1
|
Aalto A, Martínez‐Chacón G, Kietz C, Tsyganova N, Kreutzer J, Kallio P, Broemer M, Meinander A. M1-linked ubiquitination facilitates NF-κB activation and survival during sterile inflammation. FEBS J 2022; 289:5180-5197. [PMID: 35263507 PMCID: PMC9543601 DOI: 10.1111/febs.16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 01/03/2023]
Abstract
Methionine 1 (M1)-linked ubiquitination plays a key role in the regulation of inflammatory nuclear factor-κB (NF-κB) signalling and is important for clearance of pathogen infection in Drosophila melanogaster. M1-linked ubiquitin (M1-Ub) chains are assembled by the linear ubiquitin E3 ligase (LUBEL) in flies. Here, we have studied the role of LUBEL in sterile inflammation induced by different types of cellular stresses. We have found that the LUBEL catalyses formation of M1-Ub chains in response to hypoxic, oxidative and mechanical stress conditions. LUBEL is shown to be important for flies to survive low oxygen conditions and paraquat-induced oxidative stress. This protective action seems to be driven by stress-induced activation of the NF-κB transcription factor Relish via the immune deficiency (Imd) pathway. In addition to LUBEL, the intracellular mediators of Relish activation, including the transforming growth factor activating kinase 1 (Tak1), Drosophila inhibitor of apoptosis (IAP) Diap2, the IκB kinase γ (IKKγ) Kenny and the initiator caspase Death-related ced-3/Nedd2-like protein (Dredd), but not the membrane receptor peptidoglycan recognition protein (PGRP)-LC, are shown to be required for sterile inflammatory response and survival. Finally, we showed that the stress-induced upregulation of M1-Ub chains in response to hypoxia, oxidative and mechanical stress is also induced in mammalian cells and protects from stress-induced cell death. Taken together, our results suggest that M1-Ub chains are important for NF-κB signalling in inflammation induced by stress conditions often observed in chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Anna Aalto
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | | | - Christa Kietz
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | - Nadezhda Tsyganova
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | - Joose Kreutzer
- Faculty of Medicine and Health TechnologyBioMediTechTampere UniversityFinland
| | - Pasi Kallio
- Faculty of Medicine and Health TechnologyBioMediTechTampere UniversityFinland
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Annika Meinander
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
2
|
Hemphill C, Pylarinou-Sinclair E, Itani O, Scott B, Crowder CM, Van Gilst MR. Daf-16 mediated repression of cytosolic ribosomal protein genes facilitates a hypoxia sensitive to hypoxia resistant transformation in long-lived germline mutants. PLoS Genet 2022; 18:e1009672. [PMID: 35622856 PMCID: PMC9197040 DOI: 10.1371/journal.pgen.1009672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/14/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
In C. elegans, germline ablation leads to long life span and stress resistance. It has been reported that mutations that block oogenesis or an upstream step in germline development confer strong resistance to hypoxia. We demonstrate here that the hypoxia resistance of sterile mutants is dependent on developmental stage and age. In just a 12-hour period, sterile animals transform from hypoxia sensitive L4 larvae into hypoxia resistant adults. Since this transformation occurs in animals with no germline, the physiological programs that determine hypoxia sensitivity in germline mutants occur independently of germline signals and instead rely on signals from somatic tissues. Furthermore, we found two distinct mechanisms of hypoxia resistance in germline deficient animals. First, a DAF-16/FoxO independent mechanism that occurs in all hypoxia resistant sterile adults and, second, a DAF-16/FoxO dependent mechanism that confers an added layer of resistance, or “super-resistance”, to animals with no germline as they age past day 1 of adulthood. RNAseq data showed that genes involved in both cytosolic and mitochondrial protein translation are repressed in sterile adults and further repressed only in germline deficient mutants as they age. Importantly, mutation of daf-16 specifically blocked the repression of cytosolic ribosomal protein genes, but not mitochondrial ribosomal protein genes, implicating DAF-16/FoxO mediated repression of cytosolic ribosomal protein genes as a mechanism of hypoxia super-resistance. Consistent with this hypothesis, the hypoxia super-resistance of aging germline deficient adults was also suppressed by dual mutation of ncl-1 and larp-1, two regulators of protein translation and ribosomal protein abundance. These studies provide novel insight into a profound physiological transformation that takes place in germline mutants during development, showing that some of the unique physiological properties of these long-lived animals are derived from developmentally dependent DAF-16/FoxO mediated repression of genes involved in cytosolic protein translation.
Collapse
Affiliation(s)
- Cassidy Hemphill
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Evye Pylarinou-Sinclair
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Omar Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Barbara Scott
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - C. Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Marc Ryan Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
3
|
HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat Commun 2022; 13:316. [PMID: 35031618 PMCID: PMC8760265 DOI: 10.1038/s41467-021-27944-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30–60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that modulates target gene expression in response to changes in oxygen availability. Here the authors show that HIF-1 forms a complex with TRIM28 and DNA-dependent protein kinase (DNA-PK) that phosphorylates TRIM28. This leads to CDK9 recruitment, which stimulates RNA polymerase II (RNAPII) pause release and transcriptional elongation.
Collapse
|
4
|
Ortmann BM, Burrows N, Lobb IT, Arnaiz E, Wit N, Bailey PSJ, Jordon LH, Lombardi O, Peñalver A, McCaffrey J, Seear R, Mole DR, Ratcliffe PJ, Maxwell PH, Nathan JA. The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes. Nat Genet 2021; 53:1022-1035. [PMID: 34155378 PMCID: PMC7611696 DOI: 10.1038/s41588-021-00887-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/14/2021] [Indexed: 02/05/2023]
Abstract
Hypoxia-inducible transcription factors (HIFs) are fundamental to cellular adaptation to low oxygen levels, but it is unclear how they interact with chromatin and activate their target genes. Here, we use genome-wide mutagenesis to identify genes involved in HIF transcriptional activity, and define a requirement for the histone H3 lysine 4 (H3K4) methyltransferase SET1B. SET1B loss leads to a selective reduction in transcriptional activation of HIF target genes, resulting in impaired cell growth, angiogenesis and tumor establishment in SET1B-deficient xenografts. Mechanistically, we show that SET1B accumulates on chromatin in hypoxia, and is recruited to HIF target genes by the HIF complex. The selective induction of H3K4 trimethylation at HIF target loci is both HIF- and SET1B-dependent and, when impaired, correlates with decreased promoter acetylation and gene expression. Together, these findings show SET1B as a determinant of site-specific histone methylation and provide insight into how HIF target genes are differentially regulated.
Collapse
Affiliation(s)
- Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Natalie Burrows
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ian T Lobb
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Esther Arnaiz
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter S J Bailey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Louise H Jordon
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Olivia Lombardi
- NDM Research Building, University of Oxford, Headington, Oxford, UK
| | - Ana Peñalver
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James McCaffrey
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Rachel Seear
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - David R Mole
- NDM Research Building, University of Oxford, Headington, Oxford, UK
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Ortmann BM, Nathan JA. Genetic approaches to understand cellular responses to oxygen availability. FEBS J 2021; 289:5396-5412. [PMID: 34125486 DOI: 10.1111/febs.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Oxygen-sensing mechanisms have evolved to allow organisms to respond and adapt to oxygen availability. In metazoans, oxygen-sensing is predominantly mediated by the hypoxia inducible factors (HIFs). These transcription factors are stabilised when oxygen is limiting, activating genes involved in angiogenesis, cell growth, pH regulation and metabolism to reset cell function and adapt to the cellular environment. However, the recognition that other cellular pathways and enzymes can also respond to changes in oxygen abundance provides further complexity. Dissecting this interplay of oxygen-sensing mechanisms has been a key research goal. Here, we review how genetic approaches have contributed to our knowledge of oxygen-sensing pathways which to date have been predominantly focused on the HIF pathway. We discuss how genetic studies have advanced the field and outline the implications and limitations of such approaches for the development of therapies targeting oxygen-sensing mechanisms in human disease.
Collapse
Affiliation(s)
- Brian M Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| |
Collapse
|
6
|
Wahane S, Halawani D, Zhou X, Zou H. Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses. Front Genet 2019; 10:640. [PMID: 31354788 PMCID: PMC6629966 DOI: 10.3389/fgene.2019.00640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Injury to the nervous system triggers a multicellular response in which epigenetic mechanisms play an important role in regulating cell type-specific transcriptional changes. Here, we summarize recent progress in characterizing neuronal intrinsic and extrinsic chromatin reconfigurations and epigenetic changes triggered by axonal injury that shape neuroplasticity and glial functions. We specifically discuss regeneration-associated transcriptional modules comprised of transcription factors and epigenetic regulators that control axon growth competence. We also review epigenetic regulation of neuroinflammation and astroglial responses that impact neural repair. These advances provide a framework for developing epigenetic strategies to maximize adaptive alterations while minimizing maladaptive stress responses in order to enhance axon regeneration and achieve functional recovery after injury.
Collapse
Affiliation(s)
- Shalaka Wahane
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dalia Halawani
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiang Zhou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Zou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
MicroRNA Expression Profiles Identify Biomarker for Differentiating the Embolic Stroke from Thrombotic Stroke. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4514178. [PMID: 30627556 PMCID: PMC6304579 DOI: 10.1155/2018/4514178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023]
Abstract
In order to identify potential biomarkers that distinguish the embolic stroke (ES) from thrombotic stroke (TS), a profile of microRNA expression was analyzed. The GSE60319 expression profile was downloaded from the Gene Expression Omnibus (GEO) database. The GEO2R was applied to screen for differentially expressed microRNAs (DEmiRNAs) between the embolic stroke group and thrombotic stroke group. The miRWalk was utilized to predict the target genes of DEmiRNAs. Genes associated with embolic stroke were downloaded from the Comparative Toxicogenomics Database. Cross reference of target genes to disease related genes was conducted to construct the DEmiRNA-gene network. The protein-protein interaction (PPI) network of overlapping genes was evaluated by STRING, using the MCODE and CytoHubba plugin of Cytoscape to identify the modules and hub genes. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) in modules was performed. There were 30 microRNAs in total identified as DEmiRNAs between embolic stroke and thrombotic stroke groups, of which 8 were upregulated and 22 were downregulated. Among these differentially expressed miRNAs, miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were significantly associated with an ES to TS. Using the miRWalk 3.0 online tool, target genes regulated by DEmiRNAs were predicted. In addition, disease related genes were predicted and compared with target genes of DEmiRNAs. 166 overlapped genes regulated by miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were identified, suggesting their association with diseases that contributed to ES, mainly including atrial fibrillation, mitral valve stenosis, myocardial infarction, and aortic dissection. Therefore, miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were promising candidate biomarkers for differentiating an ES from TS. The PPI network demonstrated that miR-15a-5p, miR-17-5p, miR-19b-3p, and miR-20a-5p were associated with an ES by mainly regulating “CCND1, E2F2, E2F3, ITCH, UBE4A, UBE3C, RBL2, FBXO31, EIF2C4, and EIF2C1”. Furthermore, miR-15a-5p and miR-17-5p may function through “cell cycle, prostate cancer, and small cell lung cancer” while miR-19b-3p and miR-20a-5p function through “insulin resistance, hepatitis B, and viral carcinogenesis” and “vasopressin-regulated water reabsorption”, respectively. However, these results were approached in the manner of bioinformatics analysis; therefore, further verification is required.
Collapse
|
8
|
Rotavirus Induces Formation of Remodeled Stress Granules and P Bodies and Their Sequestration in Viroplasms To Promote Progeny Virus Production. J Virol 2018; 92:JVI.01363-18. [PMID: 30258011 DOI: 10.1128/jvi.01363-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
Rotavirus replicates in unique virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), the composition and structure of which have yet to be understood. Based on the analysis of a few proteins, earlier studies reported that rotavirus infection inhibits stress granule (SG) formation and disrupts P bodies (PBs). However, the recent demonstration that rotavirus infection induces cytoplasmic relocalization and colocalization with VMs of several nuclear hnRNPs and AU-rich element-binding proteins (ARE-BPs), which are known components of SGs and PBs, suggested the possibility of rotavirus-induced remodeling of SGs and PBs, prompting us to analyze a large number of the SG and PB components to understand the status of SGs and PBs in rotavirus-infected cells. Here we demonstrate that rotavirus infection induces molecular triage by selective exclusion of a few proteins of SGs (G3BP1 and ZBP1) and PBs (DDX6, EDC4, and Pan3) and sequestration of the remodeled/atypical cellular organelles, containing the majority of their components, in the VM. The punctate SG and PB structures are seen at about 4 h postinfection (hpi), coinciding with the appearance of small VMs, many of which fuse to form mature large VMs with progression of infection. By use of small interfering RNA (siRNA)-mediated knockdown and/or ectopic overexpression, the majority of the SG and PB components, except for ADAR1, were observed to inhibit viral protein expression and virus growth. In conclusion, this study demonstrates that VMs are highly complex supramolecular structures and that rotavirus employs a novel strategy of sequestration in the VM and harnessing of the remodeled cellular RNA recycling bins to promote its growth.IMPORTANCE Rotavirus is known to replicate in specialized virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), but the composition and structure of VMs are not yet understood. Here we demonstrate that rotavirus interferes with normal SG and PB assembly but promotes formation of atypical SG-PB structures by selective exclusion of a few components and employs a novel strategy of sequestration of the remodeled SG-PB granules in the VMs to promote virus growth by modulating their negative influence on virus infection. Rotavirus VMs appear to be complex supramolecular structures formed by the union of the triad of viral replication complexes and remodeled SGs and PBs, as well as other host factors, and designed to promote productive virus infection. These observations have implications for the planning of future research with the aim of understanding the structure of the VM, the mechanism of morphogenesis of the virus, and the detailed roles of host proteins in rotavirus biology.
Collapse
|
9
|
Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, Strand MR. Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl Trop Dis 2018; 12:e0006638. [PMID: 29979680 PMCID: PMC6057668 DOI: 10.1371/journal.pntd.0006638] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/24/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
We recently reported that larval stage Aedes aegypti and several other species of mosquitoes grow when living bacteria are present in the gut but do not grow when living bacteria are absent. We further reported that living bacteria induce a hypoxia signal in the gut, which activates hypoxia-induced transcription factors and other processes larvae require for growth. In this study we assessed whether other types of organisms induce mosquito larvae to grow and asked if the density of non-living microbes or diet larvae are fed obviate the requirement for living organisms prior results indicated are required for growth. Using culture conditions identical to our own prior studies, we determined that inoculation density of living Escherichia coli positively affected growth rates of Ae. aegypti larvae, whereas non-living E. coli had no effect on growth across the same range of inoculation densities. A living yeast, alga, and insect cell line induced axenic Ae. aegypti first instars to grow, and stimulated similar levels of midgut hypoxia, HIF-α stabilization, and neutral lipid accumulation in the fat body as E. coli. However, the same organisms had no effect on larval growth if heat-killed. In addition, no axenic larvae molted when fed two other diets, when fed diets supplemented with heat-killed microbes or lysed and heat-killed microbes. Experiments conducted with An. gambiae yielded similar findings. Taken together, our results indicate that organisms from different prokaryotic and eukaryotic groups induce mosquito larvae to grow, whereas no conditions were identified that stimulated larvae to grow in the absence of living organisms.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Vincent G. Martinson
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Ruby E. Harrison
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Bret M. Boyd
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Kerri L. Coon
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| |
Collapse
|
10
|
Jhelum P, Karisetty BC, Kumar A, Chakravarty S. Implications of Epigenetic Mechanisms and their Targets in Cerebral Ischemia Models. Curr Neuropharmacol 2018; 15:815-830. [PMID: 27964703 PMCID: PMC5652028 DOI: 10.2174/1570159x14666161213143907] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Understanding the complexities associated with the ischemic condition and identifying therapeutic targets in ischemia is a continued challenge in stroke biology. Emerging evidence reveals the potential involvement of epigenetic mechanisms in the incident and outcome of stroke, suggesting novel therapeutic options of targeting different molecules related to epigenetic regulation. OBJECTIVE This review summarizes our current understanding of ischemic pathophysiology, describes various in vivo and in vitro models of ischemia, and examines epigenetic modifications associated with the ischemic condition. METHOD We focus on microRNAs, DNA methylation, and histone modifying enzymes, and present how epigenetic studies are revealing novel drug target candidates in stroke. CONCLUSION Finally, we discuss emerging approaches for the prevention and treatment of stroke and post-stroke effects using pharmacological interventions with a wide therapeutic window.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Bhanu C Karisetty
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR, Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sumana Chakravarty
- Chemical Biology, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, India
| |
Collapse
|
11
|
Boardman L, Mitchell KA, Terblanche JS, Sørensen JG. A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:179-188. [PMID: 29038013 DOI: 10.1016/j.jinsphys.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/17/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
While single stress responses are fairly well researched, multiple, interactive stress responses are not-despite the obvious importance thereof. Here, using D. melanogaster, we investigated the effects of simultaneous exposures to low O2 (hypoxia) and varying thermal conditions on mortality rates, estimates of thermal tolerance and the transcriptome. We used combinations of 21 (normoxia), 10 or 5kPa O2 with control (23°C), cold (4°C) or hot (31°C) temperature exposures before assaying chill coma recovery time (CCRT) and heat knock down time (HKDT) as measures of cold and heat tolerance respectively. We found that mortality was significantly affected by temperature, oxygen partial pressure (PO2) and the interaction between the two. Cold treatments resulted in low mortality (<5%), regardless of PO2 treatment; while hot treatments resulted in higher mortality (∼20%), especially at 5kPa O2 which was lethal for most flies (∼80%). Both CCRT and HKDT were significantly affected by temperature, but not PO2, of the treatments, and the interaction of temperature and PO2 was non-significant. Hot treatments led to significantly longer CCRT, and shorter HKDT in comparison to cold treatments. Global gene expression profiling provided the first transcriptome level response to the combined stress of PO2 and temperature, showing that stressful treatments resulted in higher mortality and induced transcripts that were associated with protein kinases, catabolic processes (proteases, hydrolases, peptidases) and membrane function. Several genes and pathways that may be responsible for the protective effects of combined PO2 and cold treatments were identified. We found that urate oxidase was upregulated in all three cold treatments, regardless of the PO2. Small heat shock proteins Hsp22 and Hsp23 were upregulated after both 10 and 21kPa O2-hot treatments. Collectively, the data from PO2-hot treatments suggests that hypoxia does exacerbate heat stress, through an as yet unidentified mechanism. Hsp70B and an unannotated transcript (CG6733) were significantly differentially expressed after 5kPa O2-cold and 10kPa O2-hot treatments relative to their controls. Downregulation of these transcripts was correlated with reduced thermal tolerance (longer CCRT and shorter HKDT), suggesting that these genes may be important candidates for future research.
Collapse
Affiliation(s)
- Leigh Boardman
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Katherine A Mitchell
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| | - Jesper G Sørensen
- Section for Genetics, Ecology & Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Valzania L, Coon KL, Vogel KJ, Brown MR, Strand MR. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2018; 115:457-465. [PMID: 29298915 PMCID: PMC5777003 DOI: 10.1073/pnas.1719063115] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gut microbes positively affect the physiology of many animals, but the molecular mechanisms underlying these benefits remain poorly understood. We recently reported that bacteria-induced gut hypoxia functions as a signal for growth and molting of the mosquito Aedes aegypti In this study, we tested the hypothesis that transduction of a gut hypoxia signal requires hypoxia-induced transcription factors (HIFs). Expression studies showed that HIF-α was stabilized in larvae containing bacteria that induce gut hypoxia but was destabilized in larvae that exhibit normoxia. However, we could rescue growth of larvae exhibiting gut normoxia by treating them with a prolyl hydroxylase inhibitor, FG-4592, that stabilized HIF-α, and inhibit growth of larvae exhibiting gut hypoxia by treating them with an inhibitor, PX-478, that destabilized HIF-α. Using these tools, we determined that HIF signaling activated the insulin/insulin growth factor pathway plus select mitogen-activated kinases and inhibited the adenosine monophosphate-activated protein kinase pathway. HIF signaling was also required for growth of the larval midgut and storage of neutral lipids by the fat body. Altogether, our results indicate that gut hypoxia and HIF signaling activate multiple processes in A. aegypti larvae, with conserved functions in growth and metabolism.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Kerri L Coon
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Kevin J Vogel
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Mark R Brown
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Michael R Strand
- Department of Entomology, The University of Georgia, Athens, GA 30602
| |
Collapse
|
13
|
Zarndt R, Walls SM, Ocorr K, Bodmer R. Reduced Cardiac Calcineurin Expression Mimics Long-Term Hypoxia-Induced Heart Defects in Drosophila. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001706. [PMID: 28986453 PMCID: PMC5669044 DOI: 10.1161/circgenetics.117.001706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxia is often associated with cardiopulmonary diseases, which represent some of the leading causes of mortality worldwide. Long-term hypoxia exposures, whether from disease or environmental condition, can cause cardiomyopathy and lead to heart failure. Indeed, hypoxia-induced heart failure is a hallmark feature of chronic mountain sickness in maladapted populations living at high altitude. In a previously established Drosophila heart model for long-term hypoxia exposure, we found that hypoxia caused heart dysfunction. Calcineurin is known to be critical in cardiac hypertrophy under normoxia, but its role in the heart under hypoxia is poorly understood. METHODS AND RESULTS In the present study, we explore the function of calcineurin, a gene candidate we found downregulated in the Drosophila heart after lifetime and multigenerational hypoxia exposure. We examined the roles of 2 homologs of Calcineurin A, CanA14F, and Pp2B in the Drosophila cardiac response to long-term hypoxia. We found that knockdown of these calcineurin catalytic subunits caused cardiac restriction under normoxia that are further aggravated under hypoxia. Conversely, cardiac overexpression of Pp2B under hypoxia was lethal, suggesting that a hypertrophic signal in the presence of insufficient oxygen supply is deleterious. CONCLUSIONS Our results suggest a key role for calcineurin in cardiac remodeling during long-term hypoxia with implications for diseases of chronic hypoxia, and it likely contributes to mechanisms underlying these disease states.
Collapse
Affiliation(s)
- Rachel Zarndt
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Stanley M Walls
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Karen Ocorr
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| | - Rolf Bodmer
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| |
Collapse
|
14
|
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that several mosquito species, including Aedes aegypti, do not develop beyond the first instar when fed a nutritionally complete diet in the absence of a gut microbiota. In contrast, several species of bacteria, including Escherichia coli, rescue development of axenic larvae into adults. The molecular mechanisms underlying bacteria-dependent growth are unknown. Here, we designed a genetic screen around E. coli that identified high-affinity cytochrome bd oxidase as an essential bacterial gene product for mosquito growth. Bioassays showed that bacteria in nonsterile larvae and gnotobiotic larvae inoculated with wild-type E. coli reduced midgut oxygen levels below 5%, whereas larvae inoculated with E. coli mutants defective for cytochrome bd oxidase did not. Experiments further supported that hypoxia leads to growth and ecdysone-induced molting. Altogether, our results identify aerobic respiration by bacteria as a previously unknown but essential process for mosquito development.
Collapse
|
15
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
16
|
The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell Rep 2016; 16:37-47. [PMID: 27320910 DOI: 10.1016/j.celrep.2016.05.082] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are critical regulators of the cellular response to hypoxia. Despite their established roles in normal physiology and numerous pathologies, the molecular mechanisms by which they control gene expression remain poorly understood. We report here a conserved role for the TIP60 complex as a HIF1 transcriptional cofactor in Drosophila and human cells. TIP60 (KAT5) is required for HIF1-dependent gene expression in fly cells and embryos and colorectal cancer cells. HIF1A interacts with and recruits TIP60 to chromatin. TIP60 is dispensable for HIF1A association with its target genes but is required for HIF1A-dependent chromatin modification and RNA polymerase II activation in hypoxia. In human cells, global analysis of HIF1A-dependent gene activity reveals that most HIF1A targets require either TIP60, the CDK8-Mediator complex, or both as coactivators for full expression in hypoxia. Thus, HIF1A employs functionally diverse cofactors to regulate different subsets of genes within its transcriptional program.
Collapse
|
17
|
miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga. PLoS Genet 2016; 12:e1006073. [PMID: 27223464 PMCID: PMC4880290 DOI: 10.1371/journal.pgen.1006073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/30/2016] [Indexed: 02/07/2023] Open
Abstract
Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.
Collapse
|
18
|
Bertolin AP, Katz MJ, Yano M, Pozzi B, Acevedo JM, Blanco-Obregón D, Gándara L, Sorianello E, Kanda H, Okano H, Srebrow A, Wappner P. Musashi mediates translational repression of the Drosophila hypoxia inducible factor. Nucleic Acids Res 2016; 44:7555-67. [PMID: 27141964 PMCID: PMC5027473 DOI: 10.1093/nar/gkw372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/23/2016] [Indexed: 12/22/2022] Open
Abstract
Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.
Collapse
Affiliation(s)
| | - Maximiliano J Katz
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Berta Pozzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| | - Julieta M Acevedo
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | | | - Lautaro Gándara
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | | | - Hiroshi Kanda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| | - Pablo Wappner
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| |
Collapse
|
19
|
Wang L, Cui S, Ma L, Kong L, Geng X. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. INSECT MOLECULAR BIOLOGY 2015; 24:634-648. [PMID: 26387499 DOI: 10.1111/imb.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases.
Collapse
Affiliation(s)
- L Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - S Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Kong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - X Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
20
|
Jha AR, Zhou D, Brown CD, Kreitman M, Haddad GG, White KP. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations. Mol Biol Evol 2015; 33:501-17. [PMID: 26576852 PMCID: PMC4866538 DOI: 10.1093/molbev/msv248] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability to withstand low oxygen (hypoxia tolerance) is a polygenic and mechanistically conserved trait that has important implications for both human health and evolution. However, little is known about the diversity of genetic mechanisms involved in hypoxia adaptation in evolving populations. We used experimental evolution and whole-genome sequencing in Drosophila melanogaster to investigate the role of natural variation in adaptation to hypoxia. Using a generalized linear mixed model we identified significant allele frequency differences between three independently evolved hypoxia-tolerant populations and normoxic control populations for approximately 3,800 single nucleotide polymorphisms. Around 50% of these variants are clustered in 66 distinct genomic regions. These regions contain genes that are differentially expressed between hypoxia-tolerant and normoxic populations and several of the differentially expressed genes are associated with metabolic processes. Additional genes associated with respiratory and open tracheal system development also show evidence of directional selection. RNAi-mediated knockdown of several candidate genes’ expression significantly enhanced survival in severe hypoxia. Using genomewide single nucleotide polymorphism data from four high-altitude human populations—Sherpas, Tibetans, Ethiopians, and Andeans, we found that several human orthologs of the genes under selection in flies are also likely under positive selection in all four high-altitude human populations. Thus, our results indicate that selection for hypoxia tolerance can act on standing genetic variation in similar genes and pathways present in organisms diverged by hundreds of millions of years.
Collapse
Affiliation(s)
- Aashish R Jha
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago Department of Ecology and Evolution, The University of Chicago
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California at San Diego
| | - Christopher D Brown
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago
| | - Martin Kreitman
- Institute for Genomics and Systems Biology, The University of Chicago Department of Ecology and Evolution, The University of Chicago Committee on Genetics, Genomics and Systems Biology, The University of Chicago
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California at San Diego Department of Neurosciences, University of California at San Diego Rady Children's Hospital, San Diego, CA
| | - Kevin P White
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago Department of Ecology and Evolution, The University of Chicago Committee on Genetics, Genomics and Systems Biology, The University of Chicago
| |
Collapse
|
21
|
Cho Y, Shin JE, Ewan EE, Oh YM, Pita-Thomas W, Cavalli V. Activating Injury-Responsive Genes with Hypoxia Enhances Axon Regeneration through Neuronal HIF-1α. Neuron 2015; 88:720-34. [PMID: 26526390 DOI: 10.1016/j.neuron.2015.09.050] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Injured peripheral neurons successfully activate a proregenerative transcriptional program to enable axon regeneration and functional recovery. How transcriptional regulators coordinate the expression of such program remains unclear. Here we show that hypoxia-inducible factor 1α (HIF-1α) controls multiple injury-induced genes in sensory neurons and contribute to the preconditioning lesion effect. Knockdown of HIF-1α in vitro or conditional knock out in vivo impairs sensory axon regeneration. The HIF-1α target gene Vascular Endothelial Growth Factor A (VEGFA) is expressed in injured neurons and contributes to stimulate axon regeneration. Induction of HIF-1α using hypoxia enhances axon regeneration in vitro and in vivo in sensory neurons. Hypoxia also stimulates motor neuron regeneration and accelerates neuromuscular junction re-innervation. This study demonstrates that HIF-1α represents a critical transcriptional regulator in regenerating neurons and suggests hypoxia as a tool to stimulate axon regeneration.
Collapse
Affiliation(s)
- Yongcheol Cho
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jung Eun Shin
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Eric Edward Ewan
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Young Mi Oh
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wolfgang Pita-Thomas
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Keenan MM, Liu B, Tang X, Wu J, Cyr D, Stevens RD, Ilkayeva O, Huang Z, Tollini LA, Murphy SK, Lucas J, Muoio DM, Kim SY, Chi JT. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate. PLoS Genet 2015; 11:e1005599. [PMID: 26452058 PMCID: PMC4599891 DOI: 10.1371/journal.pgen.1005599] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future. During the development of most solid tumors, there are characteristic physiological differences in the tumor that result from tumor cells outgrowing their local blood supply. Two of these physiological differences, or “stresses,” that occur in the tumor are low oxygen levels (hypoxia) and an accumulation of lactic acidic (lactic acidosis). Cancer cells experiencing hypoxia and lactic acidosis tend to be more resistant to chemo- and radio-therapy and metastasize more readily. Therefore, it is important to understand how tumor cells adapt to and survive these stresses. We used a large scale screening experiment in order to find which genes and proteins are involved in tumor cell adaptation and survival under hypoxia or lactic acidosis. We found that inhibiting either of two genes involved in lipid synthesis allowed tumor cells to survive hypoxia. This occurred because silencing these genes led to an increase in the metabolite α-ketoglutarate, which repressed a transcription factor that contributed to cell death under hypoxia. This research specifically advances our understanding of how tumor cells survive hypoxia and lactic acidosis and more broadly enhances our understanding of the cellular biology of solid tumors.
Collapse
Affiliation(s)
- Melissa M. Keenan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Beiyu Liu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiaohu Tang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Derek Cyr
- Department of Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert D. Stevens
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga Ilkayeva
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura A. Tollini
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Lucas
- Department of Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Deborah M. Muoio
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Greco S, Gaetano C, Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 2014; 21:1202-19. [PMID: 24053126 PMCID: PMC4142792 DOI: 10.1089/ars.2013.5403] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are deregulated and play a causal role in numerous cardiovascular diseases, including myocardial infarction, coronary artery disease, hypertension, heart failure, stroke, peripheral artery disease, kidney ischemia-reperfusion. RECENT ADVANCES One crucial component of ischemic cardiovascular diseases is represented by hypoxia. Indeed, hypoxia is a powerful stimulus regulating the expression of a specific subset of miRNAs, named hypoxia-induced miRNAs (hypoxamiR). These miRNAs are fundamental regulators of the cell responses to decreased oxygen tension. Certain hypoxamiRs seem to have a particularly pervasive role, such as miR-210 that is virtually induced in all ischemic diseases tested so far. However, its specific function may change according to the physiopathological context. CRITICAL ISSUES The discovery of HypoxamiR dates back 6 years. Thus, despite a rapid growth in knowledge and attention, a deeper insight of the molecular mechanisms underpinning hypoxamiR regulation and function is needed. FUTURE DIRECTIONS An extended understanding of the function of hypoxamiR in gene regulatory networks associated with cardiovascular diseases will allow the identification of novel molecular mechanisms of disease and indicate the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory , IRCCS-Policlinico San Donato, Milan, Italy
| | | | | |
Collapse
|
24
|
Abstract
Hypoxia, or low oxygen availability, is an important physiological and pathological stimulus for multicellular organisms. Molecularly, hypoxia activates a transcriptional programme directed at restoration of oxygen homoeostasis and cellular survival. In mammalian cells, hypoxia not only activates the HIF (hypoxia-inducible factor) family, but also additional transcription factors such as NF-κB (nuclear factor κB). Here we show that hypoxia activates the IKK-NF-κB [IκB (inhibitor of nuclear factor κB)-NF-κB] pathway and the immune response in Drosophila melanogaster. We show that NF-κB activation is required for organism survival in hypoxia. Finally, we identify a role for the tumour suppressor Cyld, as a negative regulator of NF-κB in response to hypoxia in Drosophila. The results indicate that hypoxia activation of the IKK-NF-κB pathway and the immune response is an important and evolutionary conserved response.
Collapse
|
25
|
Wang H, Lai D, Yuan M, Xu H. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae. Electrophoresis 2014; 35:1122-9. [PMID: 24458307 DOI: 10.1002/elps.201300318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/16/2013] [Accepted: 01/12/2014] [Indexed: 11/06/2022]
Abstract
Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
| | | | | | | |
Collapse
|
26
|
Chromatin-modifying agents for epigenetic reprogramming and endogenous neural stem cell-mediated repair in stroke. Transl Stroke Res 2013; 2:7-16. [PMID: 24014083 DOI: 10.1007/s12975-010-0051-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The recent explosion of interest in epigenetics and chromatin biology has made a significant impact on our understanding of the pathophysiology of cerebral ischemia and led to the identification of new treatment strategies for stroke, such as those that employ histone deacetylase inhibitors. These are key advances; however, the rapid pace of discovery in chromatin biology and innovation in the development of chromatin-modifying agents implies there are emerging classes of drugs that may also have potential benefits in stroke. Herein, we discuss how various chromatin regulatory factors and their recently identified inhibitors may serve as drug targets and therapeutic agents for stroke, respectively. These factors primarily include members of the repressor element-1 silencing transcription factor (REST)/neuron-restrictive silencer factor macromolecular complex, polycomb group (PcG) proteins, and associated chromatin remodeling factors, which have been linked to the pathophysiology of cerebral ischemia. Further, we suggest that, because of the key roles played by REST, PcG proteins and other chromatin remodeling factors in neural stem and progenitor cell (NSPC) biology, chromatin-modifying agents can be utilized not only to mitigate ischemic injury directly but also potentially to promote endogenous NSPC-mediated brain repair mechanisms.
Collapse
|
27
|
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2013; 49:1-15. [PMID: 24099156 DOI: 10.3109/10409238.2013.838205] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their posttranslational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia.
Collapse
Affiliation(s)
- Veronica L Dengler
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Matthew Galbraith
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| |
Collapse
|
28
|
Muscari C, Giordano E, Bonafè F, Govoni M, Pasini A, Guarnieri C. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J Biomed Sci 2013; 20:63. [PMID: 23985033 PMCID: PMC3765890 DOI: 10.1186/1423-0127-20-63] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/24/2013] [Indexed: 12/16/2022] Open
Abstract
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.
Collapse
Affiliation(s)
- Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Zhou D, Haddad GG. Genetic analysis of hypoxia tolerance and susceptibility in Drosophila and humans. Annu Rev Genomics Hum Genet 2013; 14:25-43. [PMID: 23808366 DOI: 10.1146/annurev-genom-091212-153439] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygen is essential for metazoans' life on earth. Oxygen deprivation, or hypoxia, contributes significantly to the pathophysiology of many human diseases. A better understanding of the fundamental molecular and genetic basis for adaptation to low-oxygen environments will help us develop therapeutic strategies to prevent or treat diseases that have hypoxia as a major part of their pathogenesis. Different cells and organisms have evolved different ways to cope with this life-threatening challenge, and the molecular and genetic mechanisms remain largely unknown. The current revolution of genomic technology has advanced our understanding of the genetic basis of many diseases and conditions, including hypoxia tolerance and susceptibility. In this review, we highlight the progress made in understanding the molecular responses to hypoxia in an animal model organism (Drosophila melanogaster) and genetic adaptation to high-altitude hypoxia in humans.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics (Division of Respiratory Medicine) and
| | | |
Collapse
|
30
|
Abstract
HIF1A (hypoxia-inducible factor 1α) is the master regulator of the cellular response to
hypoxia and is implicated in cancer progression. Whereas the regulation of HIF1A protein in response
to oxygen is well characterized, less is known about the fate of HIF1A mRNA. In the
present study, we have identified the pseudo-DUB (deubiquitinating enzyme)/deadenylase USP52
(ubiquitin-specific protease 52)/PAN2 [poly(A) nuclease 2] as an important regulator of the
HIF1A-mediated hypoxic response. Depletion of USP52 reduced HIF1A mRNA and protein levels and
resulted in reduced expression of HIF1A-regulated hypoxic targets due to a 3′-UTR
(untranslated region)-dependent poly(A)-tail-length-independent destabilization in
HIF1A mRNA. MS analysis revealed an association of USP52 with several P-body
(processing body) components and we confirmed further that USP52 protein and HIF1A
mRNA co-localized with cytoplasmic P-bodies. Importantly, P-body dispersal by knockdown of
GW182 or LSM1 resulted in a reduction of HIF1A
mRNA levels. These data uncover a novel role for P-bodies in regulating HIF1A mRNA
stability, and demonstrate that USP52 is a key component of P-bodies required to prevent
HIF1A mRNA degradation.
Collapse
|
31
|
Russell MW, Wilder NS. Getting personal: understanding how genetic variation affects clinical outcomes in patients with tetralogy of Fallot. Pediatr Res 2012; 72:334-6. [PMID: 23032507 PMCID: PMC3576875 DOI: 10.1038/pr.2012.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The work by Jeewa et al. is an important step toward “personalizing” or individualizing our approach to care of patients with tetralogy of Fallot. Although future studies will need to confirm the potential role of HIF1A-mediated signaling in right ventricular remodeling, it raises the possibility that modulation of the HIF1A signaling pathway or its downstream effectors such as TGF-β may allow better preservation of ventricular function in patients with TOF. Furthermore, directed genotyping for HIF1A and other genetic variants may help identify patients at risk for adverse outcomes. This study demonstrates the potential for genetics-of- outcomes studies to evaluate novel therapeutic targets and to identify at-risk populations that may require specific therapeutic considerations.
Collapse
Affiliation(s)
- Mark W. Russell
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Nicole S. Wilder
- Division of Pediatric Anesthesiology, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
32
|
Chen KF, Crowther DC. Functional genomics in Drosophila models of human disease. Brief Funct Genomics 2012; 11:405-15. [PMID: 22914042 DOI: 10.1093/bfgp/els038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is occasionally observed that common sporadic diseases have rare familial counterparts in which mutations at a single locus result in a similar disorder exhibiting simple Mendelian inheritance. Such an observation is often sufficient justification for the creation of a disease model in the fly. Whether the system is based on the over-expression of a toxic variant of a human protein or requires the loss of function of an orthologous fly gene, the consequent phenotypes can be used to understand pathogenesis through the discovery of genetic modifiers. Such genetic screening can be completed rapidly in the fly and in this review we outline how libraries of mutants are generated and how consequent changes in disease-related phenotypes are assessed. The bioinformatic approaches to processing the copious amounts of data so generated are also presented. The next phase of fly modelling will tackle the challenges of complex diseases in which many genes are associated with risk in the human. There is growing interest in the use of interactomics and epigenetics to provide proteome- and genome-scale descriptions of the regulatory dysfunction that results in disease.
Collapse
Affiliation(s)
- Ko-Fan Chen
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
33
|
Thomas MG, Luchelli L, Pascual M, Gottifredi V, Boccaccio GL. A monoclonal antibody against p53 cross-reacts with processing bodies. PLoS One 2012; 7:e36447. [PMID: 22590546 PMCID: PMC3349707 DOI: 10.1371/journal.pone.0036447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/04/2012] [Indexed: 01/29/2023] Open
Abstract
The p53 tumor suppressor protein is an important regulator of cell proliferation and apoptosis. p53 can be found in the nucleus and in the cytosol, and the subcellular location is key to control p53 function. In this work, we found that a widely used monoclonal antibody against p53, termed Pab 1801 (Pan antibody 1801) yields a remarkable punctate signal in the cytoplasm of several cell lines of human origin. Surprisingly, these puncta were also observed in two independent p53-null cell lines. Moreover, the foci stained with the Pab 1801 were present in rat cells, although Pab 1801 recognizes an epitope that is not conserved in rodent p53. In contrast, the Pab 1801 nuclear staining corresponded to genuine p53, as it was upregulated by p53-stimulating drugs and absent in p53-null cells. We identified the Pab 1801 cytoplasmic puncta as P Bodies (PBs), which are involved in mRNA regulation. We found that, in several cell lines, including U2OS, WI38, SK-N-SH and HCT116, the Pab 1801 puncta strictly colocalize with PBs identified with specific antibodies against the PB components Hedls, Dcp1a, Xrn1 or Rck/p54. PBs are highly dynamic and accordingly, the Pab 1801 puncta vanished when PBs dissolved upon treatment with cycloheximide, a drug that causes polysome stabilization and PB disruption. In addition, the knockdown of specific PB components that affect PB integrity simultaneously caused PB dissolution and the disappearance of the Pab 1801 puncta. Our results reveal a strong cross-reactivity of the Pab 1801 with unknown PB component(s). This was observed upon distinct immunostaining protocols, thus meaning a major limitation on the use of this antibody for p53 imaging in the cytoplasm of most cell types of human or rodent origin.
Collapse
|
34
|
Ekins S, Shigeta R, Bunin BA. Bottlenecks caused by software gaps in miRNA and RNAi research. Pharm Res 2012; 29:1717-21. [PMID: 22362409 DOI: 10.1007/s11095-012-0712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Understanding the regulation of gene expression is critical to many areas of biology while control via RNAs has found considerable interest as a tool for scientific discovery and potential therapeutic applications. For example whole genome RNA interference (RNAi) screens and whole proteome scans provide views of how the entire transcriptome or proteome responds to biological, chemical or environmental perturbations of a gene's activity. Small RNA (sRNA) or MicroRNA (miRNA) are known to regulate pathways and bind mRNA, while the function of miRNAs discovered in experimental studies is often unknown. In both cases, RNAi and miRNA require labor intensive studies to tease out their functions within gene networks. Available software to analyze relationships is currently an ad hoc and often a manual process that can take up to several hours to analyze a single candidate RNAi or miRNA. With experiments frequently highlighting tens to hundreds of candidates this represents a considerable bottleneck. We suggest there is a gap in miRNA and RNAi research caused by inadequate current software that could be improved. For example a new software application could be created that provides interactive, comprehensive target analysis that leverages past datasets to lead to statistically stronger analyses.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, USA.
| | | | | |
Collapse
|
35
|
Perez-Perri JI, Acevedo JM, Wappner P. Epigenetics: new questions on the response to hypoxia. Int J Mol Sci 2011; 12:4705-21. [PMID: 21845106 PMCID: PMC3155379 DOI: 10.3390/ijms12074705] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/16/2022] Open
Abstract
Reduction in oxygen levels below normal concentrations plays important roles in different normal and pathological conditions, such as development, tumorigenesis, chronic kidney disease and stroke. Organisms exposed to hypoxia trigger changes at both cellular and systemic levels to recover oxygen homeostasis. Most of these processes are mediated by Hypoxia Inducible Factors, HIFs, a family of transcription factors that directly induce the expression of several hundred genes in mammalian cells. Although different aspects of HIF regulation are well known, it is still unclear by which precise mechanism HIFs activate transcription of their target genes. Concomitantly, hypoxia provokes a dramatic decrease of general transcription that seems to rely in part on epigenetic changes through a poorly understood mechanism. In this review we discuss the current knowledge on chromatin changes involved in HIF dependent gene activation, as well as on other epigenetic changes, not necessarily linked to HIF that take place under hypoxic conditions.
Collapse
Affiliation(s)
- Joel I. Perez-Perri
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; E-Mails: (J.I.P.-P.); (J.M.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
| | - Julieta M. Acevedo
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; E-Mails: (J.I.P.-P.); (J.M.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
| | - Pablo Wappner
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; E-Mails: (J.I.P.-P.); (J.M.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +54-11-5238-7500 ext.3112; Fax: +54-11-5238-7501
| |
Collapse
|
36
|
Abstract
Drosophila melanogaster has a long history as a model organism with several unique features that make it an ideal research tool for the study of the relationship between genotype and phenotype. Importantly fundamental genetic principles as well as key human disease genes have been uncovered through the use of Drosophila. The contribution of the fruit fly to science and medicine continues in the postgenomic era as cell-based Drosophila RNAi screens are a cost-effective and scalable enabling technology that can be used to quantify the contribution of different genes to diverse cellular processes. Drosophila high-throughput screens can also be used as integral part of systems-level approaches to describe the architecture and dynamics of cellular networks.
Collapse
Affiliation(s)
- Chris Bakal
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
37
|
Jiang M, Instrell R, Saunders B, Berven H, Howell M. Tales from an academic RNAi screening facility; FAQs. Brief Funct Genomics 2011; 10:227-37. [PMID: 21527443 DOI: 10.1093/bfgp/elr016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNAi technology is now a well-established and widely employed research technique that has been adopted by many researchers for use in large-scale screening campaigns. Here, we offer our experience of genome-wide siRNA screening from the perspective of a facility providing screening as a service to a wide range of researchers with diverse interests and approaches. We have experienced the emotional rollercoaster of screening from the exuberant early promise of a screen, the messy reality of the data through to the recognition of screen data as a potential information goldmine. Here, we use some of the questions we most frequently encounter to highlight the initial concerns of many researchers embarking on a siRNA screen and conclude that an informed view of what can be reasonably expected from a screen is essential to the most effective implementation of the technology. Along the way, we suggest that for this area of research at least, either centralization of the resources or close and open collaboration between interested parties offers distinct advantages.
Collapse
Affiliation(s)
- Ming Jiang
- High-Throughput Screening facility, Cancer Research UK, London Research Institute
| | | | | | | | | |
Collapse
|
38
|
Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal 2011; 23:324-34. [PMID: 20813183 PMCID: PMC3001194 DOI: 10.1016/j.cellsig.2010.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
Processing bodies (PBs) and Stress Granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbour transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor eIF2alpha, and tRNA cleavage among others. PBs and SGs with different compositions may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of Nuclear Stress Bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA -the UV granules and the Ire1 foci-, all of them induced by specific cell damage factors, contribute to cell survival.
Collapse
Key Words
- atxn2, ataxin-2
- bicd, bicaudal d
- cbp, creb binding protein
- cpeb, cytoplasmic polyadenylation element binding protein
- dhc, dynein heavy chain
- dic, dynein intermediate chain
- fak, focal adhesion kinase
- fus/tls/hnrnp p2, fused in sarcoma
- g3bp, ras-gap sh3 domain binding protein
- gcn2, general control nonderepressible-2
- grb7, growth factor receptor-bound protein 7
- hap, hnrnp a1 interacting protein
- hdac6, histone deacetylase 6
- hri, heme-regulated inhibitor
- hsf, heat shock transcription factor
- khc, kinesin heavy chain
- klc, kinesin light chain
- mln51, metastatic lymph node 51
- nmd, nonsense mediated decay
- nsbs, nuclear stress bodies
- ogfod1, 2–14 oxoglutarate and fe(ii)-dependent oxygenase domain containing 1
- pb, processing body
- perk, pancreatic endoplasmic reticulum eif2alpha kinase
- pkr/eif2ak2, double stranded rna-dependent protein kinase
- pp1, protein phosphatase 1
- prp, prion protein
- rbp, rna binding protein
- rnp, ribonucleoparticle
- sam68, src associated in mitosis 68 kda
- member of star, signal transducer and activator of rna
- sca, spinocerebellar ataxia
- sg, stress granule
- sma, spinal muscular atrophy
- fmrp, fragile x mental retardation protein
- smn, survival of motor neuron
- tdp43, tar dna-binding protein 43
- traf2, tnf receptor associated factor 2
- uvgs, uv rna granules
- processing body
- stress granule
- kinesin
- dynein
- bicaudal d
- aggresome
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Mariela Loschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Andrea Desbats
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- University of Buenos Aires
| |
Collapse
|
39
|
van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S. Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet 2011; 7:e1001285. [PMID: 21298084 PMCID: PMC3029248 DOI: 10.1371/journal.pgen.1001285] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/22/2010] [Indexed: 01/06/2023] Open
Abstract
Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB–mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF–related pathologies including ageing, ischemia, and cancer. The mechanisms by which cells and organisms respond to oxygen are of extreme importance for development and also for certain pathologies such as cancer, ageing, and ischemia. These are mediated by a family of transcription factors called hypoxia inducible factor (HIF), a factor that coordinates expression of a great number of genes. Significantly, these processes are evolutionary conserved from worms to humans. It is known that regulation of HIF occurs to a great extent through protein degradation. However, other important mechanisms of HIF control are currently being investigated. In this study, we have uncovered a novel mechanism of HIF regulation that relies on the action of another transcription factor family called NF-κB. We have found that NF-κB controls the levels of HIF-1α and HIF-1β genes by direct regulation. Furthermore, through its control of HIF-1β, NF-κB indirectly controls HIF-2α. Importantly, we find that this mechanism is conserved in Drosophila and mice. These results suggest an alternative avenue for therapeutic intervention in the HIF pathway, which has important implications for many human diseases.
Collapse
Affiliation(s)
- Patrick van Uden
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Niall S. Kenneth
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ryan Webster
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - H. Arno Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon Mudie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Lindquist RA, Ottina KA, Wheeler DB, Hsu PP, Thoreen CC, Guertin DA, Ali SM, Sengupta S, Shaul YD, Lamprecht MR, Madden KL, Papallo AR, Jones TR, Sabatini DM, Carpenter AE. Genome-scale RNAi on living-cell microarrays identifies novel regulators of Drosophila melanogaster TORC1-S6K pathway signaling. Genome Res 2011; 21:433-46. [PMID: 21239477 DOI: 10.1101/gr.111492.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling may represent therapeutic targets for human diseases. To identify novel regulators of TORC1 signaling, we performed a genome-scale RNA interference screen on microarrays of Drosophila melanogaster cells expressing human RPS6, a TORC1 effector whose phosphorylated form we detected by immunofluorescence. Our screen revealed that the TORC1-S6K-RPS6 signaling axis is regulated by many subcellular components, including the Class I vesicle coat (COPI), the spliceosome, the proteasome, the nuclear pore, and the translation initiation machinery. Using additional RNAi reagents, we confirmed 70 novel genes as significant on-target regulators of RPS6 phosphorylation, and we characterized them with extensive secondary assays probing various arms of the TORC1 pathways, identifying functional relationships among those genes. We conclude that cell-based microarrays are a useful platform for genome-scale and secondary screening in Drosophila, revealing regulators that may represent drug targets for cancers and other diseases of deregulated TORC1 signaling.
Collapse
Affiliation(s)
- Robert A Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shi T, Dong Y, Li J, Gao P, Fu D, Ma D. High-throughput screening identifies CHMP4A associated with hypoxia-inducible factor 1. Life Sci 2010; 87:604-8. [PMID: 20888838 DOI: 10.1016/j.lfs.2010.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 08/18/2010] [Accepted: 09/16/2010] [Indexed: 01/08/2023]
Abstract
AIMS Tumor hypoxia is a common phenomenon and hypoxia-inducible factor-1 is the transcription factor that is most closely associated with hypoxia. Hypoxia-inducible factor-1 is overexpressed in most solid tumors and plays a vital role in hypoxic acclimatization, energy metabolism, tumor angiogenesis, tumor invasion, and drug tolerance in cancer cells. We aimed to identify novel human genes associated with the stability and transcriptional activity of hypoxia-inducible factor-1. MAIN METHODS A cell-based dual luciferase reporter system based on a hypoxia responsive element luciferase reporter gene was constructed to screen 409 novel human genes cloned in our lab. Western blot analysis was used to examine the changes in the expression level of hypoxia-inducible factor-1 α, and RT-PCR analysis was used to detect the transcription level of adenylate kinase 3. KEY FINDINGS Our results demonstrated that chromatin-modifying protein 4A could significantly up-regulate the hypoxia responsive element luciferase activity under both normoxic and cobalt chloride-induced hypoxic environment in HeLa cells. Moreover, Chromatin-modifying protein 4A could increase the expression of hypoxia-inducible factor-1 α protein under normoxic condition, and enhance the transcription level of adenylate kinase 3, which is one of the target genes of hypoxia-inducible factor-1. SIGNIFICANCE The functional screening platform therefore can be applied for the high-throughput screening of hypoxia-inducible factor-1-related genes, which would provide new insights into underlying molecular mechanisms that may regulate hypoxia in mammalian cells.
Collapse
Affiliation(s)
- Taiping Shi
- Chinese National Human Genome Center, #3-707 North YongChang Road BDA, Beijing 100176, PR China.
| | | | | | | | | | | |
Collapse
|