1
|
Sanghani A, Antaliya K, Patel R, Dave S, Tipre D. Revealing microbial functionalities and ecological roles in Rajpardi lignite mine: insights from metagenomics analysis. Lett Appl Microbiol 2025; 78:ovaf048. [PMID: 40156579 DOI: 10.1093/lambio/ovaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/01/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
The present study employs a metagenomics approach to evaluate microbial communities' ecological functions and potential within the Rajpardi lignite mine of Gujarat, India. Through whole genome shotgun sequencing on the Illumina Miseq platform, we obtained 10 071 318 sequences, which unveiled a diverse and abundant microbial community primarily composed of Proteobacteria, Acidobacteria, and Nitrospirae. Comprehensive taxonomic profiling and gene prediction was carried out using the SqueezeMeta pipline, which highlighted significant contributions to carbohydrate, amino acid, and energy metabolism. The detection of antimicrobial resistance and stress resistance genes, such as blaTEM and merA, suggests that these microbes possess the ability to adapt to harsh environmental conditions. Genome binning revealed species such as Acidiphilum sp. 20-67-58, emphasizing the nature of these communities as they adapted to an acidic environment. This finding highlights the crucial role of microbes in biogeochemical cycles, emphasizing their potential in bioremediation, pollutant degradation, and ecosystem restoration.
Collapse
Affiliation(s)
- Anjana Sanghani
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Komal Antaliya
- Bioinformatics and supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
| | - Rajesh Patel
- Bioinformatics and supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
| | - Shailesh Dave
- Xavier's Research Foundation, Loyola Centre for R & D, Navarangpura, Ahmedabad 380009, India
| | - Devayani Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India
| |
Collapse
|
2
|
Dukat AM, Elcheninov AG, Klyukina AA, Novikov AA, Frolov EN. Thiobacter aerophilum sp. nov., a Thermophilic, Obligately Chemolithoautotrophic, Sulfur-Oxidizing Bacterium from a Hot Spring and Proposal of Thiobacteraceae fam. nov. Microorganisms 2024; 12:2252. [PMID: 39597641 PMCID: PMC11596669 DOI: 10.3390/microorganisms12112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
An aerobic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium, strain AK1T, was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka, Russia. The cells of the new isolate were Gram-negative motile rods with a single polar flagellum. Strain AK1T grew at 37-55 °C (optimum 50 °C) with 0-1.0% NaCl (optimum 0%) and within the pH range 4.8-7.0 (optimum pH 5.2-5.5). The new isolate was able to grow by aerobic respiration with sulfide, sulfur, or thiosulfate as the electron donor and HCO3-/CO2 as the carbon source. The major fatty acids were C16:0, C17:1 Δ, and C16:1 ω7c. The respiratory lipoquinone was ubiquinone UQ-8. The size of the genome and genomic DNA G+C content of the strain AK1T were 2.55 Mb and 64.0%, respectively. The closest 16S rRNA gene sequence of a validly published species belonged to Thiobacter subterraneus C55T (97.94% identity). According to the 16S rRNA gene sequence-based and conserved protein sequences-based phylogenetic analyses, strain AK1T represented a distinct lineage of the genus Thiobacter within a new family, Thiobacteraceae of the order Burkholderiales. As inferred from the morphology, physiology, chemotaxonomy, and phylogeny, strain AK1T ought to be recognized as a novel species for which we propose the name Thiobacter aerophilum sp. nov. The type strain is AK1T (=CGMCC 1.18099T = UQM 41819T).
Collapse
Affiliation(s)
- Anna M. Dukat
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia; (A.M.D.); (A.G.E.); (E.N.F.)
| | - Alexander G. Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia; (A.M.D.); (A.G.E.); (E.N.F.)
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia; (A.M.D.); (A.G.E.); (E.N.F.)
| | - Andrei A. Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, Leninskiy Prospect, 65/1, 119991 Moscow, Russia;
| | - Evgenii N. Frolov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia; (A.M.D.); (A.G.E.); (E.N.F.)
| |
Collapse
|
3
|
Chang JS, Kim HJ, Lee JH. Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:470. [PMID: 39382695 DOI: 10.1007/s10653-024-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination.
Collapse
Affiliation(s)
- Jin-Soo Chang
- Molecular Biogeochemistry Laboratory, Biological & Genetic Resources Institute (BGRI), Sejong, Republic of Korea.
| | - Hyun-Jung Kim
- Molecular Biogeochemistry Laboratory, Biological & Genetic Resources Institute (BGRI), Sejong, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Yang J, Ouyang L, Chen S, Zhang C, Zheng J, He S. Amendments affect the community assembly and co-occurrence network of microorganisms in Cd and Pb tailings of the Eucalyptus camaldulensis rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172365. [PMID: 38641118 DOI: 10.1016/j.scitotenv.2024.172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.
Collapse
Affiliation(s)
- Jiaqi Yang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China.
| | - Shaoxiong Chen
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Cheng Zhang
- Experimental Forest Farm of Qingyuan County,Qingyuan 323800, China
| | - Jiaqi Zheng
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Shae He
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| |
Collapse
|
5
|
Halema AA, El-Beltagi HS, Al-Dossary O, Alsubaie B, Henawy AR, Rezk AA, Almutairi HH, Mohamed AA, Elarabi NI, Abdelhadi AA. Omics technology draws a comprehensive heavy metal resistance strategy in bacteria. World J Microbiol Biotechnol 2024; 40:193. [PMID: 38709343 DOI: 10.1007/s11274-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The rapid industrial revolution significantly increased heavy metal pollution, becoming a major global environmental concern. This pollution is considered as one of the most harmful and toxic threats to all environmental components (air, soil, water, animals, and plants until reaching to human). Therefore, scientists try to find a promising and eco-friendly technique to solve this problem i.e., bacterial bioremediation. Various heavy metal resistance mechanisms were reported. Omics technologies can significantly improve our understanding of heavy metal resistant bacteria and their communities. They are a potent tool for investigating the adaptation processes of microbes in severe conditions. These omics methods provide unique benefits for investigating metabolic alterations, microbial diversity, and mechanisms of resistance of individual strains or communities to harsh conditions. Starting with genome sequencing which provides us with complete and comprehensive insight into the resistance mechanism of heavy metal resistant bacteria. Moreover, genome sequencing facilitates the opportunities to identify specific metal resistance genes, operons, and regulatory elements in the genomes of individual bacteria, understand the genetic mechanisms and variations responsible for heavy metal resistance within and between bacterial species in addition to the transcriptome, proteome that obtain the real expressed genes. Moreover, at the community level, metagenome, meta transcriptome and meta proteome participate in understanding the microbial interactive network potentially novel metabolic pathways, enzymes and gene species can all be found using these methods. This review presents the state of the art and anticipated developments in the use of omics technologies in the investigation of microbes used for heavy metal bioremediation.
Collapse
Affiliation(s)
- Asmaa A Halema
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Othman Al-Dossary
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bader Alsubaie
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed R Henawy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Adel A Rezk
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Plant Virology Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, 12619, Egypt
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Amal A Mohamed
- Chemistry Dept, Al-Leith University College, Umm Al-Qura University, P.O. Box 6725- 21955, Makkah, Saudi Arabia
| | - Nagwa I Elarabi
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
6
|
Gęsicka A, Gutowska N, Palaniappan S, Oleskowicz-Popiel P, Łężyk M. Enrichment of mixed methanotrophic cultures producing polyhydroxyalkanoates (PHAs) from various environmental sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168844. [PMID: 38029989 DOI: 10.1016/j.scitotenv.2023.168844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Methanotrophic bacteria can use atmospheric methane (CH4) as a sole carbon source for the growth and production of polyhydroxyalkanoates (PHA). The development of CH4 bioconversion processes relies heavily on the selection of an efficient methanotrophic culture. This research assessed the effect of selected growth conditions, such as nitrogen sources on the enrichment of methanotrophic cultures from various environments for PHA accumulation. Nitrate-based medium favoured the culture growth and selection for PHA-producing methanotrophic cultures with Methylocystis sp. as a major genus and accumulation of up to 27 % polyhydroxybutyrate (PHB) in the biomass. Three PHB-producing cultures: enriched from waste activated sludge (AS), peat bog soil (PB) and landfill biocover soil (LB) were then tested for their ability to produce PHA copolymer at different CH4:O2 ratios. All enriched cultures were able to utilise valeric acid as a cosubstrate for the accumulation of PHA with a 3-hydroxyvaleric (3HV) fraction of 21-41 mol% depending on the inoculum source and CH4 concentration. The process performance of selected cultures was evaluated and compared to the culture of reference strain Methylocystis hirsuta DSM 18500. All mixed cultures irrespective of their inoculum source had similar levels of 3HV fraction in the PHA (38 ± 2 mol%). The highest poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production was observed for AS culture at 10 % CH4 with an accumulation of 27 ± 3 % of dry cell weight (DCW), 3HV fraction of 39 ± 2 mol% and yield of 0.42 ± 0.02 g-PHA/g-substrate.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Natalia Gutowska
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Sivasankar Palaniappan
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
7
|
Cuevas M, Francisco I, Díaz-González F, Diaz M, Quatrini R, Beamud G, Pedrozo F, Temporetti P. Nutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia. Front Microbiol 2024; 15:1335978. [PMID: 38410393 PMCID: PMC10895001 DOI: 10.3389/fmicb.2024.1335978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Lake Caviahue (37° 50 'S and 71° 06' W; Patagonia, Argentina) is an extreme case of a glacial, naturally acidic, aquatic environment (pH ~ 3). Knowledge of the bacterial communities in the water column of this lake, is incipient, with a basal quantification of the bacterioplankton abundance distribution in the North and South Basins of Lake Caviahue, and the described the presence of sulfur and iron oxidizing bacteria in the lake sediments. The role that bacterioplankton plays in nutrient utilization and recycling in this environment, especially in the phosphorus cycle, has not been studied. In this work, we explore this aspect in further depth by assessing the diversity of pelagic, littoral and sediment bacteria, using state of the art molecular methods and identifying the differences and commonalties in the composition of the cognate communities. Also, we investigate the interactions between the sediments of Lake Caviahue and the microbial communities present in both sediments, pore water and the water column, to comprehend the ecological relationships driving nutrient structure and fluxes, with a special focus on carbon, nitrogen, and phosphorus. Two major environmental patterns were observed: (a) one distinguishing the surface water samples due to temperature, Fe2+, and electrical conductivity, and (b) another distinguishing winter and summer samples due to the high pH and increasing concentrations of N-NH4+, DOC and SO42-, from autumn and spring samples with high soluble reactive phosphorus (SRP) and iron concentrations. The largest bacterial abundance was found in autumn, alongside higher levels of dissolved phosphorus, iron forms, and increased conductivity. The highest values of bacterial biomass were found in the bottom strata of the lake, which is also where the greatest diversity in microbial communities was found. The experiments using continuous flow column microcosms showed that microbial growth over time, in both the test and control columns, was accompanied by a decrease in the concentration of dissolved nutrients (SRP and N-NH4+), providing proof that sediment microorganisms are active and contribute significantly to nutrient utilization/mobilization.
Collapse
Affiliation(s)
- Mayra Cuevas
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Issotta Francisco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Díaz-González
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mónica Diaz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Fernando Pedrozo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
8
|
Alsanea A, Bounaga A, Danouche M, Lyamlouli K, Zeroual Y, Boulif R, Zhou C, Rittmann B. Optimizing Autotrophic Sulfide Oxidation in the Oxygen-Based Membrane Biofilm Reactor to Recover Elemental Sulfur. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21736-21743. [PMID: 38085930 DOI: 10.1021/acs.est.3c05785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biological sulfide oxidation is an efficient means to recover elemental sulfur (S0) as a valuable resource from sulfide-bearing wastewater. This work evaluated the autotrophic sulfide oxidation to S0 in the O2-based membrane biofilm reactor (O2-MBfR). High recovery of S0 (80-90% of influent S) and high sulfide oxidation (∼100%) were simultaneously achieved when the ratio of O2-delivery capacity to sulfide-to S0 surface loading (SL) (O2/S2- → S0 ratio) was around 1.5 (g O2/m2-day/g O2/m2-day). On average, most of the produced S0 was recovered in the MBfR effluent, although the biofilm could be a source or sink for S0. Shallow metagenomic analysis of the biofilm showed that the top sulfide-oxidizing genera present in all stages were Thauera, Thiomonas, Thauera_A, and Pseudomonas. Thiomonas or Pseudomonas was the most important genus in stages that produced almost only S0 (i.e., the O2/S2- → S0 ratio around 1.5 g of the O2/m2-day/g O2/m2-day). With a lower sulfide SL, the S0-producing genes were sqr and fccAB in Thiomonas. With a higher sulfide SL, the S0-producing genes were in the soxABDXYZ system in Pseudomonas. Thus, the biofilm community of the O2-MBfR adapted to different sulfide-to-S0 SLs and corresponding O2-delivery capacities. The results illustrate the potential for S0 recovery using the O2-MBfR.
Collapse
Affiliation(s)
- Anwar Alsanea
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, Arizona 85287-5701, United States
| | - Ayoub Bounaga
- Chemical & Biochemical Sciences Department, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Mohammed Danouche
- Chemical & Biochemical Sciences Department, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Karim Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, Agrobioscience Program, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Youssef Zeroual
- Situation Innovation, OCP Group, BP 118, Jorf Lasfar, El Jadida 24000, Morocco
| | - Rachid Boulif
- Chemical & Biochemical Sciences Department, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, Arizona 85287-5701, United States
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
9
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
10
|
Promnuan K, Sittijunda S, Reungsang A. Evaluation of commercial moving bed media and sugarcane bagasse as packing material in biotrickling filter for hydrogen sulfide removal. BIORESOURCE TECHNOLOGY 2023; 388:129788. [PMID: 37741580 DOI: 10.1016/j.biortech.2023.129788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
This study compared two biotrickling filter packing materials for hydrogen sulfide removal. Inlet H2S concentrations and empty-bed retention time were tested on the two biotrickling filters. First reactor (BT1) had immobilized sulfur-oxidizing bacteria on commercial moving-bed media, whereas second reactor (BT2) had sulfur-oxidizing bacteria on sugarcane bagasse. The study found that BT1 performed best at 120 s empty-bed retention time, 422.39 g/m3·h hydrogen sulfide loading rate, resulted in 416 g/m3·h hydrogen sulfide elimination capacity. In contrast, BT2 performed best at 180 s empty-bed retention time, 278.77 g/m3·h hydrogen sulfide loading rate, and 273 g/m3·h elimination capacity was achieved. High-throughput sequencing showed Acidithobacillus spp. dominated the sulfur-oxidizing bacteria consortium. Sugarcane bagasse may receive less hydrogen sulfide loading than moving bed medium under optimal conditions, but its low cost and reasonable removal capacity of hydrogen sulfide -containing industrial gases in a biotrickling filter system make it an excellent alternative packing material.
Collapse
Affiliation(s)
- Kanathip Promnuan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
11
|
Shu W, Li F, Zhang Q, Li Z, Qiao Y, Audet J, Chen G. Pollution caused by mining reshaped the structure and function of bacterial communities in China's largest ion-adsorption rare earth mine watershed. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131221. [PMID: 36934702 DOI: 10.1016/j.jhazmat.2023.131221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Ion-adsorption rare earth mining results in the production of high levels of nitrogen, multiple metals, and strong acidic mine drainage (AMD), the impacts of which on microbial assembly and ecological functions remain unclear. To address this knowledge gap, we collected river sediments from the watershed of China's largest ion-adsorption rare earth mine and analyzed the bacterial community's structure, function, and assembly mechanisms. Results showed that bacterial community assembly was weakly affected by spatial dispersion, and dispersal limitation and homogeneous selection were the dominant ecological processes, with the latter increasing with pollution gradients. Bacterial alpha diversity decreased with pollution, which was mainly influenced by lead (Pb), pH, rare earth elements (REEs), and electrical conductivity (EC). However, bacteria developed survival strategies (i.e., enhanced acid tolerance and interspecific competition) to adapt to extreme environments, sustaining species diversity and community stability. Community structure and function showed a consistent response to the polluted environment (r = 0.662, P = 0.001). Enhanced environmental selection reshaped key microbial-mediated biogeochemical processes in the mining area, in particular weakening the potential for microbial denitrification. These findings provide new insights into the ecological response of microbes to compound pollution and offer theoretical support for proposing effective remediation and management strategies for polluted areas.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China; Sino-Danish Centre for Education and Research, 101408 Beijing, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| |
Collapse
|
12
|
Jia T, Zhang L, Li X, Zhao Q, Peng Y, Sui J, Wang C. Characteristics of biotrickling filter system for hydrogen sulfide removal with seasonal temperature variations: A strategy for low temperature conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159617. [PMID: 36273568 DOI: 10.1016/j.scitotenv.2022.159617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The impact of temperature on the biological removal of hydrogen sulfide (H2S) from air is critical to its effective application in cold regions or seasons. This study investigated the effect of seasonal temperature variations (7-30 °C) on the H2S removal performance of a biotrickling filter system, with an effective H2S elimination capacity of 98.1 g/m3/h (removal efficiency = 83.1 %) achieved at temperatures of 10-12 °C. Biofilm growth was found to be accelerated by increased secretion of extracellular polymeric substances, enhanced biofilm adhesion capacity and relatively high levels of elemental sulfur accumulation, which help to retain heat within the filter bed under cold conditions. High-throughput sequencing showed that the psychrotolerant sulfur-oxidizing bacterium (SOB) Metallibacterium was gradually enriched (54.8 %) at temperatures below 15 °C. The major pathways of sulfur metabolism under low temperature conditions were determined based on the detection of enzymes related to sulfur metabolism. Finally, a strategy to enrich Metallibacterium was proposed to promote the application of biodesulfurization under low temperature conditions.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd., Guangzhou 510075, PR China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd., Guangzhou 510075, PR China
| |
Collapse
|
13
|
Jia T, Zhang L, Sun S, Zhao Q, Peng Y. Adding organics to enrich mixotrophic sulfur-oxidizing bacteria under extremely acidic conditions-A novel strategy to enhance hydrogen sulfide removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158768. [PMID: 36108867 DOI: 10.1016/j.scitotenv.2022.158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Biotreatment of high load hydrogen sulfide (H2S) can lead to rapid acidification of a bioreactor, which greatly challenges the application of bio-desulfurization technology. In this study, the bio-desulfurization performance was improved by enriching acidophilic mixotrophic sulfur-oxidizing bacteria (SOB) by adding organics under extremely acidic conditions (pH < 1.0). A biotrickling filter (BTF) for the removal of H2S was established and operated under pH < 1.0 for 420 days. In the autotrophic period, the maximum H2S elimination capacity (ECmax-H2S) was 135.8 g/m3/h with biofilm mass remaining within 11.1 g/L-BTF. The autotrophic SOB bacterium Acidithiobacillus was dominant (62.1 %). When glucose was added to the BTF system, ECmax-H2S increased by 272 % to 464.3 g/m3/h as biofilm mass increased to 22.3 g/L-BTF. The acidophilic mixotrophic SOB bacteria Mycobacterium (78.4 %) and Alicyclobacillus (20.7 %) were enriched while Acidithiobacillus was gradually eliminated (<0.1 %). Furthermore, the major sulfur metabolism pathways were identified to explore the desulfurization mechanism under extremely acidic conditions. To maintain optimal desulfurization performance and avoid biofilm overgrowth in the BTF system, biofilm mass should be maintained within 20-22 g/L-BTF. This can be achieved by adding 1.0 g/L-BTF glucose every 20 days under a load rate of H2S in 50-90 g/m3/h and a trickling liquid velocity of 1.8 m/h. Extremely acidic conditions eliminated non-aciduric microorganisms so that the addition of organics can increase the abundance of acidophilic mixotrophic SOB (>99 %), thus offering a novel strategy for enhancing H2S removal.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shihao Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Nguyen PM, Arslan M, Kappelmeyer U, Mäusezahl I, Wiessner A, Müller JA. Spatial characterization of microbial sulfur cycling in horizontal-flow constructed wetland models. CHEMOSPHERE 2022; 309:136605. [PMID: 36179921 DOI: 10.1016/j.chemosphere.2022.136605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Constructed wetlands (CWs) are a cost-effective technology for wastewater treatment in which plant-microorganism relationships play a key role in transforming pollutants. However, there is little knowledge about the spatial organization of microbial metabolic processes in CWs. Here we show the structuring of microbial transformation of inorganic sulfur compounds (ISCs) in two horizontal subsurface-flow CW models fed with sulfate-rich artificial wastewater. One model was fully planted with Juncus effusus, while the other was planted only in the middle to investigate further the influence of the plant on ISC transformations. Chemical analyses revealed that sulfate reduction and re-oxidation of sulfide/sulfur occurred simultaneously along the flow paths, with net reduction at the beginning of the CWs, where organic carbon from the influent was still present, and predominant re-oxidation in the downstream sections. Porewater ISC concentrations hardly differed between the two CWs. However, analysis of the bacterial communities showed that sulfur cycling in the fully planted CW was much higher. Total bacterial abundances were about 50 times and 3-4 orders of magnitude higher in the rhizoplane than in porewater and on gravel, respectively, as quantified by qPCR determination of the 16S rRNA gene. Sequencing of 16S rRNA gene amplicons revealed that bacterial communities on the roots and in the porewater differed substantially, apparently a consequence of the fluxes of oxygen and exudates from the roots. Furthermore, we observed partitioning of ISC transforming bacteria into different niches of the CWs. The results of the chemical and microbial analyses collectively support that extensive sulfur cycling occurred in the rhizospheres of the CW models. The study is relevant to the treatment of sulfur-containing wastewater and the elucidation of microbial communities involved in biogeochemical activities to improve water quality.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Environmental Technology, Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Muhammad Arslan
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Uwe Kappelmeyer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ines Mäusezahl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Arndt Wiessner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
15
|
Ódri Á, Amaral Filho J, Smart M, Broadhurst J, Harrison STL, Petersen J, Harris C, Edraki M, Becker M. Sulfur and oxygen isotope constraints on sulfate sources and neutral rock drainage-related processes at a South African colliery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157178. [PMID: 35839900 DOI: 10.1016/j.scitotenv.2022.157178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Understanding the fundamental controls that govern the generation of mine drainage is essential for waste management strategies. Combining the isotopic composition of water (H and O) and dissolved sulfate (S and O) with hydrogeochemical measurements of surface and groundwater, microbial analysis, composition of sediments and precipitates, and geochemical modeling results in this study we discussed the processes that control mine water chemistry and identified the potential source(s) and possible mechanisms governing sulfate formation and transformation around a South African colliery. Compared to various South African water standards, water samples collected from the surroundings of a coal waste disposal facility had elevated Fe2+ (0.9 to 56.9 mg L-1), Ca (33.0 to 527.0 mg L-1), Mg (6.2 to 457.0 mg L-1), Mn (0.1 to 8.6 mg L-1) and SO4 (19.7 to 3440.8 mg L-1) and circumneutral pH. The pH conditions are mainly controlled by the release of H+ from pyrite oxidation and the subsequent dissolution of carbonates and aluminosilicate minerals. The phases predicted to precipitate by equilibrium calculation were green rusts, ferrihydrite, gypsum, ±epsomite. Low concentrations of deleterious metals in solution are due to their low abundance in the local host rocks, and their attenuation through adsorption onto secondary Fe precipitates and co-precipitation at the elevated pH values. The δ34S values of sulfate are enriched (-6.5 ‰ to +5.6 ‰) compared to that of pyrite sampled from the mine (mean -22.5 ‰) and overlap with that of the organic sulfur of coal from the region (-2.5 to +4.9 ‰). The presence of both sulfur reducing and oxidizing bacteria were detected in the collected sediment samples. Combined, the data are consistent with the dissolved sulfate in the sampled waters from the colliery being derived primarily from pyrite probably with the subordinate contribution of organic sulfur, followed by its partial removal through precipitation and microbially-induced reduction.
Collapse
Affiliation(s)
- Ágnes Ódri
- Minerals to Metals Initiative (MtM), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| | - Juarez Amaral Filho
- Minerals to Metals Initiative (MtM), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa; Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| | - Mariette Smart
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| | - Jennifer Broadhurst
- Minerals to Metals Initiative (MtM), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| | - Susan T L Harrison
- Minerals to Metals Initiative (MtM), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa; Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| | - Jochen Petersen
- Minerals to Metals Initiative (MtM), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa; Hydrometallurgy Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| | - Chris Harris
- Department of Geological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD 4072 Brisbane, Australia.
| | - Megan Becker
- Minerals to Metals Initiative (MtM), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa; Centre for Minerals Research, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| |
Collapse
|
16
|
Liu L, Shi L, Li P, Ma X, Hou X, Jiang S, Lv J, Xu H, Cheng Y, Han B. Seasonal dynamics survey and association analysis of microbiota communities, antibiotic resistance genes distribution, and biotoxicities characterization in landfill-leachate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114103. [PMID: 36155335 DOI: 10.1016/j.ecoenv.2022.114103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To reflect the potential and intrinsic association among microbiota structure, antibiotic resistance genes distribution and biological toxicity of landfill-leachate according to seasonal change, and accurately assess the potential threat of leachate to the surrounding environment. METHODS On the basis of the leachate water quality monitoring data from January to December 2020, principal component analysis (PCA) was used to identify the main pollutants in the leachate; Vibrio fischeri luminescence inhibition test was used to detect the comprehensive biotoxicity of the leachate; 16S rDNA amplicon sequencing was used for leachate microbiota. q-PCR was used to detect the class 1 integron (intI1), and eight antibiotic resistance genes (sul1, sul2, tetA, tetB, tetM, tetQ, mefA, and mexF); Canonical correspondence (CCA) analysis was carried out for the association analysis. RESULT The biotoxicity of leachate in the second quarter was the highest. The dominant phylum of leachate microbiota from 1st quarters to 4th quarters was Proteobacteria (94.97 %, 85.43 %, 88.20 %, and 84.11 %), and the dominant genera were Thiomonas (60.41 %, 26.83 %, 25.66 %, and 30.51 %), Pseudomonas (5.89 %, 1.86 %, 0.68 %, and 4.72 %), Desulfurella (8.52 %, 0.57 %, 3.81 %, and 8.25 %), and Acidithiobacillus (4.71 %, 0.69 %, 0.87 %, and 5.91 %); Nitrospirillum was negatively correlated with chemical oxygen demand (COD) (R=-0.561, P = 0.008) and five-day biochemical oxygen demand (BOD5) (R=-0.591, P = 0.005); Limnohabitans was positively correlated with pH (R=0.444, P = 0.044). Four AR genes (sul1, sul2,tetM, and tetQ) were detected in all the samples, while the second quarter had the highest concentration of sul1(6.31 ± 0.49 lg copies/ng DNA), tetM (3.01 ± 1.38 lg copies/ng DNA) and tetQ (3.64 ± 0.90 lg copies/ng DNA). CONCLUSION As the mature landfill, the quality of this leachate met the pollution control standards for domestic waste landfills. Thiomycetes, Pseudomonas, Desulfurization, and Thiopterus acidophyllum constitute the dominant microbiota. However, leachate in the second quarter had more serious contamination, the higher biotoxicity, higher concentration of AR genes, together with higher microbiota richness and diversity, which deserved more attention for the potential threat to the surrounding environment.
Collapse
Affiliation(s)
- Lijuan Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
| |
Collapse
|
17
|
Bhardwaj A. Understanding the diversified microbial operon framework coupled to arsenic transformation and expulsion. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
He Q, Liu Y, Wan D, Liu Y, Xiao S, Wang Y, Shi Y. Enhanced biological antimony removal from water by combining elemental sulfur autotrophic reduction and disproportionation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128926. [PMID: 35452992 DOI: 10.1016/j.jhazmat.2022.128926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb), a toxic metalloid, has serious negative effects on human health and its pollution has become a global environmental problem. Bio-reduction of Sb(V) is an effective Sb-removal approach. This work, for the first time, demonstrates the feasibility of autotrophic Sb(V) bio-reduction and removal coupled to anaerobic oxidation of elemental sulfur (S0). In the S0-based biological system, Sb(V) was reduced to Sb(III) via autotrophic bacteria by using S0 as electron donor. Meanwhile, S0 disproportionation reaction occurred under anaerobic condition, generating sulfide and SO42- in the bio-systems. Subsequently, Sb(III) reacted with sulfide and formed Sb(III)-S precipitate, achieving an effective total Sb removal. The precipitate was identified as Sb2S3 by SEM-EDS, XPS, XRD and Raman spectrum analyses. In addition, it was found that co-existing nitrate inhibited the Sb removal, as nitrate is the favored electron acceptor over Sb(V). In contrast, the bio-reduction of co-existing SO42- enhanced sulfide generation, followed by promoting Sb(V) reduction and precipitation. Illumina high-throughput sequencing analysis revealed that Metallibacterium, Citrobacter and Thiobacillus might be responsible for Sb(V) reduction and S0 disproportionation. This study provides a promising approach for the remediation of Sb(V)-contaminated water.
Collapse
Affiliation(s)
- Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Yang Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China.
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shuhu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiduo Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
19
|
Jia T, Zhang L, Zhao Q, Peng Y. The effect of biofilm growth on the sulfur oxidation pathway and the synergy of microorganisms in desulfurization reactors under different pH conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128638. [PMID: 35306408 DOI: 10.1016/j.jhazmat.2022.128638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Biofilm growth affects the oxygen transfer in biofilm and thus the oxidation pathway of sulfur and the synergy of microorganisms. In this study, the effect of biofilm growth on the oxidation pathway of H2S and the synergy of microorganisms in desulfurization reactors under different pH conditions was first discussed to enhance the understanding of desulfurization process. A biotrickling filter (BTF) was operated for 168 days under acidic condition (pH<4.7) and 32 days under alkaline condition (7.0 <pH<10.2). In acidic period, the average growth mass (AGM) of biofilm was 0.04 g/L-BTF/d, and most of S-H2S was converted to S-SO42- (>89.0%). In alkaline period, the AGM raised to 0.97 g/L-BTF/d, and 77.0% of S-H2S was transferred to elemental sulfur (S0) and polysulfanes (R-Sx-R) accumulated in biofilm. The increase of biofilm and sulfur-oxidizing bacteria activity limited the oxygen transfer in alkaline biofilm, leading to the accumulation of S0 and the emergence of an obligate anaerobe- Acetoanaerobium (8.1%). The formation of R-Sx-R may be due to the reaction of S0 with thiols produced by a thiol-producing bacterium- Pseudomonas (6.7%). The uneven distribution of oxygen in biofilm caused by biofilm growth complicated the transfer pathway of sulfur and the synergy of microorganisms in desulfurization system.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
20
|
Yuan C, Li P, Qing C, Kou Z, Wang H. Different Regulatory Strategies of Arsenite Oxidation by Two Isolated Thermus tengchongensis Strains From Hot Springs. Front Microbiol 2022; 13:817891. [PMID: 35359718 PMCID: PMC8963470 DOI: 10.3389/fmicb.2022.817891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a ubiquitous constituent in geothermal fluids. Thermophiles represented by Thermus play vital roles in its transformation in geothermal fluids. In this study, two Thermus tengchongensis strains, named as 15Y and 15W, were isolated from arsenic-rich geothermal springs and found different arsenite oxidation behaviors with different oxidation strategies. Arsenite oxidation of both strains occurred at different growth stages, and two enzyme-catalyzed reaction kinetic models were observed. The arsenite oxidase of Thermus strain 15W performed better oxidation activity, exhibiting typical Michaelis–Menten kinetics. The kinetic parameter of arsenite oxidation in whole cell showed a Vmax of 18.48 μM min–1 and KM of 343 μM. Both of them possessed the arsenite oxidase-coding genes aioB and aioA. However, the expression of gene aioBA was constitutive in strain 15W, whereas it was induced by arsenite in strain 15Y. Furthermore, strain 15Y harbored an intact aio operon including the regulatory gene of the ArsR family, whereas a genetic inversion of an around 128-kbp fragment produced the inactivation of this regulator in strain 15W, leading to the constitutive expression of aioBA genes. This study provides a valuable insight into the adaption of thermophiles to extreme environments.
Collapse
Affiliation(s)
- Changguo Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
- *Correspondence: Ping Li,
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Zhu Kou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| |
Collapse
|
21
|
Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9462-9489. [PMID: 34859349 PMCID: PMC8783877 DOI: 10.1007/s11356-021-17817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.
Collapse
Affiliation(s)
- Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France.
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France
| | | | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, F-33615, Pessac, France
| |
Collapse
|
22
|
Bu H, Carvalho G, Yuan Z, Bond P, Jiang G. Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. CHEMOSPHERE 2021; 277:130333. [PMID: 33780683 DOI: 10.1016/j.chemosphere.2021.130333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) were identified as the dominant priority odorants emitted from sewers, including hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl disulfide (DMDS) and dimethyl sulfide (DMS). Biotrickling filter (BTF) is a widely-applied technology for odour abatement in sewers because of its relatively low operating cost and efficient H2S removal. The authors review the mechanisms and performance of BTF for the removal of these four VSCs, and discuss the key influencing factors including of empty bed residence time (EBRT), pH, temperature, nutrients, water content, trickling operation and packing materials. Besides, measures to improve the VSCs removal in BTF are proposed in the context of key influencing factors. Finally, the review assesses the new challenges of BTF for sewer emissions treatment, namely with respect to the performance of BTF for greenhouse gases (GHG) treatment.
Collapse
Affiliation(s)
- Hao Bu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Philip Bond
- School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
23
|
Martin G, Sharma S, Ryan W, Srinivasan NK, Senko JM. Identification of Microbiological Activities in Wet Flue Gas Desulfurization Systems. Front Microbiol 2021; 12:675628. [PMID: 34262541 PMCID: PMC8273512 DOI: 10.3389/fmicb.2021.675628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Thermoelectric power generation from coal requires large amounts of water, much of which is used for wet flue gas desulfurization (wFGD) systems that minimize sulfur emissions, and consequently, acid rain. The microbial communities in wFGDs and throughout thermoelectric power plants can influence system performance, waste processing, and the long term stewardship of residual wastes. Any microorganisms that survive in wFGD slurries must tolerate high total dissolved solids concentrations (TDS) and temperatures (50–60°C), but the inocula for wFGDs are typically from fresh surface waters (e.g., lakes or rivers) of low TDS and temperatures, and whose activity might be limited under the physicochemically extreme conditions of the wFGD. To determine the extents of microbiological activities in wFGDs, we examined the microbial activities and communities associated with three wFGDs. O2 consumption rates of three wFGD slurries were optimal at 55°C, and living cells could be detected microscopically, indicating that living and active communities of organisms were present in the wFGD and could metabolize at the high temperature of the wFGD. A 16S rRNA gene-based survey revealed that the wFGD-associated microbial communities included taxa attributable to both thermophilic and mesophilic lineages. Metatranscriptomic analysis of one of the wFGDs indicated an abundance of active Burholderiaceae and several Gammaproteobacteria, and production of transcripts associated with carbohydrate metabolism, osmotic stress response, as well as phage, prophages, and transposable elements. These results illustrate that microbial activities can be sustained in physicochemically extreme wFGDs, and these activities may influence the performance and environmental impacts of thermoelectric power plants.
Collapse
Affiliation(s)
- Gregory Martin
- Department of Biology, The University of Akron, Akron, OH, United States
| | - Shagun Sharma
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States
| | - William Ryan
- Department of Biology, The University of Akron, Akron, OH, United States
| | | | - John M Senko
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States.,Department of Geosciences, The University of Akron, Akron, OH, United States
| |
Collapse
|
24
|
Biological characterization of Bacillus flexus strain SSAI1 transforming highly toxic arsenite to less toxic arsenate mediated by periplasmic arsenite oxidase enzyme encoded by aioAB genes. Biometals 2021; 34:895-907. [PMID: 33956287 DOI: 10.1007/s10534-021-00316-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Bacillus flexus strain SSAI1 isolated from agro-industry waste, Tuem, Goa, India displayed high arsenite resistance as minimal inhibitory concentration was 25 mM in mineral salts medium. This bacterial strain exposed to 10 mM arsenite demonstrated rapid arsenite oxidation and internalization of 7 mM arsenate within 24 h. The Fourier transformed infrared (FTIR) spectroscopy of cells exposed to arsenite revealed important functional groups on the cell surface interacting with arsenite. Furthermore, scanning electron microscopy combined with electron dispersive X-ray spectroscopy (SEM-EDAX) of cells exposed to arsenite revealed clumping of cells with no surface adsorption of arsenite. Transmission electron microscopy coupled with electron dispersive X-ray spectroscopic (TEM-EDAX) analysis of arsenite exposed cells clearly demonstrated ultra-structural changes and intracellular accumulation of arsenic. Whole-genome sequence analysis of this bacterial strain interestingly revealed the presence of large number of metal(loid) resistance genes, including aioAB genes encoding arsenite oxidase responsible for the oxidation of highly toxic arsenite to less toxic arsenate. Enzyme assay further confirmed that arsenite oxidase is a periplasmic enzyme. The genome of strain SSAI1 also carried glpF, aioS and aioE genes conferring resistance to arsenite. Therefore, multi-metal(loid) resistant arsenite oxidizing Bacillus flexus strain SSAI1 has potential to bioremediate arsenite contaminated environmental sites and is the first report of its kind.
Collapse
|
25
|
Chen J, Li X, Jia W, Shen S, Deng S, Ji B, Chang J. Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124125. [PMID: 33049629 DOI: 10.1016/j.jhazmat.2020.124125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Gravel-based subsurface-flow constructed wetlands (CWs) amended with a walnut shell (WS) substrate were established to treat synthetic acid mine drainage (AMD) in this study, and artificial domestic wastewater (DW) and plant litter broth (PLB) were supplemented to enhance the performance. The CW media rapidly reached adsorption saturation with respect to metals (except Fe and Cr) without an external carbon source, while the addition of DW and PLB stimulated sulfate reduction activity and achieved efficient biogenic metal removal, primarily by the formation of hydroxide and sulfide precipitates and concomitant co-precipitation. The WS-amended CWs performed notably better than the control systems, not only in sequestering more metals and rapidly establishing favourable environments for biogenic metal abatement but also in supporting better growth of plants and functional microbes. The external organic carbon input greatly shaped the bacterial community compositions in the CWs, with substantial increases in the proportions of core functional populations involved in AMD biotreatment. Cooperation among Cellulomonas, Propioniciclava and sulfate-reducing bacteria (SRB), dominated by Desulfobulbus and Desulfatirhabdium, was the primary biogenic mechanism of AMD remediation in the CWs. Cellulosic waste-amended CWs with DW and PLB addition offer a promising eco-technology for AMD remediation.
Collapse
Affiliation(s)
- Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Xuan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Wei Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; China Machinery International Engineering Design and Research Institute Co., Ltd, Changsha 410007, China
| | - Shili Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Shengjiong Deng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Bohua Ji
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China.
| |
Collapse
|
26
|
Akob DM, Hallenbeck M, Beulig F, Fabisch M, Küsel K, Keffer JL, Woyke T, Shapiro N, Lapidus A, Klenk HP, Chan CS. Mixotrophic Iron-Oxidizing Thiomonas Isolates from an Acid Mine Drainage-Affected Creek. Appl Environ Microbiol 2020; 86:e01424-20. [PMID: 33008825 PMCID: PMC7688216 DOI: 10.1128/aem.01424-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation.IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.
Collapse
Affiliation(s)
| | - Michelle Hallenbeck
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Felix Beulig
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Fabisch
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Tanja Woyke
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
| | - Nicole Shapiro
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
| | - Alla Lapidus
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
- Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara S Chan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| |
Collapse
|
27
|
Freel KC, Fouteau S, Roche D, Farasin J, Huber A, Koechler S, Peres M, Chiboub O, Varet H, Proux C, Deschamps J, Briandet R, Torchet R, Cruveiller S, Lièvremont D, Coppée JY, Barbe V, Arsène-Ploetze F. Effect of arsenite and growth in biofilm conditions on the evolution of Thiomonas sp. CB2. Microb Genom 2020; 6:mgen000447. [PMID: 33034553 PMCID: PMC7660254 DOI: 10.1099/mgen.0.000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022] Open
Abstract
Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.
Collapse
Affiliation(s)
- Kelle C. Freel
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI, USA
| | - Stephanie Fouteau
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Julien Farasin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Aline Huber
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Martina Peres
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Olfa Chiboub
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Hugo Varet
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
- Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756, IP CNRS), Institut Pasteur, Paris, France
| | - Caroline Proux
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Julien Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rachel Torchet
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Stephane Cruveiller
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Didier Lièvremont
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Florence Arsène-Ploetze
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Zhen Z, Yan C, Zhao Y. Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114232. [PMID: 32114122 DOI: 10.1016/j.envpol.2020.114232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Microbial assemblages such as biofilms around aquatic plants play a major role in arsenic (As) cycling, which has often been overlooked in previous studies. In this study, arsenite (As(III))-oxidizing, arsenate (As(V))-reducing and As(III)-methylating bacteria were found to coexist in the phyllosphere of Hydrilla verticillata, and their relative activities were shown to determine As speciation, accumulation and efflux. When exposed to As(III), As(III) oxidation was not observed in treatment H(III)-B, whereas treatment H(III)+B showed a significant As(III) oxidation ability, thereby indicating that epiphytic bacteria displayed a substantial As(III) oxidation ability. When exposed to As(V), the medium only contained 5.89% As(III) after 48 h of treatment H(V)-B, while an As(III) content of 86.72% was observed after treatment H(V)+B, thereby indicating that the elevated As(III) in the medium probably originated from As(V) reduction by epiphytic bacteria. Our data also indicated that oxidizing bacteria decreased the As accumulation (by approximately 64.44% compared with that of treatment H(III)-B) in plants, while reducing bacteria played a critical role in increasing As accumulation (by approximately 3.31-fold compared with that of treatment H(V)-B) in plants. Regardless of whether As(III) or As(V) was supplied, As(III) was dominant in the plant tissue (over 75%). Furthermore, the presence of epiphytic bacteria enhanced As efflux by approximately 9-fold. Metagenomic analysis revealed highly diverse As metabolism genes in epiphytic bacterial community, particularly those related to energetic metabolism (aioAB), and As resistance (arsABCR, acr3, arsM). Phylogenetic analysis of As metabolism genes revealed evidence of both vertical inheritance and horizontal gene transfer, which might have contributed to the evolution of the As metabolism genes. Taken together, our research suggested that the diversity of As metabolism genes in epiphytic bacterial community is associated with aquatic submerged macrophytes which may play an important role in As biogeochemistry in aquatic environments.
Collapse
Affiliation(s)
- Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yuan Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Bagade A, Nandre V, Paul D, Patil Y, Sharma N, Giri A, Kodam K. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114124. [PMID: 32078878 DOI: 10.1016/j.envpol.2020.114124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Groundwater arsenic pollution causes millions of deaths worldwide. Long term natural and anthropogenic activities have increased arsenic levels in groundwater causing higher threats of arsenic exposure. Arsenic hyper-tolerant Firmicute Bacillus firmus L-148 was isolated from arsenic limiting Lonar lake soil, which tolerated more than 3 M arsenic and could oxidize 75 mM arsenite [As(III)] in 14 days. It oxidized As(III) in presence of heavy metals and had unusual pH optima at 9.2. B. firmus L-148 was studied at the biochemical, protein, genomic and transcript level for understanding its arsenic oxidizing machinery. The proteomic and transcript analysis exhibited the presence of ars and aio operon and supported the inducible nature of ars operon. Robust, hyper-tolerant, fast As(III) oxidizing, least nutrient requiring and multi-metal resistance qualities of the strain were used in microcosm studies for bioremediation. Artificial groundwater mimicking microcosm with 75 mM As(III) was developed. Modulation of carbon source, iron and multi metals affected growth and As(III) oxidation rate. The As(III) oxidation was recorded to be 77% in 15 days in presence of sodium acetate and Fe ions. This microcosm study can be explored for bioremediation of arsenic contaminated water and followed by precipitation using other methods.
Collapse
Affiliation(s)
- Aditi Bagade
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Vinod Nandre
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - Yugendra Patil
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Nisha Sharma
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Ashok Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
30
|
Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu BA, Guasch H. Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072331. [PMID: 32235625 PMCID: PMC7177459 DOI: 10.3390/ijerph17072331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.
Collapse
Affiliation(s)
- Laura Barral-Fraga
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- LDAR24—Laboratoire Départemental d’Analyse et de Recherche du Département de la Dordogne, 24660 Coulounieix-Chamiers, Périgueux, France
- Correspondence:
| | - María Teresa Barral
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Keeley L. MacNeill
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA;
| | - Diego Martiñá-Prieto
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Soizic Morin
- INRAE—Institut National de Recherche en Agriculture, Alimentation et Environnement, UR EABX—Equipe ECOVEA, 33612 Cestas Cedex, France;
| | - María Carolina Rodríguez-Castro
- INEDES—Instituto de Ecología y Desarrollo Sustentable (UNLu-CONICET), Universidad Nacional de Luján, 6700 Buenos Aires, Argentina;
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB CABA, Argentina
| | - Baigal-Amar Tuulaikhuu
- School of Agroecology, Mongolian University of Life Sciences, Khoroo 11, Ulaanbaatar 17024, Mongolia;
| | - Helena Guasch
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- CEAB—Centre d’Estudis Avançats de Blanes, CSIC, Blanes, 17300 Girona, Spain
| |
Collapse
|
31
|
Breton-Deval L, Sanchez-Flores A, Juárez K, Vera-Estrella R. Integrative study of microbial community dynamics and water quality along The Apatlaco River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113158. [PMID: 31521989 DOI: 10.1016/j.envpol.2019.113158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The increasing demand for clean water resources for human consumption, is raising concerning about the sustainable worldwide provisioning. In Mexico, rivers near to high-density urbanizations are subject to irrational exploitation where polluted water is a risk for human health. Therefore, the aims of this study are to analyze water quality parameters and bacterial community dynamics to understand the relation between them, in the Apatlaco river, which presents a clear environmental perturbance. Parameters such as total coliforms, chemical oxygen demand, harness, ammonium, nitrite, nitrate, total Kjeldahl nitrogen, dissolved oxygen, total phosphorus, total dissolved solids, and temperature were analyzed in 17 sampling points along the river. The high pollution level was registered in the sampling point 10 with 480 mg/L chemical oxygen demand, 7 mg/L nitrite, 34 mg/L nitrate, 2 mg/L dissolved oxygen, and 299 mg/L of total dissolved solids. From these sites, we selected four samples for DNA extraction and performed a metagenomic analysis using a whole metagenome shotgun approach, to compare the microbial communities between polluted and non-polluted sites. In general, Proteobacteria was the most representative phylum in all sites. However, the clean water reference point was enriched with microorganism from the Limnohabitans genus, a planktonic bacterium widespread in freshwater ecosystems. Nevertheless, in the polluted sampled sites, we found a high abundance of potential opportunistic pathogen genera such as Acinetobacter, Arcobacter, and Myroides, among others. This suggests that in addition to water contamination, an imminent human health risk due to pathogenic bacteria can potentially affect a population of ∼1.6 million people dwelling nearby. These results will contribute to the knowledge regarding anthropogenic pollution on the microbial population dynamic and how they affect human health and life quality.
Collapse
Affiliation(s)
- Luz Breton-Deval
- Cátedras-Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juárez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
32
|
Finding a common core microbiota in two Brazilian dairies through culture and DNA metabarcoding studies. Journal of Food Science and Technology 2019; 56:5326-5335. [PMID: 31749480 DOI: 10.1007/s13197-019-04003-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 01/30/2023]
Abstract
Dairy foods are complex ecosystems composed of microorganisms from different origins that can affect flavor and safety of final products. The objective of this paper is to assess the in-house microbiota of two Brazilian dairies and to discuss the possible implications of the taxa determined for food protection. In total, 27 samples from dairies were cultured in selective (Baird Parker, de Man, Rogosa and Sharpe) and non-selective (Brain Heart Infusion) media, and the isolates were identified by Sanger sequencing. Moreover, metagenomic DNA was directly extracted from samples and the structure of the bacterial community was determined by massive DNA sequencing followed by bioinformatics analyses. The results showed the majority of isolates belonged to the group of lactic acid bacteria, but Enterobacteriaceae, Staphylococcacceae, Bacillaceae, Pseudomonadaceae and Moraxellaceae were also detected. From the reads obtained in metataxonomics analyses, a heatmap was constructed and the top 20 OTUs (operational taxonomic units) were determined. Besides, 12 most prevalent bacterial taxa were assigned to the core microbiota of the dairies evaluated, which included Thiomonas thermosulfata, Alkalibacillus salilacus, Pseudomonas clemancea, Erythrobacter aquimans, Tetragenococcus doogicus, Macrococcus brunensis, Pseudomonas ludensis, Streptococcus dentinousetti, Serratia entomophila, Vagococcus teuberi, Lactococcus fujiensis and Tolumonas auensis. In conclusion, the results reveal the presence of bacteria that may be related to spoilage and also foodborne diseases, in microbial niches that also present rare taxa, highlighting the importance to consider culture-independent results to evaluate and improve food safety.
Collapse
|
33
|
Havig JR, Hamilton TL. Productivity and Community Composition of Low Biomass/High Silica Precipitation Hot Springs: A Possible Window to Earth's Early Biosphere? Life (Basel) 2019; 9:E64. [PMID: 31362401 PMCID: PMC6789502 DOI: 10.3390/life9030064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 01/14/2023] Open
Abstract
Terrestrial hot springs have provided a niche space for microbial communities throughout much of Earth's history, and evidence for hydrothermal deposits on the Martian surface suggest this could have also been the case for the red planet. Prior to the evolution of photosynthesis, life in hot springs on early Earth would have been supported though chemoautotrophy. Today, hot spring geochemical and physical parameters can preclude the occurrence of oxygenic phototrophs, providing an opportunity to characterize the geochemical and microbial components. In the absence of the photo-oxidation of water, chemoautotrophy in these hot springs (and throughout Earth's history) relies on the delivery of exogenous electron acceptors and donors such as H2, H2S, and Fe2+. Thus, systems fueled by chemoautotrophy are likely energy substrate-limited and support low biomass communities compared to those where oxygenic phototrophs are prevalent. Low biomass silica-precipitating systems have implications for preservation, especially over geologic time. Here, we examine and compare the productivity and composition of low biomass chemoautotrophic versus photoautotrophic communities in silica-saturated hot springs. Our results indicate low biomass chemoautotrophic microbial communities in Yellowstone National Park are supported primarily by sulfur redox reactions and, while similar in total biomass, show higher diversity in anoxygenic phototrophic communities compared to chemoautotrophs. Our data suggest productivity in Archean terrestrial hot springs may be directly linked to redox substrate availability, and there may be high potential for geochemical and physical biosignature preservation from these communities.
Collapse
Affiliation(s)
- Jeff R Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
34
|
Astudillo-García C, Hermans SM, Stevenson B, Buckley HL, Lear G. Microbial assemblages and bioindicators as proxies for ecosystem health status: potential and limitations. Appl Microbiol Biotechnol 2019; 103:6407-6421. [DOI: 10.1007/s00253-019-09963-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
|
35
|
Zhang X, Tang S, Wang M, Sun W, Xie Y, Peng H, Zhong A, Liu H, Zhang X, Yu H, Giesy JP, Hecker M. Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. CHEMOSPHERE 2019; 217:790-799. [PMID: 30453276 DOI: 10.1016/j.chemosphere.2018.10.210] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 05/19/2023]
Abstract
Acid mine drainage (AMD) is one of the most hazardous byproducts of some types of mining. However, research on how AMD affects the bacterial community structure of downstream riverine ecosystems and the distribution of metal resistance genes (MRGs) along pollution gradient is limited. Comprehensive geochemical and high-throughput next-generation sequencing analyses can be integrated to characterize spatial distributions and MRG profiles of sediment bacteria communities along the AMD-contaminated Hengshi River. We found that (1) diversities of bacterial communities significantly and gradually increased along the river with decreasing contamination, suggesting community composition reflected changes in geochemical conditions; (2) relative abundances of phyla Proteobacteria and genus Halomonas and Planococcaceae that function in metal reduction decreased along the AMD gradient; (3) low levels of sediment salinity, sulfate, aquatic lead (Pb), and cadmium (Cd) were negatively correlated with bacterial diversity despite pH was in a positive manner with diversity; and (4) arsenic (As) and copper (Cu) resistance genes corresponded to sediment concentrations of As and Cu, respectively. Altogether, our findings offer initial insight into the distribution patterns of sediment bacterial community structure, diversity and MRGs along a lotic ecosystem contaminated by AMD, and the factors that affect them.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C3, Canada.
| | - Mao Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Hui Peng
- Department of Chemistry and School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Aimin Zhong
- The Centre for Disease Control and Prevention of Wengyuan County, Shaoguan, Guangdong 512600, China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C3, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
36
|
Comparative Genomic Analysis Reveals the Distribution, Organization, and Evolution of Metal Resistance Genes in the Genus Acidithiobacillus. Appl Environ Microbiol 2019; 85:AEM.02153-18. [PMID: 30389769 DOI: 10.1128/aem.02153-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Members of the genus Acidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genus Acidithiobacillus to answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes in Acidithiobacillus spp. The results showed that the evolutionary history of metal resistance genes in Acidithiobacillus spp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes in Acidithiobacillus spp. were acquired by early HGT events from species that shared habitats with Acidithiobacillus spp., such as Acidihalobacter, Thiobacillus, Acidiferrobacter, and Thiomonas species. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizing Acidithiobacillus ferridurans, Acidithiobacillus ferrivorans, and Acidithiobacillus ferrooxidans and were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability of Acidithiobacillus spp. to adapt to harsh environments. Altogether, the results suggested that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes in Acidithiobacillus spp.IMPORTANCE Horizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT in Acidithiobacillus species in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved in Acidithiobacillus are still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies of Acidithiobacillus spp.
Collapse
|
37
|
Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. Biometals 2018; 32:65-76. [PMID: 30471007 DOI: 10.1007/s10534-018-0158-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
Arsenite oxidizing Klebsiella pneumoniae strain SSSW7 isolated from shipyard waste Goa, India showed a minimum inhibitory concentration of 21 mM in mineral salts medium. The strain possessed a small supercoiled plasmid and PCR amplification of arsenite oxidase gene (aioA) was observed on plasmid as well as chromosomal DNA. It was confirmed that arsenite oxidase enzyme was a periplasmic protein with a 47% increase in arsenite oxidase activity at 1 mM sodium arsenite. Scanning electron microscopy coupled with electron dispersive X-ray spectroscopic (SEM-EDS) analysis of 15 mM arsenite exposed cells revealed long chains of cells with no surface adsorption of arsenic. Transmission electron microscopy combined with electron dispersive X-ray spectroscopic (TEM-EDS) analysis demonstrated plasma membrane disruption, cytoplasmic condensation and periplasmic accumulation of arsenic. The bacterial strain oxidized 10 mM of highly toxic arsenite to less toxic arsenate after 24 h of incubation. Fourier transformed infrared (FTIR) spectroscopy confirmed the interaction of arsenite with functional groups present on the bacterial cell surface. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of 5 mM arsenite exposed cells demonstrated over-expression of 87 kDa and 14 kDa proteins of two subunits aioA and aioB of heterodimer arsenite oxidase enzyme as compared to control cells. Therefore, this bacterial strain might be employed as a potential candidate for bioremediation of arsenite contaminated environmental sites.
Collapse
|
38
|
Chi H, Yang L, Yang W, Li Y, Chen Z, Huang L, Chao Y, Qiu R, Wang S. Variation of the Bacterial Community in the Rhizoplane Iron Plaque of the Wetland Plant Typha latifolia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2610. [PMID: 30469475 PMCID: PMC6313532 DOI: 10.3390/ijerph15122610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022]
Abstract
The survival of wetland plants in iron, sulfur and heavy metals-rich mine tailing ponds has been commonly attributed to the iron plaque (IP) on the root surface that acts as a protective barrier. However, the contribution of bacteria potentially regulates the iron-sulfur cycle and heavy metal exclusion at the root surface has not been studied in depth, particularly from a microbial ecology perspective. In this study, a pot experiment using Typha latifolia, a typical wetland plant, in non-polluted soil (NP) and tailing soil (T) was conducted. Samples from four zones, comprising non-rhizosphere soil (NR), rhizosphere soil (R) and internal (I) and external (E) layers of iron plaque, were collected from the NP and T and analyzed by 16S rRNA sequencing. Simpson index of the genus level showed greater diversities of bacterial community in the NP and its I zone is the most important part of the rhizosphere. PICRUSt predicted that the I zones in both NP and T harbored most of the functional genes. Specifically, functional genes related to sulfur relay and metabolism occurred more in the I zone in the T, whereas those related to iron acquisition and carbon and nitrogen circulation occurred more in the I zone in the NP. Analysis of dominant bacterial communities at genus level showed highest abundance of heavy metal resistant genus Burkholderia in the E zones in both soils, indicating that heavy metal resistance of Typha latifolia driven by Burkholderia mainly occurred at the external layer of IP. Moreover, many bacterial genera, such as Acidithiobacillus, Ferritrophicum, Thiomonas, Metallibacterium and Sideroxydans, involved in iron and sulfur metabolisms were found in the T and most showed higher abundance in the I zone than in the other zones. This work, as the first endeavor to separate the iron plaque into external and internal layers and investigate the variations of the bacterial communities therein, can provide an insight for further understanding the survival strategy of wetland plants, e.g., Typha latifolia, in extreme environment.
Collapse
Affiliation(s)
- Haochun Chi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lu Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wenjing Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuanyuan Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ziwu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lige Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China.
| |
Collapse
|
39
|
Ordoñez OF, Rasuk MC, Soria MN, Contreras M, Farías ME. Haloarchaea from the Andean Puna: Biological Role in the Energy Metabolism of Arsenic. MICROBIAL ECOLOGY 2018; 76:695-705. [PMID: 29520450 DOI: 10.1007/s00248-018-1159-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/13/2018] [Indexed: 05/25/2023]
Abstract
Biofilms, microbial mats, and microbialites dwell under highly limiting conditions (high salinity, extreme aridity, pH, and elevated arsenic concentration) in the Andean Puna. Only recent pioneering studies have described the microbial diversity of different Altiplano lakes and revealed their unexpectedly diverse microbial communities. Arsenic metabolism is proposed to be an ancient mechanism to obtain energy by microorganisms. Members of Bacteria and Archaea are able to exploit arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. Only six aioAB sequences coding for arsenite oxidase and three arrA sequences coding for arsenate reductase from haloarchaea were previously deposited in the NCBI database. However, no experimental data on their expression and function has been reported. Recently, our working group revealed the prevalence of haloarchaea in a red biofilm from Diamante Lake and microbial mat from Tebenquiche Lake using a metagenomics approach. Also, a surprisingly high abundance of genes used for anaerobic arsenate respiration (arr) and arsenite oxidation (aio) was detected in the Diamante's metagenome. In order to study in depth the role of arsenic in these haloarchaeal communities, in this work, we obtained 18 haloarchaea belonging to the Halorubrum genus, tolerant to arsenic. Furthermore, the identification and expression analysis of genes involved in obtaining energy from arsenic compounds (aio and arr) showed that aio and arr partial genes were detected in 11 isolates, and their expression was verified in two selected strains. Better growth of two isolates was obtained in presence of arsenic compared to control. Moreover, one of the isolates was able to oxidize As[III]. The confirmation of the oxidation of arsenic and the transcriptional expression of these genes by RT-PCR strongly support the hypothesis that the arsenic can be used in bioenergetics processes by the microorganisms flourishing in these environments.
Collapse
Affiliation(s)
- Omar Federico Ordoñez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - María Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Mariana Noelia Soria
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Manuel Contreras
- Centro de Ecología Aplicada (CEA), Suecia 3304, 56-2-2741872, Ñuñoa, Santiago, Chile
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
| |
Collapse
|
40
|
Cousins CR, Fogel M, Bowden R, Crawford I, Boyce A, Cockell C, Gunn M. Biogeochemical probing of microbial communities in a basalt-hosted hot spring at Kverkfjöll volcano, Iceland. GEOBIOLOGY 2018; 16:507-521. [PMID: 29856116 DOI: 10.1111/gbi.12291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
We investigated bacterial and archaeal communities along an ice-fed surficial hot spring at Kverkfjöll volcano-a partially ice-covered basaltic volcano at Vatnajökull glacier, Iceland, using biomolecular (16S rRNA, apsA, mcrA, amoA, nifH genes) and stable isotope techniques. The hot spring environment is characterized by high temperatures and low dissolved oxygen concentrations at the source (68°C and <1 mg/L (±0.1%)) changing to lower temperatures and higher dissolved oxygen downstream (34.7°C and 5.9 mg/L), with sulfate the dominant anion (225 mg/L at the source). Sediments are comprised of detrital basalt, low-temperature alteration phases and pyrite, with <0.4 wt. % total organic carbon (TOC). 16S rRNA gene profiles reveal that organisms affiliated with Hydrogenobaculum (54%-87% bacterial population) and Thermoproteales (35%-63% archaeal population) dominate the micro-oxic hot spring source, while sulfur-oxidizing archaea (Sulfolobales, 57%-82%), and putative sulfur-oxidizing and heterotrophic bacterial groups dominate oxic downstream environments. The δ13 Corg (‰ V-PDB) values for sediment TOC and microbial biomass range from -9.4‰ at the spring's source decreasing to -12.6‰ downstream. A reverse effect isotope fractionation of ~3‰ between sediment sulfide (δ34 S ~0‰) and dissolved water sulfate (δ34 S +3.2‰), and δ18 O values of ~ -5.3‰ suggest pyrite forms abiogenically from volcanic sulfide, followed by abiogenic and microbial oxidation. These environments represent an unexplored surficial geothermal environment analogous to transient volcanogenic habitats during putative "snowball Earth" scenarios and volcano-ice geothermal environments on Mars.
Collapse
Affiliation(s)
- Claire R Cousins
- School of Earth and Environmental Science, University of St Andrews, St Andrews, UK
| | - Marilyn Fogel
- Department of Earth Sciences, University of California Riverside, Riverside, California
| | - Roxane Bowden
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia
| | | | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
41
|
Covarrubias PC, Moya-Beltrán A, Atavales J, Moya-Flores F, Tapia PS, Acuña LG, Spinelli S, Quatrini R. Occurrence, integrity and functionality of AcaML1-like viruses infecting extreme acidophiles of the Acidithiobacillus species complex. Res Microbiol 2018; 169:628-637. [PMID: 30138723 DOI: 10.1016/j.resmic.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
General knowledge on the diversity and biology of microbial viruses infecting bacterial hosts from extreme acidic environments lags behind most other econiches. In this study, we analyse the AcaML1 virus occurrence in the taxon, its genetic composition and infective behaviour under standard acidic and SOS-inducing conditions to assess its integrity and functionality. Occurrence analysis in sequenced acidithiobacilli showed that AcaML1-like proviruses are confined to the mesothermophiles Acidithiobacillus caldus and Thermithiobacillus tepidarius. Among A. caldus strains and isolates this provirus had a modest prevalence (30%). Comparative genomic analysis revealed a significant conservation with the T. tepidarius AcaML1-like provirus, excepting the tail genes, and a high conservation of the virus across strains of the A. caldus species. Such conservation extends from the modules architecture to the gene level, suggesting that organization and composition of these viruses are preserved for functional reasons. Accordingly, the AcaML1 proviruses were demonstrated to excise from their host genomes under DNA-damaging conditions triggering the SOS-response and to produce DNA-containing VLPs. Despite this fact, under the conditions evaluated (acidic) the VLPs obtained from A. caldus ATCC 51756 could not produce productive infections of a candidate sensitive strain (#6) nor trigger it lysis.
Collapse
Affiliation(s)
- Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Atavales
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pablo S Tapia
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| |
Collapse
|
42
|
Marques CR. Extremophilic Microfactories: Applications in Metal and Radionuclide Bioremediation. Front Microbiol 2018; 9:1191. [PMID: 29910794 PMCID: PMC5992296 DOI: 10.3389/fmicb.2018.01191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Metals and radionuclides (M&Rs) are a worldwide concern claiming for resilient, efficient, and sustainable clean-up measures aligned with environmental protection goals and global change constraints. The unique defense mechanisms of extremophilic bacteria and archaea have been proving usefulness towards M&Rs bioremediation. Hence, extremophiles can be viewed as microfactories capable of providing specific and controlled services (i.e., genetic/metabolic mechanisms) and/or products (e.g., biomolecules) for that purpose. However, the natural physiological plasticity of such extremophilic microfactories can be further explored to nourish different hallmarks of M&R bioremediation, which are scantly approached in the literature and were never integrated. Therefore, this review not only briefly describes major valuable extremophilic pathways for M&R bioremediation, as it highlights the advances, challenges and gaps from the interplay of ‘omics’ and biological engineering to improve extremophilic microfactories performance for M&R clean-up. Microfactories’ potentialities are also envisaged to close the M&R bioremediation processes and shift the classical idea of never ‘getting rid’ of M&Rs into making them ‘the belle of the ball’ through bio-recycling and bio-recovering techniques.
Collapse
Affiliation(s)
- Catarina R Marques
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
43
|
Hart A, Cortés MP, Latorre M, Martinez S. Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. PLoS One 2018; 13:e0195869. [PMID: 29742107 PMCID: PMC5942774 DOI: 10.1371/journal.pone.0195869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine.
Collapse
Affiliation(s)
- Andrew Hart
- UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Macul, Santiago, Chile
- Universidad de O'Higgins, Instituto de Ciencias de la Ingeniería, Rancagua, Chile
- * E-mail: (ML); (SM)
| | - Servet Martinez
- Departamento de Ingeniería Matemática, UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
- * E-mail: (ML); (SM)
| |
Collapse
|
44
|
Gu Y, Wang Y, Sun Y, Zhao K, Xiang Q, Yu X, Zhang X, Chen Q. Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BMC Microbiol 2018; 18:42. [PMID: 29739310 PMCID: PMC5941679 DOI: 10.1186/s12866-018-1184-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 11/17/2022] Open
Abstract
Background Alleviating arsenic (As) contamination is a high-priority environmental issue. Hyperaccumulator plants may harbor endophytic bacteria able to detoxify As. Therefore, we investigated the distribution, diversity, As (III) resistance levels, and resistance-related functional genes of arsenite-resistant bacterial endophytes in Pteris vittata L. growing in a lead-zinc mining area with different As contamination levels. Results A total of 116 arsenite-resistant bacteria were isolated from roots of P. vittata with different As concentrations. Based on the 16S rRNA gene sequence analysis of representative isolates, the isolates belonged to Proteobacteria, Actinobacteria, and Firmicutes. Major genera found were Agrobacterium, Stenotrophomonas, Pseudomonas, Rhodococcus, and Bacillus. The most highly arsenite-resistant bacteria (minimum inhibitory concentration > 45 mM) were isolated from P. vittata with high As concentrations and belonged to the genera Agrobacterium and Bacillus. The strains with high As tolerance also showed high levels of indole-3-acetic acid (IAA) production and carried arsB/ACR3(2) genes. The arsB and ACR3(2) were most likely horizontally transferred among the strains. Conclusion The results of this study suggest that P. vittata plants with high As concentrations may select diverse arsenite-resistant bacteria; this diversity might, at least partly, be a result of horizontal gene transfer. These diverse endophytic bacteria are potential candidates to enhance phytoremediation techniques.
Collapse
Affiliation(s)
- Yunfu Gu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yingyan Wang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yihao Sun
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Zhao
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quanju Xiang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Chen
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
45
|
Plewniak F, Crognale S, Rossetti S, Bertin PN. A Genomic Outlook on Bioremediation: The Case of Arsenic Removal. Front Microbiol 2018; 9:820. [PMID: 29755441 PMCID: PMC5932151 DOI: 10.3389/fmicb.2018.00820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023] Open
Abstract
Microorganisms play a major role in biogeochemical cycles. As such they are attractive candidates for developing new or improving existing biotechnological applications, in order to deal with the accumulation and pollution of organic and inorganic compounds. Their ability to participate in bioremediation processes mainly depends on their capacity to metabolize toxic elements and catalyze reactions resulting in, for example, precipitation, biotransformation, dissolution, or sequestration. The contribution of genomics may be of prime importance to a thorough understanding of these metabolisms and the interactions of microorganisms with pollutants at the level of both single species and microbial communities. Such approaches should pave the way for the utilization of microorganisms to design new, efficient and environmentally sound remediation strategies, as exemplified by the case of arsenic contamination, which has been declared as a major risk for human health in various parts of the world.
Collapse
Affiliation(s)
- Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Simona Crognale
- Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Simona Rossetti
- Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
46
|
Arsène-Ploetze F, Chiboub O, Lièvremont D, Farasin J, Freel KC, Fouteau S, Barbe V. Adaptation in toxic environments: comparative genomics of loci carrying antibiotic resistance genes derived from acid mine drainage waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1470-1483. [PMID: 29090447 DOI: 10.1007/s11356-017-0535-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Several studies have suggested the existence of a close relationship between antibiotic-resistant phenotypes and resistance to other toxic compounds such as heavy metals, which involve co-resistance or cross-resistance mechanisms. A metagenomic library was previously constructed in Escherichia coli with DNA extracted from the bacterial community inhabiting an acid mine drainage (AMD) site highly contaminated with heavy metals. Here, we conducted a search for genes involved in antibiotic resistance using this previously constructed library. In particular, resistance to antibiotics was observed among five clones carrying four different loci originating from CARN5 and CARN2, two genomes reconstructed from the metagenomic data. Among the three CARN2 loci, two carry genes homologous to those previously proposed to be involved in antibiotic resistance. The third CARN2 locus carries a gene encoding a membrane transporter with an unknown function and was found to confer bacterial resistance to rifampicin, gentamycin, and kanamycin. The genome of Thiomonas delicata DSM 16361 and Thiomonas sp. X19 were sequenced in this study. Homologs of genes carried on these three CARN2 loci were found in these genomes, two of these loci were found in genomic islands. Together, these findings confirm that AMD environments contaminated with several toxic metals also constitute habitats for bacteria that function as reservoirs for antibiotic resistance genes.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Strasbourg, France.
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Olfa Chiboub
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Strasbourg, France
| | - Didier Lièvremont
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Strasbourg, France
- Institut de Chimie de Strasbourg, UMR7177 CNRS-Université de Strasbourg, Strasbourg, France
| | - Julien Farasin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Strasbourg, France
| | - Kelle C Freel
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Strasbourg, France
| | - Stephanie Fouteau
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, (LBioMEG), CEA/DRF/IBFJ/Genoscope, Evry, France
| | - Valérie Barbe
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, (LBioMEG), CEA/DRF/IBFJ/Genoscope, Evry, France
| |
Collapse
|
47
|
Cayford BI, Jiang G, Keller J, Tyson G, Bond PL. Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. BIOFOULING 2017; 33:780-792. [PMID: 28956470 DOI: 10.1080/08927014.2017.1369050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the variation in microbially induced concrete corrosion communities at different circumferential locations of a real sewer pipe and the effects of a wastewater flooding event on the community. Three distinct microbial community groups were found in different corrosion samples. The physico-chemical properties of the corrosion layers and the microbial communities were distinct for the cross-sectional positions within the pipe, ie ceiling, wall and tidal zones. The microbial communities detected from the same positions in the pipe were consistent over the length of the pipe, as well as being consistent between the replicate pipes. The dominating ceiling communities were members of the bacterial orders Rhodospirillales, Acidithiobacillales, Actinomycetales, Xanthomonadales and Acidobacteriales. The wall communities were composed of members of the Xanthomonadales, Hydrogenophilales, Chromatiales and Sphingobacteriales. The tidal zones were dominated by eight bacterial and one archaeal order, with the common physiological trait of anaerobic metabolism. Sewage flooding within the sewer system did not change the tidal and wall communities, although the corrosion communities in ceiling samples were notably different, becoming more similar to the wall and tidal samples. This suggests that sewage flooding has a significant impact on the corrosion community in sewers.
Collapse
Affiliation(s)
- Barry I Cayford
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| | - Guangming Jiang
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| | - Jurg Keller
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| | - Gene Tyson
- b Australian Centre for Ecogenomics , The University of Queensland , St Lucia , Australia
| | - Philip L Bond
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| |
Collapse
|
48
|
Cohan FM. Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0014-2016. [PMID: 29027519 PMCID: PMC11687548 DOI: 10.1128/microbiolspec.mtbp-0014-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Any two lineages, no matter how distant they are now, began their divergence as one population splitting into two lineages that could coexist indefinitely. The rate of origin of higher-level taxa is therefore the product of the rate of speciation times the probability that two new species coexist long enough to reach a particular level of divergence. Here I have explored these two parameters of disparification in bacteria. Owing to low recombination rates, sexual isolation is not a necessary milestone of bacterial speciation. Rather, irreversible and indefinite divergence begins with ecological diversification, that is, transmission of a bacterial lineage to a new ecological niche, possibly to a new microhabitat but at least to new resources. Several algorithms use sequence data from a taxon of focus to identify phylogenetic groups likely to bear the dynamic properties of species. Identifying these newly divergent lineages allows us to characterize the genetic bases of speciation, as well as the ecological dimensions upon which new species diverge. Speciation appears to be least frequent when a given lineage has few new resources it can adopt, as exemplified by photoautotrophs, C1 heterotrophs, and obligately intracellular pathogens; speciation is likely most rapid for generalist heterotrophs. The genetic basis of ecological divergence may determine whether ecological divergence is irreversible and whether lineages will diverge indefinitely into the future. Long-term coexistence is most likely when newly divergent lineages utilize at least some resources not shared with the other and when the resources themselves will coexist into the remote future.
Collapse
|
49
|
Teoh WK, Salleh FM, Shahir S. Characterization of Thiomonas delicata arsenite oxidase expressed in Escherichia coli. 3 Biotech 2017; 7:97. [PMID: 28560637 DOI: 10.1007/s13205-017-0740-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/20/2017] [Indexed: 11/26/2022] Open
Abstract
Microbial arsenite oxidation is an essential biogeochemical process whereby more toxic arsenite is oxidized to the less toxic arsenate. Thiomonas strains represent an important arsenite oxidizer found ubiquitous in acid mine drainage. In the present study, the arsenite oxidase gene (aioBA) was cloned from Thiomonas delicata DSM 16361, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant Aio consisted of two subunits with the respective molecular weights of 91 and 21 kDa according to SDS-PAGE. Aio catalysis was optimum at pH 5.5 and 50-55 °C. Aio exhibited stability under acidic conditions (pH 2.5-6). The V max and K m values of the enzyme were found to be 4 µmol min-1 mg-1 and 14.2 µM, respectively. SDS and Triton X-100 were found to inhibit the enzyme activity. The homology model of Aio showed correlation with the acidophilic adaptation of the enzyme. This is the first characterization studies of Aio from a species belonging to the Thiomonas genus. The arsenite oxidase was found to be among the acid-tolerant Aio reported to date and has the potential to be used for biosensor and bioremediation applications in acidic environments.
Collapse
Affiliation(s)
- Wei Kheng Teoh
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Faezah Mohd Salleh
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shafinaz Shahir
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
50
|
Wang L, Wang J, Jing C. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp. Front Microbiol 2017; 8:471. [PMID: 28377759 PMCID: PMC5360009 DOI: 10.3389/fmicb.2017.00471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/07/2017] [Indexed: 11/21/2022] Open
Abstract
Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Jin Wang
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University Beijing, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|