1
|
Tian L, Qiang T, Liu S, Zhang B, Zhang Y, Zhang B, Hu J, Zhang J, Lu Q, Ke C, Xia J, Liang C. Cannabinoid receptor 1 ligands: Biased signaling mechanisms driving functionally selective drug discovery. Pharmacol Ther 2025; 267:108795. [PMID: 39828030 DOI: 10.1016/j.pharmthera.2025.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
G protein-coupled receptors (GPCRs) adopt conformational states that activate or inhibit distinct signaling pathways, including those mediated by G proteins or β-arrestins. Biased signaling through GPCRs may offer a promising strategy to enhance therapeutic efficacy while reducing adverse effects. Cannabinoid receptor 1 (CB1), a key GPCR in the endocannabinoid system, presents therapeutic potential for conditions such as pain, anxiety, cognitive impairment, psychiatric disorders, and metabolic diseases. This review examines the structural conformations of CB1 coupling to different signaling pathways and explores the mechanisms underlying biased signaling, which are critical for the design of functionally selective ligands. We discuss the structure-function relationships of endogenous cannabinoids (eCBs), phytocannabinoids, and synthetic cannabinoid ligands with biased properties. Challenges such as the complexity of ligand bias screening, the limited availability of distinctly biased ligands, and the variability in receptor signaling profiles in vivo have hindered clinical progress. Although the therapeutic potential of biased ligands in various clinical conditions remains in its infancy, retrospective identification of such molecules provides a strong foundation for further development. Recent advances in CB1 crystallography, particularly insights into its conformations with G proteins and β-arrestins, now offer a framework for structure-based drug design. While there is still a long way to go before biased CB1 ligands can be widely used in clinical practice, ongoing multidisciplinary research shows promise for achieving functional selectivity in targeting specific pathways. These progress could lead to the development of safer and more effective cannabinoid-based therapies in the future.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Sundian Liu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Boxin Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yunfei Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bingxing Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jinrong Hu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiayun Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qi Lu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Changhua Ke
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Juan Xia
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Chengyuan Liang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Uguagliati B, Grilli M. Astrocytic Alterations and Dysfunction in Down Syndrome: Focus on Neurogenesis, Synaptogenesis, and Neural Circuits Formation. Cells 2024; 13:2037. [PMID: 39768129 PMCID: PMC11674571 DOI: 10.3390/cells13242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Down syndrome (DS) is characterized by severe neurodevelopmental alterations that ultimately lead to the typical hallmark of DS: intellectual disability. In the DS brain, since the prenatal life stages, the number of astrocytes is disproportional compared to the healthy brain. This increase is due to a shift from neuron to astrocyte differentiation during brain development. Astrocytes are involved in numerous functions during brain development, including balancing pro-neurogenic and pro-gliogenic stimuli, sustaining synapse formation, regulating excitatory/inhibitory signal equilibrium, and supporting the maintenance and integration of functional neural circuits. The enhanced number of astrocytes in the brain of DS individuals leads to detrimental consequences for brain development. This review summarizes the mechanisms underlying astrocytic dysfunction in DS, and particularly the dysregulation of key signaling pathways, which promote astrogliogenesis at the expense of neurogenesis. It further examines the implications of astrocytic alterations on dendritic branching, spinogenesis and synaptogenesis, and the impact of the abnormal astrocytic number in neural excitability and in the maintenance of the inhibitory/excitatory balance. Identifying deregulated pathways and the consequences of astrocytic alterations in early DS brain development may help in identifying new therapeutic targets, with the ultimate aim of ameliorating the cognitive disability that affects individuals with DS.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
3
|
Rangel-Gomez M, Alberini CM, Deneen B, Drummond GT, Manninen T, Sur M, Vicentic A. Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition. J Neurosci 2024; 44:e1231242024. [PMID: 39358030 PMCID: PMC11450529 DOI: 10.1523/jneurosci.1231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.
Collapse
Affiliation(s)
- Mauricio Rangel-Gomez
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Center for Cancer Neuroscience, and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Gabrielle T Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland 33720
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| |
Collapse
|
4
|
Linne ML. Computational modeling of neuron-glia signaling interactions to unravel cellular and neural circuit functioning. Curr Opin Neurobiol 2024; 85:102838. [PMID: 38310660 DOI: 10.1016/j.conb.2023.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Glial cells have been shown to be vital for various brain functions, including homeostasis, information processing, and cognition. Over the past 30 years, various signaling interactions between neuronal and glial cells have been shown to underlie these functions. This review summarizes the interactions, particularly between neurons and astrocytes, which are types of glial cells. Some of the interactions remain controversial in part due to the nature of experimental methods and preparations used. Based on the accumulated data, computational models of the neuron-astrocyte interactions have been developed to explain the complex functions of astrocytes in neural circuits and to test conflicting hypotheses. This review presents the most significant recent models, modeling methods and simulation tools for neuron-astrocyte interactions. In the future, we will especially need more experimental research on awake animals in vivo and new computational models of neuron-glia interactions to advance our understanding of cellular dynamics and the functioning of neural circuits in different brain regions.
Collapse
Affiliation(s)
- Marja-Leena Linne
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| |
Collapse
|
5
|
Jędrzejewska-Szmek J, Dorman DB, Blackwell KT. Making time and space for calcium control of neuron activity. Curr Opin Neurobiol 2023; 83:102804. [PMID: 37913687 PMCID: PMC10842147 DOI: 10.1016/j.conb.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Calcium directly controls or indirectly regulates numerous functions that are critical for neuronal network activity. Intracellular calcium concentration is tightly regulated by numerous molecular mechanisms because spatial domains and temporal dynamics (not just peak amplitude) are critical for calcium control of synaptic plasticity and ion channel activation, which in turn determine neuron spiking activity. The computational models investigating calcium control are valuable because experiments achieving high spatial and temporal resolution simultaneously are technically unfeasible. Simulations of calcium nanodomains reveal that specific calcium sources can couple to specific calcium targets, providing a mechanism to determine the direction of synaptic plasticity. Cooperativity of calcium domains opposes specificity, suggesting that the dendritic branch might be the preferred computational unit of the neuron.
Collapse
Affiliation(s)
- Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Science, 3 Pasteur Street, Warsaw, 02-093, Poland.
| | - Daniel B Dorman
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, 21218, MD, USA
| | - Kim T Blackwell
- Bioengineering Department and Interdisciplinary Program in Neuroscience, George Mason University, 4400 University Drive, Fairfax, 22031, VA, USA
| |
Collapse
|
6
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Astrocytes Control Critical Periods of Neural Plasticity. Neuroscientist 2023; 29:532-537. [PMID: 36245418 DOI: 10.1177/10738584221126632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Windows of plasticity are fundamental for the correct formation of definitive brain circuits; these periods drive sensory and motor learning during development and ultimately learning and memory in adults. However, establishing windows of plasticity also imposes limitations on the central nervous system in terms of its capacity to recover from injury. Recent evidence highlights the important role that astrocytes and adenosine seem to play in controlling the duration of these critical periods of plasticity.
Collapse
|
7
|
Manninen T, Aćimović J, Linne ML. Analysis of Network Models with Neuron-Astrocyte Interactions. Neuroinformatics 2023; 21:375-406. [PMID: 36959372 PMCID: PMC10085960 DOI: 10.1007/s12021-023-09622-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/25/2023]
Abstract
Neural networks, composed of many neurons and governed by complex interactions between them, are a widely accepted formalism for modeling and exploring global dynamics and emergent properties in brain systems. In the past decades, experimental evidence of computationally relevant neuron-astrocyte interactions, as well as the astrocytic modulation of global neural dynamics, have accumulated. These findings motivated advances in computational glioscience and inspired several models integrating mechanisms of neuron-astrocyte interactions into the standard neural network formalism. These models were developed to study, for example, synchronization, information transfer, synaptic plasticity, and hyperexcitability, as well as classification tasks and hardware implementations. We here focus on network models of at least two neurons interacting bidirectionally with at least two astrocytes that include explicitly modeled astrocytic calcium dynamics. In this study, we analyze the evolution of these models and the biophysical, biochemical, cellular, and network mechanisms used to construct them. Based on our analysis, we propose how to systematically describe and categorize interaction schemes between cells in neuron-astrocyte networks. We additionally study the models in view of the existing experimental data and present future perspectives. Our analysis is an important first step towards understanding astrocytic contribution to brain functions. However, more advances are needed to collect comprehensive data about astrocyte morphology and physiology in vivo and to better integrate them in data-driven computational models. Broadening the discussion about theoretical approaches and expanding the computational tools is necessary to better understand astrocytes' roles in brain functions.
Collapse
Affiliation(s)
- Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| | - Jugoslava Aćimović
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| |
Collapse
|
8
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Pasquini L, Wies Mancini VB, Di Pietro A. Microglia depletion as a therapeutic strategy: friend or foe in multiple sclerosis models? Neural Regen Res 2023; 18:267-272. [PMID: 35900401 PMCID: PMC9396475 DOI: 10.4103/1673-5374.346538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Multiple sclerosis is a chronic central nervous system demyelinating disease whose onset and progression are driven by a combination of immune dysregulation, genetic predisposition, and environmental factors. The activation of microglia and astrocytes is a key player in multiple sclerosis immunopathology, playing specific roles associated with anatomical location and phase of the disease and controlling demyelination and neurodegeneration. Even though reactive microglia can damage tissue and heighten deleterious effects and neurodegeneration, activated microglia also perform neuroprotective functions such as debris phagocytosis and growth factor secretion. Astrocytes can be activated into pro-inflammatory phenotype A1 through a mechanism mediated by activated neuroinflammatory microglia, which could also mediate neurodegeneration. This A1 phenotype inhibits oligodendrocyte proliferation and differentiation and is toxic to both oligodendrocytes and neurons. However, astroglial activation into phenotype A2 may also take place in response to neurodegeneration and as a protective mechanism. A variety of animal models mimicking specific multiple sclerosis features and the associated pathophysiological processes have helped establish the cascades of events that lead to the initiation, progression, and resolution of the disease. The colony-stimulating factor-1 receptor is expressed by myeloid lineage cells such as peripheral monocytes and macrophages and central nervous system microglia. Importantly, as microglia development and survival critically rely on colony-stimulating factor-1 receptor signaling, colony-stimulating factor-1 receptor inhibition can almost completely eliminate microglia from the brain. In this context, the present review discusses the impact of microglial depletion through colony-stimulating factor-1 receptor inhibition on demyelination, neurodegeneration, astroglial activation, and behavior in different multiple sclerosis models, highlighting the diversity of microglial effects on the progression of demyelinating diseases and the strengths and weaknesses of microglial modulation in therapy design.
Collapse
|
10
|
Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J, Leng L. Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neurosci Ther 2022; 29:24-36. [PMID: 36193573 PMCID: PMC9804080 DOI: 10.1111/cns.13982] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are the most abundant cells in the brain. They have many important functions in the central nervous system (CNS), including the maintenance of glutamate and ion homeostasis, the elimination of oxidative stress, energy storage in glycogen, tissue repair, regulating synaptic activity by releasing neurotransmitters, and participating in synaptic formation. Astrocytes have special highly ramified structure. Their branches contact with synapses of neurons inwardly, with fine structure and wrapping synapses; their feet contact with blood vessels of brain parenchyma outward, almost wrapping the whole brain. The adjacent astrocytes rarely overlap and communicate with each other through gap junction channels. The ideal location of astrocytes enables them to sense the weak changes of their surroundings and provide the structural basis for the energy supply of neurons. Neurons and astrocytes are closely coupled units of energy metabolism in the brain. Neurons consume a lot of ATPs in the process of neurotransmission. Astrocytes provide metabolic substrates for neurons, maintain high activity of neuron, and facilitate information transmission of neurons. This article reviews the characteristics of glucose metabolism, lipid metabolism, and amino acid metabolism of astrocytes. The metabolic interactions between astrocytes and neurons, astrocytes and microglia were also detailed discussed. Finally, we classified analyzed the role of metabolic disorder of astrocytes in the occurrence and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Shangchen Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Yufei Zhu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Maoqiang Xue
- Department of Basic Medical Science, School of MedicineXiamen UniversityXiamenChina
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
11
|
Eriksson O, Bhalla US, Blackwell KT, Crook SM, Keller D, Kramer A, Linne ML, Saudargienė A, Wade RC, Hellgren Kotaleski J. Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows. eLife 2022; 11:e69013. [PMID: 35792600 PMCID: PMC9259018 DOI: 10.7554/elife.69013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Modeling in neuroscience occurs at the intersection of different points of view and approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model is constructed to investigate a specific hypothesis about how the system works or why certain phenomena are observed. Data-driven modeling, on the other hand, follows a more unbiased approach, with model construction informed by the computationally intensive use of data. At the same time, researchers employ models at different biological scales and at different levels of abstraction. Combining these models while validating them against experimental data increases understanding of the multiscale brain. However, a lack of interoperability, transparency, and reusability of both models and the workflows used to construct them creates barriers for the integration of models representing different biological scales and built using different modeling philosophies. We argue that the same imperatives that drive resources and policy for data - such as the FAIR (Findable, Accessible, Interoperable, Reusable) principles - also support the integration of different modeling approaches. The FAIR principles require that data be shared in formats that are Findable, Accessible, Interoperable, and Reusable. Applying these principles to models and modeling workflows, as well as the data used to constrain and validate them, would allow researchers to find, reuse, question, validate, and extend published models, regardless of whether they are implemented phenomenologically or mechanistically, as a few equations or as a multiscale, hierarchical system. To illustrate these ideas, we use a classical synaptic plasticity model, the Bienenstock-Cooper-Munro rule, as an example due to its long history, different levels of abstraction, and implementation at many scales.
Collapse
Affiliation(s)
- Olivia Eriksson
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Upinder Singh Bhalla
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Kim T Blackwell
- Department of Bioengineering, Volgenau School of Engineering, George Mason UniversityFairfaxUnited States
| | - Sharon M Crook
- School of Mathematical and Statistical Sciences, Arizona State UniversityTempeUnited States
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Andrei Kramer
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Ausra Saudargienė
- Neuroscience Institute, Lithuanian University of Health SciencesKaunasLithuania
- Department of Informatics, Vytautas Magnus UniversityKaunasLithuania
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
- Center for Molecular Biology (ZMBH), ZMBH-DKFZ Alliance, University of HeidelbergHeidelbergGermany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg UniversityHeidelbergGermany
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| |
Collapse
|
12
|
Linne ML, Aćimović J, Saudargiene A, Manninen T. Neuron-Glia Interactions and Brain Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:87-103. [PMID: 35471536 DOI: 10.1007/978-3-030-89439-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent evidence suggests that glial cells take an active role in a number of brain functions that were previously attributed solely to neurons. For example, astrocytes, one type of glial cells, have been shown to promote coordinated activation of neuronal networks, modulate sensory-evoked neuronal network activity, and influence brain state transitions during development. This reinforces the idea that astrocytes not only provide the "housekeeping" for the neurons, but that they also play a vital role in supporting and expanding the functions of brain circuits and networks. Despite this accumulated knowledge, the field of computational neuroscience has mostly focused on modeling neuronal functions, ignoring the glial cells and the interactions they have with the neurons. In this chapter, we introduce the biology of neuron-glia interactions, summarize the existing computational models and tools, and emphasize the glial properties that may be important in modeling brain functions in the future.
Collapse
Affiliation(s)
- Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Jugoslava Aćimović
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
13
|
Hu J, Wang X, Kong W, Jiang Q. Tooth Loss Suppresses Hippocampal Neurogenesis and Leads to Cognitive Dysfunction in Juvenile Sprague–Dawley Rats. Front Neurosci 2022; 16:839622. [PMID: 35573291 PMCID: PMC9095951 DOI: 10.3389/fnins.2022.839622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Both animal studies and prospective observational studies on patients with neurodegenerative disease have reported a positive link between oral diseases and cognitive function. However, the effect of early tooth loss on hippocampal morphology remains unknown. Methods In this study, 6-week-old, male, juvenile Sprague–Dawley (SD) rats were randomized into the control (C) and tooth loss (TL) groups. In the TL group, all right maxillary molars of SD rats were extracted, while in the C group, no teeth were extracted. After 3 months, the learning and memory behavior were examined by Morris Water Maze (MWM), and the protein expression and mechanic signaling pathways were analyzed by real-time polymerase chain reaction, and cresyl violet staining. Results Two days after the operation, the body weight of both groups recovered and gradually returned to the level before operation. Three months after tooth extraction, the completion time of the C group in the MWM was significantly shorter than the TL group. The mRNA expression of BDNF, TrkB, AKT1, and NR2B in the C group were significantly higher than in the TL group. The pyramidal neurons in the TL group was fewer than in the C group. Conclusion Tooth loss in the juvenile SD rats will reduce the number of pyramidal neurons in the hippocampus, inhibit the expression of BDNF, TrkB, AKT1, and NR2B, and eventually lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Jiangqi Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- *Correspondence: Qingsong Jiang,
| |
Collapse
|
14
|
Cammisuli DM, Franzoni F, Scarfò G, Fusi J, Gesi M, Bonuccelli U, Daniele S, Martini C, Castelnuovo G. What Does the Brain Have to Keep Working at Its Best? Resilience Mechanisms Such as Antioxidants and Brain/Cognitive Reserve for Counteracting Alzheimer's Disease Degeneration. BIOLOGY 2022; 11:biology11050650. [PMID: 35625381 PMCID: PMC9138251 DOI: 10.3390/biology11050650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
Here we performed a narrative review highlighting the effect of brain/cognitive reserve and natural/synthetic antioxidants in exerting a neuroprotective effect against cognitive deterioration during physiological and pathological aging. Particularly, we discussed pathogenesis of Alzheimer's disease, brain and cognitive reserve as means of resilience towards deterioration, and evidence from the literature about antioxidants' role in sustaining cognitive functioning in the preclinical phase of dementia. During aging, the effects of disease-related brain changes upon cognition are reduced in individuals with higher cognitive reserve, which might lose its potential with emerging cognitive symptoms in the transitional phase over the continuum normal aging-dementia (i.e., Mild Cognitive Impairment). Starting from this assumption, MCI should represent a potential target of intervention in which antioxidants effects may contribute-in part-to counteract a more severe brain deterioration (alongside to cognitive stimulation) causing a rightward shift in the trajectory of cognitive decline, leading patients to cross the threshold for clinical dementia later.
Collapse
Affiliation(s)
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.F.); (G.S.); (J.F.); (U.B.)
| | - Giorgia Scarfò
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.F.); (G.S.); (J.F.); (U.B.)
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.F.); (G.S.); (J.F.); (U.B.)
| | - Marco Gesi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.F.); (G.S.); (J.F.); (U.B.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.D.); (C.M.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.D.); (C.M.)
| | - Gianluca Castelnuovo
- Department of Psychology, Catholic University, 20123 Milan, Italy;
- Psychology Research Laboratory, Istituto Auxologico Italiano IRCCS, 28824 Milan, Italy
- Correspondence:
| |
Collapse
|
15
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
16
|
Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression. Trends Neurosci 2021; 44:837-848. [PMID: 34334233 DOI: 10.1016/j.tins.2021.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Activity-dependent long-term changes in synaptic transmission known as synaptic plasticity are fundamental processes in brain function and are recognized as the cellular basis of learning and memory. While the neuronal mechanisms underlying synaptic plasticity have been largely identified, the involvement of astrocytes in these processes has been less recognized. However, astrocytes are emerging as important cells that regulate synaptic function by interacting with neurons at tripartite synapses. In this review, we discuss recent evidence suggesting that astrocytes are necessary elements in long-term synaptic depression (LTD). We highlight the mechanistic heterogeneity of astrocyte contribution to this form of synaptic plasticity and propose that astrocytes are integral participants in LTD.
Collapse
Affiliation(s)
- Caitlin Durkee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Perez-Catalan NA, Doe CQ, Ackerman SD. The role of astrocyte-mediated plasticity in neural circuit development and function. Neural Dev 2021; 16:1. [PMID: 33413602 PMCID: PMC7789420 DOI: 10.1186/s13064-020-00151-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/26/2020] [Indexed: 02/03/2023] Open
Abstract
Neuronal networks are capable of undergoing rapid structural and functional changes called plasticity, which are essential for shaping circuit function during nervous system development. These changes range from short-term modifications on the order of milliseconds, to long-term rearrangement of neural architecture that could last for the lifetime of the organism. Neural plasticity is most prominent during development, yet also plays a critical role during memory formation, behavior, and disease. Therefore, it is essential to define and characterize the mechanisms underlying the onset, duration, and form of plasticity. Astrocytes, the most numerous glial cell type in the human nervous system, are integral elements of synapses and are components of a glial network that can coordinate neural activity at a circuit-wide level. Moreover, their arrival to the CNS during late embryogenesis correlates to the onset of sensory-evoked activity, making them an interesting target for circuit plasticity studies. Technological advancements in the last decade have uncovered astrocytes as prominent regulators of circuit assembly and function. Here, we provide a brief historical perspective on our understanding of astrocytes in the nervous system, and review the latest advances on the role of astroglia in regulating circuit plasticity and function during nervous system development and homeostasis.
Collapse
Affiliation(s)
- Nelson A Perez-Catalan
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
- Kennedy Center, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
| | - Sarah D Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA.
| |
Collapse
|