rab5b and lysosome-associated membrane protein1 (LAMP1). Our study found that Rab5b may be involved in the melanocore distribution in keratinocytes. TXA may promote the clustering distribution of endocytic melanocores through upregulation of Rab5b, representing a potential mechanism of TXA treatment against melasma.
Collapse
Affiliation(s)
- Yebei Hu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Chen
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Zhao
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingwei Geng
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhui Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Localization of Chicken Rab22a in Cells and Its Relationship to BF or Ii Molecules and Genes. Animals (Basel) 2023; 13:ani13030387. [PMID: 36766276 PMCID: PMC9913282 DOI: 10.3390/ani13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Rab22a is an important small GTPase protein the molecule that is involved in intracellular transportation and regulation of proteins. It also plays an important role in antigens uptake, transportation, regulation of endosome morphology, and also regulates the transport of antigens to MHC (Major Histocompatibility Complex) molecules. To investigate the role of Rab22a, the intracellular co-localization of chicken Rab22a (cRab22a) molecule and its relationship to BF and chicken invariant chain (cIi) molecules was studied. A 3D protein structure of Rab22a was constructed by using informatics tools (DNASTAR 4.0 and DNAMAN). Based on the model, the corresponding recombinant eukaryotic plasmids were constructed by point mutations in the protein's structural domains. HEK 293T cells were co-transfected with plasmids pEGFP-C1-cIi to observe the intracellular co-localization. Secondly, the DC2.4 Mouse Dendritic Cell and Murine RAW 264.7 cells were transfected with recombinant plasmids of pmCherry-cRab22a and pmCherry-mRab22a respectively. Subsequently, the intracellular localization of cRab22a in early and late endosomes was observed with specific antibodies against EEA1 and LAMP1 respectively. For gene expression-based studies, the cRab22a gene was down-regulated and up-regulated in HD11 cells, following the detection of transcription levels of the BFa (MHCIa) and cIi genes by real-time quantitative PCR (RT-qPCR). The interactions of the cRab22a gene with BFa and cIi were detected by co-immunoprecipitation (Co-IP) and Western blot. The results showed that the protein structures of chicken and mouse Rab22a were highly homologous (95.4%), and both localize to the early and late endosomes. Ser41 and Tyr74 are key amino acids in the Switch regions of Rab22a which maintain its intracellular localization. The down-regulation of cRab22a gene expression significantly reduced (p < 0.01) the transcription of BFa (MHCIa) and cIi in HD11 cells. However, when the expression of the cRab22a gene was increased 55 times as compared to control cells, the expression of the BFa (MHCIa) gene was increased 1.7 times compared to the control cells (p < 0.01), while the expression of the cIi gene did not significantly differ from control (p > 0.05). Western blot results showed that cRab22a could not directly bind to BFa and cIi. So, cRab22a can regulate BFa and cIi protein molecules indirectly. It is concluded that cRab22a was localized with cIi in the endosome. The Switch regions of cRab22a are the key domains that affect intracellular localization and colocalization of the cIi molecule.
Collapse
|
13
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
14
|
Xu X, Li Y, Liu G, Li K, Chen P, Gao Y, Liang W, Xi H, Wang X, Wei B, Li H, Chen L. MiR-378a-3p acts as a tumor suppressor in gastric cancer via directly targeting RAB31 and inhibiting the Hedgehog pathway proteins GLI1/2. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0337. [PMID: 36245214 PMCID: PMC9755959 DOI: 10.20892/j.issn.2095-3941.2022.0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To improve the prognosis of patients with gastric cancer (GC), more effective therapeutic targets are urgently needed. Increasing evidence indicates that miRNAs are involved in the progression of various tumors, and RAS-associated protein in the brain 31 (RAB31) is upregulated and promotes the progression of multiple malignant tumors. Here, we focused on identifying RAB31-targeted miRNAs and elucidating their potential mechanism in the progression of GC. METHODS RAB31 and miR-378a-3p expression levels were detected in paired fresh GC tissues and GC cell lines. Bioinformatics analysis was used to predict the miRNAs targeting RAB31 and the relationships between RAB31 and other genes. Dual-luciferase reporter assays were applied to verify the targeted interaction relationship. CCK-8, colony formation, flow cytometry, wound healing, and Transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of GC cells. Tumorsphere formation assays were performed to assess the stemness of gastric cancer stem cells. Related proteins were detected by Western blot. Xenograft assays in nude mice were performed to explore the effect of miR-378a-3p in vivo. RESULTS We report the first evidence that miR-378a-3p is downregulated in GC, whereas its overexpression inhibits proliferation, invasion, and migration as well as promotes apoptosis in GC cells. Mechanistically, miR-378a-3p inhibits the progression of GC by directly targeting RAB31. Restoring RAB31 expression partially offsets the inhibitory effect of miR-378a-3p. Further research revealed that miR-378a-3p inhibits GLI1/2 in the Hedgehog signaling pathway and attenuates the stemness of gastric cancer stem cells. Finally, xenograft assays showed that miR-378a-3p inhibits GC tumorigenesis in vivo. CONCLUSIONS MiR-378a-3p inhibits GC progression by directly targeting RAB31 and inhibiting the Hedgehog signaling pathway proteins GLI1/2.
Collapse
Affiliation(s)
- Xinxin Xu
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Li
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guoxiao Liu
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Kai Li
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Peng Chen
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People’s Liberation Army, Lanzhou 730050, China
| | - Yunhe Gao
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wenquan Liang
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinxin Wang
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Wei
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongtao Li
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People’s Liberation Army, Lanzhou 730050, China,Correspondence to: Hongtao Li and Lin Chen, E-mail: and
| | - Lin Chen
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China,Correspondence to: Hongtao Li and Lin Chen, E-mail: and
| |
Collapse
|
15
|
Rab22a Promotes Epithelial-Mesenchymal Transition in Papillary Thyroid Carcinoma by Activating PI3K/AKT/mTOR Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1874550. [PMID: 35757470 PMCID: PMC9217539 DOI: 10.1155/2022/1874550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Rab22a is a member of the RAS superfamily, involved in early endosome formation and intracellular vesicle transport. Rab22a is significantly upregulated in a variety of malignant tumors. However, its function in thyroid cancer has never been addressed. Methods The expression of Rab22a in paraffin sections of 101 patients was detected by immunohistochemical staining. By upregulating and downregulating the expression of Rab22a in thyroid cancer cell lines, the effect of Rab22a on cell proliferation, invasion, and migration was analyzed. Co-IP was employed, and the interaction between Rab22a and PI3Kp85α was shown. The function of Rab22a on PI3K/AKT/mTOR signaling and epithelial-mesenchymal transition (EMT) was further studied by western blot analysis. Results Immunostaining showed that Rab22a was significantly overexpressed in thyroid cancer tissues but negative in adjacent normal tissues or nodular goiters. The proliferation, migration, invasion, and EMT in papillary thyroid carcinoma cell lines were enhanced upon Rab22a overexpression but inhibited after knocking down Rab22a. The co-IP assay demonstrated an interaction between Rab22a and PI3K85α, an effector of PI3K. We further found that Rab22a can activate the PI3K/AKT/mTOR signaling pathway. However, the ability of Rab22a to promote the proliferation, invasion, migration, and EMT of papillary thyroid carcinoma cells was significantly inhibited after being treated with LY294002, a PI3K inhibitor. Conclusions Rab22a can promote the EMT process and enhance proliferation, migration, and invasion of papillary thyroid carcinoma cells by activating the PI3K/AKT/mTOR signaling pathway. Our study provides new pathological diagnosis clues and clinical treatment targets for thyroid cancer.
Collapse
|
16
|
Molière A, Beer KB, Wehman AM. Dopey proteins are essential but overlooked regulators of membrane trafficking. J Cell Sci 2022; 135:274973. [PMID: 35388894 DOI: 10.1242/jcs.259628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.
Collapse
Affiliation(s)
- Adrian Molière
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katharina B Beer
- Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.,Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
17
|
Wang X, Nie P, Zhu D. LncRNA HOXA10-AS Activated by E2F1 Facilitates Proliferation and Migration of Nasopharyngeal Carcinoma Cells Through Sponging miR-582-3p to Upregulate RAB31. Am J Rhinol Allergy 2022; 36:348-359. [PMID: 35072529 DOI: 10.1177/19458924211064400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of head and neck cancer with a characteristic regional distribution. Increasing evidence has illustrated that long noncoding RNAs (lncRNAs) exert the regulatory function in tumor development. Nevertheless, the specific functions of lncRNA HOXA10 antisense RNA (HOXA10-AS) in NPC remain to be clarified. In this research, quantitative reverse transcription polymerase chain reaction detected HOXA10-AS expression in NPC cells. Cell counting kit-8, colony formation, and transwell assays were utilized to measure the proliferation and migration of NPC cells. Moreover, mechanism assays detected the interaction of different genes. Briefly, HOXA10-AS was highly expressed in NPC cells. HOXA10-AS down-regulation restrained NPC cell proliferation and migration. Further, HOXA10-AS could bind to miR-582-3p by acting as a competing endogenous RNA. Besides, Ras-related protein Rab-31 (RAB31) was proven as the target gene of miR-582-3p. Additionally, E2F transcription factor 1 (E2F1) acted as a transcription factor to activate HOXA10-AS expression. In the final rescue assays, we observed that the effect of HOXA10-AS depletion on NPC cell growth could be fully reversed by RAB31 overexpression or miR-582-3p inhibition. In short, our research proved that HOXA10-AS activated by E2F1 facilitated proliferation and migration of NPC cells through sponging miR-582-3p to upregulate RAB31.
Collapse
Affiliation(s)
- Xinyan Wang
- Jinan Fourth People's Hospital, Jinan, China
| | - Peilan Nie
- Jinan Fourth People's Hospital, Jinan, China
| | - Dongmei Zhu
- Jinan Fourth People's Hospital, Jinan, China
| |
Collapse
|
18
|
Bayat Z, Ahmadi-Motamayel F, Parsa MS, Taherkhani A. Potential biomarkers and signaling pathways associated with the pathogenesis of primary salivary gland carcinoma: a bioinformatics study. Genomics Inform 2022; 19:e42. [PMID: 35012286 PMCID: PMC8752977 DOI: 10.5808/gi.21052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 01/21/2023] Open
Abstract
Salivary gland carcinoma (SGC) is rare cancer, constituting 6% of neoplasms in the head and neck area. The most responsible genes and pathways involved in the pathology of this disorder have not been fully understood. We aimed to identify differentially expressed genes (DEGs), the most critical hub genes, transcription factors, signaling pathways, and biological processes (BPs) associated with the pathogenesis of primary SGC. The mRNA dataset GSE153283 in the Gene Expression Omnibus database was re-analyzed for determining DEGs in cancer tissue of patients with primary SGC compared to the adjacent normal tissue (adjusted p-value < 0.001; |Log2 fold change| > 1). A protein interaction map (PIM) was built, and the main modules within the network were identified and focused on the different pathways and BP analyses. The hub genes of PIM were discovered, and their associated gene regulatory network was built to determine the master regulators involved in the pathogenesis of primary SGC. A total of 137 genes were found to be differentially expressed in primary SGC. The most significant pathways and BPs that were deregulated in the primary disease condition were associated with the cell cycle and fibroblast proliferation procedures. TP53, EGF, FN1, NOTCH1, EZH2, COL1A1, SPP1, CDKN2A, WNT5A, PDGFRB, CCNB1, and H2AFX were demonstrated to be the most critical genes linked with the primary SGC. SPIB, FOXM1, and POLR2A significantly regulate all the hub genes. This study illustrated several hub genes and their master regulators that might be appropriate targets for the therapeutic aims of primary SGC.
Collapse
Affiliation(s)
- Zeynab Bayat
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Fatemeh Ahmadi-Motamayel
- Dental Implants Research Center and Dental Research Center, Department of Oral Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Mohadeseh Salimi Parsa
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| |
Collapse
|
19
|
Porfírio-Sousa AL, Tice AK, Brown MW, J. G. Lahr D. Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa. Small GTPases 2022; 13:100-113. [PMID: 33779495 PMCID: PMC9707542 DOI: 10.1080/21541248.2021.1903794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.
Collapse
Affiliation(s)
| | - Alexander K. Tice
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Daniel J. G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,CONTACT Daniel J. G. Lahr Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Hatoyama Y, Homma Y, Hiragi S, Fukuda M. Establishment and analysis of conditional Rab1- and Rab5-knockout cells using the auxin-inducible degron system. J Cell Sci 2021; 134:273782. [PMID: 34817057 DOI: 10.1242/jcs.259184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Two small GTPases, Rab1 and Rab5, are key membrane trafficking regulators that are conserved in all eukaryotes. They have recently been found to be essential for cell survival and/or growth in cultured mammalian cells, thereby precluding the establishment of Rab1-knockout (KO) and Rab5-KO cells, making it extremely difficult to assess the impact of complete Rab1 or Rab5 protein depletion on cellular functions. Here, we generated and analyzed cell lines with conditional KO (CKO) of either Rab1 (Rab1A and Rab1B) or Rab5 (Rab5A, Rab5B and Rab5C) by using the auxin-inducible protein degradation system. Rab1 CKO and Rab5 CKO led to eventual cell death from 18 h and 48 h, respectively, after auxin exposure. After acute Rab1 protein depletion, the Golgi stack and ribbon structures were completely disrupted, and endoplasmic reticulum (ER)-to-Golgi trafficking was severely inhibited. Moreover, we discovered a novel Rab1-depletion phenotype: perinuclear clustering of early endosomes and delayed transferrin recycling. In contrast, acute Rab5 protein depletion resulted in loss of early endosomes and late endosomes, but lysosomes appeared to be normal. We also observed a dramatic reduction in the intracellular signals of endocytic cargos via receptor-mediated or fluid-phase endocytosis in Rab5-depleted cells.
Collapse
Affiliation(s)
- Yuki Hatoyama
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
21
|
Peng Y, Zeng Q, Wan L, Ma E, Li H, Yang X, Zhang Y, Huang L, Lin H, Feng J, Xu Y, Li J, Liu M, Liu J, Lin C, Sun Z, Cheng G, Zhang X, Liu J, Li D, Wei M, Mo Y, Mu X, Deng X, Zhang D, Dong S, Huang H, Fang Y, Gao Q, Yang X, Wu F, Zhong H, Wei C. GP73 is a TBC-domain Rab GTPase-activating protein contributing to the pathogenesis of non-alcoholic fatty liver disease without obesity. Nat Commun 2021; 12:7004. [PMID: 34853313 PMCID: PMC8636488 DOI: 10.1038/s41467-021-27309-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
The prevalence of non-obese nonalcoholic fatty liver disease (NAFLD) is increasing worldwide with unclear etiology and pathogenesis. Here, we show GP73, a Golgi protein upregulated in livers from patients with a variety of liver diseases, exhibits Rab GTPase-activating protein (GAP) activity regulating ApoB export. Upon regular-diet feeding, liver-GP73-high mice display non-obese NAFLD phenotype, characterized by reduced body weight, intrahepatic lipid accumulation, and gradual insulin resistance development, none of which can be recapitulated in liver-GAP inactive GP73-high mice. Common and specific gene expression signatures associated with GP73-induced non-obese NAFLD and high-fat diet (HFD)-induced obese NAFLD are revealed. Notably, metformin inactivates the GAP activity of GP73 and alleviates GP73-induced non-obese NAFLD. GP73 is pathologically elevated in NAFLD individuals without obesity, and GP73 blockade improves whole-body metabolism in non-obese NAFLD mouse model. These findings reveal a pathophysiological role of GP73 in triggering non-obese NAFLD and may offer an opportunity for clinical intervention. Dysregulation of lipid metabolism and transport contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here the authors identify GP73 as a TBC-domain Rab GTPase-activating protein that regulates very low-density lipoprotein export and promotes NAFLD development in mice.
Collapse
Affiliation(s)
- Yumeng Peng
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Qiang Zeng
- Health management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huilong Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Haotian Lin
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiangyue Feng
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yixin Xu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Changqin Lin
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Zhiwei Sun
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuemiao Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongrui Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Meng Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yunhai Mo
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xuetao Mu
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Deng
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dandan Zhang
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siqing Dong
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hanqing Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yi Fang
- Department of Endocrinology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Xiaoli Yang
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| |
Collapse
|
22
|
Newer Methods Drive Recent Insights into Rab GTPase Biology: An Overview. Methods Mol Biol 2021. [PMID: 34453706 DOI: 10.1007/978-1-0716-1346-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The conserved Ypt/Rab GTPases regulate all major intracellular protein traffic pathways, including secretion, endocytosis and autophagy. These GTPases undergo distinct changes in conformation between their GTP- and GDP-bound forms and cycle between the cytoplasm and membranes with the aid of their upstream regulators. When activated on the membrane in the GTP-bound form, they recruit their downstream effectors, which include components of vesicular transport. Progress in the past 5 years regarding mechanisms of Rab action, functions, and the effects of disruption of these functions on the well-being of cells and organisms has been propelled by advances in methodologies in molecular and cellular biology. Here, we highlight methods used recently to analyze regulation, localization, interactions, and function of Rab GTPases and their roles in human disease. We discuss contributions of these methods to new insights into Rabs, as well as their future use in addressing open questions in the field of Rab biology.
Collapse
|
23
|
More K, Klinger CM, Barlow LD, Dacks JB. Evolution and Natural History of Membrane Trafficking in Eukaryotes. Curr Biol 2021; 30:R553-R564. [PMID: 32428497 DOI: 10.1016/j.cub.2020.03.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The membrane-trafficking system is a defining facet of eukaryotic cells. The best-known organelles and major protein families of this system are largely conserved across the vast diversity of eukaryotes, implying both ancient organization and functional unity. Nonetheless, intriguing variation exists that speaks to the evolutionary forces that have shaped the endomembrane system in eukaryotes and highlights ways in which membrane trafficking in protists differs from that in our well-understood models of mammalian and yeast cells. Both parasites and free-living protists possess specialized trafficking organelles, some lineage specific, others more widely distributed - the evolution and function of these organelles begs exploration. Novel members of protein families are present across eukaryotes but have been lost in humans. These proteins may well hold clues to understanding differences in cellular function in organisms that are of pressing importance for planetary health.
Collapse
Affiliation(s)
- Kira More
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Christen M Klinger
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
24
|
Large Rab GTPases: Novel Membrane Trafficking Regulators with a Calcium Sensor and Functional Domains. Int J Mol Sci 2021; 22:ijms22147691. [PMID: 34299309 PMCID: PMC8303950 DOI: 10.3390/ijms22147691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Rab GTPases are major coordinators of intracellular membrane trafficking, including vesicle transport, membrane fission, tethering, docking, and fusion events. Rab GTPases are roughly divided into two groups: conventional “small” Rab GTPases and atypical “large” Rab GTPases that have been recently reported. Some members of large Rab GTPases in mammals include Rab44, Rab45/RASEF, and Rab46. The genes of these large Rab GTPases commonly encode an amino-terminal EF-hand domain, coiled-coil domain, and the carboxyl-terminal Rab GTPase domain. A common feature of large Rab GTPases is that they express several isoforms in cells. For instance, Rab44’s two isoforms have similar functions, but exhibit differential localization. The long form of Rab45 (Rab45-L) is abundantly distributed in epithelial cells. The short form of Rab45 (Rab45-S) is predominantly present in the testes. Both Rab46 (CRACR2A-L) and the short isoform lacking the Rab domain (CRACR2A-S) are expressed in T cells, whereas Rab46 is only distributed in endothelial cells. Although evidence regarding the function of large Rab GTPases has been accumulating recently, there are only a limited number of studies. Here, we report the recent findings on the large Rab GTPase family concerning their function in membrane trafficking, cell differentiation, related diseases, and knockout mouse phenotypes.
Collapse
|
25
|
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021; 13:6319025. [PMID: 34247240 PMCID: PMC8358228 DOI: 10.1093/gbe/evab157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Romain Derelle
- Station d'Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
26
|
Shan MM, Sun SC. The multiple roles of RAB GTPases in female and male meiosis. Hum Reprod Update 2021; 27:1013-1029. [PMID: 34227671 DOI: 10.1093/humupd/dmab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND RAB GTPases constitute the largest family of small GTPases and are found in all eukaryotes. RAB GTPases regulate components of the endomembrane system, the nucleus and the plasma membrane, and are involved in intracellular actin/tubulin-dependent vesicle movement, membrane fusion and cell growth in mitosis. OBJECTIVE AND RATIONALE RAB GTPases play multiple critical roles during both female and male meiosis. This review summarizes the progress made in our understanding of the role of RAB GTPases in female and male meiosis in different species. We also discuss the potential relationship between RAB GTPases and oocyte/sperm quality, which may help in understanding the mechanisms underlying oogenesis and spermatogenesis and potential genetic causes of infertility. SEARCH METHODS The PubMed database was searched for articles published between 1991 and 2020 using the following terms: 'RAB', 'RAB oocyte', 'RAB sperm' and 'RAB meiosis'. OUTCOMES An analysis of 126 relevant articles indicated that RAB GTPases are present in all eukaryotes, and ten subfamilies (almost 70 members) are expressed in human cells. The roles of 25 RAB proteins and orthologues in female meiosis and 12 in male meiosis have been reported. RAB proteins are essential for the accurate continuity of genetic material, successful fertilization and the normal growth of offspring. Distinct and crucial functions of RAB GTPases in meiosis have been reported. In oocytes, RAB GTPases are involved in spindle organization, kinetochore-microtubule attachment, chromosome alignment, actin filament-mediated spindle migration, cytokinesis, cell cycle and oocyte-embryo transition. RAB GTPases function in mitochondrial processes and Golgi-mediated vesicular transport during female meiosis, and are critical for cortical granule transport during fertilization and oocyte-embryo transition. In sperm, RAB GTPases are vital for cytoskeletal organization and successful cytokinesis, and are associated with Golgi-mediated acrosome formation, membrane trafficking and morphological changes of sperm cells, as well as the exocytosis-related acrosome reaction and zona reaction during fertilization. WIDER IMPLICATIONS Abnormal expression of RAB GTPases disrupts intracellular systems, which may induce diverse diseases. The roles of RAB proteins in female and male reproductive systems, thus, need to be considered. The mechanisms underlying the function of RAB GTPases and the binding specificity of their effectors during oogenesis, spermatogenesis and fertilization remain to be studied. This review should contribute to our understanding of the molecular mechanisms of oogenesis and spermatogenesis and potential genetic causes of infertility.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. EMBO J 2021; 40:e107608. [PMID: 34018214 PMCID: PMC8204870 DOI: 10.15252/embj.2020107608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo‐EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII‐specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease‐causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur‐TRAPP.
Collapse
Affiliation(s)
| | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
28
|
Ganga AK, Kennedy MC, Oguchi ME, Gray S, Oliver KE, Knight TA, De La Cruz EM, Homma Y, Fukuda M, Breslow DK. Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Curr Biol 2021; 31:2895-2905.e7. [PMID: 33989527 DOI: 10.1016/j.cub.2021.04.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
The primary cilium is an essential organizing center for signal transduction, and ciliary defects cause congenital disorders known collectively as ciliopathies.1-3 Primary cilia form by two pathways that are employed in a cell-type- and tissue-specific manner: an extracellular pathway in which the cilium grows out from the cell surface and an intracellular pathway in which the nascent cilium first forms inside the cell.4-8 After exposure to the external environment, cilia formed via the intracellular pathway may have distinct functional properties, as they often remain recessed within a ciliary pocket.9,10 However, the precise mechanism of intracellular ciliogenesis and its relatedness to extracellular ciliogenesis remain poorly understood. Here we show that Rab34, a poorly characterized GTPase recently linked to cilia,11-13 is a selective mediator of intracellular ciliogenesis. We find that Rab34 is required for formation of the ciliary vesicle at the mother centriole and that Rab34 marks the ciliary sheath, a unique sub-domain of assembling intracellular cilia. Rab34 activity is modulated by divergent residues within its GTPase domain, and ciliogenesis requires GTP binding and turnover by Rab34. Because Rab34 is found on assembly intermediates that are unique to intracellular ciliogenesis, we tested its role in the extracellular pathway used by polarized MDCK cells. Consistent with Rab34 acting specifically in the intracellular pathway, MDCK cells ciliate independently of Rab34 and its paralog Rab36. Together, these findings establish that different modes of ciliogenesis have distinct molecular requirements and reveal Rab34 as a new GTPase mediator of ciliary membrane biogenesis.
Collapse
Affiliation(s)
- Anil Kumar Ganga
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Margaret C Kennedy
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mai E Oguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kendall E Oliver
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Tracy A Knight
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - David K Breslow
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
29
|
Osaki F, Matsui T, Hiragi S, Homma Y, Fukuda M. RBD11, a bioengineered Rab11-binding module for visualizing and analyzing endogenous Rab11. J Cell Sci 2021; 134:237778. [PMID: 33712449 DOI: 10.1242/jcs.257311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
The small GTPase Rab11 (herein referring to the Rab11A and Rab11B isoforms) plays pivotal roles in diverse physiological phenomena, including the recycling of membrane proteins, cytokinesis, neurite outgrowth and epithelial morphogenesis. One effective method of analyzing the function of endogenous Rab11 is to overexpress a Rab11-binding domain from one of its effectors, for example, the C-terminal domain of Rab11-FIP2 (Rab11-FIP2-C), as a dominant-negative construct. However, the drawback of this method is the broader Rab-binding specificity of the effector domain, because Rab11-FIP2-C binds to Rabs other than Rab11, for example, to Rab14 and Rab25. In this study, we bioengineered an artificial Rab11-specific binding domain, named RBD11. Expression of RBD11 allowed visualization of endogenous Rab11 without affecting its localization or function, whereas expression of a tandem RBD11, named 2×RBD11, inhibited epithelial morphogenesis and induced a multi-lumen phenotype characteristic of Rab11-deficient cysts. We also developed two tools for temporally and reversibly analyzing Rab11-dependent membrane trafficking - tetracycline-inducible 2×RBD11 and an artificially oligomerized domain (FM)-tagged RBD11.
Collapse
Affiliation(s)
- Futaba Osaki
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
30
|
Al-Saad RZ, Kerr I, Hume AN. Determination of the Rab27-Effector Binding Affinity Using a High-Throughput FRET-Based Assay. Methods Mol Biol 2021; 2293:143-162. [PMID: 34453715 DOI: 10.1007/978-1-0716-1346-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thus far, two Rab27 isoforms (Rab27a and Rab27b) have been identified that interact with their eleven downstream effectors proteins, preferentially in their GTP-bound state. In recent years, a number of studies has suggested roles for Rab27-effector protein interactions in the development of cancer cell invasion and metastasis, and immune and inflammatory responses. Here we develop an in vitro fluorescence resonance energy transfer (FRET)-based protein-protein interaction assay to report Rab27 protein interactions with their effectors. We particularly focus on determining the interaction of mouse (m) Synaptotagmin-like protein (Slp)1 and mSlp2 effector proteins with human (h)Rab27. Green fluorescent protein (GFP)-N-terminus Rab27 binding domains (m-Slp1 and m-Slp2) recombinant proteins were used as donor fluorophores, whereas mCherry-hRab27a/b recombinant proteins were used as acceptor fluorophores. The conditions of this assay were validated and optimized, and the specificity of the assay was confirmed. Accordingly, this assay can be used to assess and identify key determinants and/or candidate inhibitors of Rab27-effector interactions.
Collapse
Affiliation(s)
- Raghdan Z Al-Saad
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Babylon, Babylon, Iraq.
| | - Ian Kerr
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Alistair N Hume
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
31
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
32
|
Tebaldi G, Pritchard SM, Nicola AV. Herpes Simplex Virus Entry by a Nonconventional Endocytic Pathway. J Virol 2020; 94:e01910-20. [PMID: 33028710 PMCID: PMC7925185 DOI: 10.1128/jvi.01910-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and mortality in humans worldwide. HSV-1 enters epithelial cells via an endocytosis mechanism that is low-pH dependent. However, the precise intracellular pathway has not been identified, including the compartment where fusion occurs. In this study, we utilized a combination of molecular and pharmacological approaches to better characterize HSV entry by endocytosis. HSV-1 entry was unaltered in both cells treated with small interfering RNA (siRNA) to Rab5 or Rab7 and cells expressing dominant negative forms of these GTPases, suggesting entry is independent of the conventional endo-lysosomal network. The fungal metabolite brefeldin A (BFA) and the quinoline compound Golgicide A (GCA) inhibited HSV-1 entry via beta-galactosidase reporter assay and impaired incoming virus transport to the nuclear periphery, suggesting a role for trans-Golgi network (TGN) functions and retrograde transport in HSV entry. Silencing of Rab9 or Rab11 GTPases, which are involved in the retrograde transport pathway, resulted in only a slight reduction in HSV infection. Together, these results suggest that HSV enters host cells by an intracellular route independent of the lysosome-terminal endocytic pathway.IMPORTANCE Herpes simplex virus 1 (HSV-1), the prototype alphaherpesvirus, is ubiquitous in the human population and causes lifelong infection that can be fatal in neonatal and immunocompromised individuals. HSV enters many cell types by endocytosis, including epithelial cells, the site of primary infection in the host. The intracellular itinerary for HSV entry remains unclear. We probed the potential involvement of several Rab GTPases in HSV-1 entry and suggest that endocytic entry of HSV-1 is independent of the canonical lysosome-terminal pathway. A nontraditional endocytic route may be employed, such as one that intersects with the trans-Golgi network (TGN). These results may lead to novel targets for intervention.
Collapse
Affiliation(s)
- Giulia Tebaldi
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
33
|
Ogawa K, Kadowaki T, Tokuhisa M, Yamaguchi Y, Umeda M, Tsukuba T. Role of the EF-hand and coiled-coil domains of human Rab44 in localisation and organelle formation. Sci Rep 2020; 10:19149. [PMID: 33154405 PMCID: PMC7645795 DOI: 10.1038/s41598-020-75897-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
Rab44 is a large Rab GTPase that contains an amino-terminal EF-hand domain, a coiled-coil domain, and a carboxyl-terminal Rab GTPase domain. However, the roles of the EF-hand and coiled-coil domains remain unclear. Here, we constructed various deletion and point mutants of human Rab44. When overexpressed in HeLa cells, the wild-type Rab44 (hWT) formed ring-like structures, and partially localised to lysosomes. The dominant negative mutant, hT847N, localised to lysosomes and the cytosol, while the constitutively active mutant, hQ892L, formed ring-like structures, and partially localised to the plasma membrane and nuclei. The hΔEF, hΔcoil, and h826-1021 mutants also formed ring-like structures; however, their localisation patterns differed from hWT. Analysis of live imaging with LysoTracker revealed that the size of LysoTracker-positive vesicles was altered by all other mutations than the hC1019A and hΔEF. Treatment with ionomycin, a Ca2+ ionophore, induced the translocation of hWT and hΔcoil into the plasma membrane and cytosol, but had no effect on the localisation of the hΔEF and h826-1021 mutants. Thus, the EF- hand domain is likely required for the partial translocation of Rab44 to the plasma membrane and cytosol following transient Ca2+ influx, and the coiled-coil domain appears to be important for localisation and organelle formation.
Collapse
Affiliation(s)
- Kohei Ogawa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.
| | - Mitsuko Tokuhisa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.
| |
Collapse
|
34
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
35
|
Liu C, Miao X, Wang Y, Wen L, Cheng X, Kong D, Zhao P, Song D, Wang X, Ding X, Xia H, Wang W, Sun Q, Gong W. Bromo- and extraterminal domain protein inhibition improves immunotherapy efficacy in hepatocellular carcinoma. Cancer Sci 2020; 111:3503-3515. [PMID: 32726482 PMCID: PMC7540980 DOI: 10.1111/cas.14588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the majority of liver cancer and is the fourth most common cause of cancer-related death. Although advances in molecular targeted therapy have shown promise, none of these agents has yet demonstrated significant clinical benefit. Bromo- and extraterminal domain (BET) protein inhibitors have been considered potential therapeutic drugs for HCC but the biological activity remains unclear. This study found that BET protein inhibition did not effectively suppress the progression of HCC, using a transgenic HCC mouse model. Mechanistically, the BET protein inhibitor JQ1 upregulated the expression of programmed cell death-ligand 1 (PD-L1) on the plasma membrane in vivo and in vitro. Moreover, JQ1 enhanced the expression of Rab8A, which upregulated the expression of PD-L1 on the plasma membrane. This study also showed that JQ1 combined with anti-PD-L1 Ab effectively suppressed HCC progression, and this benefit was obtained by enhancing the activation and cytotoxic capabilities of CD8 T cells. These results revealed the crucial role and regulation of BET protein inhibition on the expression of PD-L1 in HCC. Thus, combining BET protein inhibition with immune checkpoint blockade offers an efficient therapeutic approach for HCC.
Collapse
Affiliation(s)
- Chen Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiawei Cheng
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Deqiang Kong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Dandan Song
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Biology of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Ku KE, Choi N, Sung JH. Inhibition of Rab27a and Rab27b Has Opposite Effects on the Regulation of Hair Cycle and Hair Growth. Int J Mol Sci 2020; 21:ijms21165672. [PMID: 32784729 PMCID: PMC7460818 DOI: 10.3390/ijms21165672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Rab27a/b are known to play an important role in the transport of melanosomes, with their knockout causing silvery gray hair. However, the relationship between Rab27a/b and hair growth is not well known. To evaluate the role of Rab27a/b in hair cycle, we investigated the expression of Rab27a/b during hair cycling and human outer root sheath (hORS) cells. The expression of Rab27a in ORS cells was mainly detected at the anagen, whereas expression of Rab27b in ORS, and epidermal cells was strongly expressed at the telogen. Additionally, Rab27a/b were expressed in the Golgi of hORS cells. To evaluate the role of Rab27a/b in hair growth, telogen-to-anagen transition animal and vibrissae hair follicles (HFs) organ culture models were assayed using Rab27a/b siRNAs. The knockdown of Rab27a or Rab27b suppressed or promoted hair growth, respectively. These results were also confirmed in human dermal papilla cells (hDPCs) and hORS cells, showing the opposite mitogenic effects. Moreover, Rab27b knockdown increased the expression levels of various growth factors in the hDPCs and hORS cells. Overall, the opposite temporal expression patterns during hair cycling and roles for hair growth of Rab27a/b suggested that Rab27a/b might regulate the hair cycle. Therefore, our study may provide a novel solution for the development of hair loss treatment by regulating Rab27a/b levels.
Collapse
Affiliation(s)
- Kyung-Eun Ku
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | | | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- STEMORE Co. Ltd., Incheon 21983, Korea;
- Correspondence: ; Tel.: +82-32-749-4506
| |
Collapse
|
37
|
Expression and localisation of Rab44 in immune-related cells change during cell differentiation and stimulation. Sci Rep 2020; 10:10728. [PMID: 32612275 PMCID: PMC7329882 DOI: 10.1038/s41598-020-67638-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Rab44 is a large Rab GTPase that contains a Rab-GTPase domain and some additional domains, such as EF-hand and coiled-coil domains at the N-terminus. Our previous study showed that Rab44 negatively regulates osteoclast differentiation by modulating intracellular calcium levels; however, aside from those findings, there is little information concerning Rab44 on other cells or tissues. In this study, we showed that Rab44 was highly expressed in bone marrow cells among various mouse tissues. Immunohistochemical studies indicated that Rab44 was detectable by only a small number of cells in the immune-related tissues and that Rab44 was partially detected in CD117-positive cells, but not in Stem cell antigen 1-positive cells in the bone marrow. Rab44 expression levels were decreased during differentiation of immune-related cells, such as neutrophils, macrophages, and dendritic cells compared with bone marrow cells. Although endogenous Rab44 in macrophages was localised in lysosomes, lipopolysaccharide (LPS) stimulation led to partial translocation to early endosomes and the plasma membrane. Moreover, Rab44 expression levels were altered by treatment with various immunomodulators, including LPS. These results indicate that Rab44 expression and localisation in bone marrow cells and macrophages alters with cell differentiation and stimulation.
Collapse
|
38
|
Lawson T, Lycett GW, Mayes S, Ho WK, Chin CF. Transcriptome-wide identification and characterization of the Rab GTPase family in mango. Mol Biol Rep 2020; 47:4183-4197. [PMID: 32444976 DOI: 10.1007/s11033-020-05519-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
The Rab GTPase family plays a vital role in several plant physiological processes including fruit ripening. Fruit softening during ripening involves trafficking of cell wall polymers and enzymes between cellular compartments. Mango, an economically important fruit crop, is known for its delicious taste, exotic flavour and nutritional value. So far, there is a paucity of information on the mango Rab GTPase family. In this study, 23 genes encoding Rab proteins were identified in mango by a comprehensive in silico approach. Sequence alignment and similarity tree analysis with the model plant Arabidopsis as a reference enabled the bona fide assignment of the deduced mango proteins to classify into eight subfamilies. Expression analysis by RNA-Sequencing (RNA-Seq) showed that the Rab genes were differentially expressed in ripe and unripe mangoes suggesting the involvement of vesicle trafficking during ripening. Interaction analysis showed that the proteins involved in vesicle trafficking and cell wall softening were interconnected providing further evidence of the involvement of the Rab GTPases in fruit softening. Correlation analyses showed a significant relationship between the expression level of the RabA3 and RabA4 genes and fruit firmness at the unripe stage of the mango varieties suggesting that the differences in gene expression level might be associated with the contrasting firmness of these varieties. This study will not only provide new insights into the complexity of the ripening-regulated molecular mechanism but also facilitate the identification of potential Rab GTPases to address excessive fruit softening.
Collapse
Affiliation(s)
- Tamunonengiyeofori Lawson
- School of Biosciences, Faculty of Science, The University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.,Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,Crops for the Future (CFF) Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Grantley W Lycett
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Sean Mayes
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,Crops for the Future (CFF) Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Kuan Ho
- School of Biosciences, Faculty of Science, The University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.,Crops for the Future (CFF) Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Chiew Foan Chin
- School of Biosciences, Faculty of Science, The University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
39
|
Sears CR, Boggs TE, Gross JB. Dark-rearing uncovers novel gene expression patterns in an obligate cave-dwelling fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:518-529. [PMID: 32372488 DOI: 10.1002/jez.b.22947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
Extreme environments often result in the evolution of dramatic adaptive features. The Mexican tetra, Astyanax mexicanus, includes 30 different populations of cave-dwelling forms that live in perpetual darkness. As a consequence, many populations have evolved eye loss, reduced pigmentation, and amplification of nonvisual sensory systems. Closely-related surface-dwelling morphs demonstrate typical vision, pigmentation, and sensation. Transcriptomic assessments in this system have revealed important developmental changes associated with the cave morph, however, they have not accounted for photic rearing conditions. Prior studies reared individuals under a 12:12 hr light/dark (LD) cycle. Here, we reared cavefish under constant darkness (DD) for 5+ years. From these experimental individuals, we performed mRNA sequencing and compared gene expression of surface fish reared under LD conditions to cavefish reared under DD conditions to identify photic-dependent gene expression differences. Gene Ontology enrichment analyses revealed a number of previously underappreciated cave-associated changes impacting blood physiology and olfaction. We further evaluated the position of differentially expressed genes relative to QTL positions from prior studies and found several candidate genes associated with these ecologically relevant lighting conditions. In sum, this work highlights photic conditions as a key environmental factor impacting gene expression patterns in blind cave-dwelling fish.
Collapse
Affiliation(s)
- Connor R Sears
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
40
|
Lőrincz P, Juhász G. Autophagosome-Lysosome Fusion. J Mol Biol 2020; 432:2462-2482. [DOI: 10.1016/j.jmb.2019.10.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
|
41
|
Coppola U, Ristoratore F, Albalat R, D'Aniello S. The evolutionary landscape of the Rab family in chordates. Cell Mol Life Sci 2019; 76:4117-4130. [PMID: 31028425 PMCID: PMC11105323 DOI: 10.1007/s00018-019-03103-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy
- Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy.
| |
Collapse
|
42
|
Calixto AR, Moreira C, Pabis A, Kötting C, Gerwert K, Rudack T, Kamerlin SCL. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. J Am Chem Soc 2019; 141:10684-10701. [PMID: 31199130 DOI: 10.1021/jacs.9b03193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
Collapse
Affiliation(s)
- Ana R Calixto
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Cátia Moreira
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Anna Pabis
- Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 , Uppsala , Sweden
| | - Carsten Kötting
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Klaus Gerwert
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Till Rudack
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Shina C L Kamerlin
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
43
|
Fumagalli M, Camus SM, Diekmann Y, Burke A, Camus MD, Norman PJ, Joseph A, Abi-Rached L, Benazzo A, Rasteiro R, Mathieson I, Topf M, Parham P, Thomas MG, Brodsky FM. Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism. eLife 2019; 8:41517. [PMID: 31159924 PMCID: PMC6548504 DOI: 10.7554/elife.41517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/01/2019] [Indexed: 01/29/2023] Open
Abstract
CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Stephane M Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Yoan Diekmann
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Alice Burke
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Marine D Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul J Norman
- Division of Bioinformatics and Personalized Medicine, University of Colorado, Aurora, United States.,Department of Microbiology and Immunology, University of Colorado, Aurora, United States
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Laurent Abi-Rached
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, CNRS, Marseille, France
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Rita Rasteiro
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| |
Collapse
|
44
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Zhang X, Huang TY, Yancey J, Luo H, Zhang YW. Role of Rab GTPases in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:828-838. [PMID: 30261139 DOI: 10.1021/acschemneuro.8b00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) comprises two major pathological hallmarks: extraneuronal deposition of β-amyloid (Aβ) peptides ("senile plaques") and intraneuronal aggregation of the microtubule-associated protein tau ("neurofibrillary tangles"). Aβ is derived from sequential cleavage of the β-amyloid precursor protein by β- and γ-secretases, while aggregated tau is hyperphosphorylated in AD. Mounting evidence suggests that dysregulated trafficking of these AD-related proteins contributes to AD pathogenesis. Rab proteins are small GTPases that function as master regulators of vesicular transport and membrane trafficking. Multiple Rab GTPases have been implicated in AD-related protein trafficking, and their expression has been observed to be altered in postmortem AD brain. Here we review current implicated roles of Rab GTPase dysregulation in AD pathogenesis. Further elucidation of the pathophysiological role of Rab GTPases will likely reveal novel targets for AD therapeutics.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Joel Yancey
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
46
|
Amorim MJ. A Comprehensive Review on the Interaction Between the Host GTPase Rab11 and Influenza A Virus. Front Cell Dev Biol 2019; 6:176. [PMID: 30687703 PMCID: PMC6333742 DOI: 10.3389/fcell.2018.00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
This year marks the 100th anniversary of one of the deadliest pandemic outbreaks, commonly referred as the Spanish Flu, that was caused by influenza A virus (IAV). Since then, IAV has been in governmental agendas worldwide, and a lot of effort has been put into understanding the pathogen's lifecycle, predict and mitigate the emergence of the strains that provoke yearly epidemics and pandemic events. Despite decades of research and seminal contributions there is still a lot to be investigated. In particular for this review, IAV lifecycle that takes place inside the host cell is not fully understood. Two steps that need clarification include genome transport to budding sites and genome assembly, the latter a complex process challenged by the nature of IAV genome that is divided into eight distinct parts. Assembly of such segmented genome is crucial to form fully infectious viral particles but is also critical for the emergence of viruses with pandemic potential that arise when avian and human IAV strains co-infect a host. The host GTPase Rab11 was separately implicated in both steps, and, interestingly these processes are beginning to emerge as being intimately related. Rab11 was initially proposed to be involved in the budding/release of IAV virions. It was subsequently shown to transport progeny genome, and later proposed to promote assembly of viral genome, but the underlying bridging mechanism the two is far from clear. For simplicity, this Rab11-centric review provides an initial separate account of Rab11 involvement in genome transport and in assembly. IAV genome assembly is a complicated molecular biology process, and therefore earned a dedicated section on how/if the viral genome forms a genomic supramolecular complex. Both topics present intricate challenges, outstanding questions, and unique controversies. At the end of the review, I will explore possible mechanisms intertwining IAV vRNP transport and genome assembly. Importantly, Rab11 has recently emerged as a key factor subverted by evolutionary unrelated viral families (Paramyxo, Bunya, and Orthomyxoviruses, among many others) and bacteria (Salmonella and Shigella) relevant to human health. This review provides a framework to identify common biological principles among the lifecycles of these pathogens.
Collapse
Affiliation(s)
- Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
47
|
Hanadate Y, Saito-Nakano Y, Nakada-Tsukui K, Nozaki T. Identification and Characterization of the Entamoeba Histolytica Rab8a Binding Protein: A Cdc50 Homolog. Int J Mol Sci 2018; 19:ijms19123831. [PMID: 30513690 PMCID: PMC6321534 DOI: 10.3390/ijms19123831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane proteins. Here we identified the binding proteins of EhRab8A. The Cdc50 homolog, a non-catalytic subunit of lipid flippase, was identified as an EhRab8A binding protein candidate by affinity coimmunoprecipitation. Binding of EhRab8A to EhCdc50 was also confirmed by reciprocal immunoprecipitation and blue-native polyacrylamide gel electrophoresis, the latter of which revealed an 87 kDa complex. Indirect immunofluorescence imaging with and without Triton X100 showed that endogenous EhCdc50 localized on the surface in the absence of permeabilizing agent but was observed on the intracellular structures and overlapped with the ER marker Bip when Triton X100 was used. Overexpression of N-terminal HA-tagged EhCdc50 impaired its translocation to the plasma membrane and caused its accumulation in the ER. As reported previously in other organisms, overexpression and accumulation of Cdc50 in the ER likely inhibited surface transport and function of the plasma membrane lipid flippase P4-ATPase. Interestingly, HA-EhCdc50-expressing trophozoites gained resistance to miltefosine, which is consistent with the prediction that HA-EhCdc50 overexpression caused its accumulation in the ER and mislocalization of the unidentified lipid flippase. Similarly, EhRab8A gene silenced trophozoites showed increased resistance to miltefosine, supporting EhRab8A-dependent transport of EhCdc50. This study demonstrated for the first time that EhRab8A mediates the transport of EhCdc50 and lipid flippase P4-ATPase from the ER to the plasma membrane.
Collapse
Affiliation(s)
- Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
48
|
Tang CT, Liang Q, Yang L, Lin XL, Wu S, Chen Y, Zhang XT, Gao YJ, Ge ZZ. RAB31 Targeted by MiR-30c-2-3p Regulates the GLI1 Signaling Pathway, Affecting Gastric Cancer Cell Proliferation and Apoptosis. Front Oncol 2018; 8:554. [PMID: 30534536 PMCID: PMC6275292 DOI: 10.3389/fonc.2018.00554] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Gastric cancer (GC), one of the most common cancers worldwide, is highly malignant and fatal. Ras-related protein in brain 31 (RAB31), a member of the RAB family of oncogenes, participates in the process of carcinogenesis and cancer development; however, its role in GC progression is unknown. Methods: In our study, 90 pairs of tissue microarrays were used to measure the levels of RAB31 protein by immunochemistry, and 22 pairs of fresh tissue were used to measure the levels of RAB31 mRNA by quantitative PCR. We also investigated the effects of RAB31 on tumor growth both in vitro and in vivo. Results: RAB31 was overexpressed in GC tissues, and its overexpression predicted poor survival in patients. In a nude mouse model, depletion of RAB31 inhibited tumor growth. In vitro, silencing of RAB31 suppressed cell viability, promoted cell cycle arrest, enhanced apoptosis, and affected the expression of cell cycle and apoptotic proteins; these effects were mediated by glioma-associated oncogene homolog 1 (GLI1). Co-immunoprecipitation and immunofluorescence assays confirmed that RAB31 interacted with GLI1. In addition, luciferase reporter assays and Western blotting showed that microRNA-30c-2-3p modulated the RAB31/GLI1 pathway by targeting the 3′-untranslated region of RAB31. Conclusions: Collectively, these data show that RAB31 is regulated by microRNA-30c-2-3p, and functions as an oncogene in GC tumorigenesis and development by interacting with GLI1. Therefore, targeting the miR-30c-2-3p/RAB31/GLI1 axis may be a therapeutic intervention for gastric cancer.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy, Provincial Clinic Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shan Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Tian Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Mayorga LS, Cebrian I, Verma M, Hoops S, Bassaganya-Riera J. Reconstruction of endosomal organization and function by a combination of ODE and agent-based modeling strategies. Biol Direct 2018; 13:25. [PMID: 30621747 PMCID: PMC6883406 DOI: 10.1186/s13062-018-0227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproducing cell processes using an in silico system is an essential tool for understanding the underlying mechanisms and emergent properties of this extraordinary complex biological machine. However, computational models are seldom applied in the field of intracellular trafficking. In a cell, numerous molecular interactions occur on the surface or in the interior of membrane-bound compartments that continually change position and undergo dynamic processes of fusion and fission. At present, the available simulation tools are not suitable to develop models that incorporate the dynamic evolution of the cell organelles. RESULTS We developed a modeling platform combining Repast (Agent-Based Modeling, ABM) and COPASI (Differential Equations, ODE) that can be used to reproduce complex networks of molecular interactions. These interactions occur in dynamic cell organelles that change position and composition over the course of time. These two modeling strategies are fundamentally different and comprise of complementary capabilities. The ODEs can easily model the networks of molecular interactions, signaling cascades, and complex metabolic reactions. On the other hand, ABM software is especially suited to simulate the movement, interaction, fusion, and fission of dynamic organelles. We used the combined ABM-ODE platform to simulate the transport of soluble and membrane-associated cargoes that move along an endocytic route composed of early, sorting, recycling and late endosomes. We showed that complex processes that strongly depend on transport can be modeled. As an example, the hydrolysis of a GM2-like glycolipid was programmed by adding a trans-Golgi network compartment, lysosomal enzyme trafficking, endosomal acidification, and cholesterol processing to the simulation model. CONCLUSIONS The model captures the highly dynamic nature of cell compartments that fuse and divide, creating different conditions for each organelle. We expect that this modeling strategy will be useful to understand the logic underlying the organization and function of the endomembrane system. REVIEWERS This article was reviewed by Drs. Rafael Fernández-Chacón, James Faeder, and Thomas Simmen.
Collapse
Affiliation(s)
- Luis S Mayorga
- Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, IHEM (Universidad Nacional de Cuyo, CONICET), Casilla de Correo 56, 5500, Mendoza, Argentina.
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, IHEM (Universidad Nacional de Cuyo, CONICET), Casilla de Correo 56, 5500, Mendoza, Argentina
| | - Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.,Biocomplexity Institute and Initiative University of Virginia, 995 Research Park Boulevard, Charlottesville, VA, 22911, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
50
|
Revisiting Rab7 Functions in Mammalian Autophagy: Rab7 Knockout Studies. Cells 2018; 7:cells7110215. [PMID: 30463228 PMCID: PMC6262614 DOI: 10.3390/cells7110215] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Rab7 (or Ypt7 in yeast) is one of the well-characterized members of the Rab family small GTPases, which serve as master regulators of membrane trafficking in eukaryotes. It localizes to late endosomes and lysosomes and has multiple functions in the autophagic pathway as well as in the endocytic pathway. Because Rab7/Ypt7 has previously been shown to regulate the autophagosome-lysosome fusion step in yeast and fruit flies (i.e., autophagosome accumulation has been observed in both Ypt7-knockout [KO] yeast and Rab7-knockdown fruit flies), it is widely assumed that Rab7 regulates the autophagosome-lysosome fusion step in mammals. A recent analysis of Rab7-KO mammalian cultured cells, however, has revealed that Rab7 is essential for autolysosome maturation (i.e., autolysosome accumulation has been observed in Rab7-KO cells), but not for autophagosome-lysosome fusion, under nutrient-rich conditions. Thus, although Rab7/Ypt7 itself is essential for the proper progression of autophagy in eukaryotes, the function of Rab7/Ypt7 in autophagy in yeast/fruit flies and mammals must be different. In this review article, we describe novel roles of Rab7 in mammalian autophagy and discuss its functional diversification during evolution.
Collapse
|